[go: nahoru, domu]

e1000_mac.c revision 74cfb2e1f296b3f962016adf41b316b8cf7d4ed4
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2014 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, see <http://www.gnu.org/licenses/>.
17
18  The full GNU General Public License is included in this distribution in
19  the file called "COPYING".
20
21  Contact Information:
22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25*******************************************************************************/
26
27#include <linux/if_ether.h>
28#include <linux/delay.h>
29#include <linux/pci.h>
30#include <linux/netdevice.h>
31#include <linux/etherdevice.h>
32
33#include "e1000_mac.h"
34
35#include "igb.h"
36
37static s32 igb_set_default_fc(struct e1000_hw *hw);
38static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
39
40/**
41 *  igb_get_bus_info_pcie - Get PCIe bus information
42 *  @hw: pointer to the HW structure
43 *
44 *  Determines and stores the system bus information for a particular
45 *  network interface.  The following bus information is determined and stored:
46 *  bus speed, bus width, type (PCIe), and PCIe function.
47 **/
48s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
49{
50	struct e1000_bus_info *bus = &hw->bus;
51	s32 ret_val;
52	u32 reg;
53	u16 pcie_link_status;
54
55	bus->type = e1000_bus_type_pci_express;
56
57	ret_val = igb_read_pcie_cap_reg(hw,
58					PCI_EXP_LNKSTA,
59					&pcie_link_status);
60	if (ret_val) {
61		bus->width = e1000_bus_width_unknown;
62		bus->speed = e1000_bus_speed_unknown;
63	} else {
64		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
65		case PCI_EXP_LNKSTA_CLS_2_5GB:
66			bus->speed = e1000_bus_speed_2500;
67			break;
68		case PCI_EXP_LNKSTA_CLS_5_0GB:
69			bus->speed = e1000_bus_speed_5000;
70			break;
71		default:
72			bus->speed = e1000_bus_speed_unknown;
73			break;
74		}
75
76		bus->width = (enum e1000_bus_width)((pcie_link_status &
77						     PCI_EXP_LNKSTA_NLW) >>
78						     PCI_EXP_LNKSTA_NLW_SHIFT);
79	}
80
81	reg = rd32(E1000_STATUS);
82	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
83
84	return 0;
85}
86
87/**
88 *  igb_clear_vfta - Clear VLAN filter table
89 *  @hw: pointer to the HW structure
90 *
91 *  Clears the register array which contains the VLAN filter table by
92 *  setting all the values to 0.
93 **/
94void igb_clear_vfta(struct e1000_hw *hw)
95{
96	u32 offset;
97
98	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
99		array_wr32(E1000_VFTA, offset, 0);
100		wrfl();
101	}
102}
103
104/**
105 *  igb_write_vfta - Write value to VLAN filter table
106 *  @hw: pointer to the HW structure
107 *  @offset: register offset in VLAN filter table
108 *  @value: register value written to VLAN filter table
109 *
110 *  Writes value at the given offset in the register array which stores
111 *  the VLAN filter table.
112 **/
113static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
114{
115	array_wr32(E1000_VFTA, offset, value);
116	wrfl();
117}
118
119/* Due to a hw errata, if the host tries to  configure the VFTA register
120 * while performing queries from the BMC or DMA, then the VFTA in some
121 * cases won't be written.
122 */
123
124/**
125 *  igb_clear_vfta_i350 - Clear VLAN filter table
126 *  @hw: pointer to the HW structure
127 *
128 *  Clears the register array which contains the VLAN filter table by
129 *  setting all the values to 0.
130 **/
131void igb_clear_vfta_i350(struct e1000_hw *hw)
132{
133	u32 offset;
134	int i;
135
136	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
137		for (i = 0; i < 10; i++)
138			array_wr32(E1000_VFTA, offset, 0);
139
140		wrfl();
141	}
142}
143
144/**
145 *  igb_write_vfta_i350 - Write value to VLAN filter table
146 *  @hw: pointer to the HW structure
147 *  @offset: register offset in VLAN filter table
148 *  @value: register value written to VLAN filter table
149 *
150 *  Writes value at the given offset in the register array which stores
151 *  the VLAN filter table.
152 **/
153static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
154{
155	int i;
156
157	for (i = 0; i < 10; i++)
158		array_wr32(E1000_VFTA, offset, value);
159
160	wrfl();
161}
162
163/**
164 *  igb_init_rx_addrs - Initialize receive address's
165 *  @hw: pointer to the HW structure
166 *  @rar_count: receive address registers
167 *
168 *  Setups the receive address registers by setting the base receive address
169 *  register to the devices MAC address and clearing all the other receive
170 *  address registers to 0.
171 **/
172void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
173{
174	u32 i;
175	u8 mac_addr[ETH_ALEN] = {0};
176
177	/* Setup the receive address */
178	hw_dbg("Programming MAC Address into RAR[0]\n");
179
180	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
181
182	/* Zero out the other (rar_entry_count - 1) receive addresses */
183	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
184	for (i = 1; i < rar_count; i++)
185		hw->mac.ops.rar_set(hw, mac_addr, i);
186}
187
188/**
189 *  igb_vfta_set - enable or disable vlan in VLAN filter table
190 *  @hw: pointer to the HW structure
191 *  @vid: VLAN id to add or remove
192 *  @add: if true add filter, if false remove
193 *
194 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
195 *  and if we are adding or removing the filter
196 **/
197s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
198{
199	u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
200	u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
201	u32 vfta;
202	struct igb_adapter *adapter = hw->back;
203	s32 ret_val = 0;
204
205	vfta = adapter->shadow_vfta[index];
206
207	/* bit was set/cleared before we started */
208	if ((!!(vfta & mask)) == add) {
209		ret_val = -E1000_ERR_CONFIG;
210	} else {
211		if (add)
212			vfta |= mask;
213		else
214			vfta &= ~mask;
215	}
216	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
217		igb_write_vfta_i350(hw, index, vfta);
218	else
219		igb_write_vfta(hw, index, vfta);
220	adapter->shadow_vfta[index] = vfta;
221
222	return ret_val;
223}
224
225/**
226 *  igb_check_alt_mac_addr - Check for alternate MAC addr
227 *  @hw: pointer to the HW structure
228 *
229 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
230 *  can be setup by pre-boot software and must be treated like a permanent
231 *  address and must override the actual permanent MAC address.  If an
232 *  alternate MAC address is found it is saved in the hw struct and
233 *  programmed into RAR0 and the function returns success, otherwise the
234 *  function returns an error.
