[go: nahoru, domu]

e1000_mac.c revision c7cb020d0b670428eddd9702dfdc5ff0a48de653
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30#include <linux/pci.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33
34#include "e1000_mac.h"
35
36#include "igb.h"
37
38static s32 igb_set_default_fc(struct e1000_hw *hw);
39static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
40
41/**
42 *  igb_get_bus_info_pcie - Get PCIe bus information
43 *  @hw: pointer to the HW structure
44 *
45 *  Determines and stores the system bus information for a particular
46 *  network interface.  The following bus information is determined and stored:
47 *  bus speed, bus width, type (PCIe), and PCIe function.
48 **/
49s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
50{
51	struct e1000_bus_info *bus = &hw->bus;
52	s32 ret_val;
53	u32 reg;
54	u16 pcie_link_status;
55
56	bus->type = e1000_bus_type_pci_express;
57
58	ret_val = igb_read_pcie_cap_reg(hw,
59					PCI_EXP_LNKSTA,
60					&pcie_link_status);
61	if (ret_val) {
62		bus->width = e1000_bus_width_unknown;
63		bus->speed = e1000_bus_speed_unknown;
64	} else {
65		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
66		case PCI_EXP_LNKSTA_CLS_2_5GB:
67			bus->speed = e1000_bus_speed_2500;
68			break;
69		case PCI_EXP_LNKSTA_CLS_5_0GB:
70			bus->speed = e1000_bus_speed_5000;
71			break;
72		default:
73			bus->speed = e1000_bus_speed_unknown;
74			break;
75		}
76
77		bus->width = (enum e1000_bus_width)((pcie_link_status &
78						     PCI_EXP_LNKSTA_NLW) >>
79						     PCI_EXP_LNKSTA_NLW_SHIFT);
80	}
81
82	reg = rd32(E1000_STATUS);
83	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
84
85	return 0;
86}
87
88/**
89 *  igb_clear_vfta - Clear VLAN filter table
90 *  @hw: pointer to the HW structure
91 *
92 *  Clears the register array which contains the VLAN filter table by
93 *  setting all the values to 0.
94 **/
95void igb_clear_vfta(struct e1000_hw *hw)
96{
97	u32 offset;
98
99	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
100		array_wr32(E1000_VFTA, offset, 0);
101		wrfl();
102	}
103}
104
105/**
106 *  igb_write_vfta - Write value to VLAN filter table
107 *  @hw: pointer to the HW structure
108 *  @offset: register offset in VLAN filter table
109 *  @value: register value written to VLAN filter table
110 *
111 *  Writes value at the given offset in the register array which stores
112 *  the VLAN filter table.
113 **/
114static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
115{
116	array_wr32(E1000_VFTA, offset, value);
117	wrfl();
118}
119
120/* Due to a hw errata, if the host tries to  configure the VFTA register
121 * while performing queries from the BMC or DMA, then the VFTA in some
122 * cases won't be written.
123 */
124
125/**
126 *  igb_clear_vfta_i350 - Clear VLAN filter table
127 *  @hw: pointer to the HW structure
128 *
129 *  Clears the register array which contains the VLAN filter table by
130 *  setting all the values to 0.
131 **/
132void igb_clear_vfta_i350(struct e1000_hw *hw)
133{
134	u32 offset;
135	int i;
136
137	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
138		for (i = 0; i < 10; i++)
139			array_wr32(E1000_VFTA, offset, 0);
140
141		wrfl();
142	}
143}
144
145/**
146 *  igb_write_vfta_i350 - Write value to VLAN filter table
147 *  @hw: pointer to the HW structure
148 *  @offset: register offset in VLAN filter table
149 *  @value: register value written to VLAN filter table
150 *
151 *  Writes value at the given offset in the register array which stores
152 *  the VLAN filter table.
153 **/
154static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
155{
156	int i;
157
158	for (i = 0; i < 10; i++)
159		array_wr32(E1000_VFTA, offset, value);
160
161	wrfl();
162}
163
164/**
165 *  igb_init_rx_addrs - Initialize receive address's
166 *  @hw: pointer to the HW structure
167 *  @rar_count: receive address registers
168 *
169 *  Setups the receive address registers by setting the base receive address
170 *  register to the devices MAC address and clearing all the other receive
171 *  address registers to 0.
172 **/
173void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
174{
175	u32 i;
176	u8 mac_addr[ETH_ALEN] = {0};
177
178	/* Setup the receive address */
179	hw_dbg("Programming MAC Address into RAR[0]\n");
180
181	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
182
183	/* Zero out the other (rar_entry_count - 1) receive addresses */
184	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
185	for (i = 1; i < rar_count; i++)
186		hw->mac.ops.rar_set(hw, mac_addr, i);
187}
188
189/**
190 *  igb_vfta_set - enable or disable vlan in VLAN filter table
191 *  @hw: pointer to the HW structure
192 *  @vid: VLAN id to add or remove
193 *  @add: if true add filter, if false remove
194 *
195 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
196 *  and if we are adding or removing the filter
197 **/
198s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
199{
200	u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
201	u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
202	u32 vfta;
203	struct igb_adapter *adapter = hw->back;
204	s32 ret_val = 0;
205
206	vfta = adapter->shadow_vfta[index];
207
208	/* bit was set/cleared before we started */
209	if ((!!(vfta & mask)) == add) {
210		ret_val = -E1000_ERR_CONFIG;
211	} else {
212		if (add)
213			vfta |= mask;
214		else
215			vfta &= ~mask;
216	}
217	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
218		igb_write_vfta_i350(hw, index, vfta);
219	else
220		igb_write_vfta(hw, index, vfta);
221	adapter->shadow_vfta[index] = vfta;
222
223	return ret_val;
224}
225
226/**
227 *  igb_check_alt_mac_addr - Check for alternate MAC addr
228 *  @hw: pointer to the HW structure
229 *
230 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
231 *  can be setup by pre-boot software and must be treated like a permanent
232 *  address and must override the actual permanent MAC address.  If an
233 *  alternate MAC address is found it is saved in the hw struct and
234 *  programmed into RAR0 and the function returns success, otherwise the
235 *  function returns an error.
