[go: nahoru, domu]

e1000_mac.c revision daf56e406a94675d454f996cab56c3d0b0a0d8a6
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30#include <linux/pci.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33
34#include "e1000_mac.h"
35
36#include "igb.h"
37
38static s32 igb_set_default_fc(struct e1000_hw *hw);
39static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
40
41/**
42 *  igb_get_bus_info_pcie - Get PCIe bus information
43 *  @hw: pointer to the HW structure
44 *
45 *  Determines and stores the system bus information for a particular
46 *  network interface.  The following bus information is determined and stored:
47 *  bus speed, bus width, type (PCIe), and PCIe function.
48 **/
49s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
50{
51	struct e1000_bus_info *bus = &hw->bus;
52	s32 ret_val;
53	u32 reg;
54	u16 pcie_link_status;
55
56	bus->type = e1000_bus_type_pci_express;
57
58	ret_val = igb_read_pcie_cap_reg(hw,
59					PCI_EXP_LNKSTA,
60					&pcie_link_status);
61	if (ret_val) {
62		bus->width = e1000_bus_width_unknown;
63		bus->speed = e1000_bus_speed_unknown;
64	} else {
65		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
66		case PCI_EXP_LNKSTA_CLS_2_5GB:
67			bus->speed = e1000_bus_speed_2500;
68			break;
69		case PCI_EXP_LNKSTA_CLS_5_0GB:
70			bus->speed = e1000_bus_speed_5000;
71			break;
72		default:
73			bus->speed = e1000_bus_speed_unknown;
74			break;
75		}
76
77		bus->width = (enum e1000_bus_width)((pcie_link_status &
78						     PCI_EXP_LNKSTA_NLW) >>
79						     PCI_EXP_LNKSTA_NLW_SHIFT);
80	}
81
82	reg = rd32(E1000_STATUS);
83	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
84
85	return 0;
86}
87
88/**
89 *  igb_clear_vfta - Clear VLAN filter table
90 *  @hw: pointer to the HW structure
91 *
92 *  Clears the register array which contains the VLAN filter table by
93 *  setting all the values to 0.
94 **/
95void igb_clear_vfta(struct e1000_hw *hw)
96{
97	u32 offset;
98
99	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
100		array_wr32(E1000_VFTA, offset, 0);
101		wrfl();
102	}
103}
104
105/**
106 *  igb_write_vfta - Write value to VLAN filter table
107 *  @hw: pointer to the HW structure
108 *  @offset: register offset in VLAN filter table
109 *  @value: register value written to VLAN filter table
110 *
111 *  Writes value at the given offset in the register array which stores
112 *  the VLAN filter table.
113 **/
114static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
115{
116	array_wr32(E1000_VFTA, offset, value);
117	wrfl();
118}
119
120/* Due to a hw errata, if the host tries to  configure the VFTA register
121 * while performing queries from the BMC or DMA, then the VFTA in some
122 * cases won't be written.
123 */
124
125/**
126 *  igb_clear_vfta_i350 - Clear VLAN filter table
127 *  @hw: pointer to the HW structure
128 *
129 *  Clears the register array which contains the VLAN filter table by
130 *  setting all the values to 0.
131 **/
132void igb_clear_vfta_i350(struct e1000_hw *hw)
133{
134	u32 offset;
135	int i;
136
137	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
138		for (i = 0; i < 10; i++)
139			array_wr32(E1000_VFTA, offset, 0);
140
141		wrfl();
142	}
143}
144
145/**
146 *  igb_write_vfta_i350 - Write value to VLAN filter table
147 *  @hw: pointer to the HW structure
148 *  @offset: register offset in VLAN filter table
149 *  @value: register value written to VLAN filter table
150 *
151 *  Writes value at the given offset in the register array which stores
152 *  the VLAN filter table.
153 **/
154static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
155{
156	int i;
157
158	for (i = 0; i < 10; i++)
159		array_wr32(E1000_VFTA, offset, value);
160
161	wrfl();
162}
163
164/**
165 *  igb_init_rx_addrs - Initialize receive address's
166 *  @hw: pointer to the HW structure
167 *  @rar_count: receive address registers
168 *
169 *  Setups the receive address registers by setting the base receive address
170 *  register to the devices MAC address and clearing all the other receive
171 *  address registers to 0.
172 **/
173void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
174{
175	u32 i;
176	u8 mac_addr[ETH_ALEN] = {0};
177
178	/* Setup the receive address */
179	hw_dbg("Programming MAC Address into RAR[0]\n");
180
181	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
182
183	/* Zero out the other (rar_entry_count - 1) receive addresses */
184	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
185	for (i = 1; i < rar_count; i++)
186		hw->mac.ops.rar_set(hw, mac_addr, i);
187}
188
189/**
190 *  igb_vfta_set - enable or disable vlan in VLAN filter table
191 *  @hw: pointer to the HW structure
192 *  @vid: VLAN id to add or remove
193 *  @add: if true add filter, if false remove
194 *
195 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
196 *  and if we are adding or removing the filter
197 **/
198s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
199{
200	u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
201	u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
202	u32 vfta;
203	struct igb_adapter *adapter = hw->back;
204	s32 ret_val = 0;
205
206	vfta = adapter->shadow_vfta[index];
207
208	/* bit was set/cleared before we started */
209	if ((!!(vfta & mask)) == add) {
210		ret_val = -E1000_ERR_CONFIG;
211	} else {
212		if (add)
213			vfta |= mask;
214		else
215			vfta &= ~mask;
216	}
217	if (hw->mac.type == e1000_i350)
218		igb_write_vfta_i350(hw, index, vfta);
219	else
220		igb_write_vfta(hw, index, vfta);
221	adapter->shadow_vfta[index] = vfta;
222
223	return ret_val;
224}
225
226/**
227 *  igb_check_alt_mac_addr - Check for alternate MAC addr
228 *  @hw: pointer to the HW structure
229 *
230 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
231 *  can be setup by pre-boot software and must be treated like a permanent
232 *  address and must override the actual permanent MAC address.  If an
233 *  alternate MAC address is fopund it is saved in the hw struct and
234 *  prgrammed into RAR0 and the cuntion returns success, otherwise the
235 *  function returns an error.
