[go: nahoru, domu]

e1000_mac.c revision cf7ed221714c36848b257311b316452e274f7e15
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30#include <linux/pci.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33
34#include "e1000_mac.h"
35
36#include "igb.h"
37
38static s32 igb_set_default_fc(struct e1000_hw *hw);
39static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
40
41/**
42 *  igb_get_bus_info_pcie - Get PCIe bus information
43 *  @hw: pointer to the HW structure
44 *
45 *  Determines and stores the system bus information for a particular
46 *  network interface.  The following bus information is determined and stored:
47 *  bus speed, bus width, type (PCIe), and PCIe function.
48 **/
49s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
50{
51	struct e1000_bus_info *bus = &hw->bus;
52	s32 ret_val;
53	u32 reg;
54	u16 pcie_link_status;
55
56	bus->type = e1000_bus_type_pci_express;
57
58	ret_val = igb_read_pcie_cap_reg(hw,
59					PCI_EXP_LNKSTA,
60					&pcie_link_status);
61	if (ret_val) {
62		bus->width = e1000_bus_width_unknown;
63		bus->speed = e1000_bus_speed_unknown;
64	} else {
65		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
66		case PCI_EXP_LNKSTA_CLS_2_5GB:
67			bus->speed = e1000_bus_speed_2500;
68			break;
69		case PCI_EXP_LNKSTA_CLS_5_0GB:
70			bus->speed = e1000_bus_speed_5000;
71			break;
72		default:
73			bus->speed = e1000_bus_speed_unknown;
74			break;
75		}
76
77		bus->width = (enum e1000_bus_width)((pcie_link_status &
78						     PCI_EXP_LNKSTA_NLW) >>
79						     PCI_EXP_LNKSTA_NLW_SHIFT);
80	}
81
82	reg = rd32(E1000_STATUS);
83	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
84
85	return 0;
86}
87
88/**
89 *  igb_clear_vfta - Clear VLAN filter table
90 *  @hw: pointer to the HW structure
91 *
92 *  Clears the register array which contains the VLAN filter table by
93 *  setting all the values to 0.
94 **/
95void igb_clear_vfta(struct e1000_hw *hw)
96{
97	u32 offset;
98
99	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
100		array_wr32(E1000_VFTA, offset, 0);
101		wrfl();
102	}
103}
104
105/**
106 *  igb_write_vfta - Write value to VLAN filter table
107 *  @hw: pointer to the HW structure
108 *  @offset: register offset in VLAN filter table
109 *  @value: register value written to VLAN filter table
110 *
111 *  Writes value at the given offset in the register array which stores
112 *  the VLAN filter table.
113 **/
114static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
115{
116	array_wr32(E1000_VFTA, offset, value);
117	wrfl();
118}
119
120/* Due to a hw errata, if the host tries to  configure the VFTA register
121 * while performing queries from the BMC or DMA, then the VFTA in some
122 * cases won't be written.
123 */
124
125/**
126 *  igb_clear_vfta_i350 - Clear VLAN filter table
127 *  @hw: pointer to the HW structure
128 *
129 *  Clears the register array which contains the VLAN filter table by
130 *  setting all the values to 0.
131 **/
132void igb_clear_vfta_i350(struct e1000_hw *hw)
133{
134	u32 offset;
135	int i;
136
137	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
138		for (i = 0; i < 10; i++)
139			array_wr32(E1000_VFTA, offset, 0);
140
141		wrfl();
142	}
143}
144
145/**
146 *  igb_write_vfta_i350 - Write value to VLAN filter table
147 *  @hw: pointer to the HW structure
148 *  @offset: register offset in VLAN filter table
149 *  @value: register value written to VLAN filter table
150 *
151 *  Writes value at the given offset in the register array which stores
152 *  the VLAN filter table.
153 **/
154static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
155{
156	int i;
157
158	for (i = 0; i < 10; i++)
159		array_wr32(E1000_VFTA, offset, value);
160
161	wrfl();
162}
163
164/**
165 *  igb_init_rx_addrs - Initialize receive address's
166 *  @hw: pointer to the HW structure
167 *  @rar_count: receive address registers
168 *
169 *  Setups the receive address registers by setting the base receive address
170 *  register to the devices MAC address and clearing all the other receive
171 *  address registers to 0.
172 **/
173void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
174{
175	u32 i;
176	u8 mac_addr[ETH_ALEN] = {0};
177
178	/* Setup the receive address */
179	hw_dbg("Programming MAC Address into RAR[0]\n");
180
181	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
182
183	/* Zero out the other (rar_entry_count - 1) receive addresses */
184	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
185	for (i = 1; i < rar_count; i++)
186		hw->mac.ops.rar_set(hw, mac_addr, i);
187}
188
189/**
190 *  igb_vfta_set - enable or disable vlan in VLAN filter table
191 *  @hw: pointer to the HW structure
192 *  @vid: VLAN id to add or remove
193 *  @add: if true add filter, if false remove
194 *
195 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
196 *  and if we are adding or removing the filter
197 **/
198s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
199{
200	u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
201	u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
202	u32 vfta;
203	struct igb_adapter *adapter = hw->back;
204	s32 ret_val = 0;
205
206	vfta = adapter->shadow_vfta[index];
207
208	/* bit was set/cleared before we started */
209	if ((!!(vfta & mask)) == add) {
210		ret_val = -E1000_ERR_CONFIG;
211	} else {
212		if (add)
213			vfta |= mask;
214		else
215			vfta &= ~mask;
216	}
217	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
218		igb_write_vfta_i350(hw, index, vfta);
219	else
220		igb_write_vfta(hw, index, vfta);
221	adapter->shadow_vfta[index] = vfta;
222
223	return ret_val;
224}
225
226/**
227 *  igb_check_alt_mac_addr - Check for alternate MAC addr
228 *  @hw: pointer to the HW structure
229 *
230 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
231 *  can be setup by pre-boot software and must be treated like a permanent
232 *  address and must override the actual permanent MAC address.  If an
233 *  alternate MAC address is found it is saved in the hw struct and
234 *  programmed into RAR0 and the function returns success, otherwise the
235 *  function returns an error.