236 **/
237s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
238{
239	u32 i;
240	s32 ret_val = 0;
241	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
242	u8 alt_mac_addr[ETH_ALEN];
243
244	/* Alternate MAC address is handled by the option ROM for 82580
245	 * and newer. SW support not required.
246	 */
247	if (hw->mac.type >= e1000_82580)
248		goto out;
249
250	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
251				 &nvm_alt_mac_addr_offset);
252	if (ret_val) {
253		hw_dbg("NVM Read Error\n");
254		goto out;
255	}
256
257	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
258	    (nvm_alt_mac_addr_offset == 0x0000))
259		/* There is no Alternate MAC Address */
260		goto out;
261
262	if (hw->bus.func == E1000_FUNC_1)
263		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
264	if (hw->bus.func == E1000_FUNC_2)
265		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
266
267	if (hw->bus.func == E1000_FUNC_3)
268		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
269	for (i = 0; i < ETH_ALEN; i += 2) {
270		offset = nvm_alt_mac_addr_offset + (i >> 1);
271		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
272		if (ret_val) {
273			hw_dbg("NVM Read Error\n");
274			goto out;
275		}
276
277		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
278		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
279	}
280
281	/* if multicast bit is set, the alternate address will not be used */
282	if (is_multicast_ether_addr(alt_mac_addr)) {
283		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
284		goto out;
285	}
286
287	/* We have a valid alternate MAC address, and we want to treat it the
288	 * same as the normal permanent MAC address stored by the HW into the
289	 * RAR. Do this by mapping this address into RAR0.
290	 */
291	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
292
293out:
294	return ret_val;
295}
296
297/**
298 *  igb_rar_set - Set receive address register
299 *  @hw: pointer to the HW structure
300 *  @addr: pointer to the receive address
301 *  @index: receive address array register
302 *
303 *  Sets the receive address array register at index to the address passed
304 *  in by addr.
305 **/
306void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
307{
308	u32 rar_low, rar_high;
309
310	/* HW expects these in little endian so we reverse the byte order
311	 * from network order (big endian) to little endian
312	 */
313	rar_low = ((u32) addr[0] |
314		   ((u32) addr[1] << 8) |
315		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
316
317	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
318
319	/* If MAC address zero, no need to set the AV bit */
320	if (rar_low || rar_high)
321		rar_high |= E1000_RAH_AV;
322
323	/* Some bridges will combine consecutive 32-bit writes into
324	 * a single burst write, which will malfunction on some parts.
325	 * The flushes avoid this.
326	 */
327	wr32(E1000_RAL(index), rar_low);
328	wrfl();
329	wr32(E1000_RAH(index), rar_high);
330	wrfl();
331}
332
333/**
334 *  igb_mta_set - Set multicast filter table address
335 *  @hw: pointer to the HW structure
336 *  @hash_value: determines the MTA register and bit to set
337 *
338 *  The multicast table address is a register array of 32-bit registers.
339 *  The hash_value is used to determine what register the bit is in, the
340 *  current value is read, the new bit is OR'd in and the new value is
341 *  written back into the register.
342 **/
343void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
344{
345	u32 hash_bit, hash_reg, mta;
346
347	/* The MTA is a register array of 32-bit registers. It is
348	 * treated like an array of (32*mta_reg_count) bits.  We want to
349	 * set bit BitArray[hash_value]. So we figure out what register
350	 * the bit is in, read it, OR in the new bit, then write
351	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
352	 * mask to bits 31:5 of the hash value which gives us the
353	 * register we're modifying.  The hash bit within that register
354	 * is determined by the lower 5 bits of the hash value.
355	 */
356	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
357	hash_bit = hash_value & 0x1F;
358
359	mta = array_rd32(E1000_MTA, hash_reg);
360
361	mta |= (1 << hash_bit);
362
363	array_wr32(E1000_MTA, hash_reg, mta);
364	wrfl();
365}
366
367/**
368 *  igb_hash_mc_addr - Generate a multicast hash value
369 *  @hw: pointer to the HW structure
370 *  @mc_addr: pointer to a multicast address
371 *
372 *  Generates a multicast address hash value which is used to determine
373 *  the multicast filter table array address and new table value.  See
374 *  igb_mta_set()
375 **/
376static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
377{
378	u32 hash_value, hash_mask;
379	u8 bit_shift = 0;
380
381	/* Register count multiplied by bits per register */
382	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
383
384	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
385	 * where 0xFF would still fall within the hash mask.
386	 */
387	while (hash_mask >> bit_shift != 0xFF)
388		bit_shift++;
389
390	/* The portion of the address that is used for the hash table
391	 * is determined by the mc_filter_type setting.
392	 * The algorithm is such that there is a total of 8 bits of shifting.
393	 * The bit_shift for a mc_filter_type of 0 represents the number of
394	 * left-shifts where the MSB of mc_addr[5] would still fall within
395	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
396	 * of 8 bits of shifting, then mc_addr[4] will shift right the
397	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
398	 * cases are a variation of this algorithm...essentially raising the
399	 * number of bits to shift mc_addr[5] left, while still keeping the
400	 * 8-bit shifting total.
401	 *
402	 * For example, given the following Destination MAC Address and an
403	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
404	 * we can see that the bit_shift for case 0 is 4.  These are the hash
405	 * values resulting from each mc_filter_type...
406	 * [0] [1] [2] [3] [4] [5]
407	 * 01  AA  00  12  34  56
408	 * LSB                 MSB
409	 *
410	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
411	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
412	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
413	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
414	 */
415	switch (hw->mac.mc_filter_type) {
416	default:
417	case 0:
418		break;
419	case 1:
420		bit_shift += 1;
421		break;
422	case 2:
423		bit_shift += 2;
424		break;
425	case 3:
426		bit_shift += 4;
427		break;
428	}
429
430	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
431				  (((u16) mc_addr[5]) << bit_shift)));
432
433	return hash_value;
434}
435
436/**
437 *  igb_update_mc_addr_list - Update Multicast addresses
438 *  @hw: pointer to the HW structure
439 *  @mc_addr_list: array of multicast addresses to program
440 *  @mc_addr_count: number of multicast addresses to program
441 *
442 *  Updates entire Multicast Table Array.
