[go: nahoru, domu]

igb_ethtool.c revision 3c89f6d0d4aa92ff252c17f8f6b5c8983ae2b77e
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37#include <linux/sched.h>
38#include <linux/slab.h>
39#include <linux/pm_runtime.h>
40
41#include "igb.h"
42
43struct igb_stats {
44	char stat_string[ETH_GSTRING_LEN];
45	int sizeof_stat;
46	int stat_offset;
47};
48
49#define IGB_STAT(_name, _stat) { \
50	.stat_string = _name, \
51	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
52	.stat_offset = offsetof(struct igb_adapter, _stat) \
53}
54static const struct igb_stats igb_gstrings_stats[] = {
55	IGB_STAT("rx_packets", stats.gprc),
56	IGB_STAT("tx_packets", stats.gptc),
57	IGB_STAT("rx_bytes", stats.gorc),
58	IGB_STAT("tx_bytes", stats.gotc),
59	IGB_STAT("rx_broadcast", stats.bprc),
60	IGB_STAT("tx_broadcast", stats.bptc),
61	IGB_STAT("rx_multicast", stats.mprc),
62	IGB_STAT("tx_multicast", stats.mptc),
63	IGB_STAT("multicast", stats.mprc),
64	IGB_STAT("collisions", stats.colc),
65	IGB_STAT("rx_crc_errors", stats.crcerrs),
66	IGB_STAT("rx_no_buffer_count", stats.rnbc),
67	IGB_STAT("rx_missed_errors", stats.mpc),
68	IGB_STAT("tx_aborted_errors", stats.ecol),
69	IGB_STAT("tx_carrier_errors", stats.tncrs),
70	IGB_STAT("tx_window_errors", stats.latecol),
71	IGB_STAT("tx_abort_late_coll", stats.latecol),
72	IGB_STAT("tx_deferred_ok", stats.dc),
73	IGB_STAT("tx_single_coll_ok", stats.scc),
74	IGB_STAT("tx_multi_coll_ok", stats.mcc),
75	IGB_STAT("tx_timeout_count", tx_timeout_count),
76	IGB_STAT("rx_long_length_errors", stats.roc),
77	IGB_STAT("rx_short_length_errors", stats.ruc),
78	IGB_STAT("rx_align_errors", stats.algnerrc),
79	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
80	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
81	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
82	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
83	IGB_STAT("tx_flow_control_xon", stats.xontxc),
84	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
85	IGB_STAT("rx_long_byte_count", stats.gorc),
86	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
87	IGB_STAT("tx_smbus", stats.mgptc),
88	IGB_STAT("rx_smbus", stats.mgprc),
89	IGB_STAT("dropped_smbus", stats.mgpdc),
90	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
91	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
92	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
93	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
94};
95
96#define IGB_NETDEV_STAT(_net_stat) { \
97	.stat_string = __stringify(_net_stat), \
98	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100}
101static const struct igb_stats igb_gstrings_net_stats[] = {
102	IGB_NETDEV_STAT(rx_errors),
103	IGB_NETDEV_STAT(tx_errors),
104	IGB_NETDEV_STAT(tx_dropped),
105	IGB_NETDEV_STAT(rx_length_errors),
106	IGB_NETDEV_STAT(rx_over_errors),
107	IGB_NETDEV_STAT(rx_frame_errors),
108	IGB_NETDEV_STAT(rx_fifo_errors),
109	IGB_NETDEV_STAT(tx_fifo_errors),
110	IGB_NETDEV_STAT(tx_heartbeat_errors)
111};
112
113#define IGB_GLOBAL_STATS_LEN	\
114	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115#define IGB_NETDEV_STATS_LEN	\
116	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117#define IGB_RX_QUEUE_STATS_LEN \
118	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119
120#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121
122#define IGB_QUEUE_STATS_LEN \
123	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124	  IGB_RX_QUEUE_STATS_LEN) + \
125	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126	  IGB_TX_QUEUE_STATS_LEN))
127#define IGB_STATS_LEN \
128	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129
130static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131	"Register test  (offline)", "Eeprom test    (offline)",
132	"Interrupt test (offline)", "Loopback test  (offline)",
133	"Link test   (on/offline)"
134};
135#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136
137static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138{
139	struct igb_adapter *adapter = netdev_priv(netdev);
140	struct e1000_hw *hw = &adapter->hw;
141	u32 status;
142
143	if (hw->phy.media_type == e1000_media_type_copper) {
144
145		ecmd->supported = (SUPPORTED_10baseT_Half |
146				   SUPPORTED_10baseT_Full |
147				   SUPPORTED_100baseT_Half |
148				   SUPPORTED_100baseT_Full |
149				   SUPPORTED_1000baseT_Full|
150				   SUPPORTED_Autoneg |
151				   SUPPORTED_TP |
152				   SUPPORTED_Pause);
153		ecmd->advertising = ADVERTISED_TP;
154
155		if (hw->mac.autoneg == 1) {
156			ecmd->advertising |= ADVERTISED_Autoneg;
157			/* the e1000 autoneg seems to match ethtool nicely */
158			ecmd->advertising |= hw->phy.autoneg_advertised;
159		}
160
161		if (hw->mac.autoneg != 1)
162			ecmd->advertising &= ~(ADVERTISED_Pause |
163					       ADVERTISED_Asym_Pause);
164
165		if (hw->fc.requested_mode == e1000_fc_full)
166			ecmd->advertising |= ADVERTISED_Pause;
167		else if (hw->fc.requested_mode == e1000_fc_rx_pause)
168			ecmd->advertising |= (ADVERTISED_Pause |
169					      ADVERTISED_Asym_Pause);
170		else if (hw->fc.requested_mode == e1000_fc_tx_pause)
171			ecmd->advertising |=  ADVERTISED_Asym_Pause;
172		else
173			ecmd->advertising &= ~(ADVERTISED_Pause |
174					       ADVERTISED_Asym_Pause);
175
176		ecmd->port = PORT_TP;
177		ecmd->phy_address = hw->phy.addr;
178	} else {
179		ecmd->supported   = (SUPPORTED_1000baseT_Full |
180				     SUPPORTED_FIBRE |
181				     SUPPORTED_Autoneg);
182
183		ecmd->advertising = (ADVERTISED_1000baseT_Full |
184				     ADVERTISED_FIBRE |
185				     ADVERTISED_Autoneg |
186				     ADVERTISED_Pause);
187
188		ecmd->port = PORT_FIBRE;
189	}
190
191	ecmd->transceiver = XCVR_INTERNAL;
192
193	status = rd32(E1000_STATUS);
194
195	if (status & E1000_STATUS_LU) {
196
197		if ((status & E1000_STATUS_SPEED_1000) ||
198		    hw->phy.media_type != e1000_media_type_copper)
199			ethtool_cmd_speed_set(ecmd, SPEED_1000);
200		else if (status & E1000_STATUS_SPEED_100)
201			ethtool_cmd_speed_set(ecmd, SPEED_100);
202		else
203			ethtool_cmd_speed_set(ecmd, SPEED_10);
204
205		if ((status & E1000_STATUS_FD) ||
206		    hw->phy.media_type != e1000_media_type_copper)
207			ecmd->duplex = DUPLEX_FULL;
208		else
209			ecmd->duplex = DUPLEX_HALF;
210	} else {
211		ethtool_cmd_speed_set(ecmd, -1);
212		ecmd->duplex = -1;
213	}
214
215	ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
216
217	/* MDI-X => 2; MDI =>1; Invalid =>0 */
218	if (hw->phy.media_type == e1000_media_type_copper)
219		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
220						      ETH_TP_MDI;
221	else
222		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
223
224	if (hw->phy.mdix == AUTO_ALL_MODES)
225		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
226	else
227		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
228
229	return 0;
230}
231
232static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
233{
234	struct igb_adapter *adapter = netdev_priv(netdev);
235	struct e1000_hw *hw = &adapter->hw;
236
237	/* When SoL/IDER sessions are active, autoneg/speed/duplex
238	 * cannot be changed */
239	if (igb_check_reset_block(hw)) {
240		dev_err(&adapter->pdev->dev,
241			"Cannot change link characteristics when SoL/IDER is active.\n");
242		return -EINVAL;
243	}
244
245	/*
246	 * MDI setting is only allowed when autoneg enabled because
247	 * some hardware doesn't allow MDI setting when speed or
248	 * duplex is forced.
249	 */
250	if (ecmd->eth_tp_mdix_ctrl) {
251		if (hw->phy.media_type != e1000_media_type_copper)
252			return -EOPNOTSUPP;
253
254		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
255		    (ecmd->autoneg != AUTONEG_ENABLE)) {
256			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
257			return -EINVAL;
258		}
259	}
260
261	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
262		msleep(1);
263
264	if (ecmd->autoneg == AUTONEG_ENABLE) {
265		hw->mac.autoneg = 1;
266		hw->phy.autoneg_advertised = ecmd->advertising |
267					     ADVERTISED_TP |
268					     ADVERTISED_Autoneg;
269		ecmd->advertising = hw->phy.autoneg_advertised;
270		if (adapter->fc_autoneg)
271			hw->fc.requested_mode = e1000_fc_default;
272	} else {
273		u32 speed = ethtool_cmd_speed(ecmd);
274		/* calling this overrides forced MDI setting */
275		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
276			clear_bit(__IGB_RESETTING, &adapter->state);
277			return -EINVAL;
278		}
279	}
280
281	/* MDI-X => 2; MDI => 1; Auto => 3 */
282	if (ecmd->eth_tp_mdix_ctrl) {
283		/*
284		 * fix up the value for auto (3 => 0) as zero is mapped
285		 * internally to auto
286		 */
287		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
288			hw->phy.mdix = AUTO_ALL_MODES;
289		else
290			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
291	}
292
293	/* reset the link */
294	if (netif_running(adapter->netdev)) {
295		igb_down(adapter);
296		igb_up(adapter);
297	} else
298		igb_reset(adapter);
299
300	clear_bit(__IGB_RESETTING, &adapter->state);
301	return 0;
302}
303
304static u32 igb_get_link(struct net_device *netdev)
305{
306	struct igb_adapter *adapter = netdev_priv(netdev);
307	struct e1000_mac_info *mac = &adapter->hw.mac;
308
309	/*
310	 * If the link is not reported up to netdev, interrupts are disabled,
311	 * and so the physical link state may have changed since we last
312	 * looked. Set get_link_status to make sure that the true link
313	 * state is interrogated, rather than pulling a cached and possibly
314	 * stale link state from the driver.