236 **/
237s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
238{
239	u32 i;
240	s32 ret_val = 0;
241	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
242	u8 alt_mac_addr[ETH_ALEN];
243
244	/*
245	 * Alternate MAC address is handled by the option ROM for 82580
246	 * and newer. SW support not required.
247	 */
248	if (hw->mac.type >= e1000_82580)
249		goto out;
250
251	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
252				 &nvm_alt_mac_addr_offset);
253	if (ret_val) {
254		hw_dbg("NVM Read Error\n");
255		goto out;
256	}
257
258	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
259	    (nvm_alt_mac_addr_offset == 0x0000))
260		/* There is no Alternate MAC Address */
261		goto out;
262
263	if (hw->bus.func == E1000_FUNC_1)
264		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
265	if (hw->bus.func == E1000_FUNC_2)
266		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
267
268	if (hw->bus.func == E1000_FUNC_3)
269		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
270	for (i = 0; i < ETH_ALEN; i += 2) {
271		offset = nvm_alt_mac_addr_offset + (i >> 1);
272		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
273		if (ret_val) {
274			hw_dbg("NVM Read Error\n");
275			goto out;
276		}
277
278		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
279		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
280	}
281
282	/* if multicast bit is set, the alternate address will not be used */
283	if (is_multicast_ether_addr(alt_mac_addr)) {
284		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
285		goto out;
286	}
287
288	/*
289	 * We have a valid alternate MAC address, and we want to treat it the
290	 * same as the normal permanent MAC address stored by the HW into the
291	 * RAR. Do this by mapping this address into RAR0.
292	 */
293	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
294
295out:
296	return ret_val;
297}
298
299/**
300 *  igb_rar_set - Set receive address register
301 *  @hw: pointer to the HW structure
302 *  @addr: pointer to the receive address
303 *  @index: receive address array register
304 *
305 *  Sets the receive address array register at index to the address passed
306 *  in by addr.
307 **/
308void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
309{
310	u32 rar_low, rar_high;
311
312	/*
313	 * HW expects these in little endian so we reverse the byte order
314	 * from network order (big endian) to little endian
315	 */
316	rar_low = ((u32) addr[0] |
317		   ((u32) addr[1] << 8) |
318		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
319
320	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
321
322	/* If MAC address zero, no need to set the AV bit */
323	if (rar_low || rar_high)
324		rar_high |= E1000_RAH_AV;
325
326	/*
327	 * Some bridges will combine consecutive 32-bit writes into
328	 * a single burst write, which will malfunction on some parts.
329	 * The flushes avoid this.
330	 */
331	wr32(E1000_RAL(index), rar_low);
332	wrfl();
333	wr32(E1000_RAH(index), rar_high);
334	wrfl();
335}
336
337/**
338 *  igb_mta_set - Set multicast filter table address
339 *  @hw: pointer to the HW structure
340 *  @hash_value: determines the MTA register and bit to set
341 *
342 *  The multicast table address is a register array of 32-bit registers.
343 *  The hash_value is used to determine what register the bit is in, the
344 *  current value is read, the new bit is OR'd in and the new value is
345 *  written back into the register.
346 **/
347void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
348{
349	u32 hash_bit, hash_reg, mta;
350
351	/*
352	 * The MTA is a register array of 32-bit registers. It is
353	 * treated like an array of (32*mta_reg_count) bits.  We want to
354	 * set bit BitArray[hash_value]. So we figure out what register
355	 * the bit is in, read it, OR in the new bit, then write
356	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
357	 * mask to bits 31:5 of the hash value which gives us the
358	 * register we're modifying.  The hash bit within that register
359	 * is determined by the lower 5 bits of the hash value.
360	 */
361	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
362	hash_bit = hash_value & 0x1F;
363
364	mta = array_rd32(E1000_MTA, hash_reg);
365
366	mta |= (1 << hash_bit);
367
368	array_wr32(E1000_MTA, hash_reg, mta);
369	wrfl();
370}
371
372/**
373 *  igb_hash_mc_addr - Generate a multicast hash value
374 *  @hw: pointer to the HW structure
375 *  @mc_addr: pointer to a multicast address
376 *
377 *  Generates a multicast address hash value which is used to determine
378 *  the multicast filter table array address and new table value.  See
379 *  igb_mta_set()
380 **/
381static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
382{
383	u32 hash_value, hash_mask;
384	u8 bit_shift = 0;
385
386	/* Register count multiplied by bits per register */
387	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
388
389	/*
390	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
391	 * where 0xFF would still fall within the hash mask.
392	 */
393	while (hash_mask >> bit_shift != 0xFF)
394		bit_shift++;
395
396	/*
397	 * The portion of the address that is used for the hash table
398	 * is determined by the mc_filter_type setting.
399	 * The algorithm is such that there is a total of 8 bits of shifting.
400	 * The bit_shift for a mc_filter_type of 0 represents the number of
401	 * left-shifts where the MSB of mc_addr[5] would still fall within
402	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
403	 * of 8 bits of shifting, then mc_addr[4] will shift right the
404	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
405	 * cases are a variation of this algorithm...essentially raising the
406	 * number of bits to shift mc_addr[5] left, while still keeping the
407	 * 8-bit shifting total.
408	 *
409	 * For example, given the following Destination MAC Address and an
410	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
411	 * we can see that the bit_shift for case 0 is 4.  These are the hash
412	 * values resulting from each mc_filter_type...
413	 * [0] [1] [2] [3] [4] [5]
414	 * 01  AA  00  12  34  56
415	 * LSB                 MSB
416	 *
417	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
418	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
419	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
420	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
421	 */
422	switch (hw->mac.mc_filter_type) {
423	default:
424	case 0:
425		break;
426	case 1:
427		bit_shift += 1;
428		break;
429	case 2:
430		bit_shift += 2;
431		break;
432	case 3:
433		bit_shift += 4;
434		break;
435	}
436
437	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
438				  (((u16) mc_addr[5]) << bit_shift)));
439
440	return hash_value;
441}
442
443/**
444 *  igb_update_mc_addr_list - Update Multicast addresses
445 *  @hw: pointer to the HW structure
446 *  @mc_addr_list: array of multicast addresses to program
447 *  @mc_addr_count: number of multicast addresses to program
448 *
449 *  Updates entire Multicast Table Array.