236 **/
237s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
238{
239	u32 i;
240	s32 ret_val = 0;
241	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
242	u8 alt_mac_addr[ETH_ALEN];
243
244	/* Alternate MAC address is handled by the option ROM for 82580
245	 * and newer. SW support not required.
246	 */
247	if (hw->mac.type >= e1000_82580)
248		goto out;
249
250	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
251				 &nvm_alt_mac_addr_offset);
252	if (ret_val) {
253		hw_dbg("NVM Read Error\n");
254		goto out;
255	}
256
257	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
258	    (nvm_alt_mac_addr_offset == 0x0000))
259		/* There is no Alternate MAC Address */
260		goto out;
261
262	if (hw->bus.func == E1000_FUNC_1)
263		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
264	if (hw->bus.func == E1000_FUNC_2)
265		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
266
267	if (hw->bus.func == E1000_FUNC_3)
268		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
269	for (i = 0; i < ETH_ALEN; i += 2) {
270		offset = nvm_alt_mac_addr_offset + (i >> 1);
271		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
272		if (ret_val) {
273			hw_dbg("NVM Read Error\n");
274			goto out;
275		}
276
277		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
278		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
279	}
280
281	/* if multicast bit is set, the alternate address will not be used */
282	if (is_multicast_ether_addr(alt_mac_addr)) {
283		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
284		goto out;
285	}
286
287	/* We have a valid alternate MAC address, and we want to treat it the
288	 * same as the normal permanent MAC address stored by the HW into the
289	 * RAR. Do this by mapping this address into RAR0.
290	 */
291	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
292
293out:
294	return ret_val;
295}
296
297/**
298 *  igb_rar_set - Set receive address register
299 *  @hw: pointer to the HW structure
300 *  @addr: pointer to the receive address
301 *  @index: receive address array register
302 *
303 *  Sets the receive address array register at index to the address passed
304 *  in by addr.
305 **/
306void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
307{
308	u32 rar_low, rar_high;
309
310	/* HW expects these in little endian so we reverse the byte order
311	 * from network order (big endian) to little endian
312	 */
313	rar_low = ((u32) addr[0] |
314		   ((u32) addr[1] << 8) |
315		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
316
317	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
318
319	/* If MAC address zero, no need to set the AV bit */
320	if (rar_low || rar_high)
321		rar_high |= E1000_RAH_AV;
322
323	/* Some bridges will combine consecutive 32-bit writes into
324	 * a single burst write, which will malfunction on some parts.
325	 * The flushes avoid this.
326	 */
327	wr32(E1000_RAL(index), rar_low);
328	wrfl();
329	wr32(E1000_RAH(index), rar_high);
330	wrfl();
331}
332
333/**
334 *  igb_mta_set - Set multicast filter table address
335 *  @hw: pointer to the HW structure
336 *  @hash_value: determines the MTA register and bit to set
337 *
338 *  The multicast table address is a register array of 32-bit registers.
339 *  The hash_value is used to determine what register the bit is in, the
340 *  current value is read, the new bit is OR'd in and the new value is
341 *  written back into the register.
342 **/
343void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
344{
345	u32 hash_bit, hash_reg, mta;
346
347	/* The MTA is a register array of 32-bit registers. It is
348	 * treated like an array of (32*mta_reg_count) bits.  We want to
349	 * set bit BitArray[hash_value]. So we figure out what register
350	 * the bit is in, read it, OR in the new bit, then write
351	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
352	 * mask to bits 31:5 of the hash value which gives us the
353	 * register we're modifying.  The hash bit within that register
354	 * is determined by the lower 5 bits of the hash value.
355	 */
356	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
357	hash_bit = hash_value & 0x1F;
358
359	mta = array_rd32(E1000_MTA, hash_reg);
360
361	mta |= (1 << hash_bit);
362
363	array_wr32(E1000_MTA, hash_reg, mta);
364	wrfl();
365}
366
367/**
368 *  igb_hash_mc_addr - Generate a multicast hash value
369 *  @hw: pointer to the HW structure
370 *  @mc_addr: pointer to a multicast address
371 *
372 *  Generates a multicast address hash value which is used to determine
373 *  the multicast filter table array address and new table value.  See
374 *  igb_mta_set()
375 **/
376static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
377{
378	u32 hash_value, hash_mask;
379	u8 bit_shift = 0;
380
381	/* Register count multiplied by bits per register */
382	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
383
384	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
385	 * where 0xFF would still fall within the hash mask.
386	 */
387	while (hash_mask >> bit_shift != 0xFF)
388		bit_shift++;
389
390	/* The portion of the address that is used for the hash table
391	 * is determined by the mc_filter_type setting.
392	 * The algorithm is such that there is a total of 8 bits of shifting.
393	 * The bit_shift for a mc_filter_type of 0 represents the number of
394	 * left-shifts where the MSB of mc_addr[5] would still fall within
395	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
396	 * of 8 bits of shifting, then mc_addr[4] will shift right the
397	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
398	 * cases are a variation of this algorithm...essentially raising the
399	 * number of bits to shift mc_addr[5] left, while still keeping the
400	 * 8-bit shifting total.
401	 *
402	 * For example, given the following Destination MAC Address and an
403	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
404	 * we can see that the bit_shift for case 0 is 4.  These are the hash
405	 * values resulting from each mc_filter_type...
406	 * [0] [1] [2] [3] [4] [5]
407	 * 01  AA  00  12  34  56
408	 * LSB                 MSB
409	 *
410	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
411	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
412	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
413	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
414	 */
415	switch (hw->mac.mc_filter_type) {
416	default:
417	case 0:
418		break;
419	case 1:
420		bit_shift += 1;
421		break;
422	case 2:
423		bit_shift += 2;
424		break;
425	case 3:
426		bit_shift += 4;
427		break;
428	}
429
430	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
431				  (((u16) mc_addr[5]) << bit_shift)));
432
433	return hash_value;
434}
435
436/**
437 *  igb_update_mc_addr_list - Update Multicast addresses
438 *  @hw: pointer to the HW structure
439 *  @mc_addr_list: array of multicast addresses to program
440 *  @mc_addr_count: number of multicast addresses to program
441 *
442 *  Updates entire Multicast Table Array.