235 **/
236s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
237{
238	u32 i;
239	s32 ret_val = 0;
240	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
241	u8 alt_mac_addr[ETH_ALEN];
242
243	/* Alternate MAC address is handled by the option ROM for 82580
244	 * and newer. SW support not required.
245	 */
246	if (hw->mac.type >= e1000_82580)
247		goto out;
248
249	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
250				 &nvm_alt_mac_addr_offset);
251	if (ret_val) {
252		hw_dbg("NVM Read Error\n");
253		goto out;
254	}
255
256	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
257	    (nvm_alt_mac_addr_offset == 0x0000))
258		/* There is no Alternate MAC Address */
259		goto out;
260
261	if (hw->bus.func == E1000_FUNC_1)
262		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
263	if (hw->bus.func == E1000_FUNC_2)
264		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
265
266	if (hw->bus.func == E1000_FUNC_3)
267		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
268	for (i = 0; i < ETH_ALEN; i += 2) {
269		offset = nvm_alt_mac_addr_offset + (i >> 1);
270		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
271		if (ret_val) {
272			hw_dbg("NVM Read Error\n");
273			goto out;
274		}
275
276		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
277		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
278	}
279
280	/* if multicast bit is set, the alternate address will not be used */
281	if (is_multicast_ether_addr(alt_mac_addr)) {
282		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
283		goto out;
284	}
285
286	/* We have a valid alternate MAC address, and we want to treat it the
287	 * same as the normal permanent MAC address stored by the HW into the
288	 * RAR. Do this by mapping this address into RAR0.
289	 */
290	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
291
292out:
293	return ret_val;
294}
295
296/**
297 *  igb_rar_set - Set receive address register
298 *  @hw: pointer to the HW structure
299 *  @addr: pointer to the receive address
300 *  @index: receive address array register
301 *
302 *  Sets the receive address array register at index to the address passed
303 *  in by addr.
304 **/
305void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
306{
307	u32 rar_low, rar_high;
308
309	/* HW expects these in little endian so we reverse the byte order
310	 * from network order (big endian) to little endian
311	 */
312	rar_low = ((u32) addr[0] |
313		   ((u32) addr[1] << 8) |
314		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
315
316	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
317
318	/* If MAC address zero, no need to set the AV bit */
319	if (rar_low || rar_high)
320		rar_high |= E1000_RAH_AV;
321
322	/* Some bridges will combine consecutive 32-bit writes into
323	 * a single burst write, which will malfunction on some parts.
324	 * The flushes avoid this.
325	 */
326	wr32(E1000_RAL(index), rar_low);
327	wrfl();
328	wr32(E1000_RAH(index), rar_high);
329	wrfl();
330}
331
332/**
333 *  igb_mta_set - Set multicast filter table address
334 *  @hw: pointer to the HW structure
335 *  @hash_value: determines the MTA register and bit to set
336 *
337 *  The multicast table address is a register array of 32-bit registers.
338 *  The hash_value is used to determine what register the bit is in, the
339 *  current value is read, the new bit is OR'd in and the new value is
340 *  written back into the register.
341 **/
342void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
343{
344	u32 hash_bit, hash_reg, mta;
345
346	/* The MTA is a register array of 32-bit registers. It is
347	 * treated like an array of (32*mta_reg_count) bits.  We want to
348	 * set bit BitArray[hash_value]. So we figure out what register
349	 * the bit is in, read it, OR in the new bit, then write
350	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
351	 * mask to bits 31:5 of the hash value which gives us the
352	 * register we're modifying.  The hash bit within that register
353	 * is determined by the lower 5 bits of the hash value.
354	 */
355	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
356	hash_bit = hash_value & 0x1F;
357
358	mta = array_rd32(E1000_MTA, hash_reg);
359
360	mta |= (1 << hash_bit);
361
362	array_wr32(E1000_MTA, hash_reg, mta);
363	wrfl();
364}
365
366/**
367 *  igb_hash_mc_addr - Generate a multicast hash value
368 *  @hw: pointer to the HW structure
369 *  @mc_addr: pointer to a multicast address
370 *
371 *  Generates a multicast address hash value which is used to determine
372 *  the multicast filter table array address and new table value.  See
373 *  igb_mta_set()
374 **/
375static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
376{
377	u32 hash_value, hash_mask;
378	u8 bit_shift = 0;
379
380	/* Register count multiplied by bits per register */
381	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
382
383	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
384	 * where 0xFF would still fall within the hash mask.
385	 */
386	while (hash_mask >> bit_shift != 0xFF)
387		bit_shift++;
388
389	/* The portion of the address that is used for the hash table
390	 * is determined by the mc_filter_type setting.
391	 * The algorithm is such that there is a total of 8 bits of shifting.
392	 * The bit_shift for a mc_filter_type of 0 represents the number of
393	 * left-shifts where the MSB of mc_addr[5] would still fall within
394	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
395	 * of 8 bits of shifting, then mc_addr[4] will shift right the
396	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
397	 * cases are a variation of this algorithm...essentially raising the
398	 * number of bits to shift mc_addr[5] left, while still keeping the
399	 * 8-bit shifting total.
400	 *
401	 * For example, given the following Destination MAC Address and an
402	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
403	 * we can see that the bit_shift for case 0 is 4.  These are the hash
404	 * values resulting from each mc_filter_type...
405	 * [0] [1] [2] [3] [4] [5]
406	 * 01  AA  00  12  34  56
407	 * LSB                 MSB
408	 *
409	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
410	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
411	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
412	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
413	 */
414	switch (hw->mac.mc_filter_type) {
415	default:
416	case 0:
417		break;
418	case 1:
419		bit_shift += 1;
420		break;
421	case 2:
422		bit_shift += 2;
423		break;
424	case 3:
425		bit_shift += 4;
426		break;
427	}
428
429	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
430				  (((u16) mc_addr[5]) << bit_shift)));
431
432	return hash_value;
433}
434
435/**
436 *  igb_update_mc_addr_list - Update Multicast addresses
437 *  @hw: pointer to the HW structure
438 *  @mc_addr_list: array of multicast addresses to program
439 *  @mc_addr_count: number of multicast addresses to program
440 *
441 *  Updates entire Multicast Table Array.