315	 */
316	if (!netif_carrier_ok(netdev))
317		mac->get_link_status = 1;
318
319	return igb_has_link(adapter);
320}
321
322static void igb_get_pauseparam(struct net_device *netdev,
323			       struct ethtool_pauseparam *pause)
324{
325	struct igb_adapter *adapter = netdev_priv(netdev);
326	struct e1000_hw *hw = &adapter->hw;
327
328	pause->autoneg =
329		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
330
331	if (hw->fc.current_mode == e1000_fc_rx_pause)
332		pause->rx_pause = 1;
333	else if (hw->fc.current_mode == e1000_fc_tx_pause)
334		pause->tx_pause = 1;
335	else if (hw->fc.current_mode == e1000_fc_full) {
336		pause->rx_pause = 1;
337		pause->tx_pause = 1;
338	}
339}
340
341static int igb_set_pauseparam(struct net_device *netdev,
342			      struct ethtool_pauseparam *pause)
343{
344	struct igb_adapter *adapter = netdev_priv(netdev);
345	struct e1000_hw *hw = &adapter->hw;
346	int retval = 0;
347
348	adapter->fc_autoneg = pause->autoneg;
349
350	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
351		msleep(1);
352
353	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
354		hw->fc.requested_mode = e1000_fc_default;
355		if (netif_running(adapter->netdev)) {
356			igb_down(adapter);
357			igb_up(adapter);
358		} else {
359			igb_reset(adapter);
360		}
361	} else {
362		if (pause->rx_pause && pause->tx_pause)
363			hw->fc.requested_mode = e1000_fc_full;
364		else if (pause->rx_pause && !pause->tx_pause)
365			hw->fc.requested_mode = e1000_fc_rx_pause;
366		else if (!pause->rx_pause && pause->tx_pause)
367			hw->fc.requested_mode = e1000_fc_tx_pause;
368		else if (!pause->rx_pause && !pause->tx_pause)
369			hw->fc.requested_mode = e1000_fc_none;
370
371		hw->fc.current_mode = hw->fc.requested_mode;
372
373		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
374			  igb_force_mac_fc(hw) : igb_setup_link(hw));
375	}
376
377	clear_bit(__IGB_RESETTING, &adapter->state);
378	return retval;
379}
380
381static u32 igb_get_msglevel(struct net_device *netdev)
382{
383	struct igb_adapter *adapter = netdev_priv(netdev);
384	return adapter->msg_enable;
385}
386
387static void igb_set_msglevel(struct net_device *netdev, u32 data)
388{
389	struct igb_adapter *adapter = netdev_priv(netdev);
390	adapter->msg_enable = data;
391}
392
393static int igb_get_regs_len(struct net_device *netdev)
394{
395#define IGB_REGS_LEN 739
396	return IGB_REGS_LEN * sizeof(u32);
397}
398
399static void igb_get_regs(struct net_device *netdev,
400			 struct ethtool_regs *regs, void *p)
401{
402	struct igb_adapter *adapter = netdev_priv(netdev);
403	struct e1000_hw *hw = &adapter->hw;
404	u32 *regs_buff = p;
405	u8 i;
406
407	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
408
409	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
410
411	/* General Registers */
412	regs_buff[0] = rd32(E1000_CTRL);
413	regs_buff[1] = rd32(E1000_STATUS);
414	regs_buff[2] = rd32(E1000_CTRL_EXT);
415	regs_buff[3] = rd32(E1000_MDIC);
416	regs_buff[4] = rd32(E1000_SCTL);
417	regs_buff[5] = rd32(E1000_CONNSW);
418	regs_buff[6] = rd32(E1000_VET);
419	regs_buff[7] = rd32(E1000_LEDCTL);
420	regs_buff[8] = rd32(E1000_PBA);
421	regs_buff[9] = rd32(E1000_PBS);
422	regs_buff[10] = rd32(E1000_FRTIMER);
423	regs_buff[11] = rd32(E1000_TCPTIMER);
424
425	/* NVM Register */
426	regs_buff[12] = rd32(E1000_EECD);
427
428	/* Interrupt */
429	/* Reading EICS for EICR because they read the
430	 * same but EICS does not clear on read */
431	regs_buff[13] = rd32(E1000_EICS);
432	regs_buff[14] = rd32(E1000_EICS);
433	regs_buff[15] = rd32(E1000_EIMS);
434	regs_buff[16] = rd32(E1000_EIMC);
435	regs_buff[17] = rd32(E1000_EIAC);
436	regs_buff[18] = rd32(E1000_EIAM);
437	/* Reading ICS for ICR because they read the
438	 * same but ICS does not clear on read */
439	regs_buff[19] = rd32(E1000_ICS);
440	regs_buff[20] = rd32(E1000_ICS);
441	regs_buff[21] = rd32(E1000_IMS);
442	regs_buff[22] = rd32(E1000_IMC);
443	regs_buff[23] = rd32(E1000_IAC);
444	regs_buff[24] = rd32(E1000_IAM);
445	regs_buff[25] = rd32(E1000_IMIRVP);
446
447	/* Flow Control */
448	regs_buff[26] = rd32(E1000_FCAL);
449	regs_buff[27] = rd32(E1000_FCAH);
450	regs_buff[28] = rd32(E1000_FCTTV);
451	regs_buff[29] = rd32(E1000_FCRTL);
452	regs_buff[30] = rd32(E1000_FCRTH);
453	regs_buff[31] = rd32(E1000_FCRTV);
454
455	/* Receive */
456	regs_buff[32] = rd32(E1000_RCTL);
457	regs_buff[33] = rd32(E1000_RXCSUM);
458	regs_buff[34] = rd32(E1000_RLPML);
459	regs_buff[35] = rd32(E1000_RFCTL);
460	regs_buff[36] = rd32(E1000_MRQC);
461	regs_buff[37] = rd32(E1000_VT_CTL);
462
463	/* Transmit */
464	regs_buff[38] = rd32(E1000_TCTL);
465	regs_buff[39] = rd32(E1000_TCTL_EXT);
466	regs_buff[40] = rd32(E1000_TIPG);
467	regs_buff[41] = rd32(E1000_DTXCTL);
468
469	/* Wake Up */
470	regs_buff[42] = rd32(E1000_WUC);
471	regs_buff[43] = rd32(E1000_WUFC);
472	regs_buff[44] = rd32(E1000_WUS);
473	regs_buff[45] = rd32(E1000_IPAV);
474	regs_buff[46] = rd32(E1000_WUPL);
475
476	/* MAC */
477	regs_buff[47] = rd32(E1000_PCS_CFG0);
478	regs_buff[48] = rd32(E1000_PCS_LCTL);
479	regs_buff[49] = rd32(E1000_PCS_LSTAT);
480	regs_buff[50] = rd32(E1000_PCS_ANADV);
481	regs_buff[51] = rd32(E1000_PCS_LPAB);
482	regs_buff[52] = rd32(E1000_PCS_NPTX);
483	regs_buff[53] = rd32(E1000_PCS_LPABNP);
484
485	/* Statistics */
486	regs_buff[54] = adapter->stats.crcerrs;
487	regs_buff[55] = adapter->stats.algnerrc;
488	regs_buff[56] = adapter->stats.symerrs;
489	regs_buff[57] = adapter->stats.rxerrc;
490	regs_buff[58] = adapter->stats.mpc;
491	regs_buff[59] = adapter->stats.scc;
492	regs_buff[60] = adapter->stats.ecol;
493	regs_buff[61] = adapter->stats.mcc;
494	regs_buff[62] = adapter->stats.latecol;
495	regs_buff[63] = adapter->stats.colc;
496	regs_buff[64] = adapter->stats.dc;
497	regs_buff[65] = adapter->stats.tncrs;
498	regs_buff[66] = adapter->stats.sec;
499	regs_buff[67] = adapter->stats.htdpmc;
500	regs_buff[68] = adapter->stats.rlec;
501	regs_buff[69] = adapter->stats.xonrxc;
502	regs_buff[70] = adapter->stats.xontxc;
503	regs_buff[71] = adapter->stats.xoffrxc;
504	regs_buff[72] = adapter->stats.xofftxc;
505	regs_buff[73] = adapter->stats.fcruc;
506	regs_buff[74] = adapter->stats.prc64;
507	regs_buff[75] = adapter->stats.prc127;
508	regs_buff[76] = adapter->stats.prc255;
509	regs_buff[77] = adapter->stats.prc511;
510	regs_buff[78] = adapter->stats.prc1023;
511	regs_buff[79] = adapter->stats.prc1522;
512	regs_buff[80] = adapter->stats.gprc;
513	regs_buff[81] = adapter->stats.bprc;
514	regs_buff[82] = adapter->stats.mprc;
515	regs_buff[83] = adapter->stats.gptc;
516	regs_buff[84] = adapter->stats.gorc;
517	regs_buff[86] = adapter->stats.gotc;
518	regs_buff[88] = adapter->stats.rnbc;
519	regs_buff[89] = adapter->stats.ruc;
520	regs_buff[90] = adapter->stats.rfc;
521	regs_buff[91] = adapter->stats.roc;
522	regs_buff[92] = adapter->stats.rjc;
523	regs_buff[93] = adapter->stats.mgprc;
524	regs_buff[94] = adapter->stats.mgpdc;
525	regs_buff[95] = adapter->stats.mgptc;
526	regs_buff[96] = adapter->stats.tor;
527	regs_buff[98] = adapter->stats.tot;
528	regs_buff[100] = adapter->stats.tpr;
529	regs_buff[101] = adapter->stats.tpt;
530	regs_buff[102] = adapter->stats.ptc64;
531	regs_buff[103] = adapter->stats.ptc127;
532	regs_buff[104] = adapter->stats.ptc255;
533	regs_buff[105] = adapter->stats.ptc511;
534	regs_buff[106] = adapter->stats.ptc1023;
535	regs_buff[107] = adapter->stats.ptc1522;
536	regs_buff[108] = adapter->stats.mptc;
537	regs_buff[109] = adapter->stats.bptc;
538	regs_buff[110] = adapter->stats.tsctc;
539	regs_buff[111] = adapter->stats.iac;
540	regs_buff[112] = adapter->stats.rpthc;
541	regs_buff[113] = adapter->stats.hgptc;
542	regs_buff[114] = adapter->stats.hgorc;
543	regs_buff[116] = adapter->stats.hgotc;
544	regs_buff[118] = adapter->stats.lenerrs;
545	regs_buff[119] = adapter->stats.scvpc;
546	regs_buff[120] = adapter->stats.hrmpc;
547
548	for (i = 0; i < 4; i++)
549		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
550	for (i = 0; i < 4; i++)
551		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
552	for (i = 0; i < 4; i++)
553		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
554	for (i = 0; i < 4; i++)
555		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
556	for (i = 0; i < 4; i++)
557		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
558	for (i = 0; i < 4; i++)
559		regs_buff[141 + i] = rd32(E1000_RDH(i));
560	for (i = 0; i < 4; i++)
561		regs_buff[145 + i] = rd32(E1000_RDT(i));
562	for (i = 0; i < 4; i++)
563		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
564
565	for (i = 0; i < 10; i++)
566		regs_buff[153 + i] = rd32(E1000_EITR(i));
567	for (i = 0; i < 8; i++)
568		regs_buff[163 + i] = rd32(E1000_IMIR(i));
569	for (i = 0; i < 8; i++)
570		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
571	for (i = 0; i < 16; i++)
572		regs_buff[179 + i] = rd32(E1000_RAL(i));
573	for (i = 0; i < 16; i++)
574		regs_buff[195 + i] = rd32(E1000_RAH(i));
575
576	for (i = 0; i < 4; i++)
577		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
578	for (i = 0; i < 4; i++)
579		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
580	for (i = 0; i < 4; i++)
581		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
582	for (i = 0; i < 4; i++)
583		regs_buff[223 + i] = rd32(E1000_TDH(i));