443 *  The caller must have a packed mc_addr_list of multicast addresses.
444 **/
445void igb_update_mc_addr_list(struct e1000_hw *hw,
446                             u8 *mc_addr_list, u32 mc_addr_count)
447{
448	u32 hash_value, hash_bit, hash_reg;
449	int i;
450
451	/* clear mta_shadow */
452	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
453
454	/* update mta_shadow from mc_addr_list */
455	for (i = 0; (u32) i < mc_addr_count; i++) {
456		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
457
458		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
459		hash_bit = hash_value & 0x1F;
460
461		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
462		mc_addr_list += (ETH_ALEN);
463	}
464
465	/* replace the entire MTA table */
466	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
467		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
468	wrfl();
469}
470
471/**
472 *  igb_clear_hw_cntrs_base - Clear base hardware counters
473 *  @hw: pointer to the HW structure
474 *
475 *  Clears the base hardware counters by reading the counter registers.
476 **/
477void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
478{
479	rd32(E1000_CRCERRS);
480	rd32(E1000_SYMERRS);
481	rd32(E1000_MPC);
482	rd32(E1000_SCC);
483	rd32(E1000_ECOL);
484	rd32(E1000_MCC);
485	rd32(E1000_LATECOL);
486	rd32(E1000_COLC);
487	rd32(E1000_DC);
488	rd32(E1000_SEC);
489	rd32(E1000_RLEC);
490	rd32(E1000_XONRXC);
491	rd32(E1000_XONTXC);
492	rd32(E1000_XOFFRXC);
493	rd32(E1000_XOFFTXC);
494	rd32(E1000_FCRUC);
495	rd32(E1000_GPRC);
496	rd32(E1000_BPRC);
497	rd32(E1000_MPRC);
498	rd32(E1000_GPTC);
499	rd32(E1000_GORCL);
500	rd32(E1000_GORCH);
501	rd32(E1000_GOTCL);
502	rd32(E1000_GOTCH);
503	rd32(E1000_RNBC);
504	rd32(E1000_RUC);
505	rd32(E1000_RFC);
506	rd32(E1000_ROC);
507	rd32(E1000_RJC);
508	rd32(E1000_TORL);
509	rd32(E1000_TORH);
510	rd32(E1000_TOTL);
511	rd32(E1000_TOTH);
512	rd32(E1000_TPR);
513	rd32(E1000_TPT);
514	rd32(E1000_MPTC);
515	rd32(E1000_BPTC);
516}
517
518/**
519 *  igb_check_for_copper_link - Check for link (Copper)
520 *  @hw: pointer to the HW structure
521 *
522 *  Checks to see of the link status of the hardware has changed.  If a
523 *  change in link status has been detected, then we read the PHY registers
524 *  to get the current speed/duplex if link exists.
525 **/
526s32 igb_check_for_copper_link(struct e1000_hw *hw)
527{
528	struct e1000_mac_info *mac = &hw->mac;
529	s32 ret_val;
530	bool link;
531
532	/* We only want to go out to the PHY registers to see if Auto-Neg
533	 * has completed and/or if our link status has changed.  The
534	 * get_link_status flag is set upon receiving a Link Status
535	 * Change or Rx Sequence Error interrupt.
536	 */
537	if (!mac->get_link_status) {
538		ret_val = 0;
539		goto out;
540	}
541
542	/* First we want to see if the MII Status Register reports
543	 * link.  If so, then we want to get the current speed/duplex
544	 * of the PHY.
545	 */
546	ret_val = igb_phy_has_link(hw, 1, 0, &link);
547	if (ret_val)
548		goto out;
549
550	if (!link)
551		goto out; /* No link detected */
552
553	mac->get_link_status = false;
554
555	/* Check if there was DownShift, must be checked
556	 * immediately after link-up
557	 */
558	igb_check_downshift(hw);
559
560	/* If we are forcing speed/duplex, then we simply return since
561	 * we have already determined whether we have link or not.
562	 */
563	if (!mac->autoneg) {
564		ret_val = -E1000_ERR_CONFIG;
565		goto out;
566	}
567
568	/* Auto-Neg is enabled.  Auto Speed Detection takes care
569	 * of MAC speed/duplex configuration.  So we only need to
570	 * configure Collision Distance in the MAC.
571	 */
572	igb_config_collision_dist(hw);
573
574	/* Configure Flow Control now that Auto-Neg has completed.
575	 * First, we need to restore the desired flow control
576	 * settings because we may have had to re-autoneg with a
577	 * different link partner.
578	 */
579	ret_val = igb_config_fc_after_link_up(hw);
580	if (ret_val)
581		hw_dbg("Error configuring flow control\n");
582
583out:
584	return ret_val;
585}
586
587/**
588 *  igb_setup_link - Setup flow control and link settings
589 *  @hw: pointer to the HW structure
590 *
591 *  Determines which flow control settings to use, then configures flow
592 *  control.  Calls the appropriate media-specific link configuration
593 *  function.  Assuming the adapter has a valid link partner, a valid link
594 *  should be established.  Assumes the hardware has previously been reset
595 *  and the transmitter and receiver are not enabled.
596 **/
597s32 igb_setup_link(struct e1000_hw *hw)
598{
599	s32 ret_val = 0;
600
601	/* In the case of the phy reset being blocked, we already have a link.
602	 * We do not need to set it up again.
603	 */
604	if (igb_check_reset_block(hw))
605		goto out;
606
607	/* If requested flow control is set to default, set flow control
608	 * based on the EEPROM flow control settings.
609	 */
610	if (hw->fc.requested_mode == e1000_fc_default) {
611		ret_val = igb_set_default_fc(hw);
612		if (ret_val)
613			goto out;
614	}
615
616	/* We want to save off the original Flow Control configuration just
617	 * in case we get disconnected and then reconnected into a different
618	 * hub or switch with different Flow Control capabilities.
