[go: nahoru, domu]

igb_ethtool.c revision 2a0a0f1ea27ac39afd25c741a1ccc53bc5530acf
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37#include <linux/sched.h>
38#include <linux/slab.h>
39#include <linux/pm_runtime.h>
40#include <linux/highmem.h>
41#include <linux/mdio.h>
42
43#include "igb.h"
44
45struct igb_stats {
46	char stat_string[ETH_GSTRING_LEN];
47	int sizeof_stat;
48	int stat_offset;
49};
50
51#define IGB_STAT(_name, _stat) { \
52	.stat_string = _name, \
53	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
54	.stat_offset = offsetof(struct igb_adapter, _stat) \
55}
56static const struct igb_stats igb_gstrings_stats[] = {
57	IGB_STAT("rx_packets", stats.gprc),
58	IGB_STAT("tx_packets", stats.gptc),
59	IGB_STAT("rx_bytes", stats.gorc),
60	IGB_STAT("tx_bytes", stats.gotc),
61	IGB_STAT("rx_broadcast", stats.bprc),
62	IGB_STAT("tx_broadcast", stats.bptc),
63	IGB_STAT("rx_multicast", stats.mprc),
64	IGB_STAT("tx_multicast", stats.mptc),
65	IGB_STAT("multicast", stats.mprc),
66	IGB_STAT("collisions", stats.colc),
67	IGB_STAT("rx_crc_errors", stats.crcerrs),
68	IGB_STAT("rx_no_buffer_count", stats.rnbc),
69	IGB_STAT("rx_missed_errors", stats.mpc),
70	IGB_STAT("tx_aborted_errors", stats.ecol),
71	IGB_STAT("tx_carrier_errors", stats.tncrs),
72	IGB_STAT("tx_window_errors", stats.latecol),
73	IGB_STAT("tx_abort_late_coll", stats.latecol),
74	IGB_STAT("tx_deferred_ok", stats.dc),
75	IGB_STAT("tx_single_coll_ok", stats.scc),
76	IGB_STAT("tx_multi_coll_ok", stats.mcc),
77	IGB_STAT("tx_timeout_count", tx_timeout_count),
78	IGB_STAT("rx_long_length_errors", stats.roc),
79	IGB_STAT("rx_short_length_errors", stats.ruc),
80	IGB_STAT("rx_align_errors", stats.algnerrc),
81	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
82	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
83	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
84	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
85	IGB_STAT("tx_flow_control_xon", stats.xontxc),
86	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
87	IGB_STAT("rx_long_byte_count", stats.gorc),
88	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
89	IGB_STAT("tx_smbus", stats.mgptc),
90	IGB_STAT("rx_smbus", stats.mgprc),
91	IGB_STAT("dropped_smbus", stats.mgpdc),
92	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
93	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
94	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
95	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
96	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
98};
99
100#define IGB_NETDEV_STAT(_net_stat) { \
101	.stat_string = __stringify(_net_stat), \
102	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
103	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
104}
105static const struct igb_stats igb_gstrings_net_stats[] = {
106	IGB_NETDEV_STAT(rx_errors),
107	IGB_NETDEV_STAT(tx_errors),
108	IGB_NETDEV_STAT(tx_dropped),
109	IGB_NETDEV_STAT(rx_length_errors),
110	IGB_NETDEV_STAT(rx_over_errors),
111	IGB_NETDEV_STAT(rx_frame_errors),
112	IGB_NETDEV_STAT(rx_fifo_errors),
113	IGB_NETDEV_STAT(tx_fifo_errors),
114	IGB_NETDEV_STAT(tx_heartbeat_errors)
115};
116
117#define IGB_GLOBAL_STATS_LEN	\
118	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
119#define IGB_NETDEV_STATS_LEN	\
120	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
121#define IGB_RX_QUEUE_STATS_LEN \
122	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
123
124#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
125
126#define IGB_QUEUE_STATS_LEN \
127	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
128	  IGB_RX_QUEUE_STATS_LEN) + \
129	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
130	  IGB_TX_QUEUE_STATS_LEN))
131#define IGB_STATS_LEN \
132	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
133
134static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
135	"Register test  (offline)", "Eeprom test    (offline)",
136	"Interrupt test (offline)", "Loopback test  (offline)",
137	"Link test   (on/offline)"
138};
139#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
140
141static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
142{
143	struct igb_adapter *adapter = netdev_priv(netdev);
144	struct e1000_hw *hw = &adapter->hw;
145	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
146	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
147	u32 status;
148
149	if (hw->phy.media_type == e1000_media_type_copper) {
150
151		ecmd->supported = (SUPPORTED_10baseT_Half |
152				   SUPPORTED_10baseT_Full |
153				   SUPPORTED_100baseT_Half |
154				   SUPPORTED_100baseT_Full |
155				   SUPPORTED_1000baseT_Full|
156				   SUPPORTED_Autoneg |
157				   SUPPORTED_TP |
158				   SUPPORTED_Pause);
159		ecmd->advertising = ADVERTISED_TP;
160
161		if (hw->mac.autoneg == 1) {
162			ecmd->advertising |= ADVERTISED_Autoneg;
163			/* the e1000 autoneg seems to match ethtool nicely */
164			ecmd->advertising |= hw->phy.autoneg_advertised;
165		}
166
167		ecmd->port = PORT_TP;
168		ecmd->phy_address = hw->phy.addr;
169		ecmd->transceiver = XCVR_INTERNAL;
170	} else {
171		ecmd->supported = (SUPPORTED_FIBRE |
172				   SUPPORTED_Autoneg |
173				   SUPPORTED_Pause);
174		ecmd->advertising = ADVERTISED_FIBRE;
175		if (hw->mac.type == e1000_i354) {
176			ecmd->supported |= SUPPORTED_2500baseX_Full;
177			ecmd->advertising |= ADVERTISED_2500baseX_Full;
178		}
179		if ((eth_flags->e1000_base_lx) || (eth_flags->e1000_base_sx)) {
180			ecmd->supported |= SUPPORTED_1000baseT_Full;
181			ecmd->advertising |= ADVERTISED_1000baseT_Full;
182		}
183		if (eth_flags->e100_base_fx) {
184			ecmd->supported |= SUPPORTED_100baseT_Full;
185			ecmd->advertising |= ADVERTISED_100baseT_Full;
186		}
187		if (hw->mac.autoneg == 1)
188			ecmd->advertising |= ADVERTISED_Autoneg;
189
190		ecmd->port = PORT_FIBRE;
191		ecmd->transceiver = XCVR_EXTERNAL;
192	}
193
194	if (hw->mac.autoneg != 1)
195		ecmd->advertising &= ~(ADVERTISED_Pause |
196				       ADVERTISED_Asym_Pause);
197
198	if (hw->fc.requested_mode == e1000_fc_full)
199		ecmd->advertising |= ADVERTISED_Pause;
200	else if (hw->fc.requested_mode == e1000_fc_rx_pause)
201		ecmd->advertising |= (ADVERTISED_Pause |
202				      ADVERTISED_Asym_Pause);
203	else if (hw->fc.requested_mode == e1000_fc_tx_pause)
204		ecmd->advertising |=  ADVERTISED_Asym_Pause;
205	else
206		ecmd->advertising &= ~(ADVERTISED_Pause |
207				       ADVERTISED_Asym_Pause);
208
209	status = rd32(E1000_STATUS);
210
211	if (status & E1000_STATUS_LU) {
212		if ((hw->mac.type == e1000_i354) &&
213		    (status & E1000_STATUS_2P5_SKU) &&
214		    !(status & E1000_STATUS_2P5_SKU_OVER))
215			ecmd->speed = SPEED_2500;
216		else if (status & E1000_STATUS_SPEED_1000)
217			ecmd->speed = SPEED_1000;
218		else if (status & E1000_STATUS_SPEED_100)
219			ecmd->speed = SPEED_100;
220		else
221			ecmd->speed = SPEED_10;
222		if ((status & E1000_STATUS_FD) ||
223		    hw->phy.media_type != e1000_media_type_copper)
224			ecmd->duplex = DUPLEX_FULL;
225		else
226			ecmd->duplex = DUPLEX_HALF;
227	} else {
228		ecmd->speed = -1;
229		ecmd->duplex = -1;
230	}
231
232	if ((hw->phy.media_type == e1000_media_type_fiber) ||
233	    hw->mac.autoneg)
234		ecmd->autoneg = AUTONEG_ENABLE;
235	else
236		ecmd->autoneg = AUTONEG_DISABLE;
237
238	/* MDI-X => 2; MDI =>1; Invalid =>0 */
239	if (hw->phy.media_type == e1000_media_type_copper)
240		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
241						      ETH_TP_MDI;
242	else
243		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
244
245	if (hw->phy.mdix == AUTO_ALL_MODES)
246		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
247	else
248		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
249
250	return 0;
251}
252
253static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
254{
255	struct igb_adapter *adapter = netdev_priv(netdev);
256	struct e1000_hw *hw = &adapter->hw;
257
258	/* When SoL/IDER sessions are active, autoneg/speed/duplex
259	 * cannot be changed
260	 */
261	if (igb_check_reset_block(hw)) {
262		dev_err(&adapter->pdev->dev,
263			"Cannot change link characteristics when SoL/IDER is active.\n");
264		return -EINVAL;
265	}
266
267	/* MDI setting is only allowed when autoneg enabled because
268	 * some hardware doesn't allow MDI setting when speed or
269	 * duplex is forced.