442 *  The caller must have a packed mc_addr_list of multicast addresses.
443 **/
444void igb_update_mc_addr_list(struct e1000_hw *hw,
445                             u8 *mc_addr_list, u32 mc_addr_count)
446{
447	u32 hash_value, hash_bit, hash_reg;
448	int i;
449
450	/* clear mta_shadow */
451	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
452
453	/* update mta_shadow from mc_addr_list */
454	for (i = 0; (u32) i < mc_addr_count; i++) {
455		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
456
457		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
458		hash_bit = hash_value & 0x1F;
459
460		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
461		mc_addr_list += (ETH_ALEN);
462	}
463
464	/* replace the entire MTA table */
465	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
466		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
467	wrfl();
468}
469
470/**
471 *  igb_clear_hw_cntrs_base - Clear base hardware counters
472 *  @hw: pointer to the HW structure
473 *
474 *  Clears the base hardware counters by reading the counter registers.
475 **/
476void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
477{
478	rd32(E1000_CRCERRS);
479	rd32(E1000_SYMERRS);
480	rd32(E1000_MPC);
481	rd32(E1000_SCC);
482	rd32(E1000_ECOL);
483	rd32(E1000_MCC);
484	rd32(E1000_LATECOL);
485	rd32(E1000_COLC);
486	rd32(E1000_DC);
487	rd32(E1000_SEC);
488	rd32(E1000_RLEC);
489	rd32(E1000_XONRXC);
490	rd32(E1000_XONTXC);
491	rd32(E1000_XOFFRXC);
492	rd32(E1000_XOFFTXC);
493	rd32(E1000_FCRUC);
494	rd32(E1000_GPRC);
495	rd32(E1000_BPRC);
496	rd32(E1000_MPRC);
497	rd32(E1000_GPTC);
498	rd32(E1000_GORCL);
499	rd32(E1000_GORCH);
500	rd32(E1000_GOTCL);
501	rd32(E1000_GOTCH);
502	rd32(E1000_RNBC);
503	rd32(E1000_RUC);
504	rd32(E1000_RFC);
505	rd32(E1000_ROC);
506	rd32(E1000_RJC);
507	rd32(E1000_TORL);
508	rd32(E1000_TORH);
509	rd32(E1000_TOTL);
510	rd32(E1000_TOTH);
511	rd32(E1000_TPR);
512	rd32(E1000_TPT);
513	rd32(E1000_MPTC);
514	rd32(E1000_BPTC);
515}
516
517/**
518 *  igb_check_for_copper_link - Check for link (Copper)
519 *  @hw: pointer to the HW structure
520 *
521 *  Checks to see of the link status of the hardware has changed.  If a
522 *  change in link status has been detected, then we read the PHY registers
523 *  to get the current speed/duplex if link exists.
524 **/
525s32 igb_check_for_copper_link(struct e1000_hw *hw)
526{
527	struct e1000_mac_info *mac = &hw->mac;
528	s32 ret_val;
529	bool link;
530
531	/* We only want to go out to the PHY registers to see if Auto-Neg
532	 * has completed and/or if our link status has changed.  The
533	 * get_link_status flag is set upon receiving a Link Status
534	 * Change or Rx Sequence Error interrupt.
535	 */
536	if (!mac->get_link_status) {
537		ret_val = 0;
538		goto out;
539	}
540
541	/* First we want to see if the MII Status Register reports
542	 * link.  If so, then we want to get the current speed/duplex
543	 * of the PHY.
544	 */
545	ret_val = igb_phy_has_link(hw, 1, 0, &link);
546	if (ret_val)
547		goto out;
548
549	if (!link)
550		goto out; /* No link detected */
551
552	mac->get_link_status = false;
553
554	/* Check if there was DownShift, must be checked
555	 * immediately after link-up
556	 */
557	igb_check_downshift(hw);
558
559	/* If we are forcing speed/duplex, then we simply return since
560	 * we have already determined whether we have link or not.
561	 */
562	if (!mac->autoneg) {
563		ret_val = -E1000_ERR_CONFIG;
564		goto out;
565	}
566
567	/* Auto-Neg is enabled.  Auto Speed Detection takes care
568	 * of MAC speed/duplex configuration.  So we only need to
569	 * configure Collision Distance in the MAC.
570	 */
571	igb_config_collision_dist(hw);
572
573	/* Configure Flow Control now that Auto-Neg has completed.
574	 * First, we need to restore the desired flow control
575	 * settings because we may have had to re-autoneg with a
576	 * different link partner.
577	 */
578	ret_val = igb_config_fc_after_link_up(hw);
579	if (ret_val)
580		hw_dbg("Error configuring flow control\n");
581
582out:
583	return ret_val;
584}
585
586/**
587 *  igb_setup_link - Setup flow control and link settings
588 *  @hw: pointer to the HW structure
589 *
590 *  Determines which flow control settings to use, then configures flow
591 *  control.  Calls the appropriate media-specific link configuration
592 *  function.  Assuming the adapter has a valid link partner, a valid link
593 *  should be established.  Assumes the hardware has previously been reset
594 *  and the transmitter and receiver are not enabled.
595 **/
596s32 igb_setup_link(struct e1000_hw *hw)
597{
598	s32 ret_val = 0;
599
600	/* In the case of the phy reset being blocked, we already have a link.
601	 * We do not need to set it up again.
602	 */
603	if (igb_check_reset_block(hw))
604		goto out;
605
606	/* If requested flow control is set to default, set flow control
607	 * based on the EEPROM flow control settings.
608	 */
609	if (hw->fc.requested_mode == e1000_fc_default) {
610		ret_val = igb_set_default_fc(hw);
611		if (ret_val)
612			goto out;
613	}
614
615	/* We want to save off the original Flow Control configuration just
616	 * in case we get disconnected and then reconnected into a different
617	 * hub or switch with different Flow Control capabilities.