443 *  The caller must have a packed mc_addr_list of multicast addresses.
444 **/
445void igb_update_mc_addr_list(struct e1000_hw *hw,
446                             u8 *mc_addr_list, u32 mc_addr_count)
447{
448	u32 hash_value, hash_bit, hash_reg;
449	int i;
450
451	/* clear mta_shadow */
452	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
453
454	/* update mta_shadow from mc_addr_list */
455	for (i = 0; (u32) i < mc_addr_count; i++) {
456		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
457
458		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
459		hash_bit = hash_value & 0x1F;
460
461		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
462		mc_addr_list += (ETH_ALEN);
463	}
464
465	/* replace the entire MTA table */
466	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
467		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
468	wrfl();
469}
470
471/**
472 *  igb_clear_hw_cntrs_base - Clear base hardware counters
473 *  @hw: pointer to the HW structure
474 *
475 *  Clears the base hardware counters by reading the counter registers.
476 **/
477void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
478{
479	rd32(E1000_CRCERRS);
480	rd32(E1000_SYMERRS);
481	rd32(E1000_MPC);
482	rd32(E1000_SCC);
483	rd32(E1000_ECOL);
484	rd32(E1000_MCC);
485	rd32(E1000_LATECOL);
486	rd32(E1000_COLC);
487	rd32(E1000_DC);
488	rd32(E1000_SEC);
489	rd32(E1000_RLEC);
490	rd32(E1000_XONRXC);
491	rd32(E1000_XONTXC);
492	rd32(E1000_XOFFRXC);
493	rd32(E1000_XOFFTXC);
494	rd32(E1000_FCRUC);
495	rd32(E1000_GPRC);
496	rd32(E1000_BPRC);
497	rd32(E1000_MPRC);
498	rd32(E1000_GPTC);
499	rd32(E1000_GORCL);
500	rd32(E1000_GORCH);
501	rd32(E1000_GOTCL);
502	rd32(E1000_GOTCH);
503	rd32(E1000_RNBC);
504	rd32(E1000_RUC);
505	rd32(E1000_RFC);
506	rd32(E1000_ROC);
507	rd32(E1000_RJC);
508	rd32(E1000_TORL);
509	rd32(E1000_TORH);
510	rd32(E1000_TOTL);
511	rd32(E1000_TOTH);
512	rd32(E1000_TPR);
513	rd32(E1000_TPT);
514	rd32(E1000_MPTC);
515	rd32(E1000_BPTC);
516}
517
518/**
519 *  igb_check_for_copper_link - Check for link (Copper)
520 *  @hw: pointer to the HW structure
521 *
522 *  Checks to see of the link status of the hardware has changed.  If a
523 *  change in link status has been detected, then we read the PHY registers
524 *  to get the current speed/duplex if link exists.
525 **/
526s32 igb_check_for_copper_link(struct e1000_hw *hw)
527{
528	struct e1000_mac_info *mac = &hw->mac;
529	s32 ret_val;
530	bool link;
531
532	/* We only want to go out to the PHY registers to see if Auto-Neg
533	 * has completed and/or if our link status has changed.  The
534	 * get_link_status flag is set upon receiving a Link Status
535	 * Change or Rx Sequence Error interrupt.
536	 */
537	if (!mac->get_link_status) {
538		ret_val = 0;
539		goto out;
540	}
541
542	/* First we want to see if the MII Status Register reports
543	 * link.  If so, then we want to get the current speed/duplex
544	 * of the PHY.
545	 */
546	ret_val = igb_phy_has_link(hw, 1, 0, &link);
547	if (ret_val)
548		goto out;
549
550	if (!link)
551		goto out; /* No link detected */
552
553	mac->get_link_status = false;
554
555	/* Check if there was DownShift, must be checked
556	 * immediately after link-up
557	 */
558	igb_check_downshift(hw);
559
560	/* If we are forcing speed/duplex, then we simply return since
561	 * we have already determined whether we have link or not.
562	 */
563	if (!mac->autoneg) {
564		ret_val = -E1000_ERR_CONFIG;
565		goto out;
566	}
567
568	/* Auto-Neg is enabled.  Auto Speed Detection takes care
569	 * of MAC speed/duplex configuration.  So we only need to
570	 * configure Collision Distance in the MAC.
571	 */
572	igb_config_collision_dist(hw);
573
574	/* Configure Flow Control now that Auto-Neg has completed.
575	 * First, we need to restore the desired flow control
576	 * settings because we may have had to re-autoneg with a
577	 * different link partner.
578	 */
579	ret_val = igb_config_fc_after_link_up(hw);
580	if (ret_val)
581		hw_dbg("Error configuring flow control\n");
582
583out:
584	return ret_val;
585}
586
587/**
588 *  igb_setup_link - Setup flow control and link settings
589 *  @hw: pointer to the HW structure
590 *
591 *  Determines which flow control settings to use, then configures flow
592 *  control.  Calls the appropriate media-specific link configuration
593 *  function.  Assuming the adapter has a valid link partner, a valid link
594 *  should be established.  Assumes the hardware has previously been reset
595 *  and the transmitter and receiver are not enabled.
596 **/
597s32 igb_setup_link(struct e1000_hw *hw)
598{
599	s32 ret_val = 0;
600
601	/* In the case of the phy reset being blocked, we already have a link.
602	 * We do not need to set it up again.
603	 */
604	if (igb_check_reset_block(hw))
605		goto out;
606
607	/* If requested flow control is set to default, set flow control
608	 * based on the EEPROM flow control settings.
609	 */
610	if (hw->fc.requested_mode == e1000_fc_default) {
611		ret_val = igb_set_default_fc(hw);
612		if (ret_val)
613			goto out;
614	}
615
616	/* We want to save off the original Flow Control configuration just
617	 * in case we get disconnected and then reconnected into a different
618	 * hub or switch with different Flow Control capabilities.
619	 */
620	hw->fc.current_mode = hw->fc.requested_mode;
621
622	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
623
624	/* Call the necessary media_type subroutine to configure the link. */
625	ret_val = hw->mac.ops.setup_physical_interface(hw);
626	if (ret_val)
627		goto out;
628
629	/* Initialize the flow control address, type, and PAUSE timer
630	 * registers to their default values.  This is done even if flow
631	 * control is disabled, because it does not hurt anything to
632	 * initialize these registers.
