[go: nahoru, domu]

igb_ethtool.c revision 0d451e79567f0c5b51004354e08c95f442491cb4
1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24/* ethtool support for igb */
25
26#include <linux/vmalloc.h>
27#include <linux/netdevice.h>
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/interrupt.h>
31#include <linux/if_ether.h>
32#include <linux/ethtool.h>
33#include <linux/sched.h>
34#include <linux/slab.h>
35#include <linux/pm_runtime.h>
36#include <linux/highmem.h>
37#include <linux/mdio.h>
38
39#include "igb.h"
40
41struct igb_stats {
42	char stat_string[ETH_GSTRING_LEN];
43	int sizeof_stat;
44	int stat_offset;
45};
46
47#define IGB_STAT(_name, _stat) { \
48	.stat_string = _name, \
49	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
50	.stat_offset = offsetof(struct igb_adapter, _stat) \
51}
52static const struct igb_stats igb_gstrings_stats[] = {
53	IGB_STAT("rx_packets", stats.gprc),
54	IGB_STAT("tx_packets", stats.gptc),
55	IGB_STAT("rx_bytes", stats.gorc),
56	IGB_STAT("tx_bytes", stats.gotc),
57	IGB_STAT("rx_broadcast", stats.bprc),
58	IGB_STAT("tx_broadcast", stats.bptc),
59	IGB_STAT("rx_multicast", stats.mprc),
60	IGB_STAT("tx_multicast", stats.mptc),
61	IGB_STAT("multicast", stats.mprc),
62	IGB_STAT("collisions", stats.colc),
63	IGB_STAT("rx_crc_errors", stats.crcerrs),
64	IGB_STAT("rx_no_buffer_count", stats.rnbc),
65	IGB_STAT("rx_missed_errors", stats.mpc),
66	IGB_STAT("tx_aborted_errors", stats.ecol),
67	IGB_STAT("tx_carrier_errors", stats.tncrs),
68	IGB_STAT("tx_window_errors", stats.latecol),
69	IGB_STAT("tx_abort_late_coll", stats.latecol),
70	IGB_STAT("tx_deferred_ok", stats.dc),
71	IGB_STAT("tx_single_coll_ok", stats.scc),
72	IGB_STAT("tx_multi_coll_ok", stats.mcc),
73	IGB_STAT("tx_timeout_count", tx_timeout_count),
74	IGB_STAT("rx_long_length_errors", stats.roc),
75	IGB_STAT("rx_short_length_errors", stats.ruc),
76	IGB_STAT("rx_align_errors", stats.algnerrc),
77	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
78	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
79	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
80	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
81	IGB_STAT("tx_flow_control_xon", stats.xontxc),
82	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
83	IGB_STAT("rx_long_byte_count", stats.gorc),
84	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
85	IGB_STAT("tx_smbus", stats.mgptc),
86	IGB_STAT("rx_smbus", stats.mgprc),
87	IGB_STAT("dropped_smbus", stats.mgpdc),
88	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
89	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
90	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
91	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
92	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
93	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94};
95
96#define IGB_NETDEV_STAT(_net_stat) { \
97	.stat_string = __stringify(_net_stat), \
98	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100}
101static const struct igb_stats igb_gstrings_net_stats[] = {
102	IGB_NETDEV_STAT(rx_errors),
103	IGB_NETDEV_STAT(tx_errors),
104	IGB_NETDEV_STAT(tx_dropped),
105	IGB_NETDEV_STAT(rx_length_errors),
106	IGB_NETDEV_STAT(rx_over_errors),
107	IGB_NETDEV_STAT(rx_frame_errors),
108	IGB_NETDEV_STAT(rx_fifo_errors),
109	IGB_NETDEV_STAT(tx_fifo_errors),
110	IGB_NETDEV_STAT(tx_heartbeat_errors)
111};
112
113#define IGB_GLOBAL_STATS_LEN	\
114	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115#define IGB_NETDEV_STATS_LEN	\
116	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117#define IGB_RX_QUEUE_STATS_LEN \
118	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119
120#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121
122#define IGB_QUEUE_STATS_LEN \
123	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124	  IGB_RX_QUEUE_STATS_LEN) + \
125	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126	  IGB_TX_QUEUE_STATS_LEN))
127#define IGB_STATS_LEN \
128	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129
130static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131	"Register test  (offline)", "Eeprom test    (offline)",
132	"Interrupt test (offline)", "Loopback test  (offline)",
133	"Link test   (on/offline)"
134};
135#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136
137static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138{
139	struct igb_adapter *adapter = netdev_priv(netdev);
140	struct e1000_hw *hw = &adapter->hw;
141	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
142	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
143	u32 status;
144
145	status = rd32(E1000_STATUS);
146	if (hw->phy.media_type == e1000_media_type_copper) {
147
148		ecmd->supported = (SUPPORTED_10baseT_Half |
149				   SUPPORTED_10baseT_Full |
150				   SUPPORTED_100baseT_Half |
151				   SUPPORTED_100baseT_Full |
152				   SUPPORTED_1000baseT_Full|
153				   SUPPORTED_Autoneg |
154				   SUPPORTED_TP |
155				   SUPPORTED_Pause);
156		ecmd->advertising = ADVERTISED_TP;
157
158		if (hw->mac.autoneg == 1) {
159			ecmd->advertising |= ADVERTISED_Autoneg;
160			/* the e1000 autoneg seems to match ethtool nicely */
161			ecmd->advertising |= hw->phy.autoneg_advertised;
162		}
163
164		ecmd->port = PORT_TP;
165		ecmd->phy_address = hw->phy.addr;
166		ecmd->transceiver = XCVR_INTERNAL;
167	} else {
168		ecmd->supported = (SUPPORTED_FIBRE |
169				   SUPPORTED_1000baseKX_Full |
170				   SUPPORTED_Autoneg |
171				   SUPPORTED_Pause);
172		ecmd->advertising = (ADVERTISED_FIBRE |
173				     ADVERTISED_1000baseKX_Full);
174		if (hw->mac.type == e1000_i354) {
175			if ((hw->device_id ==
176			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
177			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
178				ecmd->supported |= SUPPORTED_2500baseX_Full;
179				ecmd->supported &=
180					~SUPPORTED_1000baseKX_Full;
181				ecmd->advertising |= ADVERTISED_2500baseX_Full;
182				ecmd->advertising &=
183					~ADVERTISED_1000baseKX_Full;
184			}
185		}
186		if (eth_flags->e100_base_fx) {
187			ecmd->supported |= SUPPORTED_100baseT_Full;
188			ecmd->advertising |= ADVERTISED_100baseT_Full;
189		}
190		if (hw->mac.autoneg == 1)
191			ecmd->advertising |= ADVERTISED_Autoneg;
192
193		ecmd->port = PORT_FIBRE;
194		ecmd->transceiver = XCVR_EXTERNAL;
195	}
196	if (hw->mac.autoneg != 1)
197		ecmd->advertising &= ~(ADVERTISED_Pause |
198				       ADVERTISED_Asym_Pause);
199
200	switch (hw->fc.requested_mode) {
201	case e1000_fc_full:
202		ecmd->advertising |= ADVERTISED_Pause;
203		break;
204	case e1000_fc_rx_pause:
205		ecmd->advertising |= (ADVERTISED_Pause |
206				      ADVERTISED_Asym_Pause);
207		break;
208	case e1000_fc_tx_pause:
209		ecmd->advertising |=  ADVERTISED_Asym_Pause;
210		break;
211	default:
212		ecmd->advertising &= ~(ADVERTISED_Pause |
213				       ADVERTISED_Asym_Pause);
214	}
215	if (status & E1000_STATUS_LU) {
216		if ((status & E1000_STATUS_2P5_SKU) &&
217		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
218			ecmd->speed = SPEED_2500;
219		} else if (status & E1000_STATUS_SPEED_1000) {
220			ecmd->speed = SPEED_1000;
221		} else if (status & E1000_STATUS_SPEED_100) {
222			ecmd->speed = SPEED_100;
223		} else {
224			ecmd->speed = SPEED_10;
225		}
226		if ((status & E1000_STATUS_FD) ||
227		    hw->phy.media_type != e1000_media_type_copper)
228			ecmd->duplex = DUPLEX_FULL;
229		else
230			ecmd->duplex = DUPLEX_HALF;
231	} else {
232		ecmd->speed = -1;
233		ecmd->duplex = -1;
234	}
235	if ((hw->phy.media_type == e1000_media_type_fiber) ||
236	    hw->mac.autoneg)
237		ecmd->autoneg = AUTONEG_ENABLE;
238	else
239		ecmd->autoneg = AUTONEG_DISABLE;
240
241	/* MDI-X => 2; MDI =>1; Invalid =>0 */
242	if (hw->phy.media_type == e1000_media_type_copper)
243		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
244						      ETH_TP_MDI;
245	else
246		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
247
248	if (hw->phy.mdix == AUTO_ALL_MODES)
249		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
250	else
251		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
252
253	return 0;
254}
255
256static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
257{
258	struct igb_adapter *adapter = netdev_priv(netdev);
259	struct e1000_hw *hw = &adapter->hw;
260
261	/* When SoL/IDER sessions are active, autoneg/speed/duplex
262	 * cannot be changed
263	 */
264	if (igb_check_reset_block(hw)) {
265		dev_err(&adapter->pdev->dev,
266			"Cannot change link characteristics when SoL/IDER is active.\n");
267		return -EINVAL;
268	}
269
270	/* MDI setting is only allowed when autoneg enabled because
271	 * some hardware doesn't allow MDI setting when speed or
272	 * duplex is forced.
273	 */
274	if (ecmd->eth_tp_mdix_ctrl) {
275		if (hw->phy.media_type != e1000_media_type_copper)
276			return -EOPNOTSUPP;
277
278		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
279		    (ecmd->autoneg != AUTONEG_ENABLE)) {
280			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
281			return -EINVAL;
282		}
283	}
284
285	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
286		usleep_range(1000, 2000);
287
288	if (ecmd->autoneg == AUTONEG_ENABLE) {
289		hw->mac.autoneg = 1;
290		if (hw->phy.media_type == e1000_media_type_fiber) {
291			hw->phy.autoneg_advertised = ecmd->advertising |
292						     ADVERTISED_FIBRE |
293						     ADVERTISED_Autoneg;
294			switch (adapter->link_speed) {
295			case SPEED_2500:
296				hw->phy.autoneg_advertised =
297					ADVERTISED_2500baseX_Full;
298				break;
299			case SPEED_1000:
300				hw->phy.autoneg_advertised =
301					ADVERTISED_1000baseT_Full;
302				break;
303			case SPEED_100:
304				hw->phy.autoneg_advertised =
305					ADVERTISED_100baseT_Full;
306				break;
307			default:
308				break;
309			}
310		} else {
311			hw->phy.autoneg_advertised = ecmd->advertising |
312						     ADVERTISED_TP |
313						     ADVERTISED_Autoneg;
314		}
315		ecmd->advertising = hw->phy.autoneg_advertised;
316		if (adapter->fc_autoneg)
317			hw->fc.requested_mode = e1000_fc_default;
318	} else {
319		u32 speed = ethtool_cmd_speed(ecmd);
320		/* calling this overrides forced MDI setting */
321		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
322			clear_bit(__IGB_RESETTING, &adapter->state);
323			return -EINVAL;
324		}
325	}
326
327	/* MDI-X => 2; MDI => 1; Auto => 3 */
328	if (ecmd->eth_tp_mdix_ctrl) {
329		/* fix up the value for auto (3 => 0) as zero is mapped
330		 * internally to auto
331		 */
332		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
333			hw->phy.mdix = AUTO_ALL_MODES;
334		else
335			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
336	}
337
338	/* reset the link */
339	if (netif_running(adapter->netdev)) {
340		igb_down(adapter);
341		igb_up(adapter);
342	} else
343		igb_reset(adapter);
344
345	clear_bit(__IGB_RESETTING, &adapter->state);
346	return 0;
347}
348
349static u32 igb_get_link(struct net_device *netdev)
350{
351	struct igb_adapter *adapter = netdev_priv(netdev);
352	struct e1000_mac_info *mac = &adapter->hw.mac;
353
354	/* If the link is not reported up to netdev, interrupts are disabled,
355	 * and so the physical link state may have changed since we last
356	 * looked. Set get_link_status to make sure that the true link
357	 * state is interrogated, rather than pulling a cached and possibly
358	 * stale link state from the driver.