450 *  The caller must have a packed mc_addr_list of multicast addresses.
451 **/
452void igb_update_mc_addr_list(struct e1000_hw *hw,
453                             u8 *mc_addr_list, u32 mc_addr_count)
454{
455	u32 hash_value, hash_bit, hash_reg;
456	int i;
457
458	/* clear mta_shadow */
459	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
460
461	/* update mta_shadow from mc_addr_list */
462	for (i = 0; (u32) i < mc_addr_count; i++) {
463		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
464
465		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
466		hash_bit = hash_value & 0x1F;
467
468		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
469		mc_addr_list += (ETH_ALEN);
470	}
471
472	/* replace the entire MTA table */
473	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
474		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
475	wrfl();
476}
477
478/**
479 *  igb_clear_hw_cntrs_base - Clear base hardware counters
480 *  @hw: pointer to the HW structure
481 *
482 *  Clears the base hardware counters by reading the counter registers.
483 **/
484void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
485{
486	rd32(E1000_CRCERRS);
487	rd32(E1000_SYMERRS);
488	rd32(E1000_MPC);
489	rd32(E1000_SCC);
490	rd32(E1000_ECOL);
491	rd32(E1000_MCC);
492	rd32(E1000_LATECOL);
493	rd32(E1000_COLC);
494	rd32(E1000_DC);
495	rd32(E1000_SEC);
496	rd32(E1000_RLEC);
497	rd32(E1000_XONRXC);
498	rd32(E1000_XONTXC);
499	rd32(E1000_XOFFRXC);
500	rd32(E1000_XOFFTXC);
501	rd32(E1000_FCRUC);
502	rd32(E1000_GPRC);
503	rd32(E1000_BPRC);
504	rd32(E1000_MPRC);
505	rd32(E1000_GPTC);
506	rd32(E1000_GORCL);
507	rd32(E1000_GORCH);
508	rd32(E1000_GOTCL);
509	rd32(E1000_GOTCH);
510	rd32(E1000_RNBC);
511	rd32(E1000_RUC);
512	rd32(E1000_RFC);
513	rd32(E1000_ROC);
514	rd32(E1000_RJC);
515	rd32(E1000_TORL);
516	rd32(E1000_TORH);
517	rd32(E1000_TOTL);
518	rd32(E1000_TOTH);
519	rd32(E1000_TPR);
520	rd32(E1000_TPT);
521	rd32(E1000_MPTC);
522	rd32(E1000_BPTC);
523}
524
525/**
526 *  igb_check_for_copper_link - Check for link (Copper)
527 *  @hw: pointer to the HW structure
528 *
529 *  Checks to see of the link status of the hardware has changed.  If a
530 *  change in link status has been detected, then we read the PHY registers
531 *  to get the current speed/duplex if link exists.
532 **/
533s32 igb_check_for_copper_link(struct e1000_hw *hw)
534{
535	struct e1000_mac_info *mac = &hw->mac;
536	s32 ret_val;
537	bool link;
538
539	/*
540	 * We only want to go out to the PHY registers to see if Auto-Neg
541	 * has completed and/or if our link status has changed.  The
542	 * get_link_status flag is set upon receiving a Link Status
543	 * Change or Rx Sequence Error interrupt.
544	 */
545	if (!mac->get_link_status) {
546		ret_val = 0;
547		goto out;
548	}
549
550	/*
551	 * First we want to see if the MII Status Register reports
552	 * link.  If so, then we want to get the current speed/duplex
553	 * of the PHY.
554	 */
555	ret_val = igb_phy_has_link(hw, 1, 0, &link);
556	if (ret_val)
557		goto out;
558
559	if (!link)
560		goto out; /* No link detected */
561
562	mac->get_link_status = false;
563
564	/*
565	 * Check if there was DownShift, must be checked
566	 * immediately after link-up
567	 */
568	igb_check_downshift(hw);
569
570	/*
571	 * If we are forcing speed/duplex, then we simply return since
572	 * we have already determined whether we have link or not.
573	 */
574	if (!mac->autoneg) {
575		ret_val = -E1000_ERR_CONFIG;
576		goto out;
577	}
578
579	/*
580	 * Auto-Neg is enabled.  Auto Speed Detection takes care
581	 * of MAC speed/duplex configuration.  So we only need to
582	 * configure Collision Distance in the MAC.
583	 */
584	igb_config_collision_dist(hw);
585
586	/*
587	 * Configure Flow Control now that Auto-Neg has completed.
588	 * First, we need to restore the desired flow control
589	 * settings because we may have had to re-autoneg with a
590	 * different link partner.
591	 */
592	ret_val = igb_config_fc_after_link_up(hw);
593	if (ret_val)
594		hw_dbg("Error configuring flow control\n");
595
596out:
597	return ret_val;
598}
599
600/**
601 *  igb_setup_link - Setup flow control and link settings
602 *  @hw: pointer to the HW structure
603 *
604 *  Determines which flow control settings to use, then configures flow
605 *  control.  Calls the appropriate media-specific link configuration
606 *  function.  Assuming the adapter has a valid link partner, a valid link
607 *  should be established.  Assumes the hardware has previously been reset
608 *  and the transmitter and receiver are not enabled.
609 **/
610s32 igb_setup_link(struct e1000_hw *hw)
611{
612	s32 ret_val = 0;
613
614	/*
615	 * In the case of the phy reset being blocked, we already have a link.
616	 * We do not need to set it up again.
617	 */
618	if (igb_check_reset_block(hw))
619		goto out;
620
621	/*
622	 * If requested flow control is set to default, set flow control
623	 * based on the EEPROM flow control settings.