584	for (i = 0; i < 4; i++)
585		regs_buff[227 + i] = rd32(E1000_TDT(i));
586	for (i = 0; i < 4; i++)
587		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
588	for (i = 0; i < 4; i++)
589		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
590	for (i = 0; i < 4; i++)
591		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
592	for (i = 0; i < 4; i++)
593		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
594
595	for (i = 0; i < 4; i++)
596		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
597	for (i = 0; i < 4; i++)
598		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
599	for (i = 0; i < 32; i++)
600		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
601	for (i = 0; i < 128; i++)
602		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
603	for (i = 0; i < 128; i++)
604		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
605	for (i = 0; i < 4; i++)
606		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
607
608	regs_buff[547] = rd32(E1000_TDFH);
609	regs_buff[548] = rd32(E1000_TDFT);
610	regs_buff[549] = rd32(E1000_TDFHS);
611	regs_buff[550] = rd32(E1000_TDFPC);
612
613	if (hw->mac.type > e1000_82580) {
614		regs_buff[551] = adapter->stats.o2bgptc;
615		regs_buff[552] = adapter->stats.b2ospc;
616		regs_buff[553] = adapter->stats.o2bspc;
617		regs_buff[554] = adapter->stats.b2ogprc;
618	}
619
620	if (hw->mac.type != e1000_82576)
621		return;
622	for (i = 0; i < 12; i++)
623		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
624	for (i = 0; i < 4; i++)
625		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
626	for (i = 0; i < 12; i++)
627		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
628	for (i = 0; i < 12; i++)
629		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
630	for (i = 0; i < 12; i++)
631		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
632	for (i = 0; i < 12; i++)
633		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
634	for (i = 0; i < 12; i++)
635		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
636	for (i = 0; i < 12; i++)
637		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
638
639	for (i = 0; i < 12; i++)
640		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
641	for (i = 0; i < 12; i++)
642		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
643	for (i = 0; i < 12; i++)
644		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
645	for (i = 0; i < 12; i++)
646		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
647	for (i = 0; i < 12; i++)
648		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
649	for (i = 0; i < 12; i++)
650		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
651	for (i = 0; i < 12; i++)
652		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
653	for (i = 0; i < 12; i++)
654		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
655}
656
657static int igb_get_eeprom_len(struct net_device *netdev)
658{
659	struct igb_adapter *adapter = netdev_priv(netdev);
660	return adapter->hw.nvm.word_size * 2;
661}
662
663static int igb_get_eeprom(struct net_device *netdev,
664			  struct ethtool_eeprom *eeprom, u8 *bytes)
665{
666	struct igb_adapter *adapter = netdev_priv(netdev);
667	struct e1000_hw *hw = &adapter->hw;
668	u16 *eeprom_buff;
669	int first_word, last_word;
670	int ret_val = 0;
671	u16 i;
672
673	if (eeprom->len == 0)
674		return -EINVAL;
675
676	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
677
678	first_word = eeprom->offset >> 1;
679	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
680
681	eeprom_buff = kmalloc(sizeof(u16) *
682			(last_word - first_word + 1), GFP_KERNEL);
683	if (!eeprom_buff)
684		return -ENOMEM;
685
686	if (hw->nvm.type == e1000_nvm_eeprom_spi)
687		ret_val = hw->nvm.ops.read(hw, first_word,
688					    last_word - first_word + 1,
689					    eeprom_buff);
690	else {
691		for (i = 0; i < last_word - first_word + 1; i++) {
692			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
693						    &eeprom_buff[i]);
694			if (ret_val)
695				break;
696		}
697	}
698
699	/* Device's eeprom is always little-endian, word addressable */
700	for (i = 0; i < last_word - first_word + 1; i++)
701		le16_to_cpus(&eeprom_buff[i]);
702
703	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
704			eeprom->len);
705	kfree(eeprom_buff);
706
707	return ret_val;
708}
709
710static int igb_set_eeprom(struct net_device *netdev,
711			  struct ethtool_eeprom *eeprom, u8 *bytes)
712{
713	struct igb_adapter *adapter = netdev_priv(netdev);
714	struct e1000_hw *hw = &adapter->hw;
715	u16 *eeprom_buff;
716	void *ptr;
717	int max_len, first_word, last_word, ret_val = 0;
718	u16 i;
719
720	if (eeprom->len == 0)
721		return -EOPNOTSUPP;
722
723	if (hw->mac.type == e1000_i211)
724		return -EOPNOTSUPP;
725
726	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
727		return -EFAULT;
728
729	max_len = hw->nvm.word_size * 2;
730
731	first_word = eeprom->offset >> 1;
732	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
733	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
734	if (!eeprom_buff)
735		return -ENOMEM;
736
737	ptr = (void *)eeprom_buff;
738
739	if (eeprom->offset & 1) {
740		/* need read/modify/write of first changed EEPROM word */
741		/* only the second byte of the word is being modified */
742		ret_val = hw->nvm.ops.read(hw, first_word, 1,
743					    &eeprom_buff[0]);
744		ptr++;
745	}
746	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
747		/* need read/modify/write of last changed EEPROM word */
748		/* only the first byte of the word is being modified */
749		ret_val = hw->nvm.ops.read(hw, last_word, 1,
750				   &eeprom_buff[last_word - first_word]);
751	}
752
753	/* Device's eeprom is always little-endian, word addressable */
754	for (i = 0; i < last_word - first_word + 1; i++)
755		le16_to_cpus(&eeprom_buff[i]);
756
757	memcpy(ptr, bytes, eeprom->len);
758
759	for (i = 0; i < last_word - first_word + 1; i++)
760		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
761
762	ret_val = hw->nvm.ops.write(hw, first_word,
763				     last_word - first_word + 1, eeprom_buff);
764
765	/* Update the checksum over the first part of the EEPROM if needed
766	 * and flush shadow RAM for 82573 controllers */
767	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
768		hw->nvm.ops.update(hw);
769
770	igb_set_fw_version(adapter);
771	kfree(eeprom_buff);
772	return ret_val;
773}
774
775static void igb_get_drvinfo(struct net_device *netdev,
776			    struct ethtool_drvinfo *drvinfo)
777{
778	struct igb_adapter *adapter = netdev_priv(netdev);
779
780	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
781	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
782
783	/*
784	 * EEPROM image version # is reported as firmware version # for
785	 * 82575 controllers
786	 */
787	strlcpy(drvinfo->fw_version, adapter->fw_version,
788		sizeof(drvinfo->fw_version));
789	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
790		sizeof(drvinfo->bus_info));
791	drvinfo->n_stats = IGB_STATS_LEN;
792	drvinfo->testinfo_len = IGB_TEST_LEN;
793	drvinfo->regdump_len = igb_get_regs_len(netdev);
794	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
795}
796
797static void igb_get_ringparam(struct net_device *netdev,
798			      struct ethtool_ringparam *ring)
799{
800	struct igb_adapter *adapter = netdev_priv(netdev);
801
802	ring->rx_max_pending = IGB_MAX_RXD;
803	ring->tx_max_pending = IGB_MAX_TXD;
804	ring->rx_pending = adapter->rx_ring_count;
805	ring->tx_pending = adapter->tx_ring_count;
806}
807
808static int igb_set_ringparam(struct net_device *netdev,
809			     struct ethtool_ringparam *ring)
810{
811	struct igb_adapter *adapter = netdev_priv(netdev);
812	struct igb_ring *temp_ring;
813	int i, err = 0;
814	u16 new_rx_count, new_tx_count;
815
816	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
817		return -EINVAL;
818
819	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
820	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
821	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
822
823	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
824	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
825	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
826
827	if ((new_tx_count == adapter->tx_ring_count) &&
828	    (new_rx_count == adapter->rx_ring_count)) {
829		/* nothing to do */
830		return 0;
831	}
832
833	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
834		msleep(1);
835
836	if (!netif_running(adapter->netdev)) {
837		for (i = 0; i < adapter->num_tx_queues; i++)
838			adapter->tx_ring[i]->count = new_tx_count;
839		for (i = 0; i < adapter->num_rx_queues; i++)
840			adapter->rx_ring[i]->count = new_rx_count;
841		adapter->tx_ring_count = new_tx_count;
842		adapter->rx_ring_count = new_rx_count;
843		goto clear_reset;
844	}
845
846	if (adapter->num_tx_queues > adapter->num_rx_queues)
847		temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
848	else
849		temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
850
851	if (!temp_ring) {
852		err = -ENOMEM;
853		goto clear_reset;
854	}
855
856	igb_down(adapter);
857
858	/*
859	 * We can't just free everything and then setup again,
860	 * because the ISRs in MSI-X mode get passed pointers
861	 * to the tx and rx ring structs.