359	 */
360	if (!netif_carrier_ok(netdev))
361		mac->get_link_status = 1;
362
363	return igb_has_link(adapter);
364}
365
366static void igb_get_pauseparam(struct net_device *netdev,
367			       struct ethtool_pauseparam *pause)
368{
369	struct igb_adapter *adapter = netdev_priv(netdev);
370	struct e1000_hw *hw = &adapter->hw;
371
372	pause->autoneg =
373		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
374
375	if (hw->fc.current_mode == e1000_fc_rx_pause)
376		pause->rx_pause = 1;
377	else if (hw->fc.current_mode == e1000_fc_tx_pause)
378		pause->tx_pause = 1;
379	else if (hw->fc.current_mode == e1000_fc_full) {
380		pause->rx_pause = 1;
381		pause->tx_pause = 1;
382	}
383}
384
385static int igb_set_pauseparam(struct net_device *netdev,
386			      struct ethtool_pauseparam *pause)
387{
388	struct igb_adapter *adapter = netdev_priv(netdev);
389	struct e1000_hw *hw = &adapter->hw;
390	int retval = 0;
391
392	/* 100basefx does not support setting link flow control */
393	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
394		return -EINVAL;
395
396	adapter->fc_autoneg = pause->autoneg;
397
398	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
399		usleep_range(1000, 2000);
400
401	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
402		hw->fc.requested_mode = e1000_fc_default;
403		if (netif_running(adapter->netdev)) {
404			igb_down(adapter);
405			igb_up(adapter);
406		} else {
407			igb_reset(adapter);
408		}
409	} else {
410		if (pause->rx_pause && pause->tx_pause)
411			hw->fc.requested_mode = e1000_fc_full;
412		else if (pause->rx_pause && !pause->tx_pause)
413			hw->fc.requested_mode = e1000_fc_rx_pause;
414		else if (!pause->rx_pause && pause->tx_pause)
415			hw->fc.requested_mode = e1000_fc_tx_pause;
416		else if (!pause->rx_pause && !pause->tx_pause)
417			hw->fc.requested_mode = e1000_fc_none;
418
419		hw->fc.current_mode = hw->fc.requested_mode;
420
421		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
422			  igb_force_mac_fc(hw) : igb_setup_link(hw));
423	}
424
425	clear_bit(__IGB_RESETTING, &adapter->state);
426	return retval;
427}
428
429static u32 igb_get_msglevel(struct net_device *netdev)
430{
431	struct igb_adapter *adapter = netdev_priv(netdev);
432	return adapter->msg_enable;
433}
434
435static void igb_set_msglevel(struct net_device *netdev, u32 data)
436{
437	struct igb_adapter *adapter = netdev_priv(netdev);
438	adapter->msg_enable = data;
439}
440
441static int igb_get_regs_len(struct net_device *netdev)
442{
443#define IGB_REGS_LEN 739
444	return IGB_REGS_LEN * sizeof(u32);
445}
446
447static void igb_get_regs(struct net_device *netdev,
448			 struct ethtool_regs *regs, void *p)
449{
450	struct igb_adapter *adapter = netdev_priv(netdev);
451	struct e1000_hw *hw = &adapter->hw;
452	u32 *regs_buff = p;
453	u8 i;
454
455	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
456
457	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
458
459	/* General Registers */
460	regs_buff[0] = rd32(E1000_CTRL);
461	regs_buff[1] = rd32(E1000_STATUS);
462	regs_buff[2] = rd32(E1000_CTRL_EXT);
463	regs_buff[3] = rd32(E1000_MDIC);
464	regs_buff[4] = rd32(E1000_SCTL);
465	regs_buff[5] = rd32(E1000_CONNSW);
466	regs_buff[6] = rd32(E1000_VET);
467	regs_buff[7] = rd32(E1000_LEDCTL);
468	regs_buff[8] = rd32(E1000_PBA);
469	regs_buff[9] = rd32(E1000_PBS);
470	regs_buff[10] = rd32(E1000_FRTIMER);
471	regs_buff[11] = rd32(E1000_TCPTIMER);
472
473	/* NVM Register */
474	regs_buff[12] = rd32(E1000_EECD);
475
476	/* Interrupt */
477	/* Reading EICS for EICR because they read the
478	 * same but EICS does not clear on read
479	 */
480	regs_buff[13] = rd32(E1000_EICS);
481	regs_buff[14] = rd32(E1000_EICS);
482	regs_buff[15] = rd32(E1000_EIMS);
483	regs_buff[16] = rd32(E1000_EIMC);
484	regs_buff[17] = rd32(E1000_EIAC);
485	regs_buff[18] = rd32(E1000_EIAM);
486	/* Reading ICS for ICR because they read the
487	 * same but ICS does not clear on read
488	 */
489	regs_buff[19] = rd32(E1000_ICS);
490	regs_buff[20] = rd32(E1000_ICS);
491	regs_buff[21] = rd32(E1000_IMS);
492	regs_buff[22] = rd32(E1000_IMC);
493	regs_buff[23] = rd32(E1000_IAC);
494	regs_buff[24] = rd32(E1000_IAM);
495	regs_buff[25] = rd32(E1000_IMIRVP);
496
497	/* Flow Control */
498	regs_buff[26] = rd32(E1000_FCAL);
499	regs_buff[27] = rd32(E1000_FCAH);
500	regs_buff[28] = rd32(E1000_FCTTV);
501	regs_buff[29] = rd32(E1000_FCRTL);
502	regs_buff[30] = rd32(E1000_FCRTH);
503	regs_buff[31] = rd32(E1000_FCRTV);
504
505	/* Receive */
506	regs_buff[32] = rd32(E1000_RCTL);
507	regs_buff[33] = rd32(E1000_RXCSUM);
508	regs_buff[34] = rd32(E1000_RLPML);
509	regs_buff[35] = rd32(E1000_RFCTL);
510	regs_buff[36] = rd32(E1000_MRQC);
511	regs_buff[37] = rd32(E1000_VT_CTL);
512
513	/* Transmit */
514	regs_buff[38] = rd32(E1000_TCTL);
515	regs_buff[39] = rd32(E1000_TCTL_EXT);
516	regs_buff[40] = rd32(E1000_TIPG);
517	regs_buff[41] = rd32(E1000_DTXCTL);
518
519	/* Wake Up */
520	regs_buff[42] = rd32(E1000_WUC);
521	regs_buff[43] = rd32(E1000_WUFC);
522	regs_buff[44] = rd32(E1000_WUS);
523	regs_buff[45] = rd32(E1000_IPAV);
524	regs_buff[46] = rd32(E1000_WUPL);
525
526	/* MAC */
527	regs_buff[47] = rd32(E1000_PCS_CFG0);
528	regs_buff[48] = rd32(E1000_PCS_LCTL);
529	regs_buff[49] = rd32(E1000_PCS_LSTAT);
530	regs_buff[50] = rd32(E1000_PCS_ANADV);
531	regs_buff[51] = rd32(E1000_PCS_LPAB);
532	regs_buff[52] = rd32(E1000_PCS_NPTX);
533	regs_buff[53] = rd32(E1000_PCS_LPABNP);
534
535	/* Statistics */
536	regs_buff[54] = adapter->stats.crcerrs;
537	regs_buff[55] = adapter->stats.algnerrc;
538	regs_buff[56] = adapter->stats.symerrs;
539	regs_buff[57] = adapter->stats.rxerrc;
540	regs_buff[58] = adapter->stats.mpc;
541	regs_buff[59] = adapter->stats.scc;
542	regs_buff[60] = adapter->stats.ecol;
543	regs_buff[61] = adapter->stats.mcc;
544	regs_buff[62] = adapter->stats.latecol;
545	regs_buff[63] = adapter->stats.colc;
546	regs_buff[64] = adapter->stats.dc;
547	regs_buff[65] = adapter->stats.tncrs;
548	regs_buff[66] = adapter->stats.sec;
549	regs_buff[67] = adapter->stats.htdpmc;
550	regs_buff[68] = adapter->stats.rlec;
551	regs_buff[69] = adapter->stats.xonrxc;
552	regs_buff[70] = adapter->stats.xontxc;
553	regs_buff[71] = adapter->stats.xoffrxc;
554	regs_buff[72] = adapter->stats.xofftxc;
555	regs_buff[73] = adapter->stats.fcruc;
556	regs_buff[74] = adapter->stats.prc64;
557	regs_buff[75] = adapter->stats.prc127;
558	regs_buff[76] = adapter->stats.prc255;
559	regs_buff[77] = adapter->stats.prc511;
560	regs_buff[78] = adapter->stats.prc1023;
561	regs_buff[79] = adapter->stats.prc1522;
562	regs_buff[80] = adapter->stats.gprc;
563	regs_buff[81] = adapter->stats.bprc;
564	regs_buff[82] = adapter->stats.mprc;
565	regs_buff[83] = adapter->stats.gptc;
566	regs_buff[84] = adapter->stats.gorc;
567	regs_buff[86] = adapter->stats.gotc;
568	regs_buff[88] = adapter->stats.rnbc;
569	regs_buff[89] = adapter->stats.ruc;
570	regs_buff[90] = adapter->stats.rfc;
571	regs_buff[91] = adapter->stats.roc;
572	regs_buff[92] = adapter->stats.rjc;
573	regs_buff[93] = adapter->stats.mgprc;
574	regs_buff[94] = adapter->stats.mgpdc;
575	regs_buff[95] = adapter->stats.mgptc;
576	regs_buff[96] = adapter->stats.tor;
577	regs_buff[98] = adapter->stats.tot;
578	regs_buff[100] = adapter->stats.tpr;
579	regs_buff[101] = adapter->stats.tpt;
580	regs_buff[102] = adapter->stats.ptc64;
581	regs_buff[103] = adapter->stats.ptc127;
582	regs_buff[104] = adapter->stats.ptc255;
583	regs_buff[105] = adapter->stats.ptc511;
584	regs_buff[106] = adapter->stats.ptc1023;
585	regs_buff[107] = adapter->stats.ptc1522;
586	regs_buff[108] = adapter->stats.mptc;
587	regs_buff[109] = adapter->stats.bptc;
588	regs_buff[110] = adapter->stats.tsctc;
589	regs_buff[111] = adapter->stats.iac;
590	regs_buff[112] = adapter->stats.rpthc;
591	regs_buff[113] = adapter->stats.hgptc;
592	regs_buff[114] = adapter->stats.hgorc;
593	regs_buff[116] = adapter->stats.hgotc;
594	regs_buff[118] = adapter->stats.lenerrs;
595	regs_buff[119] = adapter->stats.scvpc;
596	regs_buff[120] = adapter->stats.hrmpc;
597
598	for (i = 0; i < 4; i++)
599		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
600	for (i = 0; i < 4; i++)
601		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
602	for (i = 0; i < 4; i++)
603		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
604	for (i = 0; i < 4; i++)
605		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
606	for (i = 0; i < 4; i++)
607		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
608	for (i = 0; i < 4; i++)
609		regs_buff[141 + i] = rd32(E1000_RDH(i));
610	for (i = 0; i < 4; i++)
611		regs_buff[145 + i] = rd32(E1000_RDT(i));
612	for (i = 0; i < 4; i++)
613		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
614
615	for (i = 0; i < 10; i++)
616		regs_buff[153 + i] = rd32(E1000_EITR(i));
617	for (i = 0; i < 8; i++)
618		regs_buff[163 + i] = rd32(E1000_IMIR(i));
619	for (i = 0; i < 8; i++)
620		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
621	for (i = 0; i < 16; i++)
622		regs_buff[179 + i] = rd32(E1000_RAL(i));
623	for (i = 0; i < 16; i++)
624		regs_buff[195 + i] = rd32(E1000_RAH(i));
625
626	for (i = 0; i < 4; i++)
627		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
628	for (i = 0; i < 4; i++)
629		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
630	for (i = 0; i < 4; i++)
631		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
632	for (i = 0; i < 4; i++)
633		regs_buff[223 + i] = rd32(E1000_TDH(i));
634	for (i = 0; i < 4; i++)
635		regs_buff[227 + i] = rd32(E1000_TDT(i));
636	for (i = 0; i < 4; i++)
637		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
638	for (i = 0; i < 4; i++)
639		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
640	for (i = 0; i < 4; i++)
641		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
642	for (i = 0; i < 4; i++)
643		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
644
645	for (i = 0; i < 4; i++)
646		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
647	for (i = 0; i < 4; i++)
648		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
649	for (i = 0; i < 32; i++)
650		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
651	for (i = 0; i < 128; i++)
652		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
653	for (i = 0; i < 128; i++)
654		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
655	for (i = 0; i < 4; i++)
656		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
657