618	 */
619	hw->fc.current_mode = hw->fc.requested_mode;
620
621	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
622
623	/* Call the necessary media_type subroutine to configure the link. */
624	ret_val = hw->mac.ops.setup_physical_interface(hw);
625	if (ret_val)
626		goto out;
627
628	/* Initialize the flow control address, type, and PAUSE timer
629	 * registers to their default values.  This is done even if flow
630	 * control is disabled, because it does not hurt anything to
631	 * initialize these registers.
632	 */
633	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
634	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
635	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
636	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
637
638	wr32(E1000_FCTTV, hw->fc.pause_time);
639
640	ret_val = igb_set_fc_watermarks(hw);
641
642out:
643
644	return ret_val;
645}
646
647/**
648 *  igb_config_collision_dist - Configure collision distance
649 *  @hw: pointer to the HW structure
650 *
651 *  Configures the collision distance to the default value and is used
652 *  during link setup. Currently no func pointer exists and all
653 *  implementations are handled in the generic version of this function.
654 **/
655void igb_config_collision_dist(struct e1000_hw *hw)
656{
657	u32 tctl;
658
659	tctl = rd32(E1000_TCTL);
660
661	tctl &= ~E1000_TCTL_COLD;
662	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
663
664	wr32(E1000_TCTL, tctl);
665	wrfl();
666}
667
668/**
669 *  igb_set_fc_watermarks - Set flow control high/low watermarks
670 *  @hw: pointer to the HW structure
671 *
672 *  Sets the flow control high/low threshold (watermark) registers.  If
673 *  flow control XON frame transmission is enabled, then set XON frame
674 *  tansmission as well.
675 **/
676static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
677{
678	s32 ret_val = 0;
679	u32 fcrtl = 0, fcrth = 0;
680
681	/* Set the flow control receive threshold registers.  Normally,
682	 * these registers will be set to a default threshold that may be
683	 * adjusted later by the driver's runtime code.  However, if the
684	 * ability to transmit pause frames is not enabled, then these
685	 * registers will be set to 0.
686	 */
687	if (hw->fc.current_mode & e1000_fc_tx_pause) {
688		/* We need to set up the Receive Threshold high and low water
689		 * marks as well as (optionally) enabling the transmission of
690		 * XON frames.
691		 */
692		fcrtl = hw->fc.low_water;
693		if (hw->fc.send_xon)
694			fcrtl |= E1000_FCRTL_XONE;
695
696		fcrth = hw->fc.high_water;
697	}
698	wr32(E1000_FCRTL, fcrtl);
699	wr32(E1000_FCRTH, fcrth);
700
701	return ret_val;
702}
703
704/**
705 *  igb_set_default_fc - Set flow control default values
706 *  @hw: pointer to the HW structure
707 *
708 *  Read the EEPROM for the default values for flow control and store the
709 *  values.
710 **/
711static s32 igb_set_default_fc(struct e1000_hw *hw)
712{
713	s32 ret_val = 0;
714	u16 lan_offset;
715	u16 nvm_data;
716
717	/* Read and store word 0x0F of the EEPROM. This word contains bits
718	 * that determine the hardware's default PAUSE (flow control) mode,
719	 * a bit that determines whether the HW defaults to enabling or
720	 * disabling auto-negotiation, and the direction of the
721	 * SW defined pins. If there is no SW over-ride of the flow
722	 * control setting, then the variable hw->fc will
723	 * be initialized based on a value in the EEPROM.
724	 */
725	if (hw->mac.type == e1000_i350) {
726		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
727		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG
728					   + lan_offset, 1, &nvm_data);
729	 } else {
730		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG,
731					   1, &nvm_data);
732	 }
733
734	if (ret_val) {
735		hw_dbg("NVM Read Error\n");
736		goto out;
737	}
738
739	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
740		hw->fc.requested_mode = e1000_fc_none;
741	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
742		 NVM_WORD0F_ASM_DIR)
743		hw->fc.requested_mode = e1000_fc_tx_pause;
744	else
745		hw->fc.requested_mode = e1000_fc_full;
746
747out:
748	return ret_val;
749}
750
751/**
752 *  igb_force_mac_fc - Force the MAC's flow control settings
753 *  @hw: pointer to the HW structure
754 *
755 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
756 *  device control register to reflect the adapter settings.  TFCE and RFCE
757 *  need to be explicitly set by software when a copper PHY is used because
758 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
759 *  also configure these bits when link is forced on a fiber connection.
760 **/
761s32 igb_force_mac_fc(struct e1000_hw *hw)
762{
763	u32 ctrl;
764	s32 ret_val = 0;
765
766	ctrl = rd32(E1000_CTRL);
767
768	/* Because we didn't get link via the internal auto-negotiation
769	 * mechanism (we either forced link or we got link via PHY
770	 * auto-neg), we have to manually enable/disable transmit an
771	 * receive flow control.
772	 *
773	 * The "Case" statement below enables/disable flow control
774	 * according to the "hw->fc.current_mode" parameter.
775	 *
776	 * The possible values of the "fc" parameter are:
777	 *      0:  Flow control is completely disabled
778	 *      1:  Rx flow control is enabled (we can receive pause
779	 *          frames but not send pause frames).
780	 *      2:  Tx flow control is enabled (we can send pause frames
781	 *          frames but we do not receive pause frames).
782	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
783	 *  other:  No other values should be possible at this point.
784	 */
785	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
786
787	switch (hw->fc.current_mode) {
788	case e1000_fc_none:
789		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
790		break;
791	case e1000_fc_rx_pause:
792		ctrl &= (~E1000_CTRL_TFCE);
793		ctrl |= E1000_CTRL_RFCE;
794		break;
795	case e1000_fc_tx_pause:
796		ctrl &= (~E1000_CTRL_RFCE);
797		ctrl |= E1000_CTRL_TFCE;
798		break;
799	case e1000_fc_full:
800		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
801		break;
802	default:
803		hw_dbg("Flow control param set incorrectly\n");
804		ret_val = -E1000_ERR_CONFIG;
805		goto out;
806	}
807
808	wr32(E1000_CTRL, ctrl);
809
810out:
811	return ret_val;
812}
813
814/**
815 *  igb_config_fc_after_link_up - Configures flow control after link
816 *  @hw: pointer to the HW structure
817 *
818 *  Checks the status of auto-negotiation after link up to ensure that the
819 *  speed and duplex were not forced.  If the link needed to be forced, then
820 *  flow control needs to be forced also.  If auto-negotiation is enabled
821 *  and did not fail, then we configure flow control based on our link
822 *  partner.