862	 */
863	if (new_tx_count != adapter->tx_ring_count) {
864		for (i = 0; i < adapter->num_tx_queues; i++) {
865			memcpy(&temp_ring[i], adapter->tx_ring[i],
866			       sizeof(struct igb_ring));
867
868			temp_ring[i].count = new_tx_count;
869			err = igb_setup_tx_resources(&temp_ring[i]);
870			if (err) {
871				while (i) {
872					i--;
873					igb_free_tx_resources(&temp_ring[i]);
874				}
875				goto err_setup;
876			}
877		}
878
879		for (i = 0; i < adapter->num_tx_queues; i++) {
880			igb_free_tx_resources(adapter->tx_ring[i]);
881
882			memcpy(adapter->tx_ring[i], &temp_ring[i],
883			       sizeof(struct igb_ring));
884		}
885
886		adapter->tx_ring_count = new_tx_count;
887	}
888
889	if (new_rx_count != adapter->rx_ring_count) {
890		for (i = 0; i < adapter->num_rx_queues; i++) {
891			memcpy(&temp_ring[i], adapter->rx_ring[i],
892			       sizeof(struct igb_ring));
893
894			temp_ring[i].count = new_rx_count;
895			err = igb_setup_rx_resources(&temp_ring[i]);
896			if (err) {
897				while (i) {
898					i--;
899					igb_free_rx_resources(&temp_ring[i]);
900				}
901				goto err_setup;
902			}
903
904		}
905
906		for (i = 0; i < adapter->num_rx_queues; i++) {
907			igb_free_rx_resources(adapter->rx_ring[i]);
908
909			memcpy(adapter->rx_ring[i], &temp_ring[i],
910			       sizeof(struct igb_ring));
911		}
912
913		adapter->rx_ring_count = new_rx_count;
914	}
915err_setup:
916	igb_up(adapter);
917	vfree(temp_ring);
918clear_reset:
919	clear_bit(__IGB_RESETTING, &adapter->state);
920	return err;
921}
922
923/* ethtool register test data */
924struct igb_reg_test {
925	u16 reg;
926	u16 reg_offset;
927	u16 array_len;
928	u16 test_type;
929	u32 mask;
930	u32 write;
931};
932
933/* In the hardware, registers are laid out either singly, in arrays
934 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
935 * most tests take place on arrays or single registers (handled
936 * as a single-element array) and special-case the tables.
937 * Table tests are always pattern tests.
938 *
939 * We also make provision for some required setup steps by specifying
940 * registers to be written without any read-back testing.
941 */
942
943#define PATTERN_TEST	1
944#define SET_READ_TEST	2
945#define WRITE_NO_TEST	3
946#define TABLE32_TEST	4
947#define TABLE64_TEST_LO	5
948#define TABLE64_TEST_HI	6
949
950/* i210 reg test */
951static struct igb_reg_test reg_test_i210[] = {
952	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
953	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
954	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
955	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
956	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
957	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
958	/* RDH is read-only for i210, only test RDT. */
959	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
960	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
961	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
962	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
963	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
964	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
965	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
966	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
967	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
968	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
969	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
970	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
971	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
972						0xFFFFFFFF, 0xFFFFFFFF },
973	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
974						0x900FFFFF, 0xFFFFFFFF },
975	{ E1000_MTA,	   0, 128, TABLE32_TEST,
976						0xFFFFFFFF, 0xFFFFFFFF },
977	{ 0, 0, 0, 0, 0 }
978};
979
980/* i350 reg test */
981static struct igb_reg_test reg_test_i350[] = {
982	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
983	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
984	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
985	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
986	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
987	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
988	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
989	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
990	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
991	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
992	/* RDH is read-only for i350, only test RDT. */
993	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
994	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
995	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
996	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
997	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
998	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
999	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1000	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1001	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1002	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1003	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1004	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1005	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1006	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1007	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1008	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1009	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1010	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1011						0xFFFFFFFF, 0xFFFFFFFF },
1012	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1013						0xC3FFFFFF, 0xFFFFFFFF },
1014	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1015						0xFFFFFFFF, 0xFFFFFFFF },
1016	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1017						0xC3FFFFFF, 0xFFFFFFFF },
1018	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1019						0xFFFFFFFF, 0xFFFFFFFF },
1020	{ 0, 0, 0, 0 }
1021};
1022
1023/* 82580 reg test */
1024static struct igb_reg_test reg_test_82580[] = {
1025	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1026	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1027	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1028	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1029	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1030	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1032	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1033	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1034	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1035	/* RDH is read-only for 82580, only test RDT. */
1036	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1037	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1038	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1039	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1040	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1041	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1042	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1043	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1044	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1045	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1046	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1047	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1048	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1049	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1050	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1051	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1052	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1053	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1054						0xFFFFFFFF, 0xFFFFFFFF },
1055	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1056						0x83FFFFFF, 0xFFFFFFFF },
1057	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1058						0xFFFFFFFF, 0xFFFFFFFF },
1059	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1060						0x83FFFFFF, 0xFFFFFFFF },
1061	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1062						0xFFFFFFFF, 0xFFFFFFFF },
1063	{ 0, 0, 0, 0 }
1064};
1065
1066/* 82576 reg test */
1067static struct igb_reg_test reg_test_82576[] = {
1068	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1069	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1070	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1071	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1072	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1073	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1074	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1075	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1076	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1078	/* Enable all RX queues before testing. */
1079	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1080	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1081	/* RDH is read-only for 82576, only test RDT. */
1082	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1083	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1084	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1085	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1086	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1087	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1088	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1089	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1090	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1091	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1092	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1093	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1094	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1095	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1096	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1097	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1098	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1099	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1100	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1101	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1102	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1103	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1104	{ 0, 0, 0, 0 }
1105};
1106
1107/* 82575 register test */
1108static struct igb_reg_test reg_test_82575[] = {
1109	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1110	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1111	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1112	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1113	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1114	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1115	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1116	/* Enable all four RX queues before testing. */
1117	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1118	/* RDH is read-only for 82575, only test RDT. */
1119	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1120	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1121	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1122	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1123	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1124	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1125	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1126	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1127	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1128	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1129	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1130	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1131	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1132	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1133	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1134	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1135	{ 0, 0, 0, 0 }
1136};
1137
1138static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1139			     int reg, u32 mask, u32 write)
1140{
1141	struct e1000_hw *hw = &adapter->hw;
1142	u32 pat, val;
1143	static const u32 _test[] =
1144		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1145	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1146		wr32(reg, (_test[pat] & write));
1147		val = rd32(reg) & mask;
1148		if (val != (_test[pat] & write & mask)) {
1149			dev_err(&adapter->pdev->dev,
1150				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1151				reg, val, (_test[pat] & write & mask));
1152			*data = reg;
1153			return 1;
1154		}
1155	}
1156
1157	return 0;
1158}
1159
1160static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1161			      int reg, u32 mask, u32 write)
1162{
1163	struct e1000_hw *hw = &adapter->hw;
1164	u32 val;
1165	wr32(reg, write & mask);
1166	val = rd32(reg);
1167	if ((write & mask) != (val & mask)) {
1168		dev_err(&adapter->pdev->dev,
1169			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1170			(val & mask), (write & mask));
1171		*data = reg;
1172		return 1;
1173	}
1174
1175	return 0;
1176}
1177
1178#define REG_PATTERN_TEST(reg, mask, write) \
1179	do { \
1180		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1181			return 1; \
1182	} while (0)
1183
1184#define REG_SET_AND_CHECK(reg, mask, write) \
1185	do { \
1186		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1187			return 1; \
1188	} while (0)
1189
1190static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1191{
1192	struct e1000_hw *hw = &adapter->hw;
1193	struct igb_reg_test *test;
1194	u32 value, before, after;
1195	u32 i, toggle;
1196
1197	switch (adapter->hw.mac.type) {
1198	case e1000_i350:
1199		test = reg_test_i350;
1200		toggle = 0x7FEFF3FF;
1201		break;
1202	case e1000_i210:
1203	case e1000_i211:
1204		test = reg_test_i210;
1205		toggle = 0x7FEFF3FF;
1206		break;
1207	case e1000_82580:
1208		test = reg_test_82580;
1209		toggle = 0x7FEFF3FF;
1210		break;
1211	case e1000_82576:
1212		test = reg_test_82576;
1213		toggle = 0x7FFFF3FF;
1214		break;
1215	default:
1216		test = reg_test_82575;
1217		toggle = 0x7FFFF3FF;
1218		break;
1219	}
1220
1221	/* Because the status register is such a special case,
1222	 * we handle it separately from the rest of the register
1223	 * tests.  Some bits are read-only, some toggle, and some
1224	 * are writable on newer MACs.