619	 */
620	hw->fc.current_mode = hw->fc.requested_mode;
621
622	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
623
624	/* Call the necessary media_type subroutine to configure the link. */
625	ret_val = hw->mac.ops.setup_physical_interface(hw);
626	if (ret_val)
627		goto out;
628
629	/* Initialize the flow control address, type, and PAUSE timer
630	 * registers to their default values.  This is done even if flow
631	 * control is disabled, because it does not hurt anything to
632	 * initialize these registers.
633	 */
634	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
635	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
636	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
637	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
638
639	wr32(E1000_FCTTV, hw->fc.pause_time);
640
641	ret_val = igb_set_fc_watermarks(hw);
642
643out:
644
645	return ret_val;
646}
647
648/**
649 *  igb_config_collision_dist - Configure collision distance
650 *  @hw: pointer to the HW structure
651 *
652 *  Configures the collision distance to the default value and is used
653 *  during link setup. Currently no func pointer exists and all
654 *  implementations are handled in the generic version of this function.
655 **/
656void igb_config_collision_dist(struct e1000_hw *hw)
657{
658	u32 tctl;
659
660	tctl = rd32(E1000_TCTL);
661
662	tctl &= ~E1000_TCTL_COLD;
663	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
664
665	wr32(E1000_TCTL, tctl);
666	wrfl();
667}
668
669/**
670 *  igb_set_fc_watermarks - Set flow control high/low watermarks
671 *  @hw: pointer to the HW structure
672 *
673 *  Sets the flow control high/low threshold (watermark) registers.  If
674 *  flow control XON frame transmission is enabled, then set XON frame
675 *  tansmission as well.
676 **/
677static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
678{
679	s32 ret_val = 0;
680	u32 fcrtl = 0, fcrth = 0;
681
682	/* Set the flow control receive threshold registers.  Normally,
683	 * these registers will be set to a default threshold that may be
684	 * adjusted later by the driver's runtime code.  However, if the
685	 * ability to transmit pause frames is not enabled, then these
686	 * registers will be set to 0.
687	 */
688	if (hw->fc.current_mode & e1000_fc_tx_pause) {
689		/* We need to set up the Receive Threshold high and low water
690		 * marks as well as (optionally) enabling the transmission of
691		 * XON frames.
692		 */
693		fcrtl = hw->fc.low_water;
694		if (hw->fc.send_xon)
695			fcrtl |= E1000_FCRTL_XONE;
696
697		fcrth = hw->fc.high_water;
698	}
699	wr32(E1000_FCRTL, fcrtl);
700	wr32(E1000_FCRTH, fcrth);
701
702	return ret_val;
703}
704
705/**
706 *  igb_set_default_fc - Set flow control default values
707 *  @hw: pointer to the HW structure
708 *
709 *  Read the EEPROM for the default values for flow control and store the
710 *  values.
711 **/
712static s32 igb_set_default_fc(struct e1000_hw *hw)
713{
714	s32 ret_val = 0;
715	u16 nvm_data;
716
717	/* Read and store word 0x0F of the EEPROM. This word contains bits
718	 * that determine the hardware's default PAUSE (flow control) mode,
719	 * a bit that determines whether the HW defaults to enabling or
720	 * disabling auto-negotiation, and the direction of the
721	 * SW defined pins. If there is no SW over-ride of the flow
722	 * control setting, then the variable hw->fc will
723	 * be initialized based on a value in the EEPROM.
724	 */
725	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
726
727	if (ret_val) {
728		hw_dbg("NVM Read Error\n");
729		goto out;
730	}
731
732	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
733		hw->fc.requested_mode = e1000_fc_none;
734	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
735		 NVM_WORD0F_ASM_DIR)
736		hw->fc.requested_mode = e1000_fc_tx_pause;
737	else
738		hw->fc.requested_mode = e1000_fc_full;
739
740out:
741	return ret_val;
742}
743
744/**
745 *  igb_force_mac_fc - Force the MAC's flow control settings
746 *  @hw: pointer to the HW structure
747 *
748 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
749 *  device control register to reflect the adapter settings.  TFCE and RFCE
750 *  need to be explicitly set by software when a copper PHY is used because
751 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
752 *  also configure these bits when link is forced on a fiber connection.
753 **/
754s32 igb_force_mac_fc(struct e1000_hw *hw)
755{
756	u32 ctrl;
757	s32 ret_val = 0;
758
759	ctrl = rd32(E1000_CTRL);
760
761	/* Because we didn't get link via the internal auto-negotiation
762	 * mechanism (we either forced link or we got link via PHY
763	 * auto-neg), we have to manually enable/disable transmit an
764	 * receive flow control.
765	 *
766	 * The "Case" statement below enables/disable flow control
767	 * according to the "hw->fc.current_mode" parameter.
768	 *
769	 * The possible values of the "fc" parameter are:
770	 *      0:  Flow control is completely disabled
771	 *      1:  Rx flow control is enabled (we can receive pause
772	 *          frames but not send pause frames).
773	 *      2:  Tx flow control is enabled (we can send pause frames
774	 *          frames but we do not receive pause frames).
775	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
776	 *  other:  No other values should be possible at this point.
777	 */
778	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
779
780	switch (hw->fc.current_mode) {
781	case e1000_fc_none:
782		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
783		break;
784	case e1000_fc_rx_pause:
785		ctrl &= (~E1000_CTRL_TFCE);
786		ctrl |= E1000_CTRL_RFCE;
787		break;
788	case e1000_fc_tx_pause:
789		ctrl &= (~E1000_CTRL_RFCE);
790		ctrl |= E1000_CTRL_TFCE;
791		break;
792	case e1000_fc_full:
793		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
794		break;
795	default:
796		hw_dbg("Flow control param set incorrectly\n");
797		ret_val = -E1000_ERR_CONFIG;
798		goto out;
799	}
800
801	wr32(E1000_CTRL, ctrl);
802
803out:
804	return ret_val;
805}
806
807/**
808 *  igb_config_fc_after_link_up - Configures flow control after link
809 *  @hw: pointer to the HW structure
810 *
811 *  Checks the status of auto-negotiation after link up to ensure that the
812 *  speed and duplex were not forced.  If the link needed to be forced, then
813 *  flow control needs to be forced also.  If auto-negotiation is enabled
814 *  and did not fail, then we configure flow control based on our link
815 *  partner.