658	regs_buff[547] = rd32(E1000_TDFH);
659	regs_buff[548] = rd32(E1000_TDFT);
660	regs_buff[549] = rd32(E1000_TDFHS);
661	regs_buff[550] = rd32(E1000_TDFPC);
662
663	if (hw->mac.type > e1000_82580) {
664		regs_buff[551] = adapter->stats.o2bgptc;
665		regs_buff[552] = adapter->stats.b2ospc;
666		regs_buff[553] = adapter->stats.o2bspc;
667		regs_buff[554] = adapter->stats.b2ogprc;
668	}
669
670	if (hw->mac.type != e1000_82576)
671		return;
672	for (i = 0; i < 12; i++)
673		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
674	for (i = 0; i < 4; i++)
675		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
676	for (i = 0; i < 12; i++)
677		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
678	for (i = 0; i < 12; i++)
679		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
680	for (i = 0; i < 12; i++)
681		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
682	for (i = 0; i < 12; i++)
683		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
684	for (i = 0; i < 12; i++)
685		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
686	for (i = 0; i < 12; i++)
687		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
688
689	for (i = 0; i < 12; i++)
690		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
691	for (i = 0; i < 12; i++)
692		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
693	for (i = 0; i < 12; i++)
694		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
695	for (i = 0; i < 12; i++)
696		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
697	for (i = 0; i < 12; i++)
698		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
699	for (i = 0; i < 12; i++)
700		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
701	for (i = 0; i < 12; i++)
702		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
703	for (i = 0; i < 12; i++)
704		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
705}
706
707static int igb_get_eeprom_len(struct net_device *netdev)
708{
709	struct igb_adapter *adapter = netdev_priv(netdev);
710	return adapter->hw.nvm.word_size * 2;
711}
712
713static int igb_get_eeprom(struct net_device *netdev,
714			  struct ethtool_eeprom *eeprom, u8 *bytes)
715{
716	struct igb_adapter *adapter = netdev_priv(netdev);
717	struct e1000_hw *hw = &adapter->hw;
718	u16 *eeprom_buff;
719	int first_word, last_word;
720	int ret_val = 0;
721	u16 i;
722
723	if (eeprom->len == 0)
724		return -EINVAL;
725
726	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
727
728	first_word = eeprom->offset >> 1;
729	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
730
731	eeprom_buff = kmalloc(sizeof(u16) *
732			(last_word - first_word + 1), GFP_KERNEL);
733	if (!eeprom_buff)
734		return -ENOMEM;
735
736	if (hw->nvm.type == e1000_nvm_eeprom_spi)
737		ret_val = hw->nvm.ops.read(hw, first_word,
738					   last_word - first_word + 1,
739					   eeprom_buff);
740	else {
741		for (i = 0; i < last_word - first_word + 1; i++) {
742			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
743						   &eeprom_buff[i]);
744			if (ret_val)
745				break;
746		}
747	}
748
749	/* Device's eeprom is always little-endian, word addressable */
750	for (i = 0; i < last_word - first_word + 1; i++)
751		le16_to_cpus(&eeprom_buff[i]);
752
753	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
754			eeprom->len);
755	kfree(eeprom_buff);
756
757	return ret_val;
758}
759
760static int igb_set_eeprom(struct net_device *netdev,
761			  struct ethtool_eeprom *eeprom, u8 *bytes)
762{
763	struct igb_adapter *adapter = netdev_priv(netdev);
764	struct e1000_hw *hw = &adapter->hw;
765	u16 *eeprom_buff;
766	void *ptr;
767	int max_len, first_word, last_word, ret_val = 0;
768	u16 i;
769
770	if (eeprom->len == 0)
771		return -EOPNOTSUPP;
772
773	if ((hw->mac.type >= e1000_i210) &&
774	    !igb_get_flash_presence_i210(hw)) {
775		return -EOPNOTSUPP;
776	}
777
778	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
779		return -EFAULT;
780
781	max_len = hw->nvm.word_size * 2;
782
783	first_word = eeprom->offset >> 1;
784	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
785	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
786	if (!eeprom_buff)
787		return -ENOMEM;
788
789	ptr = (void *)eeprom_buff;
790
791	if (eeprom->offset & 1) {
792		/* need read/modify/write of first changed EEPROM word
793		 * only the second byte of the word is being modified
794		 */
795		ret_val = hw->nvm.ops.read(hw, first_word, 1,
796					    &eeprom_buff[0]);
797		ptr++;
798	}
799	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
800		/* need read/modify/write of last changed EEPROM word
801		 * only the first byte of the word is being modified
802		 */
803		ret_val = hw->nvm.ops.read(hw, last_word, 1,
804				   &eeprom_buff[last_word - first_word]);
805	}
806
807	/* Device's eeprom is always little-endian, word addressable */
808	for (i = 0; i < last_word - first_word + 1; i++)
809		le16_to_cpus(&eeprom_buff[i]);
810
811	memcpy(ptr, bytes, eeprom->len);
812
813	for (i = 0; i < last_word - first_word + 1; i++)
814		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
815
816	ret_val = hw->nvm.ops.write(hw, first_word,
817				    last_word - first_word + 1, eeprom_buff);
818
819	/* Update the checksum if nvm write succeeded */
820	if (ret_val == 0)
821		hw->nvm.ops.update(hw);
822
823	igb_set_fw_version(adapter);
824	kfree(eeprom_buff);
825	return ret_val;
826}
827
828static void igb_get_drvinfo(struct net_device *netdev,
829			    struct ethtool_drvinfo *drvinfo)
830{
831	struct igb_adapter *adapter = netdev_priv(netdev);
832
833	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
834	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
835
836	/* EEPROM image version # is reported as firmware version # for
837	 * 82575 controllers
838	 */
839	strlcpy(drvinfo->fw_version, adapter->fw_version,
840		sizeof(drvinfo->fw_version));
841	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
842		sizeof(drvinfo->bus_info));
843	drvinfo->n_stats = IGB_STATS_LEN;
844	drvinfo->testinfo_len = IGB_TEST_LEN;
845	drvinfo->regdump_len = igb_get_regs_len(netdev);
846	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
847}
848
849static void igb_get_ringparam(struct net_device *netdev,
850			      struct ethtool_ringparam *ring)
851{
852	struct igb_adapter *adapter = netdev_priv(netdev);
853
854	ring->rx_max_pending = IGB_MAX_RXD;
855	ring->tx_max_pending = IGB_MAX_TXD;
856	ring->rx_pending = adapter->rx_ring_count;
857	ring->tx_pending = adapter->tx_ring_count;
858}
859
860static int igb_set_ringparam(struct net_device *netdev,
861			     struct ethtool_ringparam *ring)
862{
863	struct igb_adapter *adapter = netdev_priv(netdev);
864	struct igb_ring *temp_ring;
865	int i, err = 0;
866	u16 new_rx_count, new_tx_count;
867
868	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
869		return -EINVAL;
870
871	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
872	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
873	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
874
875	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
876	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
877	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
878
879	if ((new_tx_count == adapter->tx_ring_count) &&
880	    (new_rx_count == adapter->rx_ring_count)) {
881		/* nothing to do */
882		return 0;
883	}
884
885	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
886		usleep_range(1000, 2000);
887
888	if (!netif_running(adapter->netdev)) {
889		for (i = 0; i < adapter->num_tx_queues; i++)
890			adapter->tx_ring[i]->count = new_tx_count;
891		for (i = 0; i < adapter->num_rx_queues; i++)
892			adapter->rx_ring[i]->count = new_rx_count;
893		adapter->tx_ring_count = new_tx_count;
894		adapter->rx_ring_count = new_rx_count;
895		goto clear_reset;
896	}
897
898	if (adapter->num_tx_queues > adapter->num_rx_queues)
899		temp_ring = vmalloc(adapter->num_tx_queues *
900				    sizeof(struct igb_ring));
901	else
902		temp_ring = vmalloc(adapter->num_rx_queues *
903				    sizeof(struct igb_ring));
904
905	if (!temp_ring) {
906		err = -ENOMEM;
907		goto clear_reset;
908	}
909
910	igb_down(adapter);
911
912	/* We can't just free everything and then setup again,
913	 * because the ISRs in MSI-X mode get passed pointers
914	 * to the Tx and Rx ring structs.
915	 */
916	if (new_tx_count != adapter->tx_ring_count) {
917		for (i = 0; i < adapter->num_tx_queues; i++) {
918			memcpy(&temp_ring[i], adapter->tx_ring[i],
919			       sizeof(struct igb_ring));
920
921			temp_ring[i].count = new_tx_count;
922			err = igb_setup_tx_resources(&temp_ring[i]);
923			if (err) {
924				while (i) {
925					i--;
926					igb_free_tx_resources(&temp_ring[i]);
927				}
928				goto err_setup;
929			}
930		}
931
932		for (i = 0; i < adapter->num_tx_queues; i++) {
933			igb_free_tx_resources(adapter->tx_ring[i]);
934
935			memcpy(adapter->tx_ring[i], &temp_ring[i],
936			       sizeof(struct igb_ring));
937		}
938
939		adapter->tx_ring_count = new_tx_count;
940	}
941
942	if (new_rx_count != adapter->rx_ring_count) {
943		for (i = 0; i < adapter->num_rx_queues; i++) {
944			memcpy(&temp_ring[i], adapter->rx_ring[i],
945			       sizeof(struct igb_ring));
946
947			temp_ring[i].count = new_rx_count;
948			err = igb_setup_rx_resources(&temp_ring[i]);
949			if (err) {
950				while (i) {
951					i--;
952					igb_free_rx_resources(&temp_ring[i]);
953				}
954				goto err_setup;
955			}
956
957		}
958
959		for (i = 0; i < adapter->num_rx_queues; i++) {
960			igb_free_rx_resources(adapter->rx_ring[i]);
961
962			memcpy(adapter->rx_ring[i], &temp_ring[i],
963			       sizeof(struct igb_ring));
964		}
965
966		adapter->rx_ring_count = new_rx_count;
967	}
968err_setup:
969	igb_up(adapter);
970	vfree(temp_ring);
971clear_reset:
972	clear_bit(__IGB_RESETTING, &adapter->state);
973	return err;
974}
975
976/* ethtool register test data */
977struct igb_reg_test {
978	u16 reg;
979	u16 reg_offset;
980	u16 array_len;
981	u16 test_type;
982	u32 mask;
983	u32 write;
984};
985
986/* In the hardware, registers are laid out either singly, in arrays
987 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
988 * most tests take place on arrays or single registers (handled
989 * as a single-element array) and special-case the tables.
990 * Table tests are always pattern tests.
991 *
992 * We also make provision for some required setup steps by specifying
993 * registers to be written without any read-back testing.