1225	 */
1226	before = rd32(E1000_STATUS);
1227	value = (rd32(E1000_STATUS) & toggle);
1228	wr32(E1000_STATUS, toggle);
1229	after = rd32(E1000_STATUS) & toggle;
1230	if (value != after) {
1231		dev_err(&adapter->pdev->dev,
1232			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1233			after, value);
1234		*data = 1;
1235		return 1;
1236	}
1237	/* restore previous status */
1238	wr32(E1000_STATUS, before);
1239
1240	/* Perform the remainder of the register test, looping through
1241	 * the test table until we either fail or reach the null entry.
1242	 */
1243	while (test->reg) {
1244		for (i = 0; i < test->array_len; i++) {
1245			switch (test->test_type) {
1246			case PATTERN_TEST:
1247				REG_PATTERN_TEST(test->reg +
1248						(i * test->reg_offset),
1249						test->mask,
1250						test->write);
1251				break;
1252			case SET_READ_TEST:
1253				REG_SET_AND_CHECK(test->reg +
1254						(i * test->reg_offset),
1255						test->mask,
1256						test->write);
1257				break;
1258			case WRITE_NO_TEST:
1259				writel(test->write,
1260				    (adapter->hw.hw_addr + test->reg)
1261					+ (i * test->reg_offset));
1262				break;
1263			case TABLE32_TEST:
1264				REG_PATTERN_TEST(test->reg + (i * 4),
1265						test->mask,
1266						test->write);
1267				break;
1268			case TABLE64_TEST_LO:
1269				REG_PATTERN_TEST(test->reg + (i * 8),
1270						test->mask,
1271						test->write);
1272				break;
1273			case TABLE64_TEST_HI:
1274				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1275						test->mask,
1276						test->write);
1277				break;
1278			}
1279		}
1280		test++;
1281	}
1282
1283	*data = 0;
1284	return 0;
1285}
1286
1287static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1288{
1289	*data = 0;
1290
1291	/* Validate eeprom on all parts but i211 */
1292	if (adapter->hw.mac.type != e1000_i211) {
1293		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1294			*data = 2;
1295	}
1296
1297	return *data;
1298}
1299
1300static irqreturn_t igb_test_intr(int irq, void *data)
1301{
1302	struct igb_adapter *adapter = (struct igb_adapter *) data;
1303	struct e1000_hw *hw = &adapter->hw;
1304
1305	adapter->test_icr |= rd32(E1000_ICR);
1306
1307	return IRQ_HANDLED;
1308}
1309
1310static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1311{
1312	struct e1000_hw *hw = &adapter->hw;
1313	struct net_device *netdev = adapter->netdev;
1314	u32 mask, ics_mask, i = 0, shared_int = true;
1315	u32 irq = adapter->pdev->irq;
1316
1317	*data = 0;
1318
1319	/* Hook up test interrupt handler just for this test */
1320	if (adapter->msix_entries) {
1321		if (request_irq(adapter->msix_entries[0].vector,
1322		                igb_test_intr, 0, netdev->name, adapter)) {
1323			*data = 1;
1324			return -1;
1325		}
1326	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1327		shared_int = false;
1328		if (request_irq(irq,
1329		                igb_test_intr, 0, netdev->name, adapter)) {
1330			*data = 1;
1331			return -1;
1332		}
1333	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1334				netdev->name, adapter)) {
1335		shared_int = false;
1336	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1337		 netdev->name, adapter)) {
1338		*data = 1;
1339		return -1;
1340	}
1341	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1342		(shared_int ? "shared" : "unshared"));
1343
1344	/* Disable all the interrupts */
1345	wr32(E1000_IMC, ~0);
1346	wrfl();
1347	msleep(10);
1348
1349	/* Define all writable bits for ICS */
1350	switch (hw->mac.type) {
1351	case e1000_82575:
1352		ics_mask = 0x37F47EDD;
1353		break;
1354	case e1000_82576:
1355		ics_mask = 0x77D4FBFD;
1356		break;
1357	case e1000_82580:
1358		ics_mask = 0x77DCFED5;
1359		break;
1360	case e1000_i350:
1361	case e1000_i210:
1362	case e1000_i211:
1363		ics_mask = 0x77DCFED5;
1364		break;
1365	default:
1366		ics_mask = 0x7FFFFFFF;
1367		break;
1368	}
1369
1370	/* Test each interrupt */
1371	for (; i < 31; i++) {
1372		/* Interrupt to test */
1373		mask = 1 << i;
1374
1375		if (!(mask & ics_mask))
1376			continue;
1377
1378		if (!shared_int) {
1379			/* Disable the interrupt to be reported in
1380			 * the cause register and then force the same
1381			 * interrupt and see if one gets posted.  If
1382			 * an interrupt was posted to the bus, the
1383			 * test failed.
1384			 */
1385			adapter->test_icr = 0;
1386
1387			/* Flush any pending interrupts */
1388			wr32(E1000_ICR, ~0);
1389
1390			wr32(E1000_IMC, mask);
1391			wr32(E1000_ICS, mask);
1392			wrfl();
1393			msleep(10);
1394
1395			if (adapter->test_icr & mask) {
1396				*data = 3;
1397				break;
1398			}
1399		}
1400
1401		/* Enable the interrupt to be reported in
1402		 * the cause register and then force the same
1403		 * interrupt and see if one gets posted.  If
1404		 * an interrupt was not posted to the bus, the
1405		 * test failed.
1406		 */
1407		adapter->test_icr = 0;
1408
1409		/* Flush any pending interrupts */
1410		wr32(E1000_ICR, ~0);
1411
1412		wr32(E1000_IMS, mask);
1413		wr32(E1000_ICS, mask);
1414		wrfl();
1415		msleep(10);
1416
1417		if (!(adapter->test_icr & mask)) {
1418			*data = 4;
1419			break;
1420		}
1421
1422		if (!shared_int) {
1423			/* Disable the other interrupts to be reported in
1424			 * the cause register and then force the other
1425			 * interrupts and see if any get posted.  If
1426			 * an interrupt was posted to the bus, the
1427			 * test failed.