816 **/
817s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
818{
819	struct e1000_mac_info *mac = &hw->mac;
820	s32 ret_val = 0;
821	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
822	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
823	u16 speed, duplex;
824
825	/* Check for the case where we have fiber media and auto-neg failed
826	 * so we had to force link.  In this case, we need to force the
827	 * configuration of the MAC to match the "fc" parameter.
828	 */
829	if (mac->autoneg_failed) {
830		if (hw->phy.media_type == e1000_media_type_internal_serdes)
831			ret_val = igb_force_mac_fc(hw);
832	} else {
833		if (hw->phy.media_type == e1000_media_type_copper)
834			ret_val = igb_force_mac_fc(hw);
835	}
836
837	if (ret_val) {
838		hw_dbg("Error forcing flow control settings\n");
839		goto out;
840	}
841
842	/* Check for the case where we have copper media and auto-neg is
843	 * enabled.  In this case, we need to check and see if Auto-Neg
844	 * has completed, and if so, how the PHY and link partner has
845	 * flow control configured.
846	 */
847	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
848		/* Read the MII Status Register and check to see if AutoNeg
849		 * has completed.  We read this twice because this reg has
850		 * some "sticky" (latched) bits.
851		 */
852		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
853						   &mii_status_reg);
854		if (ret_val)
855			goto out;
856		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
857						   &mii_status_reg);
858		if (ret_val)
859			goto out;
860
861		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
862			hw_dbg("Copper PHY and Auto Neg "
863				 "has not completed.\n");
864			goto out;
865		}
866
867		/* The AutoNeg process has completed, so we now need to
868		 * read both the Auto Negotiation Advertisement
869		 * Register (Address 4) and the Auto_Negotiation Base
870		 * Page Ability Register (Address 5) to determine how
871		 * flow control was negotiated.
872		 */
873		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
874					    &mii_nway_adv_reg);
875		if (ret_val)
876			goto out;
877		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
878					    &mii_nway_lp_ability_reg);
879		if (ret_val)
880			goto out;
881
882		/* Two bits in the Auto Negotiation Advertisement Register
883		 * (Address 4) and two bits in the Auto Negotiation Base
884		 * Page Ability Register (Address 5) determine flow control
885		 * for both the PHY and the link partner.  The following
886		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
887		 * 1999, describes these PAUSE resolution bits and how flow
888		 * control is determined based upon these settings.
889		 * NOTE:  DC = Don't Care
890		 *
891		 *   LOCAL DEVICE  |   LINK PARTNER
892		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
893		 *-------|---------|-------|---------|--------------------
894		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
895		 *   0   |    1    |   0   |   DC    | e1000_fc_none
896		 *   0   |    1    |   1   |    0    | e1000_fc_none
897		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
898		 *   1   |    0    |   0   |   DC    | e1000_fc_none
899		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
900		 *   1   |    1    |   0   |    0    | e1000_fc_none
901		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
902		 *
903		 * Are both PAUSE bits set to 1?  If so, this implies
904		 * Symmetric Flow Control is enabled at both ends.  The
905		 * ASM_DIR bits are irrelevant per the spec.
906		 *
907		 * For Symmetric Flow Control:
908		 *
909		 *   LOCAL DEVICE  |   LINK PARTNER
910		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
911		 *-------|---------|-------|---------|--------------------
912		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
913		 *
914		 */
915		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
916		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
917			/* Now we need to check if the user selected RX ONLY
918			 * of pause frames.  In this case, we had to advertise
919			 * FULL flow control because we could not advertise RX
920			 * ONLY. Hence, we must now check to see if we need to
921			 * turn OFF  the TRANSMISSION of PAUSE frames.
922			 */
923			if (hw->fc.requested_mode == e1000_fc_full) {
924				hw->fc.current_mode = e1000_fc_full;
925				hw_dbg("Flow Control = FULL.\r\n");
926			} else {
927				hw->fc.current_mode = e1000_fc_rx_pause;
928				hw_dbg("Flow Control = "
929				       "RX PAUSE frames only.\r\n");
930			}
931		}
932		/* For receiving PAUSE frames ONLY.
933		 *
934		 *   LOCAL DEVICE  |   LINK PARTNER
935		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
936		 *-------|---------|-------|---------|--------------------
937		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
938		 */
939		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
940			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
941			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
942			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
943			hw->fc.current_mode = e1000_fc_tx_pause;
944			hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
945		}
946		/* For transmitting PAUSE frames ONLY.
947		 *
948		 *   LOCAL DEVICE  |   LINK PARTNER
949		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
950		 *-------|---------|-------|---------|--------------------
951		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
952		 */
953		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
954			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
955			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
956			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
957			hw->fc.current_mode = e1000_fc_rx_pause;
958			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
959		}
960		/* Per the IEEE spec, at this point flow control should be
961		 * disabled.  However, we want to consider that we could
962		 * be connected to a legacy switch that doesn't advertise
963		 * desired flow control, but can be forced on the link
964		 * partner.  So if we advertised no flow control, that is
965		 * what we will resolve to.  If we advertised some kind of
966		 * receive capability (Rx Pause Only or Full Flow Control)
967		 * and the link partner advertised none, we will configure
968		 * ourselves to enable Rx Flow Control only.  We can do
969		 * this safely for two reasons:  If the link partner really
970		 * didn't want flow control enabled, and we enable Rx, no
971		 * harm done since we won't be receiving any PAUSE frames
972		 * anyway.  If the intent on the link partner was to have
973		 * flow control enabled, then by us enabling RX only, we
974		 * can at least receive pause frames and process them.
975		 * This is a good idea because in most cases, since we are
976		 * predominantly a server NIC, more times than not we will
977		 * be asked to delay transmission of packets than asking
978		 * our link partner to pause transmission of frames.
979		 */
980		else if ((hw->fc.requested_mode == e1000_fc_none) ||
981			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
982			 (hw->fc.strict_ieee)) {
983			hw->fc.current_mode = e1000_fc_none;
984			hw_dbg("Flow Control = NONE.\r\n");
985		} else {
986			hw->fc.current_mode = e1000_fc_rx_pause;
987			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
988		}
989
990		/* Now we need to do one last check...  If we auto-
991		 * negotiated to HALF DUPLEX, flow control should not be
992		 * enabled per IEEE 802.3 spec.