270	 */
271	if (ecmd->eth_tp_mdix_ctrl) {
272		if (hw->phy.media_type != e1000_media_type_copper)
273			return -EOPNOTSUPP;
274
275		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
276		    (ecmd->autoneg != AUTONEG_ENABLE)) {
277			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
278			return -EINVAL;
279		}
280	}
281
282	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
283		msleep(1);
284
285	if (ecmd->autoneg == AUTONEG_ENABLE) {
286		hw->mac.autoneg = 1;
287		if (hw->phy.media_type == e1000_media_type_fiber) {
288			hw->phy.autoneg_advertised = ecmd->advertising |
289						     ADVERTISED_FIBRE |
290						     ADVERTISED_Autoneg;
291			switch (adapter->link_speed) {
292			case SPEED_2500:
293				hw->phy.autoneg_advertised =
294					ADVERTISED_2500baseX_Full;
295				break;
296			case SPEED_1000:
297				hw->phy.autoneg_advertised =
298					ADVERTISED_1000baseT_Full;
299				break;
300			case SPEED_100:
301				hw->phy.autoneg_advertised =
302					ADVERTISED_100baseT_Full;
303				break;
304			default:
305				break;
306			}
307		} else {
308			hw->phy.autoneg_advertised = ecmd->advertising |
309						     ADVERTISED_TP |
310						     ADVERTISED_Autoneg;
311		}
312		ecmd->advertising = hw->phy.autoneg_advertised;
313		if (adapter->fc_autoneg)
314			hw->fc.requested_mode = e1000_fc_default;
315	} else {
316		u32 speed = ethtool_cmd_speed(ecmd);
317		/* calling this overrides forced MDI setting */
318		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
319			clear_bit(__IGB_RESETTING, &adapter->state);
320			return -EINVAL;
321		}
322	}
323
324	/* MDI-X => 2; MDI => 1; Auto => 3 */
325	if (ecmd->eth_tp_mdix_ctrl) {
326		/* fix up the value for auto (3 => 0) as zero is mapped
327		 * internally to auto
328		 */
329		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
330			hw->phy.mdix = AUTO_ALL_MODES;
331		else
332			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
333	}
334
335	/* reset the link */
336	if (netif_running(adapter->netdev)) {
337		igb_down(adapter);
338		igb_up(adapter);
339	} else
340		igb_reset(adapter);
341
342	clear_bit(__IGB_RESETTING, &adapter->state);
343	return 0;
344}
345
346static u32 igb_get_link(struct net_device *netdev)
347{
348	struct igb_adapter *adapter = netdev_priv(netdev);
349	struct e1000_mac_info *mac = &adapter->hw.mac;
350
351	/* If the link is not reported up to netdev, interrupts are disabled,
352	 * and so the physical link state may have changed since we last
353	 * looked. Set get_link_status to make sure that the true link
354	 * state is interrogated, rather than pulling a cached and possibly
355	 * stale link state from the driver.
356	 */
357	if (!netif_carrier_ok(netdev))
358		mac->get_link_status = 1;
359
360	return igb_has_link(adapter);
361}
362
363static void igb_get_pauseparam(struct net_device *netdev,
364			       struct ethtool_pauseparam *pause)
365{
366	struct igb_adapter *adapter = netdev_priv(netdev);
367	struct e1000_hw *hw = &adapter->hw;
368
369	pause->autoneg =
370		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
371
372	if (hw->fc.current_mode == e1000_fc_rx_pause)
373		pause->rx_pause = 1;
374	else if (hw->fc.current_mode == e1000_fc_tx_pause)
375		pause->tx_pause = 1;
376	else if (hw->fc.current_mode == e1000_fc_full) {
377		pause->rx_pause = 1;
378		pause->tx_pause = 1;
379	}
380}
381
382static int igb_set_pauseparam(struct net_device *netdev,
383			      struct ethtool_pauseparam *pause)
384{
385	struct igb_adapter *adapter = netdev_priv(netdev);
386	struct e1000_hw *hw = &adapter->hw;
387	int retval = 0;
388
389	/* 100basefx does not support setting link flow control */
390	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
391		return -EINVAL;
392
393	adapter->fc_autoneg = pause->autoneg;
394
395	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
396		msleep(1);
397
398	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
399		hw->fc.requested_mode = e1000_fc_default;
400		if (netif_running(adapter->netdev)) {
401			igb_down(adapter);
402			igb_up(adapter);
403		} else {
404			igb_reset(adapter);
405		}
406	} else {
407		if (pause->rx_pause && pause->tx_pause)
408			hw->fc.requested_mode = e1000_fc_full;
409		else if (pause->rx_pause && !pause->tx_pause)
410			hw->fc.requested_mode = e1000_fc_rx_pause;
411		else if (!pause->rx_pause && pause->tx_pause)
412			hw->fc.requested_mode = e1000_fc_tx_pause;
413		else if (!pause->rx_pause && !pause->tx_pause)
414			hw->fc.requested_mode = e1000_fc_none;
415
416		hw->fc.current_mode = hw->fc.requested_mode;
417
418		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
419			  igb_force_mac_fc(hw) : igb_setup_link(hw));
420	}
421
422	clear_bit(__IGB_RESETTING, &adapter->state);
423	return retval;
424}
425
426static u32 igb_get_msglevel(struct net_device *netdev)
427{
428	struct igb_adapter *adapter = netdev_priv(netdev);
429	return adapter->msg_enable;
430}
431
432static void igb_set_msglevel(struct net_device *netdev, u32 data)
433{
434	struct igb_adapter *adapter = netdev_priv(netdev);
435	adapter->msg_enable = data;
436}
437
438static int igb_get_regs_len(struct net_device *netdev)
439{
440#define IGB_REGS_LEN 739
441	return IGB_REGS_LEN * sizeof(u32);
442}
443
444static void igb_get_regs(struct net_device *netdev,
445			 struct ethtool_regs *regs, void *p)
446{
447	struct igb_adapter *adapter = netdev_priv(netdev);
448	struct e1000_hw *hw = &adapter->hw;
449	u32 *regs_buff = p;
450	u8 i;
451
452	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
453
454	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
455
456	/* General Registers */
457	regs_buff[0] = rd32(E1000_CTRL);
458	regs_buff[1] = rd32(E1000_STATUS);
459	regs_buff[2] = rd32(E1000_CTRL_EXT);
460	regs_buff[3] = rd32(E1000_MDIC);
461	regs_buff[4] = rd32(E1000_SCTL);
462	regs_buff[5] = rd32(E1000_CONNSW);
463	regs_buff[6] = rd32(E1000_VET);
464	regs_buff[7] = rd32(E1000_LEDCTL);
465	regs_buff[8] = rd32(E1000_PBA);
466	regs_buff[9] = rd32(E1000_PBS);
467	regs_buff[10] = rd32(E1000_FRTIMER);
468	regs_buff[11] = rd32(E1000_TCPTIMER);
469
470	/* NVM Register */
471	regs_buff[12] = rd32(E1000_EECD);
472
473	/* Interrupt */
474	/* Reading EICS for EICR because they read the
475	 * same but EICS does not clear on read
476	 */
477	regs_buff[13] = rd32(E1000_EICS);
478	regs_buff[14] = rd32(E1000_EICS);
479	regs_buff[15] = rd32(E1000_EIMS);
480	regs_buff[16] = rd32(E1000_EIMC);
481	regs_buff[17] = rd32(E1000_EIAC);
482	regs_buff[18] = rd32(E1000_EIAM);
483	/* Reading ICS for ICR because they read the
484	 * same but ICS does not clear on read
485	 */
486	regs_buff[19] = rd32(E1000_ICS);
487	regs_buff[20] = rd32(E1000_ICS);
488	regs_buff[21] = rd32(E1000_IMS);
489	regs_buff[22] = rd32(E1000_IMC);
490	regs_buff[23] = rd32(E1000_IAC);
491	regs_buff[24] = rd32(E1000_IAM);
492	regs_buff[25] = rd32(E1000_IMIRVP);
493
494	/* Flow Control */
495	regs_buff[26] = rd32(E1000_FCAL);
496	regs_buff[27] = rd32(E1000_FCAH);
497	regs_buff[28] = rd32(E1000_FCTTV);
498	regs_buff[29] = rd32(E1000_FCRTL);
499	regs_buff[30] = rd32(E1000_FCRTH);
500	regs_buff[31] = rd32(E1000_FCRTV);
501
502	/* Receive */
503	regs_buff[32] = rd32(E1000_RCTL);
504	regs_buff[33] = rd32(E1000_RXCSUM);
505	regs_buff[34] = rd32(E1000_RLPML);
506	regs_buff[35] = rd32(E1000_RFCTL);
507	regs_buff[36] = rd32(E1000_MRQC);
508	regs_buff[37] = rd32(E1000_VT_CTL);
509
510	/* Transmit */
511	regs_buff[38] = rd32(E1000_TCTL);
512	regs_buff[39] = rd32(E1000_TCTL_EXT);
513	regs_buff[40] = rd32(E1000_TIPG);
514	regs_buff[41] = rd32(E1000_DTXCTL);
515
516	/* Wake Up */
517	regs_buff[42] = rd32(E1000_WUC);
518	regs_buff[43] = rd32(E1000_WUFC);
519	regs_buff[44] = rd32(E1000_WUS);
520	regs_buff[45] = rd32(E1000_IPAV);
521	regs_buff[46] = rd32(E1000_WUPL);
522
523	/* MAC */
524	regs_buff[47] = rd32(E1000_PCS_CFG0);