1428			 */
1429			adapter->test_icr = 0;
1430
1431			/* Flush any pending interrupts */
1432			wr32(E1000_ICR, ~0);
1433
1434			wr32(E1000_IMC, ~mask);
1435			wr32(E1000_ICS, ~mask);
1436			wrfl();
1437			msleep(10);
1438
1439			if (adapter->test_icr & mask) {
1440				*data = 5;
1441				break;
1442			}
1443		}
1444	}
1445
1446	/* Disable all the interrupts */
1447	wr32(E1000_IMC, ~0);
1448	wrfl();
1449	msleep(10);
1450
1451	/* Unhook test interrupt handler */
1452	if (adapter->msix_entries)
1453		free_irq(adapter->msix_entries[0].vector, adapter);
1454	else
1455		free_irq(irq, adapter);
1456
1457	return *data;
1458}
1459
1460static void igb_free_desc_rings(struct igb_adapter *adapter)
1461{
1462	igb_free_tx_resources(&adapter->test_tx_ring);
1463	igb_free_rx_resources(&adapter->test_rx_ring);
1464}
1465
1466static int igb_setup_desc_rings(struct igb_adapter *adapter)
1467{
1468	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1469	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1470	struct e1000_hw *hw = &adapter->hw;
1471	int ret_val;
1472
1473	/* Setup Tx descriptor ring and Tx buffers */
1474	tx_ring->count = IGB_DEFAULT_TXD;
1475	tx_ring->dev = &adapter->pdev->dev;
1476	tx_ring->netdev = adapter->netdev;
1477	tx_ring->reg_idx = adapter->vfs_allocated_count;
1478
1479	if (igb_setup_tx_resources(tx_ring)) {
1480		ret_val = 1;
1481		goto err_nomem;
1482	}
1483
1484	igb_setup_tctl(adapter);
1485	igb_configure_tx_ring(adapter, tx_ring);
1486
1487	/* Setup Rx descriptor ring and Rx buffers */
1488	rx_ring->count = IGB_DEFAULT_RXD;
1489	rx_ring->dev = &adapter->pdev->dev;
1490	rx_ring->netdev = adapter->netdev;
1491	rx_ring->reg_idx = adapter->vfs_allocated_count;
1492
1493	if (igb_setup_rx_resources(rx_ring)) {
1494		ret_val = 3;
1495		goto err_nomem;
1496	}
1497
1498	/* set the default queue to queue 0 of PF */
1499	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1500
1501	/* enable receive ring */
1502	igb_setup_rctl(adapter);
1503	igb_configure_rx_ring(adapter, rx_ring);
1504
1505	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1506
1507	return 0;
1508
1509err_nomem:
1510	igb_free_desc_rings(adapter);
1511	return ret_val;
1512}
1513
1514static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1515{
1516	struct e1000_hw *hw = &adapter->hw;
1517
1518	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1519	igb_write_phy_reg(hw, 29, 0x001F);
1520	igb_write_phy_reg(hw, 30, 0x8FFC);
1521	igb_write_phy_reg(hw, 29, 0x001A);
1522	igb_write_phy_reg(hw, 30, 0x8FF0);
1523}
1524
1525static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1526{
1527	struct e1000_hw *hw = &adapter->hw;
1528	u32 ctrl_reg = 0;
1529
1530	hw->mac.autoneg = false;
1531
1532	if (hw->phy.type == e1000_phy_m88) {
1533		if (hw->phy.id != I210_I_PHY_ID) {
1534			/* Auto-MDI/MDIX Off */
1535			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1536			/* reset to update Auto-MDI/MDIX */
1537			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1538			/* autoneg off */
1539			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1540		} else {
1541			/* force 1000, set loopback  */
1542			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1543			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1544		}
1545	}
1546
1547	/* add small delay to avoid loopback test failure */
1548	msleep(50);
1549
1550	/* force 1000, set loopback */
1551	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1552
1553	/* Now set up the MAC to the same speed/duplex as the PHY. */
1554	ctrl_reg = rd32(E1000_CTRL);
1555	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1556	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1557		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1558		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1559		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1560		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1561
1562	if (hw->phy.type == e1000_phy_m88)
1563		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1564
1565	wr32(E1000_CTRL, ctrl_reg);
1566
1567	/* Disable the receiver on the PHY so when a cable is plugged in, the
1568	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1569	 */
1570	if (hw->phy.type == e1000_phy_m88)
1571		igb_phy_disable_receiver(adapter);
1572
1573	mdelay(500);
1574	return 0;
1575}
1576
1577static int igb_set_phy_loopback(struct igb_adapter *adapter)
1578{
1579	return igb_integrated_phy_loopback(adapter);
1580}
1581
1582static int igb_setup_loopback_test(struct igb_adapter *adapter)
1583{
1584	struct e1000_hw *hw = &adapter->hw;
1585	u32 reg;
1586
1587	reg = rd32(E1000_CTRL_EXT);
1588
1589	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1590	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1591		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1592		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1593		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1594		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1595
1596			/* Enable DH89xxCC MPHY for near end loopback */
1597			reg = rd32(E1000_MPHY_ADDR_CTL);
1598			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1599			E1000_MPHY_PCS_CLK_REG_OFFSET;
1600			wr32(E1000_MPHY_ADDR_CTL, reg);
1601
1602			reg = rd32(E1000_MPHY_DATA);
1603			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1604			wr32(E1000_MPHY_DATA, reg);
1605		}
1606
1607		reg = rd32(E1000_RCTL);
1608		reg |= E1000_RCTL_LBM_TCVR;
1609		wr32(E1000_RCTL, reg);
1610
1611		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1612
1613		reg = rd32(E1000_CTRL);
1614		reg &= ~(E1000_CTRL_RFCE |
1615			 E1000_CTRL_TFCE |
1616			 E1000_CTRL_LRST);
1617		reg |= E1000_CTRL_SLU |
1618		       E1000_CTRL_FD;
1619		wr32(E1000_CTRL, reg);
1620
1621		/* Unset switch control to serdes energy detect */
1622		reg = rd32(E1000_CONNSW);
1623		reg &= ~E1000_CONNSW_ENRGSRC;
1624		wr32(E1000_CONNSW, reg);
1625
1626		/* Set PCS register for forced speed */
1627		reg = rd32(E1000_PCS_LCTL);
1628		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1629		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1630		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1631		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1632		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1633		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1634		wr32(E1000_PCS_LCTL, reg);
1635
1636		return 0;
1637	}
1638
1639	return igb_set_phy_loopback(adapter);
1640}
1641
1642static void igb_loopback_cleanup(struct igb_adapter *adapter)
1643{
1644	struct e1000_hw *hw = &adapter->hw;
1645	u32 rctl;
1646	u16 phy_reg;
1647
1648	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1649	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1650	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1651	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1652		u32 reg;
1653
1654		/* Disable near end loopback on DH89xxCC */
1655		reg = rd32(E1000_MPHY_ADDR_CTL);
1656		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1657		E1000_MPHY_PCS_CLK_REG_OFFSET;
1658		wr32(E1000_MPHY_ADDR_CTL, reg);
1659
1660		reg = rd32(E1000_MPHY_DATA);
1661		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1662		wr32(E1000_MPHY_DATA, reg);
1663	}
1664
1665	rctl = rd32(E1000_RCTL);
1666	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1667	wr32(E1000_RCTL, rctl);
1668
1669	hw->mac.autoneg = true;
1670	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1671	if (phy_reg & MII_CR_LOOPBACK) {
1672		phy_reg &= ~MII_CR_LOOPBACK;
1673		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1674		igb_phy_sw_reset(hw);
1675	}
1676}
1677
1678static void igb_create_lbtest_frame(struct sk_buff *skb,
1679				    unsigned int frame_size)
1680{
1681	memset(skb->data, 0xFF, frame_size);
1682	frame_size /= 2;
1683	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1684	memset(&skb->data[frame_size + 10], 0xBE, 1);
1685	memset(&skb->data[frame_size + 12], 0xAF, 1);
1686}
1687
1688static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1689{
1690	frame_size /= 2;
1691	if (*(skb->data + 3) == 0xFF) {
1692		if ((*(skb->data + frame_size + 10) == 0xBE) &&
1693		   (*(skb->data + frame_size + 12) == 0xAF)) {
1694			return 0;
1695		}
1696	}
1697	return 13;
1698}
1699
1700static int igb_clean_test_rings(struct igb_ring *rx_ring,
1701                                struct igb_ring *tx_ring,
1702                                unsigned int size)
1703{
1704	union e1000_adv_rx_desc *rx_desc;
1705	struct igb_rx_buffer *rx_buffer_info;
1706	struct igb_tx_buffer *tx_buffer_info;
1707	struct netdev_queue *txq;
1708	u16 rx_ntc, tx_ntc, count = 0;
1709	unsigned int total_bytes = 0, total_packets = 0;
1710
1711	/* initialize next to clean and descriptor values */
1712	rx_ntc = rx_ring->next_to_clean;
1713	tx_ntc = tx_ring->next_to_clean;
1714	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1715
1716	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1717		/* check rx buffer */
1718		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1719
1720		/* unmap rx buffer, will be remapped by alloc_rx_buffers */
1721		dma_unmap_single(rx_ring->dev,
1722				 rx_buffer_info->dma,
1723				 IGB_RX_HDR_LEN,
1724				 DMA_FROM_DEVICE);
1725		rx_buffer_info->dma = 0;
1726
1727		/* verify contents of skb */
1728		if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1729			count++;
1730
1731		/* unmap buffer on tx side */
1732		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1733		total_bytes += tx_buffer_info->bytecount;
1734		total_packets += tx_buffer_info->gso_segs;
1735		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1736
1737		/* increment rx/tx next to clean counters */
1738		rx_ntc++;
1739		if (rx_ntc == rx_ring->count)
1740			rx_ntc = 0;
1741		tx_ntc++;
1742		if (tx_ntc == tx_ring->count)
1743			tx_ntc = 0;
1744
1745		/* fetch next descriptor */
1746		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1747	}