624	 */
625	if (hw->fc.requested_mode == e1000_fc_default) {
626		ret_val = igb_set_default_fc(hw);
627		if (ret_val)
628			goto out;
629	}
630
631	/*
632	 * We want to save off the original Flow Control configuration just
633	 * in case we get disconnected and then reconnected into a different
634	 * hub or switch with different Flow Control capabilities.
635	 */
636	hw->fc.current_mode = hw->fc.requested_mode;
637
638	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
639
640	/* Call the necessary media_type subroutine to configure the link. */
641	ret_val = hw->mac.ops.setup_physical_interface(hw);
642	if (ret_val)
643		goto out;
644
645	/*
646	 * Initialize the flow control address, type, and PAUSE timer
647	 * registers to their default values.  This is done even if flow
648	 * control is disabled, because it does not hurt anything to
649	 * initialize these registers.
650	 */
651	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
652	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
653	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
654	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
655
656	wr32(E1000_FCTTV, hw->fc.pause_time);
657
658	ret_val = igb_set_fc_watermarks(hw);
659
660out:
661
662	return ret_val;
663}
664
665/**
666 *  igb_config_collision_dist - Configure collision distance
667 *  @hw: pointer to the HW structure
668 *
669 *  Configures the collision distance to the default value and is used
670 *  during link setup. Currently no func pointer exists and all
671 *  implementations are handled in the generic version of this function.
672 **/
673void igb_config_collision_dist(struct e1000_hw *hw)
674{
675	u32 tctl;
676
677	tctl = rd32(E1000_TCTL);
678
679	tctl &= ~E1000_TCTL_COLD;
680	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
681
682	wr32(E1000_TCTL, tctl);
683	wrfl();
684}
685
686/**
687 *  igb_set_fc_watermarks - Set flow control high/low watermarks
688 *  @hw: pointer to the HW structure
689 *
690 *  Sets the flow control high/low threshold (watermark) registers.  If
691 *  flow control XON frame transmission is enabled, then set XON frame
692 *  tansmission as well.
693 **/
694static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
695{
696	s32 ret_val = 0;
697	u32 fcrtl = 0, fcrth = 0;
698
699	/*
700	 * Set the flow control receive threshold registers.  Normally,
701	 * these registers will be set to a default threshold that may be
702	 * adjusted later by the driver's runtime code.  However, if the
703	 * ability to transmit pause frames is not enabled, then these
704	 * registers will be set to 0.
705	 */
706	if (hw->fc.current_mode & e1000_fc_tx_pause) {
707		/*
708		 * We need to set up the Receive Threshold high and low water
709		 * marks as well as (optionally) enabling the transmission of
710		 * XON frames.
711		 */
712		fcrtl = hw->fc.low_water;
713		if (hw->fc.send_xon)
714			fcrtl |= E1000_FCRTL_XONE;
715
716		fcrth = hw->fc.high_water;
717	}
718	wr32(E1000_FCRTL, fcrtl);
719	wr32(E1000_FCRTH, fcrth);
720
721	return ret_val;
722}
723
724/**
725 *  igb_set_default_fc - Set flow control default values
726 *  @hw: pointer to the HW structure
727 *
728 *  Read the EEPROM for the default values for flow control and store the
729 *  values.
730 **/
731static s32 igb_set_default_fc(struct e1000_hw *hw)
732{
733	s32 ret_val = 0;
734	u16 nvm_data;
735
736	/*
737	 * Read and store word 0x0F of the EEPROM. This word contains bits
738	 * that determine the hardware's default PAUSE (flow control) mode,
739	 * a bit that determines whether the HW defaults to enabling or
740	 * disabling auto-negotiation, and the direction of the
741	 * SW defined pins. If there is no SW over-ride of the flow
742	 * control setting, then the variable hw->fc will
743	 * be initialized based on a value in the EEPROM.
744	 */
745	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
746
747	if (ret_val) {
748		hw_dbg("NVM Read Error\n");
749		goto out;
750	}
751
752	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
753		hw->fc.requested_mode = e1000_fc_none;
754	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
755		 NVM_WORD0F_ASM_DIR)
756		hw->fc.requested_mode = e1000_fc_tx_pause;
757	else
758		hw->fc.requested_mode = e1000_fc_full;
759
760out:
761	return ret_val;
762}
763
764/**
765 *  igb_force_mac_fc - Force the MAC's flow control settings
766 *  @hw: pointer to the HW structure
767 *
768 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
769 *  device control register to reflect the adapter settings.  TFCE and RFCE
770 *  need to be explicitly set by software when a copper PHY is used because
771 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
772 *  also configure these bits when link is forced on a fiber connection.
773 **/
774s32 igb_force_mac_fc(struct e1000_hw *hw)
775{
776	u32 ctrl;
777	s32 ret_val = 0;
778
779	ctrl = rd32(E1000_CTRL);
780
781	/*
782	 * Because we didn't get link via the internal auto-negotiation
783	 * mechanism (we either forced link or we got link via PHY
784	 * auto-neg), we have to manually enable/disable transmit an
785	 * receive flow control.
786	 *
787	 * The "Case" statement below enables/disable flow control
788	 * according to the "hw->fc.current_mode" parameter.
789	 *
790	 * The possible values of the "fc" parameter are:
791	 *      0:  Flow control is completely disabled
792	 *      1:  Rx flow control is enabled (we can receive pause
793	 *          frames but not send pause frames).
794	 *      2:  Tx flow control is enabled (we can send pause frames
795	 *          frames but we do not receive pause frames).
796	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
797	 *  other:  No other values should be possible at this point.
798	 */
799	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
800
801	switch (hw->fc.current_mode) {
802	case e1000_fc_none:
803		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
804		break;
805	case e1000_fc_rx_pause:
806		ctrl &= (~E1000_CTRL_TFCE);
807		ctrl |= E1000_CTRL_RFCE;
808		break;
809	case e1000_fc_tx_pause:
810		ctrl &= (~E1000_CTRL_RFCE);
811		ctrl |= E1000_CTRL_TFCE;
812		break;
813	case e1000_fc_full:
814		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
815		break;
816	default:
817		hw_dbg("Flow control param set incorrectly\n");
818		ret_val = -E1000_ERR_CONFIG;
819		goto out;
820	}
821
822	wr32(E1000_CTRL, ctrl);
823
824out:
825	return ret_val;
826}
827
828/**
829 *  igb_config_fc_after_link_up - Configures flow control after link
830 *  @hw: pointer to the HW structure
831 *
832 *  Checks the status of auto-negotiation after link up to ensure that the
833 *  speed and duplex were not forced.  If the link needed to be forced, then
834 *  flow control needs to be forced also.  If auto-negotiation is enabled
835 *  and did not fail, then we configure flow control based on our link
836 *  partner.