525	regs_buff[48] = rd32(E1000_PCS_LCTL);
526	regs_buff[49] = rd32(E1000_PCS_LSTAT);
527	regs_buff[50] = rd32(E1000_PCS_ANADV);
528	regs_buff[51] = rd32(E1000_PCS_LPAB);
529	regs_buff[52] = rd32(E1000_PCS_NPTX);
530	regs_buff[53] = rd32(E1000_PCS_LPABNP);
531
532	/* Statistics */
533	regs_buff[54] = adapter->stats.crcerrs;
534	regs_buff[55] = adapter->stats.algnerrc;
535	regs_buff[56] = adapter->stats.symerrs;
536	regs_buff[57] = adapter->stats.rxerrc;
537	regs_buff[58] = adapter->stats.mpc;
538	regs_buff[59] = adapter->stats.scc;
539	regs_buff[60] = adapter->stats.ecol;
540	regs_buff[61] = adapter->stats.mcc;
541	regs_buff[62] = adapter->stats.latecol;
542	regs_buff[63] = adapter->stats.colc;
543	regs_buff[64] = adapter->stats.dc;
544	regs_buff[65] = adapter->stats.tncrs;
545	regs_buff[66] = adapter->stats.sec;
546	regs_buff[67] = adapter->stats.htdpmc;
547	regs_buff[68] = adapter->stats.rlec;
548	regs_buff[69] = adapter->stats.xonrxc;
549	regs_buff[70] = adapter->stats.xontxc;
550	regs_buff[71] = adapter->stats.xoffrxc;
551	regs_buff[72] = adapter->stats.xofftxc;
552	regs_buff[73] = adapter->stats.fcruc;
553	regs_buff[74] = adapter->stats.prc64;
554	regs_buff[75] = adapter->stats.prc127;
555	regs_buff[76] = adapter->stats.prc255;
556	regs_buff[77] = adapter->stats.prc511;
557	regs_buff[78] = adapter->stats.prc1023;
558	regs_buff[79] = adapter->stats.prc1522;
559	regs_buff[80] = adapter->stats.gprc;
560	regs_buff[81] = adapter->stats.bprc;
561	regs_buff[82] = adapter->stats.mprc;
562	regs_buff[83] = adapter->stats.gptc;
563	regs_buff[84] = adapter->stats.gorc;
564	regs_buff[86] = adapter->stats.gotc;
565	regs_buff[88] = adapter->stats.rnbc;
566	regs_buff[89] = adapter->stats.ruc;
567	regs_buff[90] = adapter->stats.rfc;
568	regs_buff[91] = adapter->stats.roc;
569	regs_buff[92] = adapter->stats.rjc;
570	regs_buff[93] = adapter->stats.mgprc;
571	regs_buff[94] = adapter->stats.mgpdc;
572	regs_buff[95] = adapter->stats.mgptc;
573	regs_buff[96] = adapter->stats.tor;
574	regs_buff[98] = adapter->stats.tot;
575	regs_buff[100] = adapter->stats.tpr;
576	regs_buff[101] = adapter->stats.tpt;
577	regs_buff[102] = adapter->stats.ptc64;
578	regs_buff[103] = adapter->stats.ptc127;
579	regs_buff[104] = adapter->stats.ptc255;
580	regs_buff[105] = adapter->stats.ptc511;
581	regs_buff[106] = adapter->stats.ptc1023;
582	regs_buff[107] = adapter->stats.ptc1522;
583	regs_buff[108] = adapter->stats.mptc;
584	regs_buff[109] = adapter->stats.bptc;
585	regs_buff[110] = adapter->stats.tsctc;
586	regs_buff[111] = adapter->stats.iac;
587	regs_buff[112] = adapter->stats.rpthc;
588	regs_buff[113] = adapter->stats.hgptc;
589	regs_buff[114] = adapter->stats.hgorc;
590	regs_buff[116] = adapter->stats.hgotc;
591	regs_buff[118] = adapter->stats.lenerrs;
592	regs_buff[119] = adapter->stats.scvpc;
593	regs_buff[120] = adapter->stats.hrmpc;
594
595	for (i = 0; i < 4; i++)
596		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
597	for (i = 0; i < 4; i++)
598		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
599	for (i = 0; i < 4; i++)
600		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
601	for (i = 0; i < 4; i++)
602		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
603	for (i = 0; i < 4; i++)
604		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
605	for (i = 0; i < 4; i++)
606		regs_buff[141 + i] = rd32(E1000_RDH(i));
607	for (i = 0; i < 4; i++)
608		regs_buff[145 + i] = rd32(E1000_RDT(i));
609	for (i = 0; i < 4; i++)
610		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
611
612	for (i = 0; i < 10; i++)
613		regs_buff[153 + i] = rd32(E1000_EITR(i));
614	for (i = 0; i < 8; i++)
615		regs_buff[163 + i] = rd32(E1000_IMIR(i));
616	for (i = 0; i < 8; i++)
617		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
618	for (i = 0; i < 16; i++)
619		regs_buff[179 + i] = rd32(E1000_RAL(i));
620	for (i = 0; i < 16; i++)
621		regs_buff[195 + i] = rd32(E1000_RAH(i));
622
623	for (i = 0; i < 4; i++)
624		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
625	for (i = 0; i < 4; i++)
626		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
627	for (i = 0; i < 4; i++)
628		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
629	for (i = 0; i < 4; i++)
630		regs_buff[223 + i] = rd32(E1000_TDH(i));
631	for (i = 0; i < 4; i++)
632		regs_buff[227 + i] = rd32(E1000_TDT(i));
633	for (i = 0; i < 4; i++)
634		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
635	for (i = 0; i < 4; i++)
636		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
637	for (i = 0; i < 4; i++)
638		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
639	for (i = 0; i < 4; i++)
640		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
641
642	for (i = 0; i < 4; i++)
643		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
644	for (i = 0; i < 4; i++)
645		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
646	for (i = 0; i < 32; i++)
647		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
648	for (i = 0; i < 128; i++)
649		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
650	for (i = 0; i < 128; i++)
651		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
652	for (i = 0; i < 4; i++)
653		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
654
655	regs_buff[547] = rd32(E1000_TDFH);
656	regs_buff[548] = rd32(E1000_TDFT);
657	regs_buff[549] = rd32(E1000_TDFHS);
658	regs_buff[550] = rd32(E1000_TDFPC);
659
660	if (hw->mac.type > e1000_82580) {
661		regs_buff[551] = adapter->stats.o2bgptc;
662		regs_buff[552] = adapter->stats.b2ospc;
663		regs_buff[553] = adapter->stats.o2bspc;
664		regs_buff[554] = adapter->stats.b2ogprc;
665	}
666
667	if (hw->mac.type != e1000_82576)
668		return;
669	for (i = 0; i < 12; i++)
670		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
671	for (i = 0; i < 4; i++)
672		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
673	for (i = 0; i < 12; i++)
674		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
675	for (i = 0; i < 12; i++)
676		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
677	for (i = 0; i < 12; i++)
678		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
679	for (i = 0; i < 12; i++)
680		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
681	for (i = 0; i < 12; i++)
682		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
683	for (i = 0; i < 12; i++)
684		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
685
686	for (i = 0; i < 12; i++)
687		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
688	for (i = 0; i < 12; i++)
689		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
690	for (i = 0; i < 12; i++)
691		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
692	for (i = 0; i < 12; i++)
693		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
694	for (i = 0; i < 12; i++)
695		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
696	for (i = 0; i < 12; i++)
697		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
698	for (i = 0; i < 12; i++)
699		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
700	for (i = 0; i < 12; i++)
701		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
702}
703
704static int igb_get_eeprom_len(struct net_device *netdev)
705{
706	struct igb_adapter *adapter = netdev_priv(netdev);
707	return adapter->hw.nvm.word_size * 2;
708}
709
710static int igb_get_eeprom(struct net_device *netdev,
711			  struct ethtool_eeprom *eeprom, u8 *bytes)
712{
713	struct igb_adapter *adapter = netdev_priv(netdev);
714	struct e1000_hw *hw = &adapter->hw;
715	u16 *eeprom_buff;
716	int first_word, last_word;
717	int ret_val = 0;
718	u16 i;
719
720	if (eeprom->len == 0)
721		return -EINVAL;
722
723	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
724
725	first_word = eeprom->offset >> 1;
726	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
727