1748
1749	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->queue_index);
1750	netdev_tx_completed_queue(txq, total_packets, total_bytes);
1751
1752	/* re-map buffers to ring, store next to clean values */
1753	igb_alloc_rx_buffers(rx_ring, count);
1754	rx_ring->next_to_clean = rx_ntc;
1755	tx_ring->next_to_clean = tx_ntc;
1756
1757	return count;
1758}
1759
1760static int igb_run_loopback_test(struct igb_adapter *adapter)
1761{
1762	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1763	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1764	u16 i, j, lc, good_cnt;
1765	int ret_val = 0;
1766	unsigned int size = IGB_RX_HDR_LEN;
1767	netdev_tx_t tx_ret_val;
1768	struct sk_buff *skb;
1769
1770	/* allocate test skb */
1771	skb = alloc_skb(size, GFP_KERNEL);
1772	if (!skb)
1773		return 11;
1774
1775	/* place data into test skb */
1776	igb_create_lbtest_frame(skb, size);
1777	skb_put(skb, size);
1778
1779	/*
1780	 * Calculate the loop count based on the largest descriptor ring
1781	 * The idea is to wrap the largest ring a number of times using 64
1782	 * send/receive pairs during each loop
1783	 */
1784
1785	if (rx_ring->count <= tx_ring->count)
1786		lc = ((tx_ring->count / 64) * 2) + 1;
1787	else
1788		lc = ((rx_ring->count / 64) * 2) + 1;
1789
1790	for (j = 0; j <= lc; j++) { /* loop count loop */
1791		/* reset count of good packets */
1792		good_cnt = 0;
1793
1794		/* place 64 packets on the transmit queue*/
1795		for (i = 0; i < 64; i++) {
1796			skb_get(skb);
1797			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1798			if (tx_ret_val == NETDEV_TX_OK)
1799				good_cnt++;
1800		}
1801
1802		if (good_cnt != 64) {
1803			ret_val = 12;
1804			break;
1805		}
1806
1807		/* allow 200 milliseconds for packets to go from tx to rx */
1808		msleep(200);
1809
1810		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1811		if (good_cnt != 64) {
1812			ret_val = 13;
1813			break;
1814		}
1815	} /* end loop count loop */
1816
1817	/* free the original skb */
1818	kfree_skb(skb);
1819
1820	return ret_val;
1821}
1822
1823static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1824{
1825	/* PHY loopback cannot be performed if SoL/IDER
1826	 * sessions are active */
1827	if (igb_check_reset_block(&adapter->hw)) {
1828		dev_err(&adapter->pdev->dev,
1829			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1830		*data = 0;
1831		goto out;
1832	}
1833	*data = igb_setup_desc_rings(adapter);
1834	if (*data)
1835		goto out;
1836	*data = igb_setup_loopback_test(adapter);
1837	if (*data)
1838		goto err_loopback;
1839	*data = igb_run_loopback_test(adapter);
1840	igb_loopback_cleanup(adapter);
1841
1842err_loopback:
1843	igb_free_desc_rings(adapter);
1844out:
1845	return *data;
1846}
1847
1848static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1849{
1850	struct e1000_hw *hw = &adapter->hw;
1851	*data = 0;
1852	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1853		int i = 0;
1854		hw->mac.serdes_has_link = false;
1855
1856		/* On some blade server designs, link establishment
1857		 * could take as long as 2-3 minutes */
1858		do {
1859			hw->mac.ops.check_for_link(&adapter->hw);
1860			if (hw->mac.serdes_has_link)
1861				return *data;
1862			msleep(20);
1863		} while (i++ < 3750);
1864
1865		*data = 1;
1866	} else {
1867		hw->mac.ops.check_for_link(&adapter->hw);
1868		if (hw->mac.autoneg)
1869			msleep(4000);
1870
1871		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1872			*data = 1;
1873	}
1874	return *data;
1875}
1876
1877static void igb_diag_test(struct net_device *netdev,
1878			  struct ethtool_test *eth_test, u64 *data)
1879{
1880	struct igb_adapter *adapter = netdev_priv(netdev);
1881	u16 autoneg_advertised;
1882	u8 forced_speed_duplex, autoneg;
1883	bool if_running = netif_running(netdev);
1884
1885	set_bit(__IGB_TESTING, &adapter->state);
1886	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1887		/* Offline tests */
1888
1889		/* save speed, duplex, autoneg settings */
1890		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1891		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1892		autoneg = adapter->hw.mac.autoneg;
1893
1894		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1895
1896		/* power up link for link test */
1897		igb_power_up_link(adapter);
1898
1899		/* Link test performed before hardware reset so autoneg doesn't
1900		 * interfere with test result */
1901		if (igb_link_test(adapter, &data[4]))
1902			eth_test->flags |= ETH_TEST_FL_FAILED;
1903
1904		if (if_running)
1905			/* indicate we're in test mode */
1906			dev_close(netdev);
1907		else
1908			igb_reset(adapter);
1909
1910		if (igb_reg_test(adapter, &data[0]))
1911			eth_test->flags |= ETH_TEST_FL_FAILED;
1912
1913		igb_reset(adapter);
1914		if (igb_eeprom_test(adapter, &data[1]))
1915			eth_test->flags |= ETH_TEST_FL_FAILED;
1916
1917		igb_reset(adapter);
1918		if (igb_intr_test(adapter, &data[2]))
1919			eth_test->flags |= ETH_TEST_FL_FAILED;
1920
1921		igb_reset(adapter);
1922		/* power up link for loopback test */
1923		igb_power_up_link(adapter);
1924		if (igb_loopback_test(adapter, &data[3]))
1925			eth_test->flags |= ETH_TEST_FL_FAILED;
1926
1927		/* restore speed, duplex, autoneg settings */
1928		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1929		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1930		adapter->hw.mac.autoneg = autoneg;
1931
1932		/* force this routine to wait until autoneg complete/timeout */
1933		adapter->hw.phy.autoneg_wait_to_complete = true;
1934		igb_reset(adapter);
1935		adapter->hw.phy.autoneg_wait_to_complete = false;
1936
1937		clear_bit(__IGB_TESTING, &adapter->state);
1938		if (if_running)
1939			dev_open(netdev);
1940	} else {
1941		dev_info(&adapter->pdev->dev, "online testing starting\n");
1942
1943		/* PHY is powered down when interface is down */
1944		if (if_running && igb_link_test(adapter, &data[4]))
1945			eth_test->flags |= ETH_TEST_FL_FAILED;
1946		else
1947			data[4] = 0;
1948
1949		/* Online tests aren't run; pass by default */
1950		data[0] = 0;
1951		data[1] = 0;
1952		data[2] = 0;
1953		data[3] = 0;
1954
1955		clear_bit(__IGB_TESTING, &adapter->state);
1956	}
1957	msleep_interruptible(4 * 1000);
1958}
1959
1960static int igb_wol_exclusion(struct igb_adapter *adapter,
1961			     struct ethtool_wolinfo *wol)
1962{
1963	struct e1000_hw *hw = &adapter->hw;
1964	int retval = 1; /* fail by default */
1965
1966	switch (hw->device_id) {
1967	case E1000_DEV_ID_82575GB_QUAD_COPPER:
1968		/* WoL not supported */
1969		wol->supported = 0;
1970		break;
1971	case E1000_DEV_ID_82575EB_FIBER_SERDES:
1972	case E1000_DEV_ID_82576_FIBER:
1973	case E1000_DEV_ID_82576_SERDES:
1974		/* Wake events not supported on port B */
1975		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1976			wol->supported = 0;
1977			break;
1978		}
1979		/* return success for non excluded adapter ports */
1980		retval = 0;
1981		break;
1982	case E1000_DEV_ID_82576_QUAD_COPPER:
1983	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1984		/* quad port adapters only support WoL on port A */
1985		if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1986			wol->supported = 0;
1987			break;
1988		}
1989		/* return success for non excluded adapter ports */
1990		retval = 0;
1991		break;
1992	default:
1993		/* dual port cards only support WoL on port A from now on
1994		 * unless it was enabled in the eeprom for port B
1995		 * so exclude FUNC_1 ports from having WoL enabled */
1996		if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1997		    !adapter->eeprom_wol) {
1998			wol->supported = 0;
1999			break;
2000		}
2001
2002		retval = 0;
2003	}
2004
2005	return retval;
2006}
2007
2008static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2009{
2010	struct igb_adapter *adapter = netdev_priv(netdev);
2011
2012	wol->supported = WAKE_UCAST | WAKE_MCAST |
2013	                 WAKE_BCAST | WAKE_MAGIC |
2014	                 WAKE_PHY;
2015	wol->wolopts = 0;
2016
2017	/* this function will set ->supported = 0 and return 1 if wol is not
2018	 * supported by this hardware */
2019	if (igb_wol_exclusion(adapter, wol) ||
2020	    !device_can_wakeup(&adapter->pdev->dev))
2021		return;
2022
2023	/* apply any specific unsupported masks here */
2024	switch (adapter->hw.device_id) {
2025	default:
2026		break;
2027	}
2028
2029	if (adapter->wol & E1000_WUFC_EX)
2030		wol->wolopts |= WAKE_UCAST;
2031	if (adapter->wol & E1000_WUFC_MC)
2032		wol->wolopts |= WAKE_MCAST;
2033	if (adapter->wol & E1000_WUFC_BC)
2034		wol->wolopts |= WAKE_BCAST;
2035	if (adapter->wol & E1000_WUFC_MAG)
2036		wol->wolopts |= WAKE_MAGIC;
2037	if (adapter->wol & E1000_WUFC_LNKC)
2038		wol->wolopts |= WAKE_PHY;
2039}
2040
2041static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2042{
2043	struct igb_adapter *adapter = netdev_priv(netdev);
2044
2045	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2046		return -EOPNOTSUPP;
2047
2048	if (igb_wol_exclusion(adapter, wol) ||
2049	    !device_can_wakeup(&adapter->pdev->dev))
2050		return wol->wolopts ? -EOPNOTSUPP : 0;
2051
2052	/* these settings will always override what we currently have */
2053	adapter->wol = 0;
2054
2055	if (wol->wolopts & WAKE_UCAST)
2056		adapter->wol |= E1000_WUFC_EX;
2057	if (wol->wolopts & WAKE_MCAST)
2058		adapter->wol |= E1000_WUFC_MC;
2059	if (wol->wolopts & WAKE_BCAST)
2060		adapter->wol |= E1000_WUFC_BC;
2061	if (wol->wolopts & WAKE_MAGIC)
2062		adapter->wol |= E1000_WUFC_MAG;
2063	if (wol->wolopts & WAKE_PHY)
2064		adapter->wol |= E1000_WUFC_LNKC;
2065	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2066
2067	return 0;
2068}
2069
2070/* bit defines for adapter->led_status */
2071#define IGB_LED_ON		0
2072
2073static int igb_set_phys_id(struct net_device *netdev,
2074			   enum ethtool_phys_id_state state)
2075{
2076	struct igb_adapter *adapter = netdev_priv(netdev);
2077	struct e1000_hw *hw = &adapter->hw;