823 **/
824s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
825{
826	struct e1000_mac_info *mac = &hw->mac;
827	s32 ret_val = 0;
828	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
829	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
830	u16 speed, duplex;
831
832	/* Check for the case where we have fiber media and auto-neg failed
833	 * so we had to force link.  In this case, we need to force the
834	 * configuration of the MAC to match the "fc" parameter.
835	 */
836	if (mac->autoneg_failed) {
837		if (hw->phy.media_type == e1000_media_type_internal_serdes)
838			ret_val = igb_force_mac_fc(hw);
839	} else {
840		if (hw->phy.media_type == e1000_media_type_copper)
841			ret_val = igb_force_mac_fc(hw);
842	}
843
844	if (ret_val) {
845		hw_dbg("Error forcing flow control settings\n");
846		goto out;
847	}
848
849	/* Check for the case where we have copper media and auto-neg is
850	 * enabled.  In this case, we need to check and see if Auto-Neg
851	 * has completed, and if so, how the PHY and link partner has
852	 * flow control configured.
853	 */
854	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
855		/* Read the MII Status Register and check to see if AutoNeg
856		 * has completed.  We read this twice because this reg has
857		 * some "sticky" (latched) bits.
858		 */
859		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
860						   &mii_status_reg);
861		if (ret_val)
862			goto out;
863		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
864						   &mii_status_reg);
865		if (ret_val)
866			goto out;
867
868		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
869			hw_dbg("Copper PHY and Auto Neg "
870				 "has not completed.\n");
871			goto out;
872		}
873
874		/* The AutoNeg process has completed, so we now need to
875		 * read both the Auto Negotiation Advertisement
876		 * Register (Address 4) and the Auto_Negotiation Base
877		 * Page Ability Register (Address 5) to determine how
878		 * flow control was negotiated.
879		 */
880		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
881					    &mii_nway_adv_reg);
882		if (ret_val)
883			goto out;
884		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
885					    &mii_nway_lp_ability_reg);
886		if (ret_val)
887			goto out;
888
889		/* Two bits in the Auto Negotiation Advertisement Register
890		 * (Address 4) and two bits in the Auto Negotiation Base
891		 * Page Ability Register (Address 5) determine flow control
892		 * for both the PHY and the link partner.  The following
893		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
894		 * 1999, describes these PAUSE resolution bits and how flow
895		 * control is determined based upon these settings.
896		 * NOTE:  DC = Don't Care
897		 *
898		 *   LOCAL DEVICE  |   LINK PARTNER
899		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
900		 *-------|---------|-------|---------|--------------------
901		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
902		 *   0   |    1    |   0   |   DC    | e1000_fc_none
903		 *   0   |    1    |   1   |    0    | e1000_fc_none
904		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
905		 *   1   |    0    |   0   |   DC    | e1000_fc_none
906		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
907		 *   1   |    1    |   0   |    0    | e1000_fc_none
908		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
909		 *
910		 * Are both PAUSE bits set to 1?  If so, this implies
911		 * Symmetric Flow Control is enabled at both ends.  The
912		 * ASM_DIR bits are irrelevant per the spec.
913		 *
914		 * For Symmetric Flow Control:
915		 *
916		 *   LOCAL DEVICE  |   LINK PARTNER
917		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
918		 *-------|---------|-------|---------|--------------------
919		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
920		 *
921		 */
922		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
923		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
924			/* Now we need to check if the user selected RX ONLY
925			 * of pause frames.  In this case, we had to advertise
926			 * FULL flow control because we could not advertise RX
927			 * ONLY. Hence, we must now check to see if we need to
928			 * turn OFF  the TRANSMISSION of PAUSE frames.
929			 */
930			if (hw->fc.requested_mode == e1000_fc_full) {
931				hw->fc.current_mode = e1000_fc_full;
932				hw_dbg("Flow Control = FULL.\r\n");
933			} else {
934				hw->fc.current_mode = e1000_fc_rx_pause;
935				hw_dbg("Flow Control = "
936				       "RX PAUSE frames only.\r\n");
937			}
938		}
939		/* For receiving PAUSE frames ONLY.
940		 *
941		 *   LOCAL DEVICE  |   LINK PARTNER
942		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
943		 *-------|---------|-------|---------|--------------------
944		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
945		 */
946		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
947			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
948			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
949			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
950			hw->fc.current_mode = e1000_fc_tx_pause;
951			hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
952		}
953		/* For transmitting PAUSE frames ONLY.
954		 *
955		 *   LOCAL DEVICE  |   LINK PARTNER
956		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
957		 *-------|---------|-------|---------|--------------------
958		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
959		 */
960		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
961			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
962			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
963			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
964			hw->fc.current_mode = e1000_fc_rx_pause;
965			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
966		}
967		/* Per the IEEE spec, at this point flow control should be
968		 * disabled.  However, we want to consider that we could
969		 * be connected to a legacy switch that doesn't advertise
970		 * desired flow control, but can be forced on the link
971		 * partner.  So if we advertised no flow control, that is
972		 * what we will resolve to.  If we advertised some kind of
973		 * receive capability (Rx Pause Only or Full Flow Control)
974		 * and the link partner advertised none, we will configure
975		 * ourselves to enable Rx Flow Control only.  We can do
976		 * this safely for two reasons:  If the link partner really
977		 * didn't want flow control enabled, and we enable Rx, no
978		 * harm done since we won't be receiving any PAUSE frames
979		 * anyway.  If the intent on the link partner was to have
980		 * flow control enabled, then by us enabling RX only, we
981		 * can at least receive pause frames and process them.
982		 * This is a good idea because in most cases, since we are
983		 * predominantly a server NIC, more times than not we will
984		 * be asked to delay transmission of packets than asking
985		 * our link partner to pause transmission of frames.