728	eeprom_buff = kmalloc(sizeof(u16) *
729			(last_word - first_word + 1), GFP_KERNEL);
730	if (!eeprom_buff)
731		return -ENOMEM;
732
733	if (hw->nvm.type == e1000_nvm_eeprom_spi)
734		ret_val = hw->nvm.ops.read(hw, first_word,
735					   last_word - first_word + 1,
736					   eeprom_buff);
737	else {
738		for (i = 0; i < last_word - first_word + 1; i++) {
739			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
740						   &eeprom_buff[i]);
741			if (ret_val)
742				break;
743		}
744	}
745
746	/* Device's eeprom is always little-endian, word addressable */
747	for (i = 0; i < last_word - first_word + 1; i++)
748		le16_to_cpus(&eeprom_buff[i]);
749
750	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
751			eeprom->len);
752	kfree(eeprom_buff);
753
754	return ret_val;
755}
756
757static int igb_set_eeprom(struct net_device *netdev,
758			  struct ethtool_eeprom *eeprom, u8 *bytes)
759{
760	struct igb_adapter *adapter = netdev_priv(netdev);
761	struct e1000_hw *hw = &adapter->hw;
762	u16 *eeprom_buff;
763	void *ptr;
764	int max_len, first_word, last_word, ret_val = 0;
765	u16 i;
766
767	if (eeprom->len == 0)
768		return -EOPNOTSUPP;
769
770	if (hw->mac.type == e1000_i211)
771		return -EOPNOTSUPP;
772
773	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
774		return -EFAULT;
775
776	max_len = hw->nvm.word_size * 2;
777
778	first_word = eeprom->offset >> 1;
779	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
780	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
781	if (!eeprom_buff)
782		return -ENOMEM;
783
784	ptr = (void *)eeprom_buff;
785
786	if (eeprom->offset & 1) {
787		/* need read/modify/write of first changed EEPROM word
788		 * only the second byte of the word is being modified
789		 */
790		ret_val = hw->nvm.ops.read(hw, first_word, 1,
791					    &eeprom_buff[0]);
792		ptr++;
793	}
794	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
795		/* need read/modify/write of last changed EEPROM word
796		 * only the first byte of the word is being modified
797		 */
798		ret_val = hw->nvm.ops.read(hw, last_word, 1,
799				   &eeprom_buff[last_word - first_word]);
800	}
801
802	/* Device's eeprom is always little-endian, word addressable */
803	for (i = 0; i < last_word - first_word + 1; i++)
804		le16_to_cpus(&eeprom_buff[i]);
805
806	memcpy(ptr, bytes, eeprom->len);
807
808	for (i = 0; i < last_word - first_word + 1; i++)
809		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
810
811	ret_val = hw->nvm.ops.write(hw, first_word,
812				    last_word - first_word + 1, eeprom_buff);
813
814	/* Update the checksum if nvm write succeeded */
815	if (ret_val == 0)
816		hw->nvm.ops.update(hw);
817
818	igb_set_fw_version(adapter);
819	kfree(eeprom_buff);
820	return ret_val;
821}
822
823static void igb_get_drvinfo(struct net_device *netdev,
824			    struct ethtool_drvinfo *drvinfo)
825{
826	struct igb_adapter *adapter = netdev_priv(netdev);
827
828	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
829	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
830
831	/* EEPROM image version # is reported as firmware version # for
832	 * 82575 controllers
833	 */
834	strlcpy(drvinfo->fw_version, adapter->fw_version,
835		sizeof(drvinfo->fw_version));
836	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
837		sizeof(drvinfo->bus_info));
838	drvinfo->n_stats = IGB_STATS_LEN;
839	drvinfo->testinfo_len = IGB_TEST_LEN;
840	drvinfo->regdump_len = igb_get_regs_len(netdev);
841	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
842}
843
844static void igb_get_ringparam(struct net_device *netdev,
845			      struct ethtool_ringparam *ring)
846{
847	struct igb_adapter *adapter = netdev_priv(netdev);
848
849	ring->rx_max_pending = IGB_MAX_RXD;
850	ring->tx_max_pending = IGB_MAX_TXD;
851	ring->rx_pending = adapter->rx_ring_count;
852	ring->tx_pending = adapter->tx_ring_count;
853}
854
855static int igb_set_ringparam(struct net_device *netdev,
856			     struct ethtool_ringparam *ring)
857{
858	struct igb_adapter *adapter = netdev_priv(netdev);
859	struct igb_ring *temp_ring;
860	int i, err = 0;
861	u16 new_rx_count, new_tx_count;
862
863	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
864		return -EINVAL;
865
866	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
867	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
868	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
869
870	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
871	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
872	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
873
874	if ((new_tx_count == adapter->tx_ring_count) &&
875	    (new_rx_count == adapter->rx_ring_count)) {
876		/* nothing to do */
877		return 0;
878	}
879
880	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
881		msleep(1);
882
883	if (!netif_running(adapter->netdev)) {
884		for (i = 0; i < adapter->num_tx_queues; i++)
885			adapter->tx_ring[i]->count = new_tx_count;
886		for (i = 0; i < adapter->num_rx_queues; i++)
887			adapter->rx_ring[i]->count = new_rx_count;
888		adapter->tx_ring_count = new_tx_count;
889		adapter->rx_ring_count = new_rx_count;
890		goto clear_reset;
891	}
892
893	if (adapter->num_tx_queues > adapter->num_rx_queues)
894		temp_ring = vmalloc(adapter->num_tx_queues *
895				    sizeof(struct igb_ring));
896	else
897		temp_ring = vmalloc(adapter->num_rx_queues *
898				    sizeof(struct igb_ring));
899
900	if (!temp_ring) {
901		err = -ENOMEM;
902		goto clear_reset;
903	}
904
905	igb_down(adapter);
906
907	/* We can't just free everything and then setup again,
908	 * because the ISRs in MSI-X mode get passed pointers
909	 * to the Tx and Rx ring structs.
910	 */
911	if (new_tx_count != adapter->tx_ring_count) {
912		for (i = 0; i < adapter->num_tx_queues; i++) {
913			memcpy(&temp_ring[i], adapter->tx_ring[i],
914			       sizeof(struct igb_ring));
915
916			temp_ring[i].count = new_tx_count;
917			err = igb_setup_tx_resources(&temp_ring[i]);
918			if (err) {
919				while (i) {
920					i--;
921					igb_free_tx_resources(&temp_ring[i]);
922				}
923				goto err_setup;
924			}
925		}
926
927		for (i = 0; i < adapter->num_tx_queues; i++) {
928			igb_free_tx_resources(adapter->tx_ring[i]);
929
930			memcpy(adapter->tx_ring[i], &temp_ring[i],
931			       sizeof(struct igb_ring));
932		}
933
934		adapter->tx_ring_count = new_tx_count;
935	}
936
937	if (new_rx_count != adapter->rx_ring_count) {
938		for (i = 0; i < adapter->num_rx_queues; i++) {
939			memcpy(&temp_ring[i], adapter->rx_ring[i],
940			       sizeof(struct igb_ring));
941
942			temp_ring[i].count = new_rx_count;
943			err = igb_setup_rx_resources(&temp_ring[i]);
944			if (err) {
945				while (i) {
946					i--;
947					igb_free_rx_resources(&temp_ring[i]);
948				}
949				goto err_setup;
950			}
951
952		}
953
954		for (i = 0; i < adapter->num_rx_queues; i++) {
955			igb_free_rx_resources(adapter->rx_ring[i]);
956
957			memcpy(adapter->rx_ring[i], &temp_ring[i],
958			       sizeof(struct igb_ring));
959		}
960
961		adapter->rx_ring_count = new_rx_count;
962	}
963err_setup:
964	igb_up(adapter);
965	vfree(temp_ring);
966clear_reset:
967	clear_bit(__IGB_RESETTING, &adapter->state);
968	return err;
969}
970
971/* ethtool register test data */
972struct igb_reg_test {
973	u16 reg;
974	u16 reg_offset;
975	u16 array_len;
976	u16 test_type;
977	u32 mask;
978	u32 write;
979};
980
981/* In the hardware, registers are laid out either singly, in arrays
982 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
983 * most tests take place on arrays or single registers (handled
984 * as a single-element array) and special-case the tables.
985 * Table tests are always pattern tests.
986 *
987 * We also make provision for some required setup steps by specifying
988 * registers to be written without any read-back testing.