633	 */
634	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
635	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
636	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
637	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
638
639	wr32(E1000_FCTTV, hw->fc.pause_time);
640
641	ret_val = igb_set_fc_watermarks(hw);
642
643out:
644
645	return ret_val;
646}
647
648/**
649 *  igb_config_collision_dist - Configure collision distance
650 *  @hw: pointer to the HW structure
651 *
652 *  Configures the collision distance to the default value and is used
653 *  during link setup. Currently no func pointer exists and all
654 *  implementations are handled in the generic version of this function.
655 **/
656void igb_config_collision_dist(struct e1000_hw *hw)
657{
658	u32 tctl;
659
660	tctl = rd32(E1000_TCTL);
661
662	tctl &= ~E1000_TCTL_COLD;
663	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
664
665	wr32(E1000_TCTL, tctl);
666	wrfl();
667}
668
669/**
670 *  igb_set_fc_watermarks - Set flow control high/low watermarks
671 *  @hw: pointer to the HW structure
672 *
673 *  Sets the flow control high/low threshold (watermark) registers.  If
674 *  flow control XON frame transmission is enabled, then set XON frame
675 *  tansmission as well.
676 **/
677static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
678{
679	s32 ret_val = 0;
680	u32 fcrtl = 0, fcrth = 0;
681
682	/* Set the flow control receive threshold registers.  Normally,
683	 * these registers will be set to a default threshold that may be
684	 * adjusted later by the driver's runtime code.  However, if the
685	 * ability to transmit pause frames is not enabled, then these
686	 * registers will be set to 0.
687	 */
688	if (hw->fc.current_mode & e1000_fc_tx_pause) {
689		/* We need to set up the Receive Threshold high and low water
690		 * marks as well as (optionally) enabling the transmission of
691		 * XON frames.
692		 */
693		fcrtl = hw->fc.low_water;
694		if (hw->fc.send_xon)
695			fcrtl |= E1000_FCRTL_XONE;
696
697		fcrth = hw->fc.high_water;
698	}
699	wr32(E1000_FCRTL, fcrtl);
700	wr32(E1000_FCRTH, fcrth);
701
702	return ret_val;
703}
704
705/**
706 *  igb_set_default_fc - Set flow control default values
707 *  @hw: pointer to the HW structure
708 *
709 *  Read the EEPROM for the default values for flow control and store the
710 *  values.
711 **/
712static s32 igb_set_default_fc(struct e1000_hw *hw)
713{
714	s32 ret_val = 0;
715	u16 lan_offset;
716	u16 nvm_data;
717
718	/* Read and store word 0x0F of the EEPROM. This word contains bits
719	 * that determine the hardware's default PAUSE (flow control) mode,
720	 * a bit that determines whether the HW defaults to enabling or
721	 * disabling auto-negotiation, and the direction of the
722	 * SW defined pins. If there is no SW over-ride of the flow
723	 * control setting, then the variable hw->fc will
724	 * be initialized based on a value in the EEPROM.
725	 */
726	if (hw->mac.type == e1000_i350) {
727		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
728		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG
729					   + lan_offset, 1, &nvm_data);
730	 } else {
731		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG,
732					   1, &nvm_data);
733	 }
734
735	if (ret_val) {
736		hw_dbg("NVM Read Error\n");
737		goto out;
738	}
739
740	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
741		hw->fc.requested_mode = e1000_fc_none;
742	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
743		 NVM_WORD0F_ASM_DIR)
744		hw->fc.requested_mode = e1000_fc_tx_pause;
745	else
746		hw->fc.requested_mode = e1000_fc_full;
747
748out:
749	return ret_val;
750}
751
752/**
753 *  igb_force_mac_fc - Force the MAC's flow control settings
754 *  @hw: pointer to the HW structure
755 *
756 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
757 *  device control register to reflect the adapter settings.  TFCE and RFCE
758 *  need to be explicitly set by software when a copper PHY is used because
759 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
760 *  also configure these bits when link is forced on a fiber connection.
761 **/
762s32 igb_force_mac_fc(struct e1000_hw *hw)
763{
764	u32 ctrl;
765	s32 ret_val = 0;
766
767	ctrl = rd32(E1000_CTRL);
768
769	/* Because we didn't get link via the internal auto-negotiation
770	 * mechanism (we either forced link or we got link via PHY
771	 * auto-neg), we have to manually enable/disable transmit an
772	 * receive flow control.
773	 *
774	 * The "Case" statement below enables/disable flow control
775	 * according to the "hw->fc.current_mode" parameter.
776	 *
777	 * The possible values of the "fc" parameter are:
778	 *      0:  Flow control is completely disabled
779	 *      1:  Rx flow control is enabled (we can receive pause
780	 *          frames but not send pause frames).
781	 *      2:  Tx flow control is enabled (we can send pause frames
782	 *          frames but we do not receive pause frames).
783	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
784	 *  other:  No other values should be possible at this point.
785	 */
786	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
787
788	switch (hw->fc.current_mode) {
789	case e1000_fc_none:
790		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
791		break;
792	case e1000_fc_rx_pause:
793		ctrl &= (~E1000_CTRL_TFCE);
794		ctrl |= E1000_CTRL_RFCE;
795		break;
796	case e1000_fc_tx_pause:
797		ctrl &= (~E1000_CTRL_RFCE);
798		ctrl |= E1000_CTRL_TFCE;
799		break;
800	case e1000_fc_full:
801		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
802		break;
803	default:
804		hw_dbg("Flow control param set incorrectly\n");
805		ret_val = -E1000_ERR_CONFIG;
806		goto out;
807	}
808
809	wr32(E1000_CTRL, ctrl);
810
811out:
812	return ret_val;
813}
814
815/**
816 *  igb_config_fc_after_link_up - Configures flow control after link
817 *  @hw: pointer to the HW structure
818 *
819 *  Checks the status of auto-negotiation after link up to ensure that the
820 *  speed and duplex were not forced.  If the link needed to be forced, then
821 *  flow control needs to be forced also.  If auto-negotiation is enabled
822 *  and did not fail, then we configure flow control based on our link
823 *  partner.