994 */
995
996#define PATTERN_TEST	1
997#define SET_READ_TEST	2
998#define WRITE_NO_TEST	3
999#define TABLE32_TEST	4
1000#define TABLE64_TEST_LO	5
1001#define TABLE64_TEST_HI	6
1002
1003/* i210 reg test */
1004static struct igb_reg_test reg_test_i210[] = {
1005	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1006	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1007	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1008	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1009	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1010	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1011	/* RDH is read-only for i210, only test RDT. */
1012	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1013	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1014	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1015	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1016	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1017	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1018	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1019	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1020	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1021	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1022	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1023	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1024	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1025						0xFFFFFFFF, 0xFFFFFFFF },
1026	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1027						0x900FFFFF, 0xFFFFFFFF },
1028	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1029						0xFFFFFFFF, 0xFFFFFFFF },
1030	{ 0, 0, 0, 0, 0 }
1031};
1032
1033/* i350 reg test */
1034static struct igb_reg_test reg_test_i350[] = {
1035	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1036	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1037	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1038	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1039	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1040	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1041	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1042	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1043	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1044	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1045	/* RDH is read-only for i350, only test RDT. */
1046	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1047	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1048	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1049	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1050	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1051	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1052	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1053	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1054	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1055	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1056	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1057	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1058	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1059	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1060	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1061	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1062	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1063	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1064						0xFFFFFFFF, 0xFFFFFFFF },
1065	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1066						0xC3FFFFFF, 0xFFFFFFFF },
1067	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1068						0xFFFFFFFF, 0xFFFFFFFF },
1069	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1070						0xC3FFFFFF, 0xFFFFFFFF },
1071	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1072						0xFFFFFFFF, 0xFFFFFFFF },
1073	{ 0, 0, 0, 0 }
1074};
1075
1076/* 82580 reg test */
1077static struct igb_reg_test reg_test_82580[] = {
1078	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1079	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1080	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1081	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1082	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1083	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1084	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1085	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1086	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1087	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1088	/* RDH is read-only for 82580, only test RDT. */
1089	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1090	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1091	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1092	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1093	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1094	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1095	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1096	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1097	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1098	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1099	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1100	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1101	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1102	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1103	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1104	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1105	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1106	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1107						0xFFFFFFFF, 0xFFFFFFFF },
1108	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1109						0x83FFFFFF, 0xFFFFFFFF },
1110	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1111						0xFFFFFFFF, 0xFFFFFFFF },
1112	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1113						0x83FFFFFF, 0xFFFFFFFF },
1114	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1115						0xFFFFFFFF, 0xFFFFFFFF },
1116	{ 0, 0, 0, 0 }
1117};
1118
1119/* 82576 reg test */
1120static struct igb_reg_test reg_test_82576[] = {
1121	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1122	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1123	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1124	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1125	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1126	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1127	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1128	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1129	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1130	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1131	/* Enable all RX queues before testing. */
1132	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1133	  E1000_RXDCTL_QUEUE_ENABLE },
1134	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1135	  E1000_RXDCTL_QUEUE_ENABLE },
1136	/* RDH is read-only for 82576, only test RDT. */
1137	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1138	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1139	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1140	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1141	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1142	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1143	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1144	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1145	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1146	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1147	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1148	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1149	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1150	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1151	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1152	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1153	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1154	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1155	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1156	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1157	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1158	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1159	{ 0, 0, 0, 0 }
1160};
1161
1162/* 82575 register test */
1163static struct igb_reg_test reg_test_82575[] = {
1164	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1165	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1166	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1167	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1168	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1169	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1170	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1171	/* Enable all four RX queues before testing. */
1172	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1173	  E1000_RXDCTL_QUEUE_ENABLE },
1174	/* RDH is read-only for 82575, only test RDT. */
1175	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1176	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1177	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1178	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1179	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1180	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1181	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1182	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1183	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1184	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1185	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1186	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1187	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1188	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1189	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1190	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1191	{ 0, 0, 0, 0 }
1192};
1193
1194static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1195			     int reg, u32 mask, u32 write)
1196{
1197	struct e1000_hw *hw = &adapter->hw;
1198	u32 pat, val;
1199	static const u32 _test[] = {
1200		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1201	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1202		wr32(reg, (_test[pat] & write));
1203		val = rd32(reg) & mask;
1204		if (val != (_test[pat] & write & mask)) {
1205			dev_err(&adapter->pdev->dev,
1206				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1207				reg, val, (_test[pat] & write & mask));
1208			*data = reg;
1209			return 1;
1210		}
1211	}
1212
1213	return 0;
1214}
1215
1216static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1217			      int reg, u32 mask, u32 write)
1218{
1219	struct e1000_hw *hw = &adapter->hw;
1220	u32 val;
1221
1222	wr32(reg, write & mask);
1223	val = rd32(reg);
1224	if ((write & mask) != (val & mask)) {
1225		dev_err(&adapter->pdev->dev,
1226			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1227			reg, (val & mask), (write & mask));
1228		*data = reg;
1229		return 1;
1230	}
1231
1232	return 0;
1233}
1234
1235#define REG_PATTERN_TEST(reg, mask, write) \
1236	do { \
1237		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1238			return 1; \
1239	} while (0)
1240
1241#define REG_SET_AND_CHECK(reg, mask, write) \
1242	do { \
1243		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1244			return 1; \
1245	} while (0)
1246
1247static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1248{
1249	struct e1000_hw *hw = &adapter->hw;
1250	struct igb_reg_test *test;
1251	u32 value, before, after;
1252	u32 i, toggle;
1253
1254	switch (adapter->hw.mac.type) {
1255	case e1000_i350:
1256	case e1000_i354:
1257		test = reg_test_i350;
1258		toggle = 0x7FEFF3FF;
1259		break;
1260	case e1000_i210:
1261	case e1000_i211:
1262		test = reg_test_i210;
1263		toggle = 0x7FEFF3FF;
1264		break;
1265	case e1000_82580:
1266		test = reg_test_82580;
1267		toggle = 0x7FEFF3FF;
1268		break;
1269	case e1000_82576:
1270		test = reg_test_82576;
1271		toggle = 0x7FFFF3FF;
1272		break;
1273	default:
1274		test = reg_test_82575;
1275		toggle = 0x7FFFF3FF;
1276		break;
1277	}
1278
1279	/* Because the status register is such a special case,
1280	 * we handle it separately from the rest of the register
1281	 * tests.  Some bits are read-only, some toggle, and some
1282	 * are writable on newer MACs.
1283	 */
1284	before = rd32(E1000_STATUS);
1285	value = (rd32(E1000_STATUS) & toggle);
1286	wr32(E1000_STATUS, toggle);
1287	after = rd32(E1000_STATUS) & toggle;
1288	if (value != after) {
1289		dev_err(&adapter->pdev->dev,
1290			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1291			after, value);
1292		*data = 1;
1293		return 1;
1294	}
1295	/* restore previous status */
1296	wr32(E1000_STATUS, before);
1297
1298	/* Perform the remainder of the register test, looping through
1299	 * the test table until we either fail or reach the null entry.
1300	 */
1301	while (test->reg) {
1302		for (i = 0; i < test->array_len; i++) {
1303			switch (test->test_type) {
1304			case PATTERN_TEST:
1305				REG_PATTERN_TEST(test->reg +
1306						(i * test->reg_offset),
1307						test->mask,
1308						test->write);
1309				break;
1310			case SET_READ_TEST:
1311				REG_SET_AND_CHECK(test->reg +
1312						(i * test->reg_offset),
1313						test->mask,
1314						test->write);
1315				break;
1316			case WRITE_NO_TEST:
1317				writel(test->write,
1318				    (adapter->hw.hw_addr + test->reg)
1319					+ (i * test->reg_offset));
1320				break;
1321			case TABLE32_TEST:
1322				REG_PATTERN_TEST(test->reg + (i * 4),
1323						test->mask,
1324						test->write);
1325				break;
1326			case TABLE64_TEST_LO:
1327				REG_PATTERN_TEST(test->reg + (i * 8),
1328						test->mask,
1329						test->write);
1330				break;
1331			case TABLE64_TEST_HI:
1332				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1333						test->mask,
1334						test->write);
1335				break;
1336			}
1337		}
1338		test++;
1339	}
1340
1341	*data = 0;
1342	return 0;
1343}
1344
1345static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1346{
1347	struct e1000_hw *hw = &adapter->hw;
1348
1349	*data = 0;
1350
1351	/* Validate eeprom on all parts but flashless */
1352	switch (hw->mac.type) {
1353	case e1000_i210:
1354	case e1000_i211:
1355		if (igb_get_flash_presence_i210(hw)) {
1356			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1357				*data = 2;
1358		}
1359		break;
1360	default:
1361		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1362			*data = 2;
1363		break;
1364	}
1365
1366	return *data;
1367}
1368
1369static irqreturn_t igb_test_intr(int irq, void *data)
1370{
1371	struct igb_adapter *adapter = (struct igb_adapter *) data;
1372	struct e1000_hw *hw = &adapter->hw;
1373
1374	adapter->test_icr |= rd32(E1000_ICR);
1375
1376	return IRQ_HANDLED;
1377}
1378
1379static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1380{
1381	struct e1000_hw *hw = &adapter->hw;
1382	struct net_device *netdev = adapter->netdev;
1383	u32 mask, ics_mask, i = 0, shared_int = true;
1384	u32 irq = adapter->pdev->irq;
1385
1386	*data = 0;
1387
1388	/* Hook up test interrupt handler just for this test */
1389	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1390		if (request_irq(adapter->msix_entries[0].vector,
1391				igb_test_intr, 0, netdev->name, adapter)) {
1392			*data = 1;
1393			return -1;
1394		}
1395	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1396		shared_int = false;
1397		if (request_irq(irq,
1398				igb_test_intr, 0, netdev->name, adapter)) {
1399			*data = 1;
1400			return -1;
1401		}
1402	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1403				netdev->name, adapter)) {
1404		shared_int = false;
1405	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1406		 netdev->name, adapter)) {
1407		*data = 1;
1408		return -1;
1409	}
1410	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1411		(shared_int ? "shared" : "unshared"));
1412
1413	/* Disable all the interrupts */
1414	wr32(E1000_IMC, ~0);
1415	wrfl();
1416	usleep_range(10000, 11000);
1417
1418	/* Define all writable bits for ICS */
1419	switch (hw->mac.type) {
1420	case e1000_82575:
1421		ics_mask = 0x37F47EDD;
1422		break;
1423	case e1000_82576:
1424		ics_mask = 0x77D4FBFD;
1425		break;
1426	case e1000_82580:
1427		ics_mask = 0x77DCFED5;
1428		break;
1429	case e1000_i350:
1430	case e1000_i354:
1431	case e1000_i210:
1432	case e1000_i211:
1433		ics_mask = 0x77DCFED5;
1434		break;
1435	default:
1436		ics_mask = 0x7FFFFFFF;
1437		break;
1438	}
1439
1440	/* Test each interrupt */
1441	for (; i < 31; i++) {
1442		/* Interrupt to test */
1443		mask = 1 << i;
1444
1445		if (!(mask & ics_mask))
1446			continue;
1447
1448		if (!shared_int) {
1449			/* Disable the interrupt to be reported in
1450			 * the cause register and then force the same
1451			 * interrupt and see if one gets posted.  If
1452			 * an interrupt was posted to the bus, the
1453			 * test failed.
1454			 */
1455			adapter->test_icr = 0;
1456
1457			/* Flush any pending interrupts */
1458			wr32(E1000_ICR, ~0);
1459
1460			wr32(E1000_IMC, mask);
1461			wr32(E1000_ICS, mask);
1462			wrfl();
1463			usleep_range(10000, 11000);
1464
1465			if (adapter->test_icr & mask) {
1466				*data = 3;
1467				break;
1468			}
1469		}
1470
1471		/* Enable the interrupt to be reported in
1472		 * the cause register and then force the same
1473		 * interrupt and see if one gets posted.  If
1474		 * an interrupt was not posted to the bus, the
1475		 * test failed.
1476		 */
1477		adapter->test_icr = 0;
1478
1479		/* Flush any pending interrupts */
1480		wr32(E1000_ICR, ~0);
1481
1482		wr32(E1000_IMS, mask);
1483		wr32(E1000_ICS, mask);
1484		wrfl();
1485		usleep_range(10000, 11000);
1486
1487		if (!(adapter->test_icr & mask)) {
1488			*data = 4;
1489			break;
1490		}
1491
1492		if (!shared_int) {
1493			/* Disable the other interrupts to be reported in
1494			 * the cause register and then force the other
1495			 * interrupts and see if any get posted.  If
1496			 * an interrupt was posted to the bus, the
1497			 * test failed.