837 **/
838s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
839{
840	struct e1000_mac_info *mac = &hw->mac;
841	s32 ret_val = 0;
842	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
843	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
844	u16 speed, duplex;
845
846	/*
847	 * Check for the case where we have fiber media and auto-neg failed
848	 * so we had to force link.  In this case, we need to force the
849	 * configuration of the MAC to match the "fc" parameter.
850	 */
851	if (mac->autoneg_failed) {
852		if (hw->phy.media_type == e1000_media_type_internal_serdes)
853			ret_val = igb_force_mac_fc(hw);
854	} else {
855		if (hw->phy.media_type == e1000_media_type_copper)
856			ret_val = igb_force_mac_fc(hw);
857	}
858
859	if (ret_val) {
860		hw_dbg("Error forcing flow control settings\n");
861		goto out;
862	}
863
864	/*
865	 * Check for the case where we have copper media and auto-neg is
866	 * enabled.  In this case, we need to check and see if Auto-Neg
867	 * has completed, and if so, how the PHY and link partner has
868	 * flow control configured.
869	 */
870	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
871		/*
872		 * Read the MII Status Register and check to see if AutoNeg
873		 * has completed.  We read this twice because this reg has
874		 * some "sticky" (latched) bits.
875		 */
876		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
877						   &mii_status_reg);
878		if (ret_val)
879			goto out;
880		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
881						   &mii_status_reg);
882		if (ret_val)
883			goto out;
884
885		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
886			hw_dbg("Copper PHY and Auto Neg "
887				 "has not completed.\n");
888			goto out;
889		}
890
891		/*
892		 * The AutoNeg process has completed, so we now need to
893		 * read both the Auto Negotiation Advertisement
894		 * Register (Address 4) and the Auto_Negotiation Base
895		 * Page Ability Register (Address 5) to determine how
896		 * flow control was negotiated.
897		 */
898		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
899					    &mii_nway_adv_reg);
900		if (ret_val)
901			goto out;
902		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
903					    &mii_nway_lp_ability_reg);
904		if (ret_val)
905			goto out;
906
907		/*
908		 * Two bits in the Auto Negotiation Advertisement Register
909		 * (Address 4) and two bits in the Auto Negotiation Base
910		 * Page Ability Register (Address 5) determine flow control
911		 * for both the PHY and the link partner.  The following
912		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
913		 * 1999, describes these PAUSE resolution bits and how flow
914		 * control is determined based upon these settings.
915		 * NOTE:  DC = Don't Care
916		 *
917		 *   LOCAL DEVICE  |   LINK PARTNER
918		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
919		 *-------|---------|-------|---------|--------------------
920		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
921		 *   0   |    1    |   0   |   DC    | e1000_fc_none
922		 *   0   |    1    |   1   |    0    | e1000_fc_none
923		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
924		 *   1   |    0    |   0   |   DC    | e1000_fc_none
925		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
926		 *   1   |    1    |   0   |    0    | e1000_fc_none
927		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
928		 *
929		 * Are both PAUSE bits set to 1?  If so, this implies
930		 * Symmetric Flow Control is enabled at both ends.  The
931		 * ASM_DIR bits are irrelevant per the spec.
932		 *
933		 * For Symmetric Flow Control:
934		 *
935		 *   LOCAL DEVICE  |   LINK PARTNER
936		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
937		 *-------|---------|-------|---------|--------------------
938		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
939		 *
940		 */
941		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
942		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
943			/*
944			 * Now we need to check if the user selected RX ONLY
945			 * of pause frames.  In this case, we had to advertise
946			 * FULL flow control because we could not advertise RX
947			 * ONLY. Hence, we must now check to see if we need to
948			 * turn OFF  the TRANSMISSION of PAUSE frames.
949			 */
950			if (hw->fc.requested_mode == e1000_fc_full) {
951				hw->fc.current_mode = e1000_fc_full;
952				hw_dbg("Flow Control = FULL.\r\n");
953			} else {
954				hw->fc.current_mode = e1000_fc_rx_pause;
955				hw_dbg("Flow Control = "
956				       "RX PAUSE frames only.\r\n");
957			}
958		}
959		/*
960		 * For receiving PAUSE frames ONLY.
961		 *
962		 *   LOCAL DEVICE  |   LINK PARTNER
963		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
964		 *-------|---------|-------|---------|--------------------
965		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
966		 */
967		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
968			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
969			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
970			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
971			hw->fc.current_mode = e1000_fc_tx_pause;
972			hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
973		}
974		/*
975		 * For transmitting PAUSE frames ONLY.
976		 *
977		 *   LOCAL DEVICE  |   LINK PARTNER
978		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
979		 *-------|---------|-------|---------|--------------------
980		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
981		 */
982		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
983			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
984			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
985			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
986			hw->fc.current_mode = e1000_fc_rx_pause;
987			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
988		}
989		/*
990		 * Per the IEEE spec, at this point flow control should be
991		 * disabled.  However, we want to consider that we could
992		 * be connected to a legacy switch that doesn't advertise
993		 * desired flow control, but can be forced on the link
994		 * partner.  So if we advertised no flow control, that is
995		 * what we will resolve to.  If we advertised some kind of
996		 * receive capability (Rx Pause Only or Full Flow Control)
997		 * and the link partner advertised none, we will configure
998		 * ourselves to enable Rx Flow Control only.  We can do
999		 * this safely for two reasons:  If the link partner really
1000		 * didn't want flow control enabled, and we enable Rx, no
1001		 * harm done since we won't be receiving any PAUSE frames
1002		 * anyway.  If the intent on the link partner was to have
1003		 * flow control enabled, then by us enabling RX only, we
1004		 * can at least receive pause frames and process them.