824 **/
825s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
826{
827	struct e1000_mac_info *mac = &hw->mac;
828	s32 ret_val = 0;
829	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
830	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
831	u16 speed, duplex;
832
833	/* Check for the case where we have fiber media and auto-neg failed
834	 * so we had to force link.  In this case, we need to force the
835	 * configuration of the MAC to match the "fc" parameter.
836	 */
837	if (mac->autoneg_failed) {
838		if (hw->phy.media_type == e1000_media_type_internal_serdes)
839			ret_val = igb_force_mac_fc(hw);
840	} else {
841		if (hw->phy.media_type == e1000_media_type_copper)
842			ret_val = igb_force_mac_fc(hw);
843	}
844
845	if (ret_val) {
846		hw_dbg("Error forcing flow control settings\n");
847		goto out;
848	}
849
850	/* Check for the case where we have copper media and auto-neg is
851	 * enabled.  In this case, we need to check and see if Auto-Neg
852	 * has completed, and if so, how the PHY and link partner has
853	 * flow control configured.
854	 */
855	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
856		/* Read the MII Status Register and check to see if AutoNeg
857		 * has completed.  We read this twice because this reg has
858		 * some "sticky" (latched) bits.
859		 */
860		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
861						   &mii_status_reg);
862		if (ret_val)
863			goto out;
864		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
865						   &mii_status_reg);
866		if (ret_val)
867			goto out;
868
869		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
870			hw_dbg("Copper PHY and Auto Neg "
871				 "has not completed.\n");
872			goto out;
873		}
874
875		/* The AutoNeg process has completed, so we now need to
876		 * read both the Auto Negotiation Advertisement
877		 * Register (Address 4) and the Auto_Negotiation Base
878		 * Page Ability Register (Address 5) to determine how
879		 * flow control was negotiated.
880		 */
881		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
882					    &mii_nway_adv_reg);
883		if (ret_val)
884			goto out;
885		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
886					    &mii_nway_lp_ability_reg);
887		if (ret_val)
888			goto out;
889
890		/* Two bits in the Auto Negotiation Advertisement Register
891		 * (Address 4) and two bits in the Auto Negotiation Base
892		 * Page Ability Register (Address 5) determine flow control
893		 * for both the PHY and the link partner.  The following
894		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
895		 * 1999, describes these PAUSE resolution bits and how flow
896		 * control is determined based upon these settings.
897		 * NOTE:  DC = Don't Care
898		 *
899		 *   LOCAL DEVICE  |   LINK PARTNER
900		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
901		 *-------|---------|-------|---------|--------------------
902		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
903		 *   0   |    1    |   0   |   DC    | e1000_fc_none
904		 *   0   |    1    |   1   |    0    | e1000_fc_none
905		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
906		 *   1   |    0    |   0   |   DC    | e1000_fc_none
907		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
908		 *   1   |    1    |   0   |    0    | e1000_fc_none
909		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
910		 *
911		 * Are both PAUSE bits set to 1?  If so, this implies
912		 * Symmetric Flow Control is enabled at both ends.  The
913		 * ASM_DIR bits are irrelevant per the spec.
914		 *
915		 * For Symmetric Flow Control:
916		 *
917		 *   LOCAL DEVICE  |   LINK PARTNER
918		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
919		 *-------|---------|-------|---------|--------------------
920		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
921		 *
922		 */
923		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
924		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
925			/* Now we need to check if the user selected RX ONLY
926			 * of pause frames.  In this case, we had to advertise
927			 * FULL flow control because we could not advertise RX
928			 * ONLY. Hence, we must now check to see if we need to
929			 * turn OFF  the TRANSMISSION of PAUSE frames.
930			 */
931			if (hw->fc.requested_mode == e1000_fc_full) {
932				hw->fc.current_mode = e1000_fc_full;
933				hw_dbg("Flow Control = FULL.\r\n");
934			} else {
935				hw->fc.current_mode = e1000_fc_rx_pause;
936				hw_dbg("Flow Control = "
937				       "RX PAUSE frames only.\r\n");
938			}
939		}
940		/* For receiving PAUSE frames ONLY.
941		 *
942		 *   LOCAL DEVICE  |   LINK PARTNER
943		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
944		 *-------|---------|-------|---------|--------------------
945		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
946		 */
947		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
948			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
949			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
950			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
951			hw->fc.current_mode = e1000_fc_tx_pause;
952			hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
953		}
954		/* For transmitting PAUSE frames ONLY.
955		 *
956		 *   LOCAL DEVICE  |   LINK PARTNER
957		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
958		 *-------|---------|-------|---------|--------------------
959		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
960		 */
961		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
962			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
963			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
964			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
965			hw->fc.current_mode = e1000_fc_rx_pause;
966			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
967		}
968		/* Per the IEEE spec, at this point flow control should be
969		 * disabled.  However, we want to consider that we could
970		 * be connected to a legacy switch that doesn't advertise
971		 * desired flow control, but can be forced on the link
972		 * partner.  So if we advertised no flow control, that is
973		 * what we will resolve to.  If we advertised some kind of
974		 * receive capability (Rx Pause Only or Full Flow Control)
975		 * and the link partner advertised none, we will configure
976		 * ourselves to enable Rx Flow Control only.  We can do
977		 * this safely for two reasons:  If the link partner really
978		 * didn't want flow control enabled, and we enable Rx, no
979		 * harm done since we won't be receiving any PAUSE frames
980		 * anyway.  If the intent on the link partner was to have
981		 * flow control enabled, then by us enabling RX only, we
982		 * can at least receive pause frames and process them.
983		 * This is a good idea because in most cases, since we are
984		 * predominantly a server NIC, more times than not we will
985		 * be asked to delay transmission of packets than asking
986		 * our link partner to pause transmission of frames.