1498			 */
1499			adapter->test_icr = 0;
1500
1501			/* Flush any pending interrupts */
1502			wr32(E1000_ICR, ~0);
1503
1504			wr32(E1000_IMC, ~mask);
1505			wr32(E1000_ICS, ~mask);
1506			wrfl();
1507			usleep_range(10000, 11000);
1508
1509			if (adapter->test_icr & mask) {
1510				*data = 5;
1511				break;
1512			}
1513		}
1514	}
1515
1516	/* Disable all the interrupts */
1517	wr32(E1000_IMC, ~0);
1518	wrfl();
1519	usleep_range(10000, 11000);
1520
1521	/* Unhook test interrupt handler */
1522	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1523		free_irq(adapter->msix_entries[0].vector, adapter);
1524	else
1525		free_irq(irq, adapter);
1526
1527	return *data;
1528}
1529
1530static void igb_free_desc_rings(struct igb_adapter *adapter)
1531{
1532	igb_free_tx_resources(&adapter->test_tx_ring);
1533	igb_free_rx_resources(&adapter->test_rx_ring);
1534}
1535
1536static int igb_setup_desc_rings(struct igb_adapter *adapter)
1537{
1538	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1539	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1540	struct e1000_hw *hw = &adapter->hw;
1541	int ret_val;
1542
1543	/* Setup Tx descriptor ring and Tx buffers */
1544	tx_ring->count = IGB_DEFAULT_TXD;
1545	tx_ring->dev = &adapter->pdev->dev;
1546	tx_ring->netdev = adapter->netdev;
1547	tx_ring->reg_idx = adapter->vfs_allocated_count;
1548
1549	if (igb_setup_tx_resources(tx_ring)) {
1550		ret_val = 1;
1551		goto err_nomem;
1552	}
1553
1554	igb_setup_tctl(adapter);
1555	igb_configure_tx_ring(adapter, tx_ring);
1556
1557	/* Setup Rx descriptor ring and Rx buffers */
1558	rx_ring->count = IGB_DEFAULT_RXD;
1559	rx_ring->dev = &adapter->pdev->dev;
1560	rx_ring->netdev = adapter->netdev;
1561	rx_ring->reg_idx = adapter->vfs_allocated_count;
1562
1563	if (igb_setup_rx_resources(rx_ring)) {
1564		ret_val = 3;
1565		goto err_nomem;
1566	}
1567
1568	/* set the default queue to queue 0 of PF */
1569	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1570
1571	/* enable receive ring */
1572	igb_setup_rctl(adapter);
1573	igb_configure_rx_ring(adapter, rx_ring);
1574
1575	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1576
1577	return 0;
1578
1579err_nomem:
1580	igb_free_desc_rings(adapter);
1581	return ret_val;
1582}
1583
1584static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1585{
1586	struct e1000_hw *hw = &adapter->hw;
1587
1588	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1589	igb_write_phy_reg(hw, 29, 0x001F);
1590	igb_write_phy_reg(hw, 30, 0x8FFC);
1591	igb_write_phy_reg(hw, 29, 0x001A);
1592	igb_write_phy_reg(hw, 30, 0x8FF0);
1593}
1594
1595static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1596{
1597	struct e1000_hw *hw = &adapter->hw;
1598	u32 ctrl_reg = 0;
1599
1600	hw->mac.autoneg = false;
1601
1602	if (hw->phy.type == e1000_phy_m88) {
1603		if (hw->phy.id != I210_I_PHY_ID) {
1604			/* Auto-MDI/MDIX Off */
1605			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1606			/* reset to update Auto-MDI/MDIX */
1607			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1608			/* autoneg off */
1609			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1610		} else {
1611			/* force 1000, set loopback  */
1612			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1613			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1614		}
1615	} else if (hw->phy.type == e1000_phy_82580) {
1616		/* enable MII loopback */
1617		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1618	}
1619
1620	/* add small delay to avoid loopback test failure */
1621	msleep(50);
1622
1623	/* force 1000, set loopback */
1624	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1625
1626	/* Now set up the MAC to the same speed/duplex as the PHY. */
1627	ctrl_reg = rd32(E1000_CTRL);
1628	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1629	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1630		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1631		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1632		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1633		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1634
1635	if (hw->phy.type == e1000_phy_m88)
1636		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1637
1638	wr32(E1000_CTRL, ctrl_reg);
1639
1640	/* Disable the receiver on the PHY so when a cable is plugged in, the
1641	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1642	 */
1643	if (hw->phy.type == e1000_phy_m88)
1644		igb_phy_disable_receiver(adapter);
1645
1646	mdelay(500);
1647	return 0;
1648}
1649
1650static int igb_set_phy_loopback(struct igb_adapter *adapter)
1651{
1652	return igb_integrated_phy_loopback(adapter);
1653}
1654
1655static int igb_setup_loopback_test(struct igb_adapter *adapter)
1656{
1657	struct e1000_hw *hw = &adapter->hw;
1658	u32 reg;
1659
1660	reg = rd32(E1000_CTRL_EXT);
1661
1662	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1663	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1664		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1665		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1666		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1667		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1668		(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1669
1670			/* Enable DH89xxCC MPHY for near end loopback */
1671			reg = rd32(E1000_MPHY_ADDR_CTL);
1672			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1673			E1000_MPHY_PCS_CLK_REG_OFFSET;
1674			wr32(E1000_MPHY_ADDR_CTL, reg);
1675
1676			reg = rd32(E1000_MPHY_DATA);
1677			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1678			wr32(E1000_MPHY_DATA, reg);
1679		}
1680
1681		reg = rd32(E1000_RCTL);
1682		reg |= E1000_RCTL_LBM_TCVR;
1683		wr32(E1000_RCTL, reg);
1684
1685		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1686
1687		reg = rd32(E1000_CTRL);
1688		reg &= ~(E1000_CTRL_RFCE |
1689			 E1000_CTRL_TFCE |
1690			 E1000_CTRL_LRST);
1691		reg |= E1000_CTRL_SLU |
1692		       E1000_CTRL_FD;
1693		wr32(E1000_CTRL, reg);
1694
1695		/* Unset switch control to serdes energy detect */
1696		reg = rd32(E1000_CONNSW);
1697		reg &= ~E1000_CONNSW_ENRGSRC;
1698		wr32(E1000_CONNSW, reg);
1699
1700		/* Unset sigdetect for SERDES loopback on
1701		 * 82580 and newer devices.
1702		 */
1703		if (hw->mac.type >= e1000_82580) {
1704			reg = rd32(E1000_PCS_CFG0);
1705			reg |= E1000_PCS_CFG_IGN_SD;
1706			wr32(E1000_PCS_CFG0, reg);
1707		}
1708
1709		/* Set PCS register for forced speed */
1710		reg = rd32(E1000_PCS_LCTL);
1711		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1712		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1713		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1714		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1715		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1716		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1717		wr32(E1000_PCS_LCTL, reg);
1718
1719		return 0;
1720	}
1721
1722	return igb_set_phy_loopback(adapter);
1723}
1724
1725static void igb_loopback_cleanup(struct igb_adapter *adapter)
1726{
1727	struct e1000_hw *hw = &adapter->hw;
1728	u32 rctl;
1729	u16 phy_reg;
1730
1731	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1732	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1733	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1734	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1735	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1736		u32 reg;
1737
1738		/* Disable near end loopback on DH89xxCC */
1739		reg = rd32(E1000_MPHY_ADDR_CTL);
1740		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1741		E1000_MPHY_PCS_CLK_REG_OFFSET;
1742		wr32(E1000_MPHY_ADDR_CTL, reg);
1743
1744		reg = rd32(E1000_MPHY_DATA);
1745		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1746		wr32(E1000_MPHY_DATA, reg);
1747	}
1748
1749	rctl = rd32(E1000_RCTL);
1750	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1751	wr32(E1000_RCTL, rctl);
1752
1753	hw->mac.autoneg = true;
1754	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1755	if (phy_reg & MII_CR_LOOPBACK) {
1756		phy_reg &= ~MII_CR_LOOPBACK;
1757		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1758		igb_phy_sw_reset(hw);
1759	}
1760}
1761
1762static void igb_create_lbtest_frame(struct sk_buff *skb,
1763				    unsigned int frame_size)
1764{
1765	memset(skb->data, 0xFF, frame_size);
1766	frame_size /= 2;
1767	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1768	memset(&skb->data[frame_size + 10], 0xBE, 1);
1769	memset(&skb->data[frame_size + 12], 0xAF, 1);
1770}
1771
1772static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1773				  unsigned int frame_size)
1774{
1775	unsigned char *data;
1776	bool match = true;
1777
1778	frame_size >>= 1;
1779
1780	data = kmap(rx_buffer->page);
1781
1782	if (data[3] != 0xFF ||
1783	    data[frame_size + 10] != 0xBE ||
1784	    data[frame_size + 12] != 0xAF)
1785		match = false;
1786
1787	kunmap(rx_buffer->page);
1788
1789	return match;
1790}
1791
1792static int igb_clean_test_rings(struct igb_ring *rx_ring,
1793				struct igb_ring *tx_ring,
1794				unsigned int size)
1795{
1796	union e1000_adv_rx_desc *rx_desc;
1797	struct igb_rx_buffer *rx_buffer_info;
1798	struct igb_tx_buffer *tx_buffer_info;
1799	u16 rx_ntc, tx_ntc, count = 0;
1800
1801	/* initialize next to clean and descriptor values */
1802	rx_ntc = rx_ring->next_to_clean;
1803	tx_ntc = tx_ring->next_to_clean;
1804	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1805
1806	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1807		/* check Rx buffer */
1808		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1809
1810		/* sync Rx buffer for CPU read */
1811		dma_sync_single_for_cpu(rx_ring->dev,
1812					rx_buffer_info->dma,
1813					IGB_RX_BUFSZ,
1814					DMA_FROM_DEVICE);
1815
1816		/* verify contents of skb */
1817		if (igb_check_lbtest_frame(rx_buffer_info, size))
1818			count++;
1819
1820		/* sync Rx buffer for device write */
1821		dma_sync_single_for_device(rx_ring->dev,
1822					   rx_buffer_info->dma,
1823					   IGB_RX_BUFSZ,
1824					   DMA_FROM_DEVICE);
1825
1826		/* unmap buffer on Tx side */
1827		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1828		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1829
1830		/* increment Rx/Tx next to clean counters */
1831		rx_ntc++;
1832		if (rx_ntc == rx_ring->count)
1833			rx_ntc = 0;
1834		tx_ntc++;
1835		if (tx_ntc == tx_ring->count)
1836			tx_ntc = 0;
1837
1838		/* fetch next descriptor */
1839		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1840	}
1841
1842	netdev_tx_reset_queue(txring_txq(tx_ring));
1843
1844	/* re-map buffers to ring, store next to clean values */
1845	igb_alloc_rx_buffers(rx_ring, count);
1846	rx_ring->next_to_clean = rx_ntc;
1847	tx_ring->next_to_clean = tx_ntc;
1848
1849	return count;
1850}
1851
1852static int igb_run_loopback_test(struct igb_adapter *adapter)
1853{
1854	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1855	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1856	u16 i, j, lc, good_cnt;
1857	int ret_val = 0;
1858	unsigned int size = IGB_RX_HDR_LEN;
1859	netdev_tx_t tx_ret_val;
1860	struct sk_buff *skb;
1861
1862	/* allocate test skb */
1863	skb = alloc_skb(size, GFP_KERNEL);
1864	if (!skb)
1865		return 11;
1866
1867	/* place data into test skb */
1868	igb_create_lbtest_frame(skb, size);
1869	skb_put(skb, size);
1870
1871	/* Calculate the loop count based on the largest descriptor ring