993		 */
994		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
995		if (ret_val) {
996			hw_dbg("Error getting link speed and duplex\n");
997			goto out;
998		}
999
1000		if (duplex == HALF_DUPLEX)
1001			hw->fc.current_mode = e1000_fc_none;
1002
1003		/* Now we call a subroutine to actually force the MAC
1004		 * controller to use the correct flow control settings.
1005		 */
1006		ret_val = igb_force_mac_fc(hw);
1007		if (ret_val) {
1008			hw_dbg("Error forcing flow control settings\n");
1009			goto out;
1010		}
1011	}
1012	/* Check for the case where we have SerDes media and auto-neg is
1013	 * enabled.  In this case, we need to check and see if Auto-Neg
1014	 * has completed, and if so, how the PHY and link partner has
1015	 * flow control configured.
1016	 */
1017	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1018		&& mac->autoneg) {
1019		/* Read the PCS_LSTS and check to see if AutoNeg
1020		 * has completed.
1021		 */
1022		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1023
1024		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1025			hw_dbg("PCS Auto Neg has not completed.\n");
1026			return ret_val;
1027		}
1028
1029		/* The AutoNeg process has completed, so we now need to
1030		 * read both the Auto Negotiation Advertisement
1031		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1032		 * Page Ability Register (PCS_LPAB) to determine how
1033		 * flow control was negotiated.
1034		 */
1035		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1036		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1037
1038		/* Two bits in the Auto Negotiation Advertisement Register
1039		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1040		 * Page Ability Register (PCS_LPAB) determine flow control
1041		 * for both the PHY and the link partner.  The following
1042		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1043		 * 1999, describes these PAUSE resolution bits and how flow
1044		 * control is determined based upon these settings.
1045		 * NOTE:  DC = Don't Care
1046		 *
1047		 *   LOCAL DEVICE  |   LINK PARTNER
1048		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1049		 *-------|---------|-------|---------|--------------------
1050		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1051		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1052		 *   0   |    1    |   1   |    0    | e1000_fc_none
1053		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1054		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1055		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1056		 *   1   |    1    |   0   |    0    | e1000_fc_none
1057		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1058		 *
1059		 * Are both PAUSE bits set to 1?  If so, this implies
1060		 * Symmetric Flow Control is enabled at both ends.  The
1061		 * ASM_DIR bits are irrelevant per the spec.
1062		 *
1063		 * For Symmetric Flow Control:
1064		 *
1065		 *   LOCAL DEVICE  |   LINK PARTNER
1066		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1067		 *-------|---------|-------|---------|--------------------
1068		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1069		 *
1070		 */
1071		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1072		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1073			/* Now we need to check if the user selected Rx ONLY
1074			 * of pause frames.  In this case, we had to advertise
1075			 * FULL flow control because we could not advertise Rx
1076			 * ONLY. Hence, we must now check to see if we need to
1077			 * turn OFF the TRANSMISSION of PAUSE frames.
1078			 */
1079			if (hw->fc.requested_mode == e1000_fc_full) {
1080				hw->fc.current_mode = e1000_fc_full;
1081				hw_dbg("Flow Control = FULL.\n");
1082			} else {
1083				hw->fc.current_mode = e1000_fc_rx_pause;
1084				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1085			}
1086		}
1087		/* For receiving PAUSE frames ONLY.
1088		 *
1089		 *   LOCAL DEVICE  |   LINK PARTNER
1090		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1091		 *-------|---------|-------|---------|--------------------
1092		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1093		 */
1094		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1095			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1096			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1097			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1098			hw->fc.current_mode = e1000_fc_tx_pause;
1099			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1100		}
1101		/* For transmitting PAUSE frames ONLY.
1102		 *
1103		 *   LOCAL DEVICE  |   LINK PARTNER
1104		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1105		 *-------|---------|-------|---------|--------------------
1106		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1107		 */
1108		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1109			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1110			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1111			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1112			hw->fc.current_mode = e1000_fc_rx_pause;
1113			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1114		} else {
1115			/* Per the IEEE spec, at this point flow control
1116			 * should be disabled.
1117			 */
1118			hw->fc.current_mode = e1000_fc_none;
1119			hw_dbg("Flow Control = NONE.\n");
1120		}
1121
1122		/* Now we call a subroutine to actually force the MAC
1123		 * controller to use the correct flow control settings.
1124		 */
1125		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1126		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1127		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1128
1129		ret_val = igb_force_mac_fc(hw);
1130		if (ret_val) {
1131			hw_dbg("Error forcing flow control settings\n");
1132			return ret_val;
1133		}
1134	}
1135
1136out:
1137	return ret_val;
1138}
1139
1140/**
1141 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1142 *  @hw: pointer to the HW structure
1143 *  @speed: stores the current speed
1144 *  @duplex: stores the current duplex
1145 *
1146 *  Read the status register for the current speed/duplex and store the current
1147 *  speed and duplex for copper connections.