989 */
990
991#define PATTERN_TEST	1
992#define SET_READ_TEST	2
993#define WRITE_NO_TEST	3
994#define TABLE32_TEST	4
995#define TABLE64_TEST_LO	5
996#define TABLE64_TEST_HI	6
997
998/* i210 reg test */
999static struct igb_reg_test reg_test_i210[] = {
1000	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1001	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1002	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1003	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1004	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1005	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1006	/* RDH is read-only for i210, only test RDT. */
1007	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1008	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1009	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1010	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1011	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1012	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1014	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1015	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1016	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1017	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1018	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1019	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1020						0xFFFFFFFF, 0xFFFFFFFF },
1021	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1022						0x900FFFFF, 0xFFFFFFFF },
1023	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1024						0xFFFFFFFF, 0xFFFFFFFF },
1025	{ 0, 0, 0, 0, 0 }
1026};
1027
1028/* i350 reg test */
1029static struct igb_reg_test reg_test_i350[] = {
1030	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1032	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1033	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1034	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1035	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1036	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1037	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1038	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1039	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1040	/* RDH is read-only for i350, only test RDT. */
1041	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1042	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1043	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1044	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1045	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1046	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1047	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1048	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1049	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1050	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1051	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1052	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1053	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1054	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1055	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1056	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1057	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1058	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1059						0xFFFFFFFF, 0xFFFFFFFF },
1060	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1061						0xC3FFFFFF, 0xFFFFFFFF },
1062	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1063						0xFFFFFFFF, 0xFFFFFFFF },
1064	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1065						0xC3FFFFFF, 0xFFFFFFFF },
1066	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1067						0xFFFFFFFF, 0xFFFFFFFF },
1068	{ 0, 0, 0, 0 }
1069};
1070
1071/* 82580 reg test */
1072static struct igb_reg_test reg_test_82580[] = {
1073	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1074	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1075	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1076	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1078	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1079	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1080	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1081	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1082	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1083	/* RDH is read-only for 82580, only test RDT. */
1084	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1085	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1086	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1087	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1088	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1089	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1090	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1091	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1092	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1093	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1094	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1095	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1096	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1097	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1098	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1099	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1100	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1101	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1102						0xFFFFFFFF, 0xFFFFFFFF },
1103	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1104						0x83FFFFFF, 0xFFFFFFFF },
1105	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1106						0xFFFFFFFF, 0xFFFFFFFF },
1107	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1108						0x83FFFFFF, 0xFFFFFFFF },
1109	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1110						0xFFFFFFFF, 0xFFFFFFFF },
1111	{ 0, 0, 0, 0 }
1112};
1113
1114/* 82576 reg test */
1115static struct igb_reg_test reg_test_82576[] = {
1116	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1117	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1118	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1119	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1121	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1122	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1123	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1124	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1125	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1126	/* Enable all RX queues before testing. */
1127	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1128	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1129	/* RDH is read-only for 82576, only test RDT. */
1130	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1131	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1132	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1133	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1134	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1135	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1136	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1137	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1138	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1139	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1140	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1141	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1142	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1143	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1144	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1145	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1146	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1147	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1148	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1149	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1150	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1151	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1152	{ 0, 0, 0, 0 }
1153};
1154
1155/* 82575 register test */
1156static struct igb_reg_test reg_test_82575[] = {
1157	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1158	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1159	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1160	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1161	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1162	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1163	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1164	/* Enable all four RX queues before testing. */
1165	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1166	/* RDH is read-only for 82575, only test RDT. */
1167	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1168	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1169	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1170	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1171	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1172	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1173	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1174	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1175	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1176	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1177	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1178	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1179	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1180	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1181	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1182	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1183	{ 0, 0, 0, 0 }
1184};
1185
1186static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1187			     int reg, u32 mask, u32 write)
1188{
1189	struct e1000_hw *hw = &adapter->hw;
1190	u32 pat, val;
1191	static const u32 _test[] =
1192		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1193	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1194		wr32(reg, (_test[pat] & write));
1195		val = rd32(reg) & mask;
1196		if (val != (_test[pat] & write & mask)) {
1197			dev_err(&adapter->pdev->dev,
1198				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1199				reg, val, (_test[pat] & write & mask));
1200			*data = reg;
1201			return 1;
1202		}
1203	}
1204
1205	return 0;
1206}
1207
1208static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1209			      int reg, u32 mask, u32 write)
1210{
1211	struct e1000_hw *hw = &adapter->hw;
1212	u32 val;
1213	wr32(reg, write & mask);
1214	val = rd32(reg);
1215	if ((write & mask) != (val & mask)) {
1216		dev_err(&adapter->pdev->dev,
1217			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1218			(val & mask), (write & mask));
1219		*data = reg;
1220		return 1;
1221	}
1222
1223	return 0;
1224}
1225
1226#define REG_PATTERN_TEST(reg, mask, write) \
1227	do { \
1228		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1229			return 1; \
1230	} while (0)
1231
1232#define REG_SET_AND_CHECK(reg, mask, write) \
1233	do { \
1234		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1235			return 1; \
1236	} while (0)
1237
1238static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1239{
1240	struct e1000_hw *hw = &adapter->hw;
1241	struct igb_reg_test *test;
1242	u32 value, before, after;
1243	u32 i, toggle;
1244
1245	switch (adapter->hw.mac.type) {
1246	case e1000_i350:
1247	case e1000_i354:
1248		test = reg_test_i350;
1249		toggle = 0x7FEFF3FF;
1250		break;
1251	case e1000_i210:
1252	case e1000_i211:
1253		test = reg_test_i210;
1254		toggle = 0x7FEFF3FF;
1255		break;
1256	case e1000_82580:
1257		test = reg_test_82580;
1258		toggle = 0x7FEFF3FF;
1259		break;
1260	case e1000_82576:
1261		test = reg_test_82576;
1262		toggle = 0x7FFFF3FF;
1263		break;
1264	default:
1265		test = reg_test_82575;
1266		toggle = 0x7FFFF3FF;
1267		break;
1268	}
1269
1270	/* Because the status register is such a special case,
1271	 * we handle it separately from the rest of the register
1272	 * tests.  Some bits are read-only, some toggle, and some
1273	 * are writable on newer MACs.
1274	 */
1275	before = rd32(E1000_STATUS);
1276	value = (rd32(E1000_STATUS) & toggle);
1277	wr32(E1000_STATUS, toggle);
1278	after = rd32(E1000_STATUS) & toggle;
1279	if (value != after) {
1280		dev_err(&adapter->pdev->dev,
1281			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1282			after, value);
1283		*data = 1;
1284		return 1;
1285	}
1286	/* restore previous status */
1287	wr32(E1000_STATUS, before);
1288
1289	/* Perform the remainder of the register test, looping through
1290	 * the test table until we either fail or reach the null entry.
1291	 */
1292	while (test->reg) {
1293		for (i = 0; i < test->array_len; i++) {
1294			switch (test->test_type) {
1295			case PATTERN_TEST:
1296				REG_PATTERN_TEST(test->reg +
1297						(i * test->reg_offset),
1298						test->mask,
1299						test->write);
1300				break;
1301			case SET_READ_TEST:
1302				REG_SET_AND_CHECK(test->reg +
1303						(i * test->reg_offset),
1304						test->mask,
1305						test->write);
1306				break;
1307			case WRITE_NO_TEST:
1308				writel(test->write,
1309				    (adapter->hw.hw_addr + test->reg)
1310					+ (i * test->reg_offset));
1311				break;
1312			case TABLE32_TEST:
1313				REG_PATTERN_TEST(test->reg + (i * 4),
1314						test->mask,
1315						test->write);
1316				break;
1317			case TABLE64_TEST_LO:
1318				REG_PATTERN_TEST(test->reg + (i * 8),
1319						test->mask,
1320						test->write);
1321				break;
1322			case TABLE64_TEST_HI:
1323				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1324						test->mask,
1325						test->write);
1326				break;
1327			}
1328		}
1329		test++;
1330	}
1331
1332	*data = 0;
1333	return 0;
1334}
1335
1336static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1337{
1338	*data = 0;
1339
1340	/* Validate eeprom on all parts but i211 */
1341	if (adapter->hw.mac.type != e1000_i211) {
1342		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1343			*data = 2;
1344	}
1345
1346	return *data;
1347}
1348
1349static irqreturn_t igb_test_intr(int irq, void *data)
1350{
1351	struct igb_adapter *adapter = (struct igb_adapter *) data;
1352	struct e1000_hw *hw = &adapter->hw;
1353
1354	adapter->test_icr |= rd32(E1000_ICR);
1355
1356	return IRQ_HANDLED;
1357}
1358
1359static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1360{
1361	struct e1000_hw *hw = &adapter->hw;
1362	struct net_device *netdev = adapter->netdev;
1363	u32 mask, ics_mask, i = 0, shared_int = true;
1364	u32 irq = adapter->pdev->irq;
1365
1366	*data = 0;
1367
1368	/* Hook up test interrupt handler just for this test */
1369	if (adapter->msix_entries) {
1370		if (request_irq(adapter->msix_entries[0].vector,
1371		                igb_test_intr, 0, netdev->name, adapter)) {
1372			*data = 1;
1373			return -1;
1374		}
1375	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1376		shared_int = false;
1377		if (request_irq(irq,
1378		                igb_test_intr, 0, netdev->name, adapter)) {
1379			*data = 1;
1380			return -1;
1381		}
1382	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1383				netdev->name, adapter)) {
1384		shared_int = false;
1385	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1386		 netdev->name, adapter)) {
1387		*data = 1;
1388		return -1;
1389	}
1390	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1391		(shared_int ? "shared" : "unshared"));
1392
1393	/* Disable all the interrupts */
1394	wr32(E1000_IMC, ~0);
1395	wrfl();
1396	msleep(10);
1397
1398	/* Define all writable bits for ICS */
1399	switch (hw->mac.type) {
1400	case e1000_82575:
1401		ics_mask = 0x37F47EDD;
1402		break;
1403	case e1000_82576:
1404		ics_mask = 0x77D4FBFD;
1405		break;
1406	case e1000_82580:
1407		ics_mask = 0x77DCFED5;
1408		break;
1409	case e1000_i350:
1410	case e1000_i354:
1411	case e1000_i210:
1412	case e1000_i211:
1413		ics_mask = 0x77DCFED5;
1414		break;
1415	default:
1416		ics_mask = 0x7FFFFFFF;
1417		break;
1418	}
1419
1420	/* Test each interrupt */
1421	for (; i < 31; i++) {
1422		/* Interrupt to test */
1423		mask = 1 << i;
1424
1425		if (!(mask & ics_mask))
1426			continue;
1427
1428		if (!shared_int) {
1429			/* Disable the interrupt to be reported in
1430			 * the cause register and then force the same
1431			 * interrupt and see if one gets posted.  If
1432			 * an interrupt was posted to the bus, the
1433			 * test failed.