1005		 * This is a good idea because in most cases, since we are
1006		 * predominantly a server NIC, more times than not we will
1007		 * be asked to delay transmission of packets than asking
1008		 * our link partner to pause transmission of frames.
1009		 */
1010		else if ((hw->fc.requested_mode == e1000_fc_none ||
1011			  hw->fc.requested_mode == e1000_fc_tx_pause) ||
1012			 hw->fc.strict_ieee) {
1013			hw->fc.current_mode = e1000_fc_none;
1014			hw_dbg("Flow Control = NONE.\r\n");
1015		} else {
1016			hw->fc.current_mode = e1000_fc_rx_pause;
1017			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
1018		}
1019
1020		/*
1021		 * Now we need to do one last check...  If we auto-
1022		 * negotiated to HALF DUPLEX, flow control should not be
1023		 * enabled per IEEE 802.3 spec.
1024		 */
1025		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1026		if (ret_val) {
1027			hw_dbg("Error getting link speed and duplex\n");
1028			goto out;
1029		}
1030
1031		if (duplex == HALF_DUPLEX)
1032			hw->fc.current_mode = e1000_fc_none;
1033
1034		/*
1035		 * Now we call a subroutine to actually force the MAC
1036		 * controller to use the correct flow control settings.
1037		 */
1038		ret_val = igb_force_mac_fc(hw);
1039		if (ret_val) {
1040			hw_dbg("Error forcing flow control settings\n");
1041			goto out;
1042		}
1043	}
1044	/* Check for the case where we have SerDes media and auto-neg is
1045	 * enabled.  In this case, we need to check and see if Auto-Neg
1046	 * has completed, and if so, how the PHY and link partner has
1047	 * flow control configured.
1048	 */
1049	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1050		&& mac->autoneg) {
1051		/* Read the PCS_LSTS and check to see if AutoNeg
1052		 * has completed.
1053		 */
1054		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1055
1056		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1057			hw_dbg("PCS Auto Neg has not completed.\n");
1058			return ret_val;
1059		}
1060
1061		/* The AutoNeg process has completed, so we now need to
1062		 * read both the Auto Negotiation Advertisement
1063		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1064		 * Page Ability Register (PCS_LPAB) to determine how
1065		 * flow control was negotiated.
1066		 */
1067		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1068		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1069
1070		/* Two bits in the Auto Negotiation Advertisement Register
1071		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1072		 * Page Ability Register (PCS_LPAB) determine flow control
1073		 * for both the PHY and the link partner.  The following
1074		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1075		 * 1999, describes these PAUSE resolution bits and how flow
1076		 * control is determined based upon these settings.
1077		 * NOTE:  DC = Don't Care
1078		 *
1079		 *   LOCAL DEVICE  |   LINK PARTNER
1080		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1081		 *-------|---------|-------|---------|--------------------
1082		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1083		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1084		 *   0   |    1    |   1   |    0    | e1000_fc_none
1085		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1086		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1087		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1088		 *   1   |    1    |   0   |    0    | e1000_fc_none
1089		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1090		 *
1091		 * Are both PAUSE bits set to 1?  If so, this implies
1092		 * Symmetric Flow Control is enabled at both ends.  The
1093		 * ASM_DIR bits are irrelevant per the spec.
1094		 *
1095		 * For Symmetric Flow Control:
1096		 *
1097		 *   LOCAL DEVICE  |   LINK PARTNER
1098		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1099		 *-------|---------|-------|---------|--------------------
1100		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1101		 *
1102		 */
1103		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1104		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1105			/* Now we need to check if the user selected Rx ONLY
1106			 * of pause frames.  In this case, we had to advertise
1107			 * FULL flow control because we could not advertise Rx
1108			 * ONLY. Hence, we must now check to see if we need to
1109			 * turn OFF the TRANSMISSION of PAUSE frames.
1110			 */
1111			if (hw->fc.requested_mode == e1000_fc_full) {
1112				hw->fc.current_mode = e1000_fc_full;
1113				hw_dbg("Flow Control = FULL.\n");
1114			} else {
1115				hw->fc.current_mode = e1000_fc_rx_pause;
1116				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1117			}
1118		}
1119		/* For receiving PAUSE frames ONLY.
1120		 *
1121		 *   LOCAL DEVICE  |   LINK PARTNER
1122		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1123		 *-------|---------|-------|---------|--------------------
1124		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1125		 */
1126		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1127			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1128			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1129			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1130			hw->fc.current_mode = e1000_fc_tx_pause;
1131			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1132		}
1133		/* For transmitting PAUSE frames ONLY.
1134		 *
1135		 *   LOCAL DEVICE  |   LINK PARTNER
1136		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1137		 *-------|---------|-------|---------|--------------------
1138		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1139		 */
1140		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1141			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1142			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1143			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1144			hw->fc.current_mode = e1000_fc_rx_pause;
1145			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1146		} else {
1147			/* Per the IEEE spec, at this point flow control
1148			 * should be disabled.
1149			 */
1150			hw->fc.current_mode = e1000_fc_none;
1151			hw_dbg("Flow Control = NONE.\n");
1152		}
1153
1154		/* Now we call a subroutine to actually force the MAC
1155		 * controller to use the correct flow control settings.
1156		 */
1157		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1158		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1159		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1160
1161		ret_val = igb_force_mac_fc(hw);
1162		if (ret_val) {
1163			hw_dbg("Error forcing flow control settings\n");
1164			return ret_val;
1165		}
1166	}
1167
1168out:
1169	return ret_val;
1170}
1171
1172/**
1173 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1174 *  @hw: pointer to the HW structure
1175 *  @speed: stores the current speed
1176 *  @duplex: stores the current duplex
1177 *
1178 *  Read the status register for the current speed/duplex and store the current
1179 *  speed and duplex for copper connections.