1148 **/
1149s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1150				      u16 *duplex)
1151{
1152	u32 status;
1153
1154	status = rd32(E1000_STATUS);
1155	if (status & E1000_STATUS_SPEED_1000) {
1156		*speed = SPEED_1000;
1157		hw_dbg("1000 Mbs, ");
1158	} else if (status & E1000_STATUS_SPEED_100) {
1159		*speed = SPEED_100;
1160		hw_dbg("100 Mbs, ");
1161	} else {
1162		*speed = SPEED_10;
1163		hw_dbg("10 Mbs, ");
1164	}
1165
1166	if (status & E1000_STATUS_FD) {
1167		*duplex = FULL_DUPLEX;
1168		hw_dbg("Full Duplex\n");
1169	} else {
1170		*duplex = HALF_DUPLEX;
1171		hw_dbg("Half Duplex\n");
1172	}
1173
1174	/* Check if it is an I354 2.5Gb backplane connection. */
1175	if (hw->mac.type == e1000_i354) {
1176		if ((status & E1000_STATUS_2P5_SKU) &&
1177		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1178			*speed = SPEED_2500;
1179			*duplex = FULL_DUPLEX;
1180			hw_dbg("2500 Mbs, ");
1181			hw_dbg("Full Duplex\n");
1182		}
1183	}
1184
1185	return 0;
1186}
1187
1188/**
1189 *  igb_get_hw_semaphore - Acquire hardware semaphore
1190 *  @hw: pointer to the HW structure
1191 *
1192 *  Acquire the HW semaphore to access the PHY or NVM
1193 **/
1194s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1195{
1196	u32 swsm;
1197	s32 ret_val = 0;
1198	s32 timeout = hw->nvm.word_size + 1;
1199	s32 i = 0;
1200
1201	/* Get the SW semaphore */
1202	while (i < timeout) {
1203		swsm = rd32(E1000_SWSM);
1204		if (!(swsm & E1000_SWSM_SMBI))
1205			break;
1206
1207		udelay(50);
1208		i++;
1209	}
1210
1211	if (i == timeout) {
1212		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1213		ret_val = -E1000_ERR_NVM;
1214		goto out;
1215	}
1216
1217	/* Get the FW semaphore. */
1218	for (i = 0; i < timeout; i++) {
1219		swsm = rd32(E1000_SWSM);
1220		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1221
1222		/* Semaphore acquired if bit latched */
1223		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1224			break;
1225
1226		udelay(50);
1227	}
1228
1229	if (i == timeout) {
1230		/* Release semaphores */
1231		igb_put_hw_semaphore(hw);
1232		hw_dbg("Driver can't access the NVM\n");
1233		ret_val = -E1000_ERR_NVM;
1234		goto out;
1235	}
1236
1237out:
1238	return ret_val;
1239}
1240
1241/**
1242 *  igb_put_hw_semaphore - Release hardware semaphore
1243 *  @hw: pointer to the HW structure
1244 *
1245 *  Release hardware semaphore used to access the PHY or NVM
1246 **/
1247void igb_put_hw_semaphore(struct e1000_hw *hw)
1248{
1249	u32 swsm;
1250
1251	swsm = rd32(E1000_SWSM);
1252
1253	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1254
1255	wr32(E1000_SWSM, swsm);
1256}
1257
1258/**
1259 *  igb_get_auto_rd_done - Check for auto read completion
1260 *  @hw: pointer to the HW structure
1261 *
1262 *  Check EEPROM for Auto Read done bit.
1263 **/
1264s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1265{
1266	s32 i = 0;
1267	s32 ret_val = 0;
1268
1269
1270	while (i < AUTO_READ_DONE_TIMEOUT) {
1271		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1272			break;
1273		msleep(1);
1274		i++;
1275	}
1276
1277	if (i == AUTO_READ_DONE_TIMEOUT) {
1278		hw_dbg("Auto read by HW from NVM has not completed.\n");
1279		ret_val = -E1000_ERR_RESET;
1280		goto out;
1281	}
1282
1283out:
1284	return ret_val;
1285}
1286
1287/**
1288 *  igb_valid_led_default - Verify a valid default LED config
1289 *  @hw: pointer to the HW structure
1290 *  @data: pointer to the NVM (EEPROM)
1291 *
1292 *  Read the EEPROM for the current default LED configuration.  If the
1293 *  LED configuration is not valid, set to a valid LED configuration.
1294 **/
1295static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1296{
1297	s32 ret_val;
1298
1299	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1300	if (ret_val) {
1301		hw_dbg("NVM Read Error\n");
1302		goto out;
1303	}
1304
1305	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1306		switch(hw->phy.media_type) {
1307		case e1000_media_type_internal_serdes:
1308			*data = ID_LED_DEFAULT_82575_SERDES;
1309			break;
1310		case e1000_media_type_copper:
1311		default:
1312			*data = ID_LED_DEFAULT;
1313			break;
1314		}
1315	}
1316out:
1317	return ret_val;
1318}
1319
1320/**
1321 *  igb_id_led_init -
1322 *  @hw: pointer to the HW structure
1323 *
1324 **/
1325s32 igb_id_led_init(struct e1000_hw *hw)
1326{
1327	struct e1000_mac_info *mac = &hw->mac;
1328	s32 ret_val;
1329	const u32 ledctl_mask = 0x000000FF;
1330	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1331	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1332	u16 data, i, temp;
1333	const u16 led_mask = 0x0F;
1334
1335	ret_val = igb_valid_led_default(hw, &data);
1336	if (ret_val)
1337		goto out;
1338
1339	mac->ledctl_default = rd32(E1000_LEDCTL);
1340	mac->ledctl_mode1 = mac->ledctl_default;
1341	mac->ledctl_mode2 = mac->ledctl_default;
1342
1343	for (i = 0; i < 4; i++) {
1344		temp = (data >> (i << 2)) & led_mask;
1345		switch (temp) {
1346		case ID_LED_ON1_DEF2:
1347		case ID_LED_ON1_ON2:
1348		case ID_LED_ON1_OFF2:
1349			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1350			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1351			break;
1352		case ID_LED_OFF1_DEF2:
1353		case ID_LED_OFF1_ON2:
1354		case ID_LED_OFF1_OFF2:
1355			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1356			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1357			break;
1358		default:
1359			/* Do nothing */
1360			break;
1361		}
1362		switch (temp) {
1363		case ID_LED_DEF1_ON2:
1364		case ID_LED_ON1_ON2:
1365		case ID_LED_OFF1_ON2:
1366			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1367			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1368			break;
1369		case ID_LED_DEF1_OFF2:
1370		case ID_LED_ON1_OFF2:
1371		case ID_LED_OFF1_OFF2:
1372			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1373			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1374			break;
1375		default:
1376			/* Do nothing */
1377			break;
1378		}
1379	}
1380
1381out:
1382	return ret_val;
1383}
1384
1385/**
1386 *  igb_cleanup_led - Set LED config to default operation
1387 *  @hw: pointer to the HW structure
1388 *
1389 *  Remove the current LED configuration and set the LED configuration
1390 *  to the default value, saved from the EEPROM.