987		 */
988		else if ((hw->fc.requested_mode == e1000_fc_none) ||
989			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
990			 (hw->fc.strict_ieee)) {
991			hw->fc.current_mode = e1000_fc_none;
992			hw_dbg("Flow Control = NONE.\r\n");
993		} else {
994			hw->fc.current_mode = e1000_fc_rx_pause;
995			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
996		}
997
998		/* Now we need to do one last check...  If we auto-
999		 * negotiated to HALF DUPLEX, flow control should not be
1000		 * enabled per IEEE 802.3 spec.
1001		 */
1002		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1003		if (ret_val) {
1004			hw_dbg("Error getting link speed and duplex\n");
1005			goto out;
1006		}
1007
1008		if (duplex == HALF_DUPLEX)
1009			hw->fc.current_mode = e1000_fc_none;
1010
1011		/* Now we call a subroutine to actually force the MAC
1012		 * controller to use the correct flow control settings.
1013		 */
1014		ret_val = igb_force_mac_fc(hw);
1015		if (ret_val) {
1016			hw_dbg("Error forcing flow control settings\n");
1017			goto out;
1018		}
1019	}
1020	/* Check for the case where we have SerDes media and auto-neg is
1021	 * enabled.  In this case, we need to check and see if Auto-Neg
1022	 * has completed, and if so, how the PHY and link partner has
1023	 * flow control configured.
1024	 */
1025	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1026		&& mac->autoneg) {
1027		/* Read the PCS_LSTS and check to see if AutoNeg
1028		 * has completed.
1029		 */
1030		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1031
1032		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1033			hw_dbg("PCS Auto Neg has not completed.\n");
1034			return ret_val;
1035		}
1036
1037		/* The AutoNeg process has completed, so we now need to
1038		 * read both the Auto Negotiation Advertisement
1039		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1040		 * Page Ability Register (PCS_LPAB) to determine how
1041		 * flow control was negotiated.
1042		 */
1043		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1044		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1045
1046		/* Two bits in the Auto Negotiation Advertisement Register
1047		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1048		 * Page Ability Register (PCS_LPAB) determine flow control
1049		 * for both the PHY and the link partner.  The following
1050		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1051		 * 1999, describes these PAUSE resolution bits and how flow
1052		 * control is determined based upon these settings.
1053		 * NOTE:  DC = Don't Care
1054		 *
1055		 *   LOCAL DEVICE  |   LINK PARTNER
1056		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1057		 *-------|---------|-------|---------|--------------------
1058		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1059		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1060		 *   0   |    1    |   1   |    0    | e1000_fc_none
1061		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1062		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1063		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1064		 *   1   |    1    |   0   |    0    | e1000_fc_none
1065		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1066		 *
1067		 * Are both PAUSE bits set to 1?  If so, this implies
1068		 * Symmetric Flow Control is enabled at both ends.  The
1069		 * ASM_DIR bits are irrelevant per the spec.
1070		 *
1071		 * For Symmetric Flow Control:
1072		 *
1073		 *   LOCAL DEVICE  |   LINK PARTNER
1074		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1075		 *-------|---------|-------|---------|--------------------
1076		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1077		 *
1078		 */
1079		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1080		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1081			/* Now we need to check if the user selected Rx ONLY
1082			 * of pause frames.  In this case, we had to advertise
1083			 * FULL flow control because we could not advertise Rx
1084			 * ONLY. Hence, we must now check to see if we need to
1085			 * turn OFF the TRANSMISSION of PAUSE frames.
1086			 */
1087			if (hw->fc.requested_mode == e1000_fc_full) {
1088				hw->fc.current_mode = e1000_fc_full;
1089				hw_dbg("Flow Control = FULL.\n");
1090			} else {
1091				hw->fc.current_mode = e1000_fc_rx_pause;
1092				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1093			}
1094		}
1095		/* For receiving PAUSE frames ONLY.
1096		 *
1097		 *   LOCAL DEVICE  |   LINK PARTNER
1098		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1099		 *-------|---------|-------|---------|--------------------
1100		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1101		 */
1102		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1103			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1104			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1105			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1106			hw->fc.current_mode = e1000_fc_tx_pause;
1107			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1108		}
1109		/* For transmitting PAUSE frames ONLY.
1110		 *
1111		 *   LOCAL DEVICE  |   LINK PARTNER
1112		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1113		 *-------|---------|-------|---------|--------------------
1114		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1115		 */
1116		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1117			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1118			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1119			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1120			hw->fc.current_mode = e1000_fc_rx_pause;
1121			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1122		} else {
1123			/* Per the IEEE spec, at this point flow control
1124			 * should be disabled.
1125			 */
1126			hw->fc.current_mode = e1000_fc_none;
1127			hw_dbg("Flow Control = NONE.\n");
1128		}
1129
1130		/* Now we call a subroutine to actually force the MAC
1131		 * controller to use the correct flow control settings.
1132		 */
1133		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1134		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1135		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1136
1137		ret_val = igb_force_mac_fc(hw);
1138		if (ret_val) {
1139			hw_dbg("Error forcing flow control settings\n");
1140			return ret_val;
1141		}
1142	}
1143
1144out:
1145	return ret_val;
1146}
1147
1148/**
1149 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1150 *  @hw: pointer to the HW structure
1151 *  @speed: stores the current speed
1152 *  @duplex: stores the current duplex
1153 *
1154 *  Read the status register for the current speed/duplex and store the current
1155 *  speed and duplex for copper connections.