2078
2079	switch (state) {
2080	case ETHTOOL_ID_ACTIVE:
2081		igb_blink_led(hw);
2082		return 2;
2083	case ETHTOOL_ID_ON:
2084		igb_blink_led(hw);
2085		break;
2086	case ETHTOOL_ID_OFF:
2087		igb_led_off(hw);
2088		break;
2089	case ETHTOOL_ID_INACTIVE:
2090		igb_led_off(hw);
2091		clear_bit(IGB_LED_ON, &adapter->led_status);
2092		igb_cleanup_led(hw);
2093		break;
2094	}
2095
2096	return 0;
2097}
2098
2099static int igb_set_coalesce(struct net_device *netdev,
2100			    struct ethtool_coalesce *ec)
2101{
2102	struct igb_adapter *adapter = netdev_priv(netdev);
2103	int i;
2104
2105	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2106	    ((ec->rx_coalesce_usecs > 3) &&
2107	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2108	    (ec->rx_coalesce_usecs == 2))
2109		return -EINVAL;
2110
2111	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2112	    ((ec->tx_coalesce_usecs > 3) &&
2113	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2114	    (ec->tx_coalesce_usecs == 2))
2115		return -EINVAL;
2116
2117	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2118		return -EINVAL;
2119
2120	/* If ITR is disabled, disable DMAC */
2121	if (ec->rx_coalesce_usecs == 0) {
2122		if (adapter->flags & IGB_FLAG_DMAC)
2123			adapter->flags &= ~IGB_FLAG_DMAC;
2124	}
2125
2126	/* convert to rate of irq's per second */
2127	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2128		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2129	else
2130		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2131
2132	/* convert to rate of irq's per second */
2133	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2134		adapter->tx_itr_setting = adapter->rx_itr_setting;
2135	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2136		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2137	else
2138		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2139
2140	for (i = 0; i < adapter->num_q_vectors; i++) {
2141		struct igb_q_vector *q_vector = adapter->q_vector[i];
2142		q_vector->tx.work_limit = adapter->tx_work_limit;
2143		if (q_vector->rx.ring)
2144			q_vector->itr_val = adapter->rx_itr_setting;
2145		else
2146			q_vector->itr_val = adapter->tx_itr_setting;
2147		if (q_vector->itr_val && q_vector->itr_val <= 3)
2148			q_vector->itr_val = IGB_START_ITR;
2149		q_vector->set_itr = 1;
2150	}
2151
2152	return 0;
2153}
2154
2155static int igb_get_coalesce(struct net_device *netdev,
2156			    struct ethtool_coalesce *ec)
2157{
2158	struct igb_adapter *adapter = netdev_priv(netdev);
2159
2160	if (adapter->rx_itr_setting <= 3)
2161		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2162	else
2163		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2164
2165	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2166		if (adapter->tx_itr_setting <= 3)
2167			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2168		else
2169			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2170	}
2171
2172	return 0;
2173}
2174
2175static int igb_nway_reset(struct net_device *netdev)
2176{
2177	struct igb_adapter *adapter = netdev_priv(netdev);
2178	if (netif_running(netdev))
2179		igb_reinit_locked(adapter);
2180	return 0;
2181}
2182
2183static int igb_get_sset_count(struct net_device *netdev, int sset)
2184{
2185	switch (sset) {
2186	case ETH_SS_STATS:
2187		return IGB_STATS_LEN;
2188	case ETH_SS_TEST:
2189		return IGB_TEST_LEN;
2190	default:
2191		return -ENOTSUPP;
2192	}
2193}
2194
2195static void igb_get_ethtool_stats(struct net_device *netdev,
2196				  struct ethtool_stats *stats, u64 *data)
2197{
2198	struct igb_adapter *adapter = netdev_priv(netdev);
2199	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2200	unsigned int start;
2201	struct igb_ring *ring;
2202	int i, j;
2203	char *p;
2204
2205	spin_lock(&adapter->stats64_lock);
2206	igb_update_stats(adapter, net_stats);
2207
2208	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2209		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2210		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2211			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2212	}
2213	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2214		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2215		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2216			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2217	}
2218	for (j = 0; j < adapter->num_tx_queues; j++) {
2219		u64	restart2;
2220
2221		ring = adapter->tx_ring[j];
2222		do {
2223			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2224			data[i]   = ring->tx_stats.packets;
2225			data[i+1] = ring->tx_stats.bytes;
2226			data[i+2] = ring->tx_stats.restart_queue;
2227		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2228		do {
2229			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2230			restart2  = ring->tx_stats.restart_queue2;
2231		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2232		data[i+2] += restart2;
2233
2234		i += IGB_TX_QUEUE_STATS_LEN;
2235	}
2236	for (j = 0; j < adapter->num_rx_queues; j++) {
2237		ring = adapter->rx_ring[j];
2238		do {
2239			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2240			data[i]   = ring->rx_stats.packets;
2241			data[i+1] = ring->rx_stats.bytes;
2242			data[i+2] = ring->rx_stats.drops;
2243			data[i+3] = ring->rx_stats.csum_err;
2244			data[i+4] = ring->rx_stats.alloc_failed;
2245		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2246		i += IGB_RX_QUEUE_STATS_LEN;
2247	}
2248	spin_unlock(&adapter->stats64_lock);
2249}
2250
2251static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2252{
2253	struct igb_adapter *adapter = netdev_priv(netdev);
2254	u8 *p = data;
2255	int i;
2256
2257	switch (stringset) {
2258	case ETH_SS_TEST:
2259		memcpy(data, *igb_gstrings_test,
2260			IGB_TEST_LEN*ETH_GSTRING_LEN);
2261		break;
2262	case ETH_SS_STATS:
2263		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2264			memcpy(p, igb_gstrings_stats[i].stat_string,
2265			       ETH_GSTRING_LEN);
2266			p += ETH_GSTRING_LEN;
2267		}
2268		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2269			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2270			       ETH_GSTRING_LEN);
2271			p += ETH_GSTRING_LEN;
2272		}
2273		for (i = 0; i < adapter->num_tx_queues; i++) {
2274			sprintf(p, "tx_queue_%u_packets", i);
2275			p += ETH_GSTRING_LEN;
2276			sprintf(p, "tx_queue_%u_bytes", i);
2277			p += ETH_GSTRING_LEN;
2278			sprintf(p, "tx_queue_%u_restart", i);
2279			p += ETH_GSTRING_LEN;
2280		}
2281		for (i = 0; i < adapter->num_rx_queues; i++) {
2282			sprintf(p, "rx_queue_%u_packets", i);
2283			p += ETH_GSTRING_LEN;
2284			sprintf(p, "rx_queue_%u_bytes", i);
2285			p += ETH_GSTRING_LEN;
2286			sprintf(p, "rx_queue_%u_drops", i);
2287			p += ETH_GSTRING_LEN;
2288			sprintf(p, "rx_queue_%u_csum_err", i);
2289			p += ETH_GSTRING_LEN;
2290			sprintf(p, "rx_queue_%u_alloc_failed", i);
2291			p += ETH_GSTRING_LEN;
2292		}
2293/*		BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2294		break;
2295	}
2296}
2297
2298static int igb_ethtool_begin(struct net_device *netdev)
2299{
2300	struct igb_adapter *adapter = netdev_priv(netdev);
2301	pm_runtime_get_sync(&adapter->pdev->dev);
2302	return 0;
2303}
2304
2305static void igb_ethtool_complete(struct net_device *netdev)
2306{
2307	struct igb_adapter *adapter = netdev_priv(netdev);
2308	pm_runtime_put(&adapter->pdev->dev);
2309}
2310
2311#ifdef CONFIG_IGB_PTP
2312static int igb_ethtool_get_ts_info(struct net_device *dev,
2313				   struct ethtool_ts_info *info)
2314{
2315	struct igb_adapter *adapter = netdev_priv(dev);
2316
2317	info->so_timestamping =
2318		SOF_TIMESTAMPING_TX_HARDWARE |
2319		SOF_TIMESTAMPING_RX_HARDWARE |
2320		SOF_TIMESTAMPING_RAW_HARDWARE;
2321
2322	if (adapter->ptp_clock)
2323		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2324	else
2325		info->phc_index = -1;
2326
2327	info->tx_types =
2328		(1 << HWTSTAMP_TX_OFF) |
2329		(1 << HWTSTAMP_TX_ON);
2330
2331	info->rx_filters =
2332		(1 << HWTSTAMP_FILTER_NONE) |
2333		(1 << HWTSTAMP_FILTER_ALL) |
2334		(1 << HWTSTAMP_FILTER_SOME) |
2335		(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2336		(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2337		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2338
2339	return 0;
2340}
2341#endif /* CONFIG_IGB_PTP */
2342
2343static const struct ethtool_ops igb_ethtool_ops = {
2344	.get_settings           = igb_get_settings,
2345	.set_settings           = igb_set_settings,
2346	.get_drvinfo            = igb_get_drvinfo,
2347	.get_regs_len           = igb_get_regs_len,
2348	.get_regs               = igb_get_regs,
2349	.get_wol                = igb_get_wol,
2350	.set_wol                = igb_set_wol,
2351	.get_msglevel           = igb_get_msglevel,
2352	.set_msglevel           = igb_set_msglevel,
2353	.nway_reset             = igb_nway_reset,
2354	.get_link               = igb_get_link,
2355	.get_eeprom_len         = igb_get_eeprom_len,
2356	.get_eeprom             = igb_get_eeprom,
2357	.set_eeprom             = igb_set_eeprom,
2358	.get_ringparam          = igb_get_ringparam,
2359	.set_ringparam          = igb_set_ringparam,
2360	.get_pauseparam         = igb_get_pauseparam,
2361	.set_pauseparam         = igb_set_pauseparam,
2362	.self_test              = igb_diag_test,
2363	.get_strings            = igb_get_strings,
2364	.set_phys_id            = igb_set_phys_id,
2365	.get_sset_count         = igb_get_sset_count,
2366	.get_ethtool_stats      = igb_get_ethtool_stats,
2367	.get_coalesce           = igb_get_coalesce,
2368	.set_coalesce           = igb_set_coalesce,
2369	.begin			= igb_ethtool_begin,
2370	.complete		= igb_ethtool_complete,
2371#ifdef CONFIG_IGB_PTP
2372	.get_ts_info		= igb_ethtool_get_ts_info,
2373#endif /* CONFIG_IGB_PTP */
2374};
2375
2376void igb_set_ethtool_ops(struct net_device *netdev)
2377{
2378	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2379}
2380