1180 **/
1181s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1182				      u16 *duplex)
1183{
1184	u32 status;
1185
1186	status = rd32(E1000_STATUS);
1187	if (status & E1000_STATUS_SPEED_1000) {
1188		*speed = SPEED_1000;
1189		hw_dbg("1000 Mbs, ");
1190	} else if (status & E1000_STATUS_SPEED_100) {
1191		*speed = SPEED_100;
1192		hw_dbg("100 Mbs, ");
1193	} else {
1194		*speed = SPEED_10;
1195		hw_dbg("10 Mbs, ");
1196	}
1197
1198	if (status & E1000_STATUS_FD) {
1199		*duplex = FULL_DUPLEX;
1200		hw_dbg("Full Duplex\n");
1201	} else {
1202		*duplex = HALF_DUPLEX;
1203		hw_dbg("Half Duplex\n");
1204	}
1205
1206	return 0;
1207}
1208
1209/**
1210 *  igb_get_hw_semaphore - Acquire hardware semaphore
1211 *  @hw: pointer to the HW structure
1212 *
1213 *  Acquire the HW semaphore to access the PHY or NVM
1214 **/
1215s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1216{
1217	u32 swsm;
1218	s32 ret_val = 0;
1219	s32 timeout = hw->nvm.word_size + 1;
1220	s32 i = 0;
1221
1222	/* Get the SW semaphore */
1223	while (i < timeout) {
1224		swsm = rd32(E1000_SWSM);
1225		if (!(swsm & E1000_SWSM_SMBI))
1226			break;
1227
1228		udelay(50);
1229		i++;
1230	}
1231
1232	if (i == timeout) {
1233		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1234		ret_val = -E1000_ERR_NVM;
1235		goto out;
1236	}
1237
1238	/* Get the FW semaphore. */
1239	for (i = 0; i < timeout; i++) {
1240		swsm = rd32(E1000_SWSM);
1241		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1242
1243		/* Semaphore acquired if bit latched */
1244		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1245			break;
1246
1247		udelay(50);
1248	}
1249
1250	if (i == timeout) {
1251		/* Release semaphores */
1252		igb_put_hw_semaphore(hw);
1253		hw_dbg("Driver can't access the NVM\n");
1254		ret_val = -E1000_ERR_NVM;
1255		goto out;
1256	}
1257
1258out:
1259	return ret_val;
1260}
1261
1262/**
1263 *  igb_put_hw_semaphore - Release hardware semaphore
1264 *  @hw: pointer to the HW structure
1265 *
1266 *  Release hardware semaphore used to access the PHY or NVM
1267 **/
1268void igb_put_hw_semaphore(struct e1000_hw *hw)
1269{
1270	u32 swsm;
1271
1272	swsm = rd32(E1000_SWSM);
1273
1274	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1275
1276	wr32(E1000_SWSM, swsm);
1277}
1278
1279/**
1280 *  igb_get_auto_rd_done - Check for auto read completion
1281 *  @hw: pointer to the HW structure
1282 *
1283 *  Check EEPROM for Auto Read done bit.
1284 **/
1285s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1286{
1287	s32 i = 0;
1288	s32 ret_val = 0;
1289
1290
1291	while (i < AUTO_READ_DONE_TIMEOUT) {
1292		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1293			break;
1294		msleep(1);
1295		i++;
1296	}
1297
1298	if (i == AUTO_READ_DONE_TIMEOUT) {
1299		hw_dbg("Auto read by HW from NVM has not completed.\n");
1300		ret_val = -E1000_ERR_RESET;
1301		goto out;
1302	}
1303
1304out:
1305	return ret_val;
1306}
1307
1308/**
1309 *  igb_valid_led_default - Verify a valid default LED config
1310 *  @hw: pointer to the HW structure
1311 *  @data: pointer to the NVM (EEPROM)
1312 *
1313 *  Read the EEPROM for the current default LED configuration.  If the
1314 *  LED configuration is not valid, set to a valid LED configuration.
1315 **/
1316static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1317{
1318	s32 ret_val;
1319
1320	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1321	if (ret_val) {
1322		hw_dbg("NVM Read Error\n");
1323		goto out;
1324	}
1325
1326	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1327		switch(hw->phy.media_type) {
1328		case e1000_media_type_internal_serdes:
1329			*data = ID_LED_DEFAULT_82575_SERDES;
1330			break;
1331		case e1000_media_type_copper:
1332		default:
1333			*data = ID_LED_DEFAULT;
1334			break;
1335		}
1336	}
1337out:
1338	return ret_val;
1339}
1340
1341/**
1342 *  igb_id_led_init -
1343 *  @hw: pointer to the HW structure
1344 *
1345 **/
1346s32 igb_id_led_init(struct e1000_hw *hw)
1347{
1348	struct e1000_mac_info *mac = &hw->mac;
1349	s32 ret_val;
1350	const u32 ledctl_mask = 0x000000FF;
1351	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1352	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1353	u16 data, i, temp;
1354	const u16 led_mask = 0x0F;
1355
1356	ret_val = igb_valid_led_default(hw, &data);
1357	if (ret_val)
1358		goto out;
1359
1360	mac->ledctl_default = rd32(E1000_LEDCTL);
1361	mac->ledctl_mode1 = mac->ledctl_default;
1362	mac->ledctl_mode2 = mac->ledctl_default;
1363
1364	for (i = 0; i < 4; i++) {
1365		temp = (data >> (i << 2)) & led_mask;
1366		switch (temp) {
1367		case ID_LED_ON1_DEF2:
1368		case ID_LED_ON1_ON2:
1369		case ID_LED_ON1_OFF2:
1370			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1371			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1372			break;
1373		case ID_LED_OFF1_DEF2:
1374		case ID_LED_OFF1_ON2:
1375		case ID_LED_OFF1_OFF2:
1376			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1377			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1378			break;
1379		default:
1380			/* Do nothing */
1381			break;
1382		}
1383		switch (temp) {
1384		case ID_LED_DEF1_ON2:
1385		case ID_LED_ON1_ON2:
1386		case ID_LED_OFF1_ON2:
1387			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1388			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1389			break;
1390		case ID_LED_DEF1_OFF2:
1391		case ID_LED_ON1_OFF2:
1392		case ID_LED_OFF1_OFF2:
1393			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1394			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1395			break;
1396		default:
1397			/* Do nothing */
1398			break;
1399		}
1400	}
1401
1402out:
1403	return ret_val;
1404}
1405
1406/**
1407 *  igb_cleanup_led - Set LED config to default operation
1408 *  @hw: pointer to the HW structure
1409 *
1410 *  Remove the current LED configuration and set the LED configuration
1411 *  to the default value, saved from the EEPROM.