1872	 * The idea is to wrap the largest ring a number of times using 64
1873	 * send/receive pairs during each loop
1874	 */
1875
1876	if (rx_ring->count <= tx_ring->count)
1877		lc = ((tx_ring->count / 64) * 2) + 1;
1878	else
1879		lc = ((rx_ring->count / 64) * 2) + 1;
1880
1881	for (j = 0; j <= lc; j++) { /* loop count loop */
1882		/* reset count of good packets */
1883		good_cnt = 0;
1884
1885		/* place 64 packets on the transmit queue*/
1886		for (i = 0; i < 64; i++) {
1887			skb_get(skb);
1888			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1889			if (tx_ret_val == NETDEV_TX_OK)
1890				good_cnt++;
1891		}
1892
1893		if (good_cnt != 64) {
1894			ret_val = 12;
1895			break;
1896		}
1897
1898		/* allow 200 milliseconds for packets to go from Tx to Rx */
1899		msleep(200);
1900
1901		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1902		if (good_cnt != 64) {
1903			ret_val = 13;
1904			break;
1905		}
1906	} /* end loop count loop */
1907
1908	/* free the original skb */
1909	kfree_skb(skb);
1910
1911	return ret_val;
1912}
1913
1914static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1915{
1916	/* PHY loopback cannot be performed if SoL/IDER
1917	 * sessions are active
1918	 */
1919	if (igb_check_reset_block(&adapter->hw)) {
1920		dev_err(&adapter->pdev->dev,
1921			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1922		*data = 0;
1923		goto out;
1924	}
1925
1926	if (adapter->hw.mac.type == e1000_i354) {
1927		dev_info(&adapter->pdev->dev,
1928			"Loopback test not supported on i354.\n");
1929		*data = 0;
1930		goto out;
1931	}
1932	*data = igb_setup_desc_rings(adapter);
1933	if (*data)
1934		goto out;
1935	*data = igb_setup_loopback_test(adapter);
1936	if (*data)
1937		goto err_loopback;
1938	*data = igb_run_loopback_test(adapter);
1939	igb_loopback_cleanup(adapter);
1940
1941err_loopback:
1942	igb_free_desc_rings(adapter);
1943out:
1944	return *data;
1945}
1946
1947static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1948{
1949	struct e1000_hw *hw = &adapter->hw;
1950	*data = 0;
1951	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1952		int i = 0;
1953
1954		hw->mac.serdes_has_link = false;
1955
1956		/* On some blade server designs, link establishment
1957		 * could take as long as 2-3 minutes
1958		 */
1959		do {
1960			hw->mac.ops.check_for_link(&adapter->hw);
1961			if (hw->mac.serdes_has_link)
1962				return *data;
1963			msleep(20);
1964		} while (i++ < 3750);
1965
1966		*data = 1;
1967	} else {
1968		hw->mac.ops.check_for_link(&adapter->hw);
1969		if (hw->mac.autoneg)
1970			msleep(5000);
1971
1972		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1973			*data = 1;
1974	}
1975	return *data;
1976}
1977
1978static void igb_diag_test(struct net_device *netdev,
1979			  struct ethtool_test *eth_test, u64 *data)
1980{
1981	struct igb_adapter *adapter = netdev_priv(netdev);
1982	u16 autoneg_advertised;
1983	u8 forced_speed_duplex, autoneg;
1984	bool if_running = netif_running(netdev);
1985
1986	set_bit(__IGB_TESTING, &adapter->state);
1987
1988	/* can't do offline tests on media switching devices */
1989	if (adapter->hw.dev_spec._82575.mas_capable)
1990		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
1991	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1992		/* Offline tests */
1993
1994		/* save speed, duplex, autoneg settings */
1995		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1996		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1997		autoneg = adapter->hw.mac.autoneg;
1998
1999		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2000
2001		/* power up link for link test */
2002		igb_power_up_link(adapter);
2003
2004		/* Link test performed before hardware reset so autoneg doesn't
2005		 * interfere with test result
2006		 */
2007		if (igb_link_test(adapter, &data[4]))
2008			eth_test->flags |= ETH_TEST_FL_FAILED;
2009
2010		if (if_running)
2011			/* indicate we're in test mode */
2012			dev_close(netdev);
2013		else
2014			igb_reset(adapter);
2015
2016		if (igb_reg_test(adapter, &data[0]))
2017			eth_test->flags |= ETH_TEST_FL_FAILED;
2018
2019		igb_reset(adapter);
2020		if (igb_eeprom_test(adapter, &data[1]))
2021			eth_test->flags |= ETH_TEST_FL_FAILED;
2022
2023		igb_reset(adapter);
2024		if (igb_intr_test(adapter, &data[2]))
2025			eth_test->flags |= ETH_TEST_FL_FAILED;
2026
2027		igb_reset(adapter);
2028		/* power up link for loopback test */
2029		igb_power_up_link(adapter);
2030		if (igb_loopback_test(adapter, &data[3]))
2031			eth_test->flags |= ETH_TEST_FL_FAILED;
2032
2033		/* restore speed, duplex, autoneg settings */
2034		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2035		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2036		adapter->hw.mac.autoneg = autoneg;
2037
2038		/* force this routine to wait until autoneg complete/timeout */
2039		adapter->hw.phy.autoneg_wait_to_complete = true;
2040		igb_reset(adapter);
2041		adapter->hw.phy.autoneg_wait_to_complete = false;
2042
2043		clear_bit(__IGB_TESTING, &adapter->state);
2044		if (if_running)
2045			dev_open(netdev);
2046	} else {
2047		dev_info(&adapter->pdev->dev, "online testing starting\n");
2048
2049		/* PHY is powered down when interface is down */
2050		if (if_running && igb_link_test(adapter, &data[4]))
2051			eth_test->flags |= ETH_TEST_FL_FAILED;
2052		else
2053			data[4] = 0;
2054
2055		/* Online tests aren't run; pass by default */
2056		data[0] = 0;
2057		data[1] = 0;
2058		data[2] = 0;
2059		data[3] = 0;
2060
2061		clear_bit(__IGB_TESTING, &adapter->state);
2062	}
2063	msleep_interruptible(4 * 1000);
2064}
2065
2066static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2067{
2068	struct igb_adapter *adapter = netdev_priv(netdev);
2069
2070	wol->wolopts = 0;
2071
2072	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2073		return;
2074
2075	wol->supported = WAKE_UCAST | WAKE_MCAST |
2076			 WAKE_BCAST | WAKE_MAGIC |
2077			 WAKE_PHY;
2078
2079	/* apply any specific unsupported masks here */
2080	switch (adapter->hw.device_id) {
2081	default:
2082		break;
2083	}
2084
2085	if (adapter->wol & E1000_WUFC_EX)
2086		wol->wolopts |= WAKE_UCAST;
2087	if (adapter->wol & E1000_WUFC_MC)
2088		wol->wolopts |= WAKE_MCAST;
2089	if (adapter->wol & E1000_WUFC_BC)
2090		wol->wolopts |= WAKE_BCAST;
2091	if (adapter->wol & E1000_WUFC_MAG)
2092		wol->wolopts |= WAKE_MAGIC;
2093	if (adapter->wol & E1000_WUFC_LNKC)
2094		wol->wolopts |= WAKE_PHY;
2095}
2096
2097static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2098{
2099	struct igb_adapter *adapter = netdev_priv(netdev);
2100
2101	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2102		return -EOPNOTSUPP;
2103
2104	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2105		return wol->wolopts ? -EOPNOTSUPP : 0;
2106
2107	/* these settings will always override what we currently have */
2108	adapter->wol = 0;
2109
2110	if (wol->wolopts & WAKE_UCAST)
2111		adapter->wol |= E1000_WUFC_EX;
2112	if (wol->wolopts & WAKE_MCAST)
2113		adapter->wol |= E1000_WUFC_MC;
2114	if (wol->wolopts & WAKE_BCAST)
2115		adapter->wol |= E1000_WUFC_BC;
2116	if (wol->wolopts & WAKE_MAGIC)
2117		adapter->wol |= E1000_WUFC_MAG;
2118	if (wol->wolopts & WAKE_PHY)
2119		adapter->wol |= E1000_WUFC_LNKC;
2120	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2121
2122	return 0;
2123}
2124
2125/* bit defines for adapter->led_status */
2126#define IGB_LED_ON		0
2127
2128static int igb_set_phys_id(struct net_device *netdev,
2129			   enum ethtool_phys_id_state state)
2130{
2131	struct igb_adapter *adapter = netdev_priv(netdev);
2132	struct e1000_hw *hw = &adapter->hw;
2133
2134	switch (state) {
2135	case ETHTOOL_ID_ACTIVE:
2136		igb_blink_led(hw);
2137		return 2;
2138	case ETHTOOL_ID_ON:
2139		igb_blink_led(hw);
2140		break;
2141	case ETHTOOL_ID_OFF:
2142		igb_led_off(hw);
2143		break;
2144	case ETHTOOL_ID_INACTIVE:
2145		igb_led_off(hw);
2146		clear_bit(IGB_LED_ON, &adapter->led_status);
2147		igb_cleanup_led(hw);
2148		break;
2149	}
2150
2151	return 0;
2152}
2153
2154static int igb_set_coalesce(struct net_device *netdev,
2155			    struct ethtool_coalesce *ec)
2156{
2157	struct igb_adapter *adapter = netdev_priv(netdev);
2158	int i;
2159
2160	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2161	    ((ec->rx_coalesce_usecs > 3) &&
2162	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2163	    (ec->rx_coalesce_usecs == 2))
2164		return -EINVAL;
2165
2166	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2167	    ((ec->tx_coalesce_usecs > 3) &&
2168	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2169	    (ec->tx_coalesce_usecs == 2))
2170		return -EINVAL;
2171
2172	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2173		return -EINVAL;
2174
2175	/* If ITR is disabled, disable DMAC */
2176	if (ec->rx_coalesce_usecs == 0) {
2177		if (adapter->flags & IGB_FLAG_DMAC)
2178			adapter->flags &= ~IGB_FLAG_DMAC;
2179	}
2180
2181	/* convert to rate of irq's per second */
2182	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2183		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2184	else
2185		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2186
2187	/* convert to rate of irq's per second */
2188	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2189		adapter->tx_itr_setting = adapter->rx_itr_setting;
2190	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2191		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2192	else
2193		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2194
2195	for (i = 0; i < adapter->num_q_vectors; i++) {
2196		struct igb_q_vector *q_vector = adapter->q_vector[i];
2197		q_vector->tx.work_limit = adapter->tx_work_limit;
2198		if (q_vector->rx.ring)
2199			q_vector->itr_val = adapter->rx_itr_setting;
2200		else
2201			q_vector->itr_val = adapter->tx_itr_setting;
2202		if (q_vector->itr_val && q_vector->itr_val <= 3)
2203			q_vector->itr_val = IGB_START_ITR;
2204		q_vector->set_itr = 1;
2205	}
2206
2207	return 0;
2208}
2209
2210static int igb_get_coalesce(struct net_device *netdev,
2211			    struct ethtool_coalesce *ec)
2212{
2213	struct igb_adapter *adapter = netdev_priv(netdev);
2214
2215	if (adapter->rx_itr_setting <= 3)
2216		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2217	else
2218		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2219
2220	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2221		if (adapter->tx_itr_setting <= 3)
2222			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2223		else
2224			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2225	}
2226
2227	return 0;
2228}
2229
2230static int igb_nway_reset(struct net_device *netdev)
2231{
2232	struct igb_adapter *adapter = netdev_priv(netdev);
2233	if (netif_running(netdev))
2234		igb_reinit_locked(adapter);
2235	return 0;
2236}
2237
2238static int igb_get_sset_count(struct net_device *netdev, int sset)
2239{
2240	switch (sset) {
2241	case ETH_SS_STATS:
2242		return IGB_STATS_LEN;
2243	case ETH_SS_TEST:
2244		return IGB_TEST_LEN;
2245	default:
2246		return -ENOTSUPP;
2247	}
2248}
2249
2250static void igb_get_ethtool_stats(struct net_device *netdev,
2251				  struct ethtool_stats *stats, u64 *data)
2252{
2253	struct igb_adapter *adapter = netdev_priv(netdev);
2254	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2255	unsigned int start;
2256	struct igb_ring *ring;
2257	int i, j;
2258	char *p;
2259
2260	spin_lock(&adapter->stats64_lock);
2261	igb_update_stats(adapter, net_stats);
2262