986		 */
987		else if ((hw->fc.requested_mode == e1000_fc_none) ||
988			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
989			 (hw->fc.strict_ieee)) {
990			hw->fc.current_mode = e1000_fc_none;
991			hw_dbg("Flow Control = NONE.\r\n");
992		} else {
993			hw->fc.current_mode = e1000_fc_rx_pause;
994			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
995		}
996
997		/* Now we need to do one last check...  If we auto-
998		 * negotiated to HALF DUPLEX, flow control should not be
999		 * enabled per IEEE 802.3 spec.
1000		 */
1001		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1002		if (ret_val) {
1003			hw_dbg("Error getting link speed and duplex\n");
1004			goto out;
1005		}
1006
1007		if (duplex == HALF_DUPLEX)
1008			hw->fc.current_mode = e1000_fc_none;
1009
1010		/* Now we call a subroutine to actually force the MAC
1011		 * controller to use the correct flow control settings.
1012		 */
1013		ret_val = igb_force_mac_fc(hw);
1014		if (ret_val) {
1015			hw_dbg("Error forcing flow control settings\n");
1016			goto out;
1017		}
1018	}
1019	/* Check for the case where we have SerDes media and auto-neg is
1020	 * enabled.  In this case, we need to check and see if Auto-Neg
1021	 * has completed, and if so, how the PHY and link partner has
1022	 * flow control configured.
1023	 */
1024	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1025		&& mac->autoneg) {
1026		/* Read the PCS_LSTS and check to see if AutoNeg
1027		 * has completed.
1028		 */
1029		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1030
1031		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1032			hw_dbg("PCS Auto Neg has not completed.\n");
1033			return ret_val;
1034		}
1035
1036		/* The AutoNeg process has completed, so we now need to
1037		 * read both the Auto Negotiation Advertisement
1038		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1039		 * Page Ability Register (PCS_LPAB) to determine how
1040		 * flow control was negotiated.
1041		 */
1042		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1043		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1044
1045		/* Two bits in the Auto Negotiation Advertisement Register
1046		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1047		 * Page Ability Register (PCS_LPAB) determine flow control
1048		 * for both the PHY and the link partner.  The following
1049		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1050		 * 1999, describes these PAUSE resolution bits and how flow
1051		 * control is determined based upon these settings.
1052		 * NOTE:  DC = Don't Care
1053		 *
1054		 *   LOCAL DEVICE  |   LINK PARTNER
1055		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1056		 *-------|---------|-------|---------|--------------------
1057		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1058		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1059		 *   0   |    1    |   1   |    0    | e1000_fc_none
1060		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1061		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1062		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1063		 *   1   |    1    |   0   |    0    | e1000_fc_none
1064		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1065		 *
1066		 * Are both PAUSE bits set to 1?  If so, this implies
1067		 * Symmetric Flow Control is enabled at both ends.  The
1068		 * ASM_DIR bits are irrelevant per the spec.
1069		 *
1070		 * For Symmetric Flow Control:
1071		 *
1072		 *   LOCAL DEVICE  |   LINK PARTNER
1073		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1074		 *-------|---------|-------|---------|--------------------
1075		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1076		 *
1077		 */
1078		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1079		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1080			/* Now we need to check if the user selected Rx ONLY
1081			 * of pause frames.  In this case, we had to advertise
1082			 * FULL flow control because we could not advertise Rx
1083			 * ONLY. Hence, we must now check to see if we need to
1084			 * turn OFF the TRANSMISSION of PAUSE frames.
1085			 */
1086			if (hw->fc.requested_mode == e1000_fc_full) {
1087				hw->fc.current_mode = e1000_fc_full;
1088				hw_dbg("Flow Control = FULL.\n");
1089			} else {
1090				hw->fc.current_mode = e1000_fc_rx_pause;
1091				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1092			}
1093		}
1094		/* For receiving PAUSE frames ONLY.
1095		 *
1096		 *   LOCAL DEVICE  |   LINK PARTNER
1097		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1098		 *-------|---------|-------|---------|--------------------
1099		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1100		 */
1101		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1102			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1103			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1104			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1105			hw->fc.current_mode = e1000_fc_tx_pause;
1106			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1107		}
1108		/* For transmitting PAUSE frames ONLY.
1109		 *
1110		 *   LOCAL DEVICE  |   LINK PARTNER
1111		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1112		 *-------|---------|-------|---------|--------------------
1113		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1114		 */
1115		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1116			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1117			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1118			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1119			hw->fc.current_mode = e1000_fc_rx_pause;
1120			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1121		} else {
1122			/* Per the IEEE spec, at this point flow control
1123			 * should be disabled.
1124			 */
1125			hw->fc.current_mode = e1000_fc_none;
1126			hw_dbg("Flow Control = NONE.\n");
1127		}
1128
1129		/* Now we call a subroutine to actually force the MAC
1130		 * controller to use the correct flow control settings.
1131		 */
1132		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1133		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1134		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1135
1136		ret_val = igb_force_mac_fc(hw);
1137		if (ret_val) {
1138			hw_dbg("Error forcing flow control settings\n");
1139			return ret_val;
1140		}
1141	}
1142
1143out:
1144	return ret_val;
1145}
1146
1147/**
1148 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1149 *  @hw: pointer to the HW structure
1150 *  @speed: stores the current speed
1151 *  @duplex: stores the current duplex
1152 *
1153 *  Read the status register for the current speed/duplex and store the current
1154 *  speed and duplex for copper connections.