1412 **/
1413s32 igb_cleanup_led(struct e1000_hw *hw)
1414{
1415	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1416	return 0;
1417}
1418
1419/**
1420 *  igb_blink_led - Blink LED
1421 *  @hw: pointer to the HW structure
1422 *
1423 *  Blink the led's which are set to be on.
1424 **/
1425s32 igb_blink_led(struct e1000_hw *hw)
1426{
1427	u32 ledctl_blink = 0;
1428	u32 i;
1429
1430	/*
1431	 * set the blink bit for each LED that's "on" (0x0E)
1432	 * in ledctl_mode2
1433	 */
1434	ledctl_blink = hw->mac.ledctl_mode2;
1435	for (i = 0; i < 4; i++)
1436		if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1437		    E1000_LEDCTL_MODE_LED_ON)
1438			ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1439					 (i * 8));
1440
1441	wr32(E1000_LEDCTL, ledctl_blink);
1442
1443	return 0;
1444}
1445
1446/**
1447 *  igb_led_off - Turn LED off
1448 *  @hw: pointer to the HW structure
1449 *
1450 *  Turn LED off.
1451 **/
1452s32 igb_led_off(struct e1000_hw *hw)
1453{
1454	switch (hw->phy.media_type) {
1455	case e1000_media_type_copper:
1456		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1457		break;
1458	default:
1459		break;
1460	}
1461
1462	return 0;
1463}
1464
1465/**
1466 *  igb_disable_pcie_master - Disables PCI-express master access
1467 *  @hw: pointer to the HW structure
1468 *
1469 *  Returns 0 (0) if successful, else returns -10
1470 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1471 *  the master requests to be disabled.
1472 *
1473 *  Disables PCI-Express master access and verifies there are no pending
1474 *  requests.
1475 **/
1476s32 igb_disable_pcie_master(struct e1000_hw *hw)
1477{
1478	u32 ctrl;
1479	s32 timeout = MASTER_DISABLE_TIMEOUT;
1480	s32 ret_val = 0;
1481
1482	if (hw->bus.type != e1000_bus_type_pci_express)
1483		goto out;
1484
1485	ctrl = rd32(E1000_CTRL);
1486	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1487	wr32(E1000_CTRL, ctrl);
1488
1489	while (timeout) {
1490		if (!(rd32(E1000_STATUS) &
1491		      E1000_STATUS_GIO_MASTER_ENABLE))
1492			break;
1493		udelay(100);
1494		timeout--;
1495	}
1496
1497	if (!timeout) {
1498		hw_dbg("Master requests are pending.\n");
1499		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1500		goto out;
1501	}
1502
1503out:
1504	return ret_val;
1505}
1506
1507/**
1508 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1509 *  @hw: pointer to the HW structure
1510 *
1511 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1512 *  set, which is forced to MDI mode only.
1513 **/
1514s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1515{
1516	s32 ret_val = 0;
1517
1518	/* All MDI settings are supported on 82580 and newer. */
1519	if (hw->mac.type >= e1000_82580)
1520		goto out;
1521
1522	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1523		hw_dbg("Invalid MDI setting detected\n");
1524		hw->phy.mdix = 1;
1525		ret_val = -E1000_ERR_CONFIG;
1526		goto out;
1527	}
1528
1529out:
1530	return ret_val;
1531}
1532
1533/**
1534 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1535 *  @hw: pointer to the HW structure
1536 *  @reg: 32bit register offset such as E1000_SCTL
1537 *  @offset: register offset to write to
1538 *  @data: data to write at register offset
1539 *
1540 *  Writes an address/data control type register.  There are several of these
1541 *  and they all have the format address << 8 | data and bit 31 is polled for
1542 *  completion.
1543 **/
1544s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1545			      u32 offset, u8 data)
1546{
1547	u32 i, regvalue = 0;
1548	s32 ret_val = 0;
1549
1550	/* Set up the address and data */
1551	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1552	wr32(reg, regvalue);
1553
1554	/* Poll the ready bit to see if the MDI read completed */
1555	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1556		udelay(5);
1557		regvalue = rd32(reg);
1558		if (regvalue & E1000_GEN_CTL_READY)
1559			break;
1560	}
1561	if (!(regvalue & E1000_GEN_CTL_READY)) {
1562		hw_dbg("Reg %08x did not indicate ready\n", reg);
1563		ret_val = -E1000_ERR_PHY;
1564		goto out;
1565	}
1566
1567out:
1568	return ret_val;
1569}
1570
1571/**
1572 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1573 *  @hw: pointer to the HW structure
1574 *
1575 *  Verifies the hardware needs to leave interface enabled so that frames can
1576 *  be directed to and from the management interface.
1577 **/
1578bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1579{
1580	u32 manc;
1581	u32 fwsm, factps;
1582	bool ret_val = false;
1583
1584	if (!hw->mac.asf_firmware_present)
1585		goto out;
1586
1587	manc = rd32(E1000_MANC);
1588
1589	if (!(manc & E1000_MANC_RCV_TCO_EN))
1590		goto out;
1591
1592	if (hw->mac.arc_subsystem_valid) {
1593		fwsm = rd32(E1000_FWSM);
1594		factps = rd32(E1000_FACTPS);
1595
1596		if (!(factps & E1000_FACTPS_MNGCG) &&
1597		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1598		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1599			ret_val = true;
1600			goto out;
1601		}
1602	} else {
1603		if ((manc & E1000_MANC_SMBUS_EN) &&
1604		    !(manc & E1000_MANC_ASF_EN)) {
1605			ret_val = true;
1606			goto out;
1607		}
1608	}
1609
1610out:
1611	return ret_val;
1612}
1613