2263	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2264		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2265		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2266			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2267	}
2268	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2269		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2270		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2271			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2272	}
2273	for (j = 0; j < adapter->num_tx_queues; j++) {
2274		u64	restart2;
2275
2276		ring = adapter->tx_ring[j];
2277		do {
2278			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2279			data[i]   = ring->tx_stats.packets;
2280			data[i+1] = ring->tx_stats.bytes;
2281			data[i+2] = ring->tx_stats.restart_queue;
2282		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2283		do {
2284			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2285			restart2  = ring->tx_stats.restart_queue2;
2286		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2287		data[i+2] += restart2;
2288
2289		i += IGB_TX_QUEUE_STATS_LEN;
2290	}
2291	for (j = 0; j < adapter->num_rx_queues; j++) {
2292		ring = adapter->rx_ring[j];
2293		do {
2294			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2295			data[i]   = ring->rx_stats.packets;
2296			data[i+1] = ring->rx_stats.bytes;
2297			data[i+2] = ring->rx_stats.drops;
2298			data[i+3] = ring->rx_stats.csum_err;
2299			data[i+4] = ring->rx_stats.alloc_failed;
2300		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2301		i += IGB_RX_QUEUE_STATS_LEN;
2302	}
2303	spin_unlock(&adapter->stats64_lock);
2304}
2305
2306static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2307{
2308	struct igb_adapter *adapter = netdev_priv(netdev);
2309	u8 *p = data;
2310	int i;
2311
2312	switch (stringset) {
2313	case ETH_SS_TEST:
2314		memcpy(data, *igb_gstrings_test,
2315			IGB_TEST_LEN*ETH_GSTRING_LEN);
2316		break;
2317	case ETH_SS_STATS:
2318		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2319			memcpy(p, igb_gstrings_stats[i].stat_string,
2320			       ETH_GSTRING_LEN);
2321			p += ETH_GSTRING_LEN;
2322		}
2323		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2324			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2325			       ETH_GSTRING_LEN);
2326			p += ETH_GSTRING_LEN;
2327		}
2328		for (i = 0; i < adapter->num_tx_queues; i++) {
2329			sprintf(p, "tx_queue_%u_packets", i);
2330			p += ETH_GSTRING_LEN;
2331			sprintf(p, "tx_queue_%u_bytes", i);
2332			p += ETH_GSTRING_LEN;
2333			sprintf(p, "tx_queue_%u_restart", i);
2334			p += ETH_GSTRING_LEN;
2335		}
2336		for (i = 0; i < adapter->num_rx_queues; i++) {
2337			sprintf(p, "rx_queue_%u_packets", i);
2338			p += ETH_GSTRING_LEN;
2339			sprintf(p, "rx_queue_%u_bytes", i);
2340			p += ETH_GSTRING_LEN;
2341			sprintf(p, "rx_queue_%u_drops", i);
2342			p += ETH_GSTRING_LEN;
2343			sprintf(p, "rx_queue_%u_csum_err", i);
2344			p += ETH_GSTRING_LEN;
2345			sprintf(p, "rx_queue_%u_alloc_failed", i);
2346			p += ETH_GSTRING_LEN;
2347		}
2348		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2349		break;
2350	}
2351}
2352
2353static int igb_get_ts_info(struct net_device *dev,
2354			   struct ethtool_ts_info *info)
2355{
2356	struct igb_adapter *adapter = netdev_priv(dev);
2357
2358	if (adapter->ptp_clock)
2359		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2360	else
2361		info->phc_index = -1;
2362
2363	switch (adapter->hw.mac.type) {
2364	case e1000_82575:
2365		info->so_timestamping =
2366			SOF_TIMESTAMPING_TX_SOFTWARE |
2367			SOF_TIMESTAMPING_RX_SOFTWARE |
2368			SOF_TIMESTAMPING_SOFTWARE;
2369		return 0;
2370	case e1000_82576:
2371	case e1000_82580:
2372	case e1000_i350:
2373	case e1000_i354:
2374	case e1000_i210:
2375	case e1000_i211:
2376		info->so_timestamping =
2377			SOF_TIMESTAMPING_TX_SOFTWARE |
2378			SOF_TIMESTAMPING_RX_SOFTWARE |
2379			SOF_TIMESTAMPING_SOFTWARE |
2380			SOF_TIMESTAMPING_TX_HARDWARE |
2381			SOF_TIMESTAMPING_RX_HARDWARE |
2382			SOF_TIMESTAMPING_RAW_HARDWARE;
2383
2384		info->tx_types =
2385			(1 << HWTSTAMP_TX_OFF) |
2386			(1 << HWTSTAMP_TX_ON);
2387
2388		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2389
2390		/* 82576 does not support timestamping all packets. */
2391		if (adapter->hw.mac.type >= e1000_82580)
2392			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2393		else
2394			info->rx_filters |=
2395				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2396				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2397				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2398				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2399				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2400				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2401				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2402
2403		return 0;
2404	default:
2405		return -EOPNOTSUPP;
2406	}
2407}
2408
2409static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2410				 struct ethtool_rxnfc *cmd)
2411{
2412	cmd->data = 0;
2413
2414	/* Report default options for RSS on igb */
2415	switch (cmd->flow_type) {
2416	case TCP_V4_FLOW:
2417		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2418		/* Fall through */
2419	case UDP_V4_FLOW:
2420		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2421			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2422		/* Fall through */
2423	case SCTP_V4_FLOW:
2424	case AH_ESP_V4_FLOW:
2425	case AH_V4_FLOW:
2426	case ESP_V4_FLOW:
2427	case IPV4_FLOW:
2428		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2429		break;
2430	case TCP_V6_FLOW:
2431		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2432		/* Fall through */
2433	case UDP_V6_FLOW:
2434		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2435			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2436		/* Fall through */
2437	case SCTP_V6_FLOW:
2438	case AH_ESP_V6_FLOW:
2439	case AH_V6_FLOW:
2440	case ESP_V6_FLOW:
2441	case IPV6_FLOW:
2442		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2443		break;
2444	default:
2445		return -EINVAL;
2446	}
2447
2448	return 0;
2449}
2450
2451static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2452			 u32 *rule_locs)
2453{
2454	struct igb_adapter *adapter = netdev_priv(dev);
2455	int ret = -EOPNOTSUPP;
2456
2457	switch (cmd->cmd) {
2458	case ETHTOOL_GRXRINGS:
2459		cmd->data = adapter->num_rx_queues;
2460		ret = 0;
2461		break;
2462	case ETHTOOL_GRXFH:
2463		ret = igb_get_rss_hash_opts(adapter, cmd);
2464		break;
2465	default:
2466		break;
2467	}
2468
2469	return ret;
2470}
2471
2472#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2473		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2474static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2475				struct ethtool_rxnfc *nfc)
2476{
2477	u32 flags = adapter->flags;
2478
2479	/* RSS does not support anything other than hashing
2480	 * to queues on src and dst IPs and ports
2481	 */
2482	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2483			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2484		return -EINVAL;
2485
2486	switch (nfc->flow_type) {
2487	case TCP_V4_FLOW:
2488	case TCP_V6_FLOW:
2489		if (!(nfc->data & RXH_IP_SRC) ||
2490		    !(nfc->data & RXH_IP_DST) ||
2491		    !(nfc->data & RXH_L4_B_0_1) ||
2492		    !(nfc->data & RXH_L4_B_2_3))
2493			return -EINVAL;
2494		break;
2495	case UDP_V4_FLOW:
2496		if (!(nfc->data & RXH_IP_SRC) ||
2497		    !(nfc->data & RXH_IP_DST))
2498			return -EINVAL;
2499		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2500		case 0:
2501			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2502			break;
2503		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2504			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2505			break;
2506		default:
2507			return -EINVAL;
2508		}
2509		break;
2510	case UDP_V6_FLOW:
2511		if (!(nfc->data & RXH_IP_SRC) ||
2512		    !(nfc->data & RXH_IP_DST))
2513			return -EINVAL;
2514		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2515		case 0:
2516			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2517			break;
2518		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2519			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2520			break;
2521		default:
2522			return -EINVAL;
2523		}
2524		break;
2525	case AH_ESP_V4_FLOW:
2526	case AH_V4_FLOW:
2527	case ESP_V4_FLOW:
2528	case SCTP_V4_FLOW:
2529	case AH_ESP_V6_FLOW:
2530	case AH_V6_FLOW:
2531	case ESP_V6_FLOW:
2532	case SCTP_V6_FLOW:
2533		if (!(nfc->data & RXH_IP_SRC) ||
2534		    !(nfc->data & RXH_IP_DST) ||
2535		    (nfc->data & RXH_L4_B_0_1) ||
2536		    (nfc->data & RXH_L4_B_2_3))
2537			return -EINVAL;
2538		break;
2539	default:
2540		return -EINVAL;
2541	}
2542
2543	/* if we changed something we need to update flags */
2544	if (flags != adapter->flags) {
2545		struct e1000_hw *hw = &adapter->hw;
2546		u32 mrqc = rd32(E1000_MRQC);
2547
2548		if ((flags & UDP_RSS_FLAGS) &&
2549		    !(adapter->flags & UDP_RSS_FLAGS))
2550			dev_err(&adapter->pdev->dev,
2551				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2552
2553		adapter->flags = flags;
2554
2555		/* Perform hash on these packet types */
2556		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2557			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2558			E1000_MRQC_RSS_FIELD_IPV6 |
2559			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2560
2561		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2562			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2563
2564		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2565			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2566
2567		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2568			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2569
2570		wr32(E1000_MRQC, mrqc);
2571	}
2572
2573	return 0;
2574}
2575
2576static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2577{
2578	struct igb_adapter *adapter = netdev_priv(dev);
2579	int ret = -EOPNOTSUPP;
2580
2581	switch (cmd->cmd) {
2582	case ETHTOOL_SRXFH:
2583		ret = igb_set_rss_hash_opt(adapter, cmd);
2584		break;
2585	default:
2586		break;
2587	}
2588
2589	return ret;
2590}
2591
2592static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2593{
2594	struct igb_adapter *adapter = netdev_priv(netdev);
2595	struct e1000_hw *hw = &adapter->hw;
2596	u32 ret_val;
2597	u16 phy_data;
2598
2599	if ((hw->mac.type < e1000_i350) ||
2600	    (hw->phy.media_type != e1000_media_type_copper))
2601		return -EOPNOTSUPP;
2602
2603	edata->supported = (SUPPORTED_1000baseT_Full |
2604			    SUPPORTED_100baseT_Full);
2605	if (!hw->dev_spec._82575.eee_disable)
2606		edata->advertised =
2607			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2608
2609	/* The IPCNFG and EEER registers are not supported on I354. */
2610	if (hw->mac.type == e1000_i354) {
2611		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
2612	} else {
2613		u32 eeer;
2614
2615		eeer = rd32(E1000_EEER);
2616
2617		/* EEE status on negotiated link */
2618		if (eeer & E1000_EEER_EEE_NEG)
2619			edata->eee_active = true;
2620
2621		if (eeer & E1000_EEER_TX_LPI_EN)
2622			edata->tx_lpi_enabled = true;
2623	}
2624
2625	/* EEE Link Partner Advertised */
2626	switch (hw->mac.type) {
2627	case e1000_i350:
2628		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2629					   &phy_data);
2630		if (ret_val)
2631			return -ENODATA;
2632
2633		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2634		break;