1155 **/
1156s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1157				      u16 *duplex)
1158{
1159	u32 status;
1160
1161	status = rd32(E1000_STATUS);
1162	if (status & E1000_STATUS_SPEED_1000) {
1163		*speed = SPEED_1000;
1164		hw_dbg("1000 Mbs, ");
1165	} else if (status & E1000_STATUS_SPEED_100) {
1166		*speed = SPEED_100;
1167		hw_dbg("100 Mbs, ");
1168	} else {
1169		*speed = SPEED_10;
1170		hw_dbg("10 Mbs, ");
1171	}
1172
1173	if (status & E1000_STATUS_FD) {
1174		*duplex = FULL_DUPLEX;
1175		hw_dbg("Full Duplex\n");
1176	} else {
1177		*duplex = HALF_DUPLEX;
1178		hw_dbg("Half Duplex\n");
1179	}
1180
1181	return 0;
1182}
1183
1184/**
1185 *  igb_get_hw_semaphore - Acquire hardware semaphore
1186 *  @hw: pointer to the HW structure
1187 *
1188 *  Acquire the HW semaphore to access the PHY or NVM
1189 **/
1190s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1191{
1192	u32 swsm;
1193	s32 ret_val = 0;
1194	s32 timeout = hw->nvm.word_size + 1;
1195	s32 i = 0;
1196
1197	/* Get the SW semaphore */
1198	while (i < timeout) {
1199		swsm = rd32(E1000_SWSM);
1200		if (!(swsm & E1000_SWSM_SMBI))
1201			break;
1202
1203		udelay(50);
1204		i++;
1205	}
1206
1207	if (i == timeout) {
1208		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1209		ret_val = -E1000_ERR_NVM;
1210		goto out;
1211	}
1212
1213	/* Get the FW semaphore. */
1214	for (i = 0; i < timeout; i++) {
1215		swsm = rd32(E1000_SWSM);
1216		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1217
1218		/* Semaphore acquired if bit latched */
1219		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1220			break;
1221
1222		udelay(50);
1223	}
1224
1225	if (i == timeout) {
1226		/* Release semaphores */
1227		igb_put_hw_semaphore(hw);
1228		hw_dbg("Driver can't access the NVM\n");
1229		ret_val = -E1000_ERR_NVM;
1230		goto out;
1231	}
1232
1233out:
1234	return ret_val;
1235}
1236
1237/**
1238 *  igb_put_hw_semaphore - Release hardware semaphore
1239 *  @hw: pointer to the HW structure
1240 *
1241 *  Release hardware semaphore used to access the PHY or NVM
1242 **/
1243void igb_put_hw_semaphore(struct e1000_hw *hw)
1244{
1245	u32 swsm;
1246
1247	swsm = rd32(E1000_SWSM);
1248
1249	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1250
1251	wr32(E1000_SWSM, swsm);
1252}
1253
1254/**
1255 *  igb_get_auto_rd_done - Check for auto read completion
1256 *  @hw: pointer to the HW structure
1257 *
1258 *  Check EEPROM for Auto Read done bit.
1259 **/
1260s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1261{
1262	s32 i = 0;
1263	s32 ret_val = 0;
1264
1265
1266	while (i < AUTO_READ_DONE_TIMEOUT) {
1267		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1268			break;
1269		msleep(1);
1270		i++;
1271	}
1272
1273	if (i == AUTO_READ_DONE_TIMEOUT) {
1274		hw_dbg("Auto read by HW from NVM has not completed.\n");
1275		ret_val = -E1000_ERR_RESET;
1276		goto out;
1277	}
1278
1279out:
1280	return ret_val;
1281}
1282
1283/**
1284 *  igb_valid_led_default - Verify a valid default LED config
1285 *  @hw: pointer to the HW structure
1286 *  @data: pointer to the NVM (EEPROM)
1287 *
1288 *  Read the EEPROM for the current default LED configuration.  If the
1289 *  LED configuration is not valid, set to a valid LED configuration.
1290 **/
1291static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1292{
1293	s32 ret_val;
1294
1295	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1296	if (ret_val) {
1297		hw_dbg("NVM Read Error\n");
1298		goto out;
1299	}
1300
1301	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1302		switch(hw->phy.media_type) {
1303		case e1000_media_type_internal_serdes:
1304			*data = ID_LED_DEFAULT_82575_SERDES;
1305			break;
1306		case e1000_media_type_copper:
1307		default:
1308			*data = ID_LED_DEFAULT;
1309			break;
1310		}
1311	}
1312out:
1313	return ret_val;
1314}
1315
1316/**
1317 *  igb_id_led_init -
1318 *  @hw: pointer to the HW structure
1319 *
1320 **/
1321s32 igb_id_led_init(struct e1000_hw *hw)
1322{
1323	struct e1000_mac_info *mac = &hw->mac;
1324	s32 ret_val;
1325	const u32 ledctl_mask = 0x000000FF;
1326	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1327	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1328	u16 data, i, temp;
1329	const u16 led_mask = 0x0F;
1330
1331	/* i210 and i211 devices have different LED mechanism */
1332	if ((hw->mac.type == e1000_i210) ||
1333	    (hw->mac.type == e1000_i211))
1334		ret_val = igb_valid_led_default_i210(hw, &data);
1335	else
1336		ret_val = igb_valid_led_default(hw, &data);
1337
1338	if (ret_val)
1339		goto out;
1340
1341	mac->ledctl_default = rd32(E1000_LEDCTL);
1342	mac->ledctl_mode1 = mac->ledctl_default;
1343	mac->ledctl_mode2 = mac->ledctl_default;
1344
1345	for (i = 0; i < 4; i++) {
1346		temp = (data >> (i << 2)) & led_mask;
1347		switch (temp) {
1348		case ID_LED_ON1_DEF2:
1349		case ID_LED_ON1_ON2:
1350		case ID_LED_ON1_OFF2:
1351			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1352			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1353			break;
1354		case ID_LED_OFF1_DEF2:
1355		case ID_LED_OFF1_ON2:
1356		case ID_LED_OFF1_OFF2:
1357			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1358			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1359			break;
1360		default:
1361			/* Do nothing */
1362			break;
1363		}
1364		switch (temp) {
1365		case ID_LED_DEF1_ON2:
1366		case ID_LED_ON1_ON2:
1367		case ID_LED_OFF1_ON2:
1368			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1369			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1370			break;
1371		case ID_LED_DEF1_OFF2:
1372		case ID_LED_ON1_OFF2:
1373		case ID_LED_OFF1_OFF2:
1374			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1375			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1376			break;
1377		default:
1378			/* Do nothing */
1379			break;
1380		}
1381	}
1382
1383out:
1384	return ret_val;
1385}
1386
1387/**
1388 *  igb_cleanup_led - Set LED config to default operation
1389 *  @hw: pointer to the HW structure
1390 *
1391 *  Remove the current LED configuration and set the LED configuration
1392 *  to the default value, saved from the EEPROM.