1434			 */
1435			adapter->test_icr = 0;
1436
1437			/* Flush any pending interrupts */
1438			wr32(E1000_ICR, ~0);
1439
1440			wr32(E1000_IMC, mask);
1441			wr32(E1000_ICS, mask);
1442			wrfl();
1443			msleep(10);
1444
1445			if (adapter->test_icr & mask) {
1446				*data = 3;
1447				break;
1448			}
1449		}
1450
1451		/* Enable the interrupt to be reported in
1452		 * the cause register and then force the same
1453		 * interrupt and see if one gets posted.  If
1454		 * an interrupt was not posted to the bus, the
1455		 * test failed.
1456		 */
1457		adapter->test_icr = 0;
1458
1459		/* Flush any pending interrupts */
1460		wr32(E1000_ICR, ~0);
1461
1462		wr32(E1000_IMS, mask);
1463		wr32(E1000_ICS, mask);
1464		wrfl();
1465		msleep(10);
1466
1467		if (!(adapter->test_icr & mask)) {
1468			*data = 4;
1469			break;
1470		}
1471
1472		if (!shared_int) {
1473			/* Disable the other interrupts to be reported in
1474			 * the cause register and then force the other
1475			 * interrupts and see if any get posted.  If
1476			 * an interrupt was posted to the bus, the
1477			 * test failed.
1478			 */
1479			adapter->test_icr = 0;
1480
1481			/* Flush any pending interrupts */
1482			wr32(E1000_ICR, ~0);
1483
1484			wr32(E1000_IMC, ~mask);
1485			wr32(E1000_ICS, ~mask);
1486			wrfl();
1487			msleep(10);
1488
1489			if (adapter->test_icr & mask) {
1490				*data = 5;
1491				break;
1492			}
1493		}
1494	}
1495
1496	/* Disable all the interrupts */
1497	wr32(E1000_IMC, ~0);
1498	wrfl();
1499	msleep(10);
1500
1501	/* Unhook test interrupt handler */
1502	if (adapter->msix_entries)
1503		free_irq(adapter->msix_entries[0].vector, adapter);
1504	else
1505		free_irq(irq, adapter);
1506
1507	return *data;
1508}
1509
1510static void igb_free_desc_rings(struct igb_adapter *adapter)
1511{
1512	igb_free_tx_resources(&adapter->test_tx_ring);
1513	igb_free_rx_resources(&adapter->test_rx_ring);
1514}
1515
1516static int igb_setup_desc_rings(struct igb_adapter *adapter)
1517{
1518	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1519	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1520	struct e1000_hw *hw = &adapter->hw;
1521	int ret_val;
1522
1523	/* Setup Tx descriptor ring and Tx buffers */
1524	tx_ring->count = IGB_DEFAULT_TXD;
1525	tx_ring->dev = &adapter->pdev->dev;
1526	tx_ring->netdev = adapter->netdev;
1527	tx_ring->reg_idx = adapter->vfs_allocated_count;
1528
1529	if (igb_setup_tx_resources(tx_ring)) {
1530		ret_val = 1;
1531		goto err_nomem;
1532	}
1533
1534	igb_setup_tctl(adapter);
1535	igb_configure_tx_ring(adapter, tx_ring);
1536
1537	/* Setup Rx descriptor ring and Rx buffers */
1538	rx_ring->count = IGB_DEFAULT_RXD;
1539	rx_ring->dev = &adapter->pdev->dev;
1540	rx_ring->netdev = adapter->netdev;
1541	rx_ring->reg_idx = adapter->vfs_allocated_count;
1542
1543	if (igb_setup_rx_resources(rx_ring)) {
1544		ret_val = 3;
1545		goto err_nomem;
1546	}
1547
1548	/* set the default queue to queue 0 of PF */
1549	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1550
1551	/* enable receive ring */
1552	igb_setup_rctl(adapter);
1553	igb_configure_rx_ring(adapter, rx_ring);
1554
1555	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1556
1557	return 0;
1558
1559err_nomem:
1560	igb_free_desc_rings(adapter);
1561	return ret_val;
1562}
1563
1564static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1565{
1566	struct e1000_hw *hw = &adapter->hw;
1567
1568	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1569	igb_write_phy_reg(hw, 29, 0x001F);
1570	igb_write_phy_reg(hw, 30, 0x8FFC);
1571	igb_write_phy_reg(hw, 29, 0x001A);
1572	igb_write_phy_reg(hw, 30, 0x8FF0);
1573}
1574
1575static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1576{
1577	struct e1000_hw *hw = &adapter->hw;
1578	u32 ctrl_reg = 0;
1579
1580	hw->mac.autoneg = false;
1581
1582	if (hw->phy.type == e1000_phy_m88) {
1583		if (hw->phy.id != I210_I_PHY_ID) {
1584			/* Auto-MDI/MDIX Off */
1585			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1586			/* reset to update Auto-MDI/MDIX */
1587			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1588			/* autoneg off */
1589			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1590		} else {
1591			/* force 1000, set loopback  */
1592			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1593			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1594		}
1595	}
1596
1597	/* add small delay to avoid loopback test failure */
1598	msleep(50);
1599
1600	/* force 1000, set loopback */
1601	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1602
1603	/* Now set up the MAC to the same speed/duplex as the PHY. */
1604	ctrl_reg = rd32(E1000_CTRL);
1605	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1606	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1607		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1608		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1609		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1610		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1611
1612	if (hw->phy.type == e1000_phy_m88)
1613		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1614
1615	wr32(E1000_CTRL, ctrl_reg);
1616
1617	/* Disable the receiver on the PHY so when a cable is plugged in, the
1618	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1619	 */
1620	if (hw->phy.type == e1000_phy_m88)
1621		igb_phy_disable_receiver(adapter);
1622
1623	mdelay(500);
1624	return 0;
1625}
1626
1627static int igb_set_phy_loopback(struct igb_adapter *adapter)
1628{
1629	return igb_integrated_phy_loopback(adapter);
1630}
1631
1632static int igb_setup_loopback_test(struct igb_adapter *adapter)
1633{
1634	struct e1000_hw *hw = &adapter->hw;
1635	u32 reg;
1636
1637	reg = rd32(E1000_CTRL_EXT);
1638
1639	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1640	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1641		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1642		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1643		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1644		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1645
1646			/* Enable DH89xxCC MPHY for near end loopback */
1647			reg = rd32(E1000_MPHY_ADDR_CTL);
1648			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1649			E1000_MPHY_PCS_CLK_REG_OFFSET;
1650			wr32(E1000_MPHY_ADDR_CTL, reg);
1651
1652			reg = rd32(E1000_MPHY_DATA);
1653			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1654			wr32(E1000_MPHY_DATA, reg);
1655		}
1656
1657		reg = rd32(E1000_RCTL);
1658		reg |= E1000_RCTL_LBM_TCVR;
1659		wr32(E1000_RCTL, reg);
1660
1661		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1662
1663		reg = rd32(E1000_CTRL);
1664		reg &= ~(E1000_CTRL_RFCE |
1665			 E1000_CTRL_TFCE |
1666			 E1000_CTRL_LRST);
1667		reg |= E1000_CTRL_SLU |
1668		       E1000_CTRL_FD;
1669		wr32(E1000_CTRL, reg);
1670
1671		/* Unset switch control to serdes energy detect */
1672		reg = rd32(E1000_CONNSW);
1673		reg &= ~E1000_CONNSW_ENRGSRC;
1674		wr32(E1000_CONNSW, reg);
1675
1676		/* Unset sigdetect for SERDES loopback on
1677		 * 82580 and newer devices.