1156 **/
1157s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1158				      u16 *duplex)
1159{
1160	u32 status;
1161
1162	status = rd32(E1000_STATUS);
1163	if (status & E1000_STATUS_SPEED_1000) {
1164		*speed = SPEED_1000;
1165		hw_dbg("1000 Mbs, ");
1166	} else if (status & E1000_STATUS_SPEED_100) {
1167		*speed = SPEED_100;
1168		hw_dbg("100 Mbs, ");
1169	} else {
1170		*speed = SPEED_10;
1171		hw_dbg("10 Mbs, ");
1172	}
1173
1174	if (status & E1000_STATUS_FD) {
1175		*duplex = FULL_DUPLEX;
1176		hw_dbg("Full Duplex\n");
1177	} else {
1178		*duplex = HALF_DUPLEX;
1179		hw_dbg("Half Duplex\n");
1180	}
1181
1182	return 0;
1183}
1184
1185/**
1186 *  igb_get_hw_semaphore - Acquire hardware semaphore
1187 *  @hw: pointer to the HW structure
1188 *
1189 *  Acquire the HW semaphore to access the PHY or NVM
1190 **/
1191s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1192{
1193	u32 swsm;
1194	s32 ret_val = 0;
1195	s32 timeout = hw->nvm.word_size + 1;
1196	s32 i = 0;
1197
1198	/* Get the SW semaphore */
1199	while (i < timeout) {
1200		swsm = rd32(E1000_SWSM);
1201		if (!(swsm & E1000_SWSM_SMBI))
1202			break;
1203
1204		udelay(50);
1205		i++;
1206	}
1207
1208	if (i == timeout) {
1209		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1210		ret_val = -E1000_ERR_NVM;
1211		goto out;
1212	}
1213
1214	/* Get the FW semaphore. */
1215	for (i = 0; i < timeout; i++) {
1216		swsm = rd32(E1000_SWSM);
1217		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1218
1219		/* Semaphore acquired if bit latched */
1220		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1221			break;
1222
1223		udelay(50);
1224	}
1225
1226	if (i == timeout) {
1227		/* Release semaphores */
1228		igb_put_hw_semaphore(hw);
1229		hw_dbg("Driver can't access the NVM\n");
1230		ret_val = -E1000_ERR_NVM;
1231		goto out;
1232	}
1233
1234out:
1235	return ret_val;
1236}
1237
1238/**
1239 *  igb_put_hw_semaphore - Release hardware semaphore
1240 *  @hw: pointer to the HW structure
1241 *
1242 *  Release hardware semaphore used to access the PHY or NVM
1243 **/
1244void igb_put_hw_semaphore(struct e1000_hw *hw)
1245{
1246	u32 swsm;
1247
1248	swsm = rd32(E1000_SWSM);
1249
1250	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1251
1252	wr32(E1000_SWSM, swsm);
1253}
1254
1255/**
1256 *  igb_get_auto_rd_done - Check for auto read completion
1257 *  @hw: pointer to the HW structure
1258 *
1259 *  Check EEPROM for Auto Read done bit.
1260 **/
1261s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1262{
1263	s32 i = 0;
1264	s32 ret_val = 0;
1265
1266
1267	while (i < AUTO_READ_DONE_TIMEOUT) {
1268		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1269			break;
1270		msleep(1);
1271		i++;
1272	}
1273
1274	if (i == AUTO_READ_DONE_TIMEOUT) {
1275		hw_dbg("Auto read by HW from NVM has not completed.\n");
1276		ret_val = -E1000_ERR_RESET;
1277		goto out;
1278	}
1279
1280out:
1281	return ret_val;
1282}
1283
1284/**
1285 *  igb_valid_led_default - Verify a valid default LED config
1286 *  @hw: pointer to the HW structure
1287 *  @data: pointer to the NVM (EEPROM)
1288 *
1289 *  Read the EEPROM for the current default LED configuration.  If the
1290 *  LED configuration is not valid, set to a valid LED configuration.
1291 **/
1292static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1293{
1294	s32 ret_val;
1295
1296	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1297	if (ret_val) {
1298		hw_dbg("NVM Read Error\n");
1299		goto out;
1300	}
1301
1302	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1303		switch(hw->phy.media_type) {
1304		case e1000_media_type_internal_serdes:
1305			*data = ID_LED_DEFAULT_82575_SERDES;
1306			break;
1307		case e1000_media_type_copper:
1308		default:
1309			*data = ID_LED_DEFAULT;
1310			break;
1311		}
1312	}
1313out:
1314	return ret_val;
1315}
1316
1317/**
1318 *  igb_id_led_init -
1319 *  @hw: pointer to the HW structure
1320 *
1321 **/
1322s32 igb_id_led_init(struct e1000_hw *hw)
1323{
1324	struct e1000_mac_info *mac = &hw->mac;
1325	s32 ret_val;
1326	const u32 ledctl_mask = 0x000000FF;
1327	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1328	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1329	u16 data, i, temp;
1330	const u16 led_mask = 0x0F;
1331
1332	/* i210 and i211 devices have different LED mechanism */
1333	if ((hw->mac.type == e1000_i210) ||
1334	    (hw->mac.type == e1000_i211))
1335		ret_val = igb_valid_led_default_i210(hw, &data);
1336	else
1337		ret_val = igb_valid_led_default(hw, &data);
1338
1339	if (ret_val)
1340		goto out;
1341
1342	mac->ledctl_default = rd32(E1000_LEDCTL);
1343	mac->ledctl_mode1 = mac->ledctl_default;
1344	mac->ledctl_mode2 = mac->ledctl_default;
1345
1346	for (i = 0; i < 4; i++) {
1347		temp = (data >> (i << 2)) & led_mask;
1348		switch (temp) {
1349		case ID_LED_ON1_DEF2:
1350		case ID_LED_ON1_ON2:
1351		case ID_LED_ON1_OFF2:
1352			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1353			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1354			break;
1355		case ID_LED_OFF1_DEF2:
1356		case ID_LED_OFF1_ON2:
1357		case ID_LED_OFF1_OFF2:
1358			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1359			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1360			break;
1361		default:
1362			/* Do nothing */
1363			break;
1364		}
1365		switch (temp) {
1366		case ID_LED_DEF1_ON2:
1367		case ID_LED_ON1_ON2:
1368		case ID_LED_OFF1_ON2:
1369			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1370			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1371			break;
1372		case ID_LED_DEF1_OFF2:
1373		case ID_LED_ON1_OFF2:
1374		case ID_LED_OFF1_OFF2:
1375			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1376			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1377			break;
1378		default:
1379			/* Do nothing */
1380			break;
1381		}
1382	}
1383
1384out:
1385	return ret_val;
1386}
1387
1388/**
1389 *  igb_cleanup_led - Set LED config to default operation
1390 *  @hw: pointer to the HW structure
1391 *
1392 *  Remove the current LED configuration and set the LED configuration
1393 *  to the default value, saved from the EEPROM.