1393 **/
1394s32 igb_cleanup_led(struct e1000_hw *hw)
1395{
1396	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1397	return 0;
1398}
1399
1400/**
1401 *  igb_blink_led - Blink LED
1402 *  @hw: pointer to the HW structure
1403 *
1404 *  Blink the led's which are set to be on.
1405 **/
1406s32 igb_blink_led(struct e1000_hw *hw)
1407{
1408	u32 ledctl_blink = 0;
1409	u32 i;
1410
1411	if (hw->phy.media_type == e1000_media_type_fiber) {
1412		/* always blink LED0 for PCI-E fiber */
1413		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1414		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1415	} else {
1416		/* Set the blink bit for each LED that's "on" (0x0E)
1417		 * (or "off" if inverted) in ledctl_mode2.  The blink
1418		 * logic in hardware only works when mode is set to "on"
1419		 * so it must be changed accordingly when the mode is
1420		 * "off" and inverted.
1421		 */
1422		ledctl_blink = hw->mac.ledctl_mode2;
1423		for (i = 0; i < 32; i += 8) {
1424			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1425			    E1000_LEDCTL_LED0_MODE_MASK;
1426			u32 led_default = hw->mac.ledctl_default >> i;
1427
1428			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1429			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1430			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1431			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1432				ledctl_blink &=
1433				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1434				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1435						 E1000_LEDCTL_MODE_LED_ON) << i;
1436			}
1437		}
1438	}
1439
1440	wr32(E1000_LEDCTL, ledctl_blink);
1441
1442	return 0;
1443}
1444
1445/**
1446 *  igb_led_off - Turn LED off
1447 *  @hw: pointer to the HW structure
1448 *
1449 *  Turn LED off.
1450 **/
1451s32 igb_led_off(struct e1000_hw *hw)
1452{
1453	switch (hw->phy.media_type) {
1454	case e1000_media_type_copper:
1455		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1456		break;
1457	default:
1458		break;
1459	}
1460
1461	return 0;
1462}
1463
1464/**
1465 *  igb_disable_pcie_master - Disables PCI-express master access
1466 *  @hw: pointer to the HW structure
1467 *
1468 *  Returns 0 (0) if successful, else returns -10
1469 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1470 *  the master requests to be disabled.
1471 *
1472 *  Disables PCI-Express master access and verifies there are no pending
1473 *  requests.
1474 **/
1475s32 igb_disable_pcie_master(struct e1000_hw *hw)
1476{
1477	u32 ctrl;
1478	s32 timeout = MASTER_DISABLE_TIMEOUT;
1479	s32 ret_val = 0;
1480
1481	if (hw->bus.type != e1000_bus_type_pci_express)
1482		goto out;
1483
1484	ctrl = rd32(E1000_CTRL);
1485	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1486	wr32(E1000_CTRL, ctrl);
1487
1488	while (timeout) {
1489		if (!(rd32(E1000_STATUS) &
1490		      E1000_STATUS_GIO_MASTER_ENABLE))
1491			break;
1492		udelay(100);
1493		timeout--;
1494	}
1495
1496	if (!timeout) {
1497		hw_dbg("Master requests are pending.\n");
1498		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1499		goto out;
1500	}
1501
1502out:
1503	return ret_val;
1504}
1505
1506/**
1507 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1508 *  @hw: pointer to the HW structure
1509 *
1510 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1511 *  set, which is forced to MDI mode only.
1512 **/
1513s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1514{
1515	s32 ret_val = 0;
1516
1517	/* All MDI settings are supported on 82580 and newer. */
1518	if (hw->mac.type >= e1000_82580)
1519		goto out;
1520
1521	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1522		hw_dbg("Invalid MDI setting detected\n");
1523		hw->phy.mdix = 1;
1524		ret_val = -E1000_ERR_CONFIG;
1525		goto out;
1526	}
1527
1528out:
1529	return ret_val;
1530}
1531
1532/**
1533 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1534 *  @hw: pointer to the HW structure
1535 *  @reg: 32bit register offset such as E1000_SCTL
1536 *  @offset: register offset to write to
1537 *  @data: data to write at register offset
1538 *
1539 *  Writes an address/data control type register.  There are several of these
1540 *  and they all have the format address << 8 | data and bit 31 is polled for
1541 *  completion.
1542 **/
1543s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1544			      u32 offset, u8 data)
1545{
1546	u32 i, regvalue = 0;
1547	s32 ret_val = 0;
1548
1549	/* Set up the address and data */
1550	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1551	wr32(reg, regvalue);
1552
1553	/* Poll the ready bit to see if the MDI read completed */
1554	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1555		udelay(5);
1556		regvalue = rd32(reg);
1557		if (regvalue & E1000_GEN_CTL_READY)
1558			break;
1559	}
1560	if (!(regvalue & E1000_GEN_CTL_READY)) {
1561		hw_dbg("Reg %08x did not indicate ready\n", reg);
1562		ret_val = -E1000_ERR_PHY;
1563		goto out;
1564	}
1565
1566out:
1567	return ret_val;
1568}
1569
1570/**
1571 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1572 *  @hw: pointer to the HW structure
1573 *
1574 *  Verifies the hardware needs to leave interface enabled so that frames can
1575 *  be directed to and from the management interface.
1576 **/
1577bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1578{
1579	u32 manc;
1580	u32 fwsm, factps;
1581	bool ret_val = false;
1582
1583	if (!hw->mac.asf_firmware_present)
1584		goto out;
1585
1586	manc = rd32(E1000_MANC);
1587
1588	if (!(manc & E1000_MANC_RCV_TCO_EN))
1589		goto out;
1590
1591	if (hw->mac.arc_subsystem_valid) {
1592		fwsm = rd32(E1000_FWSM);
1593		factps = rd32(E1000_FACTPS);
1594
1595		if (!(factps & E1000_FACTPS_MNGCG) &&
1596		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1597		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1598			ret_val = true;
1599			goto out;
1600		}
1601	} else {
1602		if ((manc & E1000_MANC_SMBUS_EN) &&
1603		    !(manc & E1000_MANC_ASF_EN)) {
1604			ret_val = true;
1605			goto out;
1606		}
1607	}
1608
1609out:
1610	return ret_val;
1611}
1612