1678		 */
1679		if (hw->mac.type >= e1000_82580) {
1680			reg = rd32(E1000_PCS_CFG0);
1681			reg |= E1000_PCS_CFG_IGN_SD;
1682			wr32(E1000_PCS_CFG0, reg);
1683		}
1684
1685		/* Set PCS register for forced speed */
1686		reg = rd32(E1000_PCS_LCTL);
1687		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1688		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1689		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1690		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1691		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1692		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1693		wr32(E1000_PCS_LCTL, reg);
1694
1695		return 0;
1696	}
1697
1698	return igb_set_phy_loopback(adapter);
1699}
1700
1701static void igb_loopback_cleanup(struct igb_adapter *adapter)
1702{
1703	struct e1000_hw *hw = &adapter->hw;
1704	u32 rctl;
1705	u16 phy_reg;
1706
1707	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1708	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1709	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1710	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1711		u32 reg;
1712
1713		/* Disable near end loopback on DH89xxCC */
1714		reg = rd32(E1000_MPHY_ADDR_CTL);
1715		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1716		E1000_MPHY_PCS_CLK_REG_OFFSET;
1717		wr32(E1000_MPHY_ADDR_CTL, reg);
1718
1719		reg = rd32(E1000_MPHY_DATA);
1720		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1721		wr32(E1000_MPHY_DATA, reg);
1722	}
1723
1724	rctl = rd32(E1000_RCTL);
1725	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1726	wr32(E1000_RCTL, rctl);
1727
1728	hw->mac.autoneg = true;
1729	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1730	if (phy_reg & MII_CR_LOOPBACK) {
1731		phy_reg &= ~MII_CR_LOOPBACK;
1732		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1733		igb_phy_sw_reset(hw);
1734	}
1735}
1736
1737static void igb_create_lbtest_frame(struct sk_buff *skb,
1738				    unsigned int frame_size)
1739{
1740	memset(skb->data, 0xFF, frame_size);
1741	frame_size /= 2;
1742	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1743	memset(&skb->data[frame_size + 10], 0xBE, 1);
1744	memset(&skb->data[frame_size + 12], 0xAF, 1);
1745}
1746
1747static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1748				  unsigned int frame_size)
1749{
1750	unsigned char *data;
1751	bool match = true;
1752
1753	frame_size >>= 1;
1754
1755	data = kmap(rx_buffer->page);
1756
1757	if (data[3] != 0xFF ||
1758	    data[frame_size + 10] != 0xBE ||
1759	    data[frame_size + 12] != 0xAF)
1760		match = false;
1761
1762	kunmap(rx_buffer->page);
1763
1764	return match;
1765}
1766
1767static int igb_clean_test_rings(struct igb_ring *rx_ring,
1768				struct igb_ring *tx_ring,
1769				unsigned int size)
1770{
1771	union e1000_adv_rx_desc *rx_desc;
1772	struct igb_rx_buffer *rx_buffer_info;
1773	struct igb_tx_buffer *tx_buffer_info;
1774	u16 rx_ntc, tx_ntc, count = 0;
1775
1776	/* initialize next to clean and descriptor values */
1777	rx_ntc = rx_ring->next_to_clean;
1778	tx_ntc = tx_ring->next_to_clean;
1779	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1780
1781	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1782		/* check Rx buffer */
1783		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1784
1785		/* sync Rx buffer for CPU read */
1786		dma_sync_single_for_cpu(rx_ring->dev,
1787					rx_buffer_info->dma,
1788					IGB_RX_BUFSZ,
1789					DMA_FROM_DEVICE);
1790
1791		/* verify contents of skb */
1792		if (igb_check_lbtest_frame(rx_buffer_info, size))
1793			count++;
1794
1795		/* sync Rx buffer for device write */
1796		dma_sync_single_for_device(rx_ring->dev,
1797					   rx_buffer_info->dma,
1798					   IGB_RX_BUFSZ,
1799					   DMA_FROM_DEVICE);
1800
1801		/* unmap buffer on Tx side */
1802		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1803		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1804
1805		/* increment Rx/Tx next to clean counters */
1806		rx_ntc++;
1807		if (rx_ntc == rx_ring->count)
1808			rx_ntc = 0;
1809		tx_ntc++;
1810		if (tx_ntc == tx_ring->count)
1811			tx_ntc = 0;
1812
1813		/* fetch next descriptor */
1814		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1815	}
1816
1817	netdev_tx_reset_queue(txring_txq(tx_ring));
1818
1819	/* re-map buffers to ring, store next to clean values */
1820	igb_alloc_rx_buffers(rx_ring, count);
1821	rx_ring->next_to_clean = rx_ntc;
1822	tx_ring->next_to_clean = tx_ntc;
1823
1824	return count;
1825}
1826
1827static int igb_run_loopback_test(struct igb_adapter *adapter)
1828{
1829	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1830	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1831	u16 i, j, lc, good_cnt;
1832	int ret_val = 0;
1833	unsigned int size = IGB_RX_HDR_LEN;
1834	netdev_tx_t tx_ret_val;
1835	struct sk_buff *skb;
1836
1837	/* allocate test skb */
1838	skb = alloc_skb(size, GFP_KERNEL);
1839	if (!skb)
1840		return 11;
1841
1842	/* place data into test skb */
1843	igb_create_lbtest_frame(skb, size);
1844	skb_put(skb, size);
1845
1846	/* Calculate the loop count based on the largest descriptor ring
1847	 * The idea is to wrap the largest ring a number of times using 64
1848	 * send/receive pairs during each loop
1849	 */
1850
1851	if (rx_ring->count <= tx_ring->count)
1852		lc = ((tx_ring->count / 64) * 2) + 1;
1853	else
1854		lc = ((rx_ring->count / 64) * 2) + 1;
1855
1856	for (j = 0; j <= lc; j++) { /* loop count loop */
1857		/* reset count of good packets */
1858		good_cnt = 0;
1859
1860		/* place 64 packets on the transmit queue*/
1861		for (i = 0; i < 64; i++) {
1862			skb_get(skb);
1863			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1864			if (tx_ret_val == NETDEV_TX_OK)
1865				good_cnt++;
1866		}
1867
1868		if (good_cnt != 64) {
1869			ret_val = 12;
1870			break;
1871		}
1872
1873		/* allow 200 milliseconds for packets to go from Tx to Rx */
1874		msleep(200);
1875
1876		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1877		if (good_cnt != 64) {
1878			ret_val = 13;
1879			break;
1880		}
1881	} /* end loop count loop */
1882
1883	/* free the original skb */
1884	kfree_skb(skb);
1885
1886	return ret_val;
1887}
1888
1889static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1890{
1891	/* PHY loopback cannot be performed if SoL/IDER
1892	 * sessions are active
1893	 */
1894	if (igb_check_reset_block(&adapter->hw)) {
1895		dev_err(&adapter->pdev->dev,
1896			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1897		*data = 0;
1898		goto out;
1899	}
1900
1901	if (adapter->hw.mac.type == e1000_i354) {
1902		dev_info(&adapter->pdev->dev,
1903			"Loopback test not supported on i354.\n");
1904		*data = 0;
1905		goto out;
1906	}
1907	*data = igb_setup_desc_rings(adapter);
1908	if (*data)
1909		goto out;
1910	*data = igb_setup_loopback_test(adapter);
1911	if (*data)
1912		goto err_loopback;
1913	*data = igb_run_loopback_test(adapter);
1914	igb_loopback_cleanup(adapter);
1915
1916err_loopback:
1917	igb_free_desc_rings(adapter);
1918out:
1919	return *data;
1920}
1921
1922static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1923{
1924	struct e1000_hw *hw = &adapter->hw;
1925	*data = 0;
1926	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1927		int i = 0;
1928		hw->mac.serdes_has_link = false;
1929
1930		/* On some blade server designs, link establishment
1931		 * could take as long as 2-3 minutes
1932		 */
1933		do {
1934			hw->mac.ops.check_for_link(&adapter->hw);
1935			if (hw->mac.serdes_has_link)
1936				return *data;
1937			msleep(20);
1938		} while (i++ < 3750);
1939
1940		*data = 1;
1941	} else {
1942		hw->mac.ops.check_for_link(&adapter->hw);
1943		if (hw->mac.autoneg)
1944			msleep(5000);
1945
1946		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1947			*data = 1;
1948	}
1949	return *data;
1950}
1951
1952static void igb_diag_test(struct net_device *netdev,
1953			  struct ethtool_test *eth_test, u64 *data)
1954{
1955	struct igb_adapter *adapter = netdev_priv(netdev);
1956	u16 autoneg_advertised;
1957	u8 forced_speed_duplex, autoneg;
1958	bool if_running = netif_running(netdev);
1959
1960	set_bit(__IGB_TESTING, &adapter->state);
1961	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1962		/* Offline tests */
1963
1964		/* save speed, duplex, autoneg settings */
1965		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1966		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1967		autoneg = adapter->hw.mac.autoneg;
1968
1969		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1970
1971		/* power up link for link test */
1972		igb_power_up_link(adapter);
1973
1974		/* Link test performed before hardware reset so autoneg doesn't
1975		 * interfere with test result
1976		 */