1391 **/
1392s32 igb_cleanup_led(struct e1000_hw *hw)
1393{
1394	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1395	return 0;
1396}
1397
1398/**
1399 *  igb_blink_led - Blink LED
1400 *  @hw: pointer to the HW structure
1401 *
1402 *  Blink the led's which are set to be on.
1403 **/
1404s32 igb_blink_led(struct e1000_hw *hw)
1405{
1406	u32 ledctl_blink = 0;
1407	u32 i;
1408
1409	if (hw->phy.media_type == e1000_media_type_fiber) {
1410		/* always blink LED0 for PCI-E fiber */
1411		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1412		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1413	} else {
1414		/* Set the blink bit for each LED that's "on" (0x0E)
1415		 * (or "off" if inverted) in ledctl_mode2.  The blink
1416		 * logic in hardware only works when mode is set to "on"
1417		 * so it must be changed accordingly when the mode is
1418		 * "off" and inverted.
1419		 */
1420		ledctl_blink = hw->mac.ledctl_mode2;
1421		for (i = 0; i < 32; i += 8) {
1422			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1423			    E1000_LEDCTL_LED0_MODE_MASK;
1424			u32 led_default = hw->mac.ledctl_default >> i;
1425
1426			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1427			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1428			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1429			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1430				ledctl_blink &=
1431				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1432				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1433						 E1000_LEDCTL_MODE_LED_ON) << i;
1434			}
1435		}
1436	}
1437
1438	wr32(E1000_LEDCTL, ledctl_blink);
1439
1440	return 0;
1441}
1442
1443/**
1444 *  igb_led_off - Turn LED off
1445 *  @hw: pointer to the HW structure
1446 *
1447 *  Turn LED off.
1448 **/
1449s32 igb_led_off(struct e1000_hw *hw)
1450{
1451	switch (hw->phy.media_type) {
1452	case e1000_media_type_copper:
1453		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1454		break;
1455	default:
1456		break;
1457	}
1458
1459	return 0;
1460}
1461
1462/**
1463 *  igb_disable_pcie_master - Disables PCI-express master access
1464 *  @hw: pointer to the HW structure
1465 *
1466 *  Returns 0 (0) if successful, else returns -10
1467 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1468 *  the master requests to be disabled.
1469 *
1470 *  Disables PCI-Express master access and verifies there are no pending
1471 *  requests.
1472 **/
1473s32 igb_disable_pcie_master(struct e1000_hw *hw)
1474{
1475	u32 ctrl;
1476	s32 timeout = MASTER_DISABLE_TIMEOUT;
1477	s32 ret_val = 0;
1478
1479	if (hw->bus.type != e1000_bus_type_pci_express)
1480		goto out;
1481
1482	ctrl = rd32(E1000_CTRL);
1483	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1484	wr32(E1000_CTRL, ctrl);
1485
1486	while (timeout) {
1487		if (!(rd32(E1000_STATUS) &
1488		      E1000_STATUS_GIO_MASTER_ENABLE))
1489			break;
1490		udelay(100);
1491		timeout--;
1492	}
1493
1494	if (!timeout) {
1495		hw_dbg("Master requests are pending.\n");
1496		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1497		goto out;
1498	}
1499
1500out:
1501	return ret_val;
1502}
1503
1504/**
1505 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1506 *  @hw: pointer to the HW structure
1507 *
1508 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1509 *  set, which is forced to MDI mode only.
1510 **/
1511s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1512{
1513	s32 ret_val = 0;
1514
1515	/* All MDI settings are supported on 82580 and newer. */
1516	if (hw->mac.type >= e1000_82580)
1517		goto out;
1518
1519	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1520		hw_dbg("Invalid MDI setting detected\n");
1521		hw->phy.mdix = 1;
1522		ret_val = -E1000_ERR_CONFIG;
1523		goto out;
1524	}
1525
1526out:
1527	return ret_val;
1528}
1529
1530/**
1531 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1532 *  @hw: pointer to the HW structure
1533 *  @reg: 32bit register offset such as E1000_SCTL
1534 *  @offset: register offset to write to
1535 *  @data: data to write at register offset
1536 *
1537 *  Writes an address/data control type register.  There are several of these
1538 *  and they all have the format address << 8 | data and bit 31 is polled for
1539 *  completion.
1540 **/
1541s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1542			      u32 offset, u8 data)
1543{
1544	u32 i, regvalue = 0;
1545	s32 ret_val = 0;
1546
1547	/* Set up the address and data */
1548	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1549	wr32(reg, regvalue);
1550
1551	/* Poll the ready bit to see if the MDI read completed */
1552	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1553		udelay(5);
1554		regvalue = rd32(reg);
1555		if (regvalue & E1000_GEN_CTL_READY)
1556			break;
1557	}
1558	if (!(regvalue & E1000_GEN_CTL_READY)) {
1559		hw_dbg("Reg %08x did not indicate ready\n", reg);
1560		ret_val = -E1000_ERR_PHY;
1561		goto out;
1562	}
1563
1564out:
1565	return ret_val;
1566}
1567
1568/**
1569 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1570 *  @hw: pointer to the HW structure
1571 *
1572 *  Verifies the hardware needs to leave interface enabled so that frames can
1573 *  be directed to and from the management interface.
1574 **/
1575bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1576{
1577	u32 manc;
1578	u32 fwsm, factps;
1579	bool ret_val = false;
1580
1581	if (!hw->mac.asf_firmware_present)
1582		goto out;
1583
1584	manc = rd32(E1000_MANC);
1585
1586	if (!(manc & E1000_MANC_RCV_TCO_EN))
1587		goto out;
1588
1589	if (hw->mac.arc_subsystem_valid) {
1590		fwsm = rd32(E1000_FWSM);
1591		factps = rd32(E1000_FACTPS);
1592
1593		if (!(factps & E1000_FACTPS_MNGCG) &&
1594		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1595		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1596			ret_val = true;
1597			goto out;
1598		}
1599	} else {
1600		if ((manc & E1000_MANC_SMBUS_EN) &&
1601		    !(manc & E1000_MANC_ASF_EN)) {
1602			ret_val = true;
1603			goto out;
1604		}
1605	}
1606
1607out:
1608	return ret_val;
1609}
1610