2635	case e1000_i354:
2636	case e1000_i210:
2637	case e1000_i211:
2638		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2639					     E1000_EEE_LP_ADV_DEV_I210,
2640					     &phy_data);
2641		if (ret_val)
2642			return -ENODATA;
2643
2644		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2645
2646		break;
2647	default:
2648		break;
2649	}
2650
2651	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2652
2653	if ((hw->mac.type == e1000_i354) &&
2654	    (edata->eee_enabled))
2655		edata->tx_lpi_enabled = true;
2656
2657	/* Report correct negotiated EEE status for devices that
2658	 * wrongly report EEE at half-duplex
2659	 */
2660	if (adapter->link_duplex == HALF_DUPLEX) {
2661		edata->eee_enabled = false;
2662		edata->eee_active = false;
2663		edata->tx_lpi_enabled = false;
2664		edata->advertised &= ~edata->advertised;
2665	}
2666
2667	return 0;
2668}
2669
2670static int igb_set_eee(struct net_device *netdev,
2671		       struct ethtool_eee *edata)
2672{
2673	struct igb_adapter *adapter = netdev_priv(netdev);
2674	struct e1000_hw *hw = &adapter->hw;
2675	struct ethtool_eee eee_curr;
2676	s32 ret_val;
2677
2678	if ((hw->mac.type < e1000_i350) ||
2679	    (hw->phy.media_type != e1000_media_type_copper))
2680		return -EOPNOTSUPP;
2681
2682	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2683
2684	ret_val = igb_get_eee(netdev, &eee_curr);
2685	if (ret_val)
2686		return ret_val;
2687
2688	if (eee_curr.eee_enabled) {
2689		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2690			dev_err(&adapter->pdev->dev,
2691				"Setting EEE tx-lpi is not supported\n");
2692			return -EINVAL;
2693		}
2694
2695		/* Tx LPI timer is not implemented currently */
2696		if (edata->tx_lpi_timer) {
2697			dev_err(&adapter->pdev->dev,
2698				"Setting EEE Tx LPI timer is not supported\n");
2699			return -EINVAL;
2700		}
2701
2702		if (edata->advertised &
2703		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2704			dev_err(&adapter->pdev->dev,
2705				"EEE Advertisement supports only 100Tx and or 100T full duplex\n");
2706			return -EINVAL;
2707		}
2708
2709	} else if (!edata->eee_enabled) {
2710		dev_err(&adapter->pdev->dev,
2711			"Setting EEE options are not supported with EEE disabled\n");
2712			return -EINVAL;
2713		}
2714
2715	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2716	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2717		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2718		adapter->flags |= IGB_FLAG_EEE;
2719		if (hw->mac.type == e1000_i350)
2720			igb_set_eee_i350(hw);
2721		else
2722			igb_set_eee_i354(hw);
2723
2724		/* reset link */
2725		if (netif_running(netdev))
2726			igb_reinit_locked(adapter);
2727		else
2728			igb_reset(adapter);
2729	}
2730
2731	return 0;
2732}
2733
2734static int igb_get_module_info(struct net_device *netdev,
2735			       struct ethtool_modinfo *modinfo)
2736{
2737	struct igb_adapter *adapter = netdev_priv(netdev);
2738	struct e1000_hw *hw = &adapter->hw;
2739	u32 status = E1000_SUCCESS;
2740	u16 sff8472_rev, addr_mode;
2741	bool page_swap = false;
2742
2743	if ((hw->phy.media_type == e1000_media_type_copper) ||
2744	    (hw->phy.media_type == e1000_media_type_unknown))
2745		return -EOPNOTSUPP;
2746
2747	/* Check whether we support SFF-8472 or not */
2748	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2749	if (status != E1000_SUCCESS)
2750		return -EIO;
2751
2752	/* addressing mode is not supported */
2753	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2754	if (status != E1000_SUCCESS)
2755		return -EIO;
2756
2757	/* addressing mode is not supported */
2758	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2759		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2760		page_swap = true;
2761	}
2762
2763	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2764		/* We have an SFP, but it does not support SFF-8472 */
2765		modinfo->type = ETH_MODULE_SFF_8079;
2766		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2767	} else {
2768		/* We have an SFP which supports a revision of SFF-8472 */
2769		modinfo->type = ETH_MODULE_SFF_8472;
2770		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2771	}
2772
2773	return 0;
2774}
2775
2776static int igb_get_module_eeprom(struct net_device *netdev,
2777				 struct ethtool_eeprom *ee, u8 *data)
2778{
2779	struct igb_adapter *adapter = netdev_priv(netdev);
2780	struct e1000_hw *hw = &adapter->hw;
2781	u32 status = E1000_SUCCESS;
2782	u16 *dataword;
2783	u16 first_word, last_word;
2784	int i = 0;
2785
2786	if (ee->len == 0)
2787		return -EINVAL;
2788
2789	first_word = ee->offset >> 1;
2790	last_word = (ee->offset + ee->len - 1) >> 1;
2791
2792	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2793			   GFP_KERNEL);
2794	if (!dataword)
2795		return -ENOMEM;
2796
2797	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2798	for (i = 0; i < last_word - first_word + 1; i++) {
2799		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2800		if (status != E1000_SUCCESS) {
2801			/* Error occurred while reading module */
2802			kfree(dataword);
2803			return -EIO;
2804		}
2805
2806		be16_to_cpus(&dataword[i]);
2807	}
2808
2809	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2810	kfree(dataword);
2811
2812	return 0;
2813}
2814
2815static int igb_ethtool_begin(struct net_device *netdev)
2816{
2817	struct igb_adapter *adapter = netdev_priv(netdev);
2818	pm_runtime_get_sync(&adapter->pdev->dev);
2819	return 0;
2820}
2821
2822static void igb_ethtool_complete(struct net_device *netdev)
2823{
2824	struct igb_adapter *adapter = netdev_priv(netdev);
2825	pm_runtime_put(&adapter->pdev->dev);
2826}
2827
2828static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2829{
2830	return IGB_RETA_SIZE;
2831}
2832
2833static int igb_get_rxfh_indir(struct net_device *netdev, u32 *indir)
2834{
2835	struct igb_adapter *adapter = netdev_priv(netdev);
2836	int i;
2837
2838	for (i = 0; i < IGB_RETA_SIZE; i++)
2839		indir[i] = adapter->rss_indir_tbl[i];
2840
2841	return 0;
2842}
2843
2844void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2845{
2846	struct e1000_hw *hw = &adapter->hw;
2847	u32 reg = E1000_RETA(0);
2848	u32 shift = 0;
2849	int i = 0;
2850
2851	switch (hw->mac.type) {
2852	case e1000_82575:
2853		shift = 6;
2854		break;
2855	case e1000_82576:
2856		/* 82576 supports 2 RSS queues for SR-IOV */
2857		if (adapter->vfs_allocated_count)
2858			shift = 3;
2859		break;
2860	default:
2861		break;
2862	}
2863
2864	while (i < IGB_RETA_SIZE) {
2865		u32 val = 0;
2866		int j;
2867
2868		for (j = 3; j >= 0; j--) {
2869			val <<= 8;
2870			val |= adapter->rss_indir_tbl[i + j];
2871		}
2872
2873		wr32(reg, val << shift);
2874		reg += 4;
2875		i += 4;
2876	}
2877}
2878
2879static int igb_set_rxfh_indir(struct net_device *netdev, const u32 *indir)
2880{
2881	struct igb_adapter *adapter = netdev_priv(netdev);
2882	struct e1000_hw *hw = &adapter->hw;
2883	int i;
2884	u32 num_queues;
2885
2886	num_queues = adapter->rss_queues;
2887
2888	switch (hw->mac.type) {
2889	case e1000_82576:
2890		/* 82576 supports 2 RSS queues for SR-IOV */
2891		if (adapter->vfs_allocated_count)
2892			num_queues = 2;
2893		break;
2894	default:
2895		break;
2896	}
2897
2898	/* Verify user input. */
2899	for (i = 0; i < IGB_RETA_SIZE; i++)
2900		if (indir[i] >= num_queues)
2901			return -EINVAL;
2902
2903
2904	for (i = 0; i < IGB_RETA_SIZE; i++)
2905		adapter->rss_indir_tbl[i] = indir[i];
2906
2907	igb_write_rss_indir_tbl(adapter);
2908
2909	return 0;
2910}
2911
2912static unsigned int igb_max_channels(struct igb_adapter *adapter)
2913{
2914	struct e1000_hw *hw = &adapter->hw;
2915	unsigned int max_combined = 0;
2916
2917	switch (hw->mac.type) {
2918	case e1000_i211:
2919		max_combined = IGB_MAX_RX_QUEUES_I211;
2920		break;
2921	case e1000_82575:
2922	case e1000_i210:
2923		max_combined = IGB_MAX_RX_QUEUES_82575;
2924		break;
2925	case e1000_i350:
2926		if (!!adapter->vfs_allocated_count) {
2927			max_combined = 1;
2928			break;
2929		}
2930		/* fall through */
2931	case e1000_82576:
2932		if (!!adapter->vfs_allocated_count) {
2933			max_combined = 2;
2934			break;
2935		}
2936		/* fall through */
2937	case e1000_82580:
2938	case e1000_i354:
2939	default:
2940		max_combined = IGB_MAX_RX_QUEUES;
2941		break;
2942	}
2943
2944	return max_combined;
2945}
2946
2947static void igb_get_channels(struct net_device *netdev,
2948			     struct ethtool_channels *ch)
2949{
2950	struct igb_adapter *adapter = netdev_priv(netdev);
2951
2952	/* Report maximum channels */
2953	ch->max_combined = igb_max_channels(adapter);
2954
2955	/* Report info for other vector */
2956	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2957		ch->max_other = NON_Q_VECTORS;
2958		ch->other_count = NON_Q_VECTORS;
2959	}
2960
2961	ch->combined_count = adapter->rss_queues;
2962}
2963
2964static int igb_set_channels(struct net_device *netdev,
2965			    struct ethtool_channels *ch)
2966{
2967	struct igb_adapter *adapter = netdev_priv(netdev);
2968	unsigned int count = ch->combined_count;
2969
2970	/* Verify they are not requesting separate vectors */
2971	if (!count || ch->rx_count || ch->tx_count)
2972		return -EINVAL;
2973
2974	/* Verify other_count is valid and has not been changed */
2975	if (ch->other_count != NON_Q_VECTORS)
2976		return -EINVAL;
2977
2978	/* Verify the number of channels doesn't exceed hw limits */
2979	if (count > igb_max_channels(adapter))
2980		return -EINVAL;
2981
2982	if (count != adapter->rss_queues) {
2983		adapter->rss_queues = count;
2984
2985		/* Hardware has to reinitialize queues and interrupts to
2986		 * match the new configuration.
2987		 */
2988		return igb_reinit_queues(adapter);
2989	}
2990
2991	return 0;
2992}
2993
2994static const struct ethtool_ops igb_ethtool_ops = {
2995	.get_settings		= igb_get_settings,
2996	.set_settings		= igb_set_settings,
2997	.get_drvinfo		= igb_get_drvinfo,
2998	.get_regs_len		= igb_get_regs_len,
2999	.get_regs		= igb_get_regs,
3000	.get_wol		= igb_get_wol,
3001	.set_wol		= igb_set_wol,
3002	.get_msglevel		= igb_get_msglevel,
3003	.set_msglevel		= igb_set_msglevel,
3004	.nway_reset		= igb_nway_reset,
3005	.get_link		= igb_get_link,
3006	.get_eeprom_len		= igb_get_eeprom_len,
3007	.get_eeprom		= igb_get_eeprom,
3008	.set_eeprom		= igb_set_eeprom,
3009	.get_ringparam		= igb_get_ringparam,
3010	.set_ringparam		= igb_set_ringparam,
3011	.get_pauseparam		= igb_get_pauseparam,
3012	.set_pauseparam		= igb_set_pauseparam,
3013	.self_test		= igb_diag_test,
3014	.get_strings		= igb_get_strings,
3015	.set_phys_id		= igb_set_phys_id,
3016	.get_sset_count		= igb_get_sset_count,
3017	.get_ethtool_stats	= igb_get_ethtool_stats,
3018	.get_coalesce		= igb_get_coalesce,
3019	.set_coalesce		= igb_set_coalesce,
3020	.get_ts_info		= igb_get_ts_info,
3021	.get_rxnfc		= igb_get_rxnfc,
3022	.set_rxnfc		= igb_set_rxnfc,
3023	.get_eee		= igb_get_eee,
3024	.set_eee		= igb_set_eee,
3025	.get_module_info	= igb_get_module_info,
3026	.get_module_eeprom	= igb_get_module_eeprom,
3027	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3028	.get_rxfh_indir		= igb_get_rxfh_indir,
3029	.set_rxfh_indir		= igb_set_rxfh_indir,
3030	.get_channels		= igb_get_channels,
3031	.set_channels		= igb_set_channels,
3032	.begin			= igb_ethtool_begin,
3033	.complete		= igb_ethtool_complete,
3034};
3035
3036void igb_set_ethtool_ops(struct net_device *netdev)
3037{
3038	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
3039}
3040