1394 **/
1395s32 igb_cleanup_led(struct e1000_hw *hw)
1396{
1397	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1398	return 0;
1399}
1400
1401/**
1402 *  igb_blink_led - Blink LED
1403 *  @hw: pointer to the HW structure
1404 *
1405 *  Blink the led's which are set to be on.
1406 **/
1407s32 igb_blink_led(struct e1000_hw *hw)
1408{
1409	u32 ledctl_blink = 0;
1410	u32 i;
1411
1412	if (hw->phy.media_type == e1000_media_type_fiber) {
1413		/* always blink LED0 for PCI-E fiber */
1414		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1415		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1416	} else {
1417		/* Set the blink bit for each LED that's "on" (0x0E)
1418		 * (or "off" if inverted) in ledctl_mode2.  The blink
1419		 * logic in hardware only works when mode is set to "on"
1420		 * so it must be changed accordingly when the mode is
1421		 * "off" and inverted.
1422		 */
1423		ledctl_blink = hw->mac.ledctl_mode2;
1424		for (i = 0; i < 32; i += 8) {
1425			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1426			    E1000_LEDCTL_LED0_MODE_MASK;
1427			u32 led_default = hw->mac.ledctl_default >> i;
1428
1429			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1430			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1431			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1432			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1433				ledctl_blink &=
1434				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1435				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1436						 E1000_LEDCTL_MODE_LED_ON) << i;
1437			}
1438		}
1439	}
1440
1441	wr32(E1000_LEDCTL, ledctl_blink);
1442
1443	return 0;
1444}
1445
1446/**
1447 *  igb_led_off - Turn LED off
1448 *  @hw: pointer to the HW structure
1449 *
1450 *  Turn LED off.
1451 **/
1452s32 igb_led_off(struct e1000_hw *hw)
1453{
1454	switch (hw->phy.media_type) {
1455	case e1000_media_type_copper:
1456		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1457		break;
1458	default:
1459		break;
1460	}
1461
1462	return 0;
1463}
1464
1465/**
1466 *  igb_disable_pcie_master - Disables PCI-express master access
1467 *  @hw: pointer to the HW structure
1468 *
1469 *  Returns 0 (0) if successful, else returns -10
1470 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1471 *  the master requests to be disabled.
1472 *
1473 *  Disables PCI-Express master access and verifies there are no pending
1474 *  requests.
1475 **/
1476s32 igb_disable_pcie_master(struct e1000_hw *hw)
1477{
1478	u32 ctrl;
1479	s32 timeout = MASTER_DISABLE_TIMEOUT;
1480	s32 ret_val = 0;
1481
1482	if (hw->bus.type != e1000_bus_type_pci_express)
1483		goto out;
1484
1485	ctrl = rd32(E1000_CTRL);
1486	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1487	wr32(E1000_CTRL, ctrl);
1488
1489	while (timeout) {
1490		if (!(rd32(E1000_STATUS) &
1491		      E1000_STATUS_GIO_MASTER_ENABLE))
1492			break;
1493		udelay(100);
1494		timeout--;
1495	}
1496
1497	if (!timeout) {
1498		hw_dbg("Master requests are pending.\n");
1499		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1500		goto out;
1501	}
1502
1503out:
1504	return ret_val;
1505}
1506
1507/**
1508 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1509 *  @hw: pointer to the HW structure
1510 *
1511 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1512 *  set, which is forced to MDI mode only.
1513 **/
1514s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1515{
1516	s32 ret_val = 0;
1517
1518	/* All MDI settings are supported on 82580 and newer. */
1519	if (hw->mac.type >= e1000_82580)
1520		goto out;
1521
1522	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1523		hw_dbg("Invalid MDI setting detected\n");
1524		hw->phy.mdix = 1;
1525		ret_val = -E1000_ERR_CONFIG;
1526		goto out;
1527	}
1528
1529out:
1530	return ret_val;
1531}
1532
1533/**
1534 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1535 *  @hw: pointer to the HW structure
1536 *  @reg: 32bit register offset such as E1000_SCTL
1537 *  @offset: register offset to write to
1538 *  @data: data to write at register offset
1539 *
1540 *  Writes an address/data control type register.  There are several of these
1541 *  and they all have the format address << 8 | data and bit 31 is polled for
1542 *  completion.
1543 **/
1544s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1545			      u32 offset, u8 data)
1546{
1547	u32 i, regvalue = 0;
1548	s32 ret_val = 0;
1549
1550	/* Set up the address and data */
1551	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1552	wr32(reg, regvalue);
1553
1554	/* Poll the ready bit to see if the MDI read completed */
1555	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1556		udelay(5);
1557		regvalue = rd32(reg);
1558		if (regvalue & E1000_GEN_CTL_READY)
1559			break;
1560	}
1561	if (!(regvalue & E1000_GEN_CTL_READY)) {
1562		hw_dbg("Reg %08x did not indicate ready\n", reg);
1563		ret_val = -E1000_ERR_PHY;
1564		goto out;
1565	}
1566
1567out:
1568	return ret_val;
1569}
1570
1571/**
1572 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1573 *  @hw: pointer to the HW structure
1574 *
1575 *  Verifies the hardware needs to leave interface enabled so that frames can
1576 *  be directed to and from the management interface.
1577 **/
1578bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1579{
1580	u32 manc;
1581	u32 fwsm, factps;
1582	bool ret_val = false;
1583
1584	if (!hw->mac.asf_firmware_present)
1585		goto out;
1586
1587	manc = rd32(E1000_MANC);
1588
1589	if (!(manc & E1000_MANC_RCV_TCO_EN))
1590		goto out;
1591
1592	if (hw->mac.arc_subsystem_valid) {
1593		fwsm = rd32(E1000_FWSM);
1594		factps = rd32(E1000_FACTPS);
1595
1596		if (!(factps & E1000_FACTPS_MNGCG) &&
1597		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1598		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1599			ret_val = true;
1600			goto out;
1601		}
1602	} else {
1603		if ((manc & E1000_MANC_SMBUS_EN) &&
1604		    !(manc & E1000_MANC_ASF_EN)) {
1605			ret_val = true;
1606			goto out;
1607		}
1608	}
1609
1610out:
1611	return ret_val;
1612}
1613