1977		if (igb_link_test(adapter, &data[4]))
1978			eth_test->flags |= ETH_TEST_FL_FAILED;
1979
1980		if (if_running)
1981			/* indicate we're in test mode */
1982			dev_close(netdev);
1983		else
1984			igb_reset(adapter);
1985
1986		if (igb_reg_test(adapter, &data[0]))
1987			eth_test->flags |= ETH_TEST_FL_FAILED;
1988
1989		igb_reset(adapter);
1990		if (igb_eeprom_test(adapter, &data[1]))
1991			eth_test->flags |= ETH_TEST_FL_FAILED;
1992
1993		igb_reset(adapter);
1994		if (igb_intr_test(adapter, &data[2]))
1995			eth_test->flags |= ETH_TEST_FL_FAILED;
1996
1997		igb_reset(adapter);
1998		/* power up link for loopback test */
1999		igb_power_up_link(adapter);
2000		if (igb_loopback_test(adapter, &data[3]))
2001			eth_test->flags |= ETH_TEST_FL_FAILED;
2002
2003		/* restore speed, duplex, autoneg settings */
2004		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2005		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2006		adapter->hw.mac.autoneg = autoneg;
2007
2008		/* force this routine to wait until autoneg complete/timeout */
2009		adapter->hw.phy.autoneg_wait_to_complete = true;
2010		igb_reset(adapter);
2011		adapter->hw.phy.autoneg_wait_to_complete = false;
2012
2013		clear_bit(__IGB_TESTING, &adapter->state);
2014		if (if_running)
2015			dev_open(netdev);
2016	} else {
2017		dev_info(&adapter->pdev->dev, "online testing starting\n");
2018
2019		/* PHY is powered down when interface is down */
2020		if (if_running && igb_link_test(adapter, &data[4]))
2021			eth_test->flags |= ETH_TEST_FL_FAILED;
2022		else
2023			data[4] = 0;
2024
2025		/* Online tests aren't run; pass by default */
2026		data[0] = 0;
2027		data[1] = 0;
2028		data[2] = 0;
2029		data[3] = 0;
2030
2031		clear_bit(__IGB_TESTING, &adapter->state);
2032	}
2033	msleep_interruptible(4 * 1000);
2034}
2035
2036static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2037{
2038	struct igb_adapter *adapter = netdev_priv(netdev);
2039
2040	wol->supported = WAKE_UCAST | WAKE_MCAST |
2041			 WAKE_BCAST | WAKE_MAGIC |
2042			 WAKE_PHY;
2043	wol->wolopts = 0;
2044
2045	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2046		return;
2047
2048	/* apply any specific unsupported masks here */
2049	switch (adapter->hw.device_id) {
2050	default:
2051		break;
2052	}
2053
2054	if (adapter->wol & E1000_WUFC_EX)
2055		wol->wolopts |= WAKE_UCAST;
2056	if (adapter->wol & E1000_WUFC_MC)
2057		wol->wolopts |= WAKE_MCAST;
2058	if (adapter->wol & E1000_WUFC_BC)
2059		wol->wolopts |= WAKE_BCAST;
2060	if (adapter->wol & E1000_WUFC_MAG)
2061		wol->wolopts |= WAKE_MAGIC;
2062	if (adapter->wol & E1000_WUFC_LNKC)
2063		wol->wolopts |= WAKE_PHY;
2064}
2065
2066static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2067{
2068	struct igb_adapter *adapter = netdev_priv(netdev);
2069
2070	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2071		return -EOPNOTSUPP;
2072
2073	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2074		return wol->wolopts ? -EOPNOTSUPP : 0;
2075
2076	/* these settings will always override what we currently have */
2077	adapter->wol = 0;
2078
2079	if (wol->wolopts & WAKE_UCAST)
2080		adapter->wol |= E1000_WUFC_EX;
2081	if (wol->wolopts & WAKE_MCAST)
2082		adapter->wol |= E1000_WUFC_MC;
2083	if (wol->wolopts & WAKE_BCAST)
2084		adapter->wol |= E1000_WUFC_BC;
2085	if (wol->wolopts & WAKE_MAGIC)
2086		adapter->wol |= E1000_WUFC_MAG;
2087	if (wol->wolopts & WAKE_PHY)
2088		adapter->wol |= E1000_WUFC_LNKC;
2089	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2090
2091	return 0;
2092}
2093
2094/* bit defines for adapter->led_status */
2095#define IGB_LED_ON		0
2096
2097static int igb_set_phys_id(struct net_device *netdev,
2098			   enum ethtool_phys_id_state state)
2099{
2100	struct igb_adapter *adapter = netdev_priv(netdev);
2101	struct e1000_hw *hw = &adapter->hw;
2102
2103	switch (state) {
2104	case ETHTOOL_ID_ACTIVE:
2105		igb_blink_led(hw);
2106		return 2;
2107	case ETHTOOL_ID_ON:
2108		igb_blink_led(hw);
2109		break;
2110	case ETHTOOL_ID_OFF:
2111		igb_led_off(hw);
2112		break;
2113	case ETHTOOL_ID_INACTIVE:
2114		igb_led_off(hw);
2115		clear_bit(IGB_LED_ON, &adapter->led_status);
2116		igb_cleanup_led(hw);
2117		break;
2118	}
2119
2120	return 0;
2121}
2122
2123static int igb_set_coalesce(struct net_device *netdev,
2124			    struct ethtool_coalesce *ec)
2125{
2126	struct igb_adapter *adapter = netdev_priv(netdev);
2127	int i;
2128
2129	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2130	    ((ec->rx_coalesce_usecs > 3) &&
2131	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2132	    (ec->rx_coalesce_usecs == 2))
2133		return -EINVAL;
2134
2135	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2136	    ((ec->tx_coalesce_usecs > 3) &&
2137	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2138	    (ec->tx_coalesce_usecs == 2))
2139		return -EINVAL;
2140
2141	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2142		return -EINVAL;
2143
2144	/* If ITR is disabled, disable DMAC */
2145	if (ec->rx_coalesce_usecs == 0) {
2146		if (adapter->flags & IGB_FLAG_DMAC)
2147			adapter->flags &= ~IGB_FLAG_DMAC;
2148	}
2149
2150	/* convert to rate of irq's per second */
2151	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2152		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2153	else
2154		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2155
2156	/* convert to rate of irq's per second */
2157	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2158		adapter->tx_itr_setting = adapter->rx_itr_setting;
2159	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2160		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2161	else
2162		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2163
2164	for (i = 0; i < adapter->num_q_vectors; i++) {
2165		struct igb_q_vector *q_vector = adapter->q_vector[i];
2166		q_vector->tx.work_limit = adapter->tx_work_limit;
2167		if (q_vector->rx.ring)
2168			q_vector->itr_val = adapter->rx_itr_setting;
2169		else
2170			q_vector->itr_val = adapter->tx_itr_setting;
2171		if (q_vector->itr_val && q_vector->itr_val <= 3)
2172			q_vector->itr_val = IGB_START_ITR;
2173		q_vector->set_itr = 1;
2174	}
2175
2176	return 0;
2177}
2178
2179static int igb_get_coalesce(struct net_device *netdev,
2180			    struct ethtool_coalesce *ec)
2181{
2182	struct igb_adapter *adapter = netdev_priv(netdev);
2183
2184	if (adapter->rx_itr_setting <= 3)
2185		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2186	else
2187		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2188
2189	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2190		if (adapter->tx_itr_setting <= 3)
2191			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2192		else
2193			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2194	}
2195
2196	return 0;
2197}
2198
2199static int igb_nway_reset(struct net_device *netdev)
2200{
2201	struct igb_adapter *adapter = netdev_priv(netdev);
2202	if (netif_running(netdev))
2203		igb_reinit_locked(adapter);
2204	return 0;
2205}
2206
2207static int igb_get_sset_count(struct net_device *netdev, int sset)
2208{
2209	switch (sset) {
2210	case ETH_SS_STATS:
2211		return IGB_STATS_LEN;
2212	case ETH_SS_TEST:
2213		return IGB_TEST_LEN;
2214	default:
2215		return -ENOTSUPP;
2216	}
2217}
2218
2219static void igb_get_ethtool_stats(struct net_device *netdev,
2220				  struct ethtool_stats *stats, u64 *data)
2221{
2222	struct igb_adapter *adapter = netdev_priv(netdev);
2223	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2224	unsigned int start;
2225	struct igb_ring *ring;
2226	int i, j;
2227	char *p;
2228
2229	spin_lock(&adapter->stats64_lock);
2230	igb_update_stats(adapter, net_stats);
2231
2232	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2233		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2234		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2235			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2236	}
2237	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2238		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2239		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2240			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2241	}
2242	for (j = 0; j < adapter->num_tx_queues; j++) {
2243		u64	restart2;
2244
2245		ring = adapter->tx_ring[j];
2246		do {
2247			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2248			data[i]   = ring->tx_stats.packets;
2249			data[i+1] = ring->tx_stats.bytes;
2250			data[i+2] = ring->tx_stats.restart_queue;
2251		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2252		do {
2253			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2254			restart2  = ring->tx_stats.restart_queue2;
2255		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2256		data[i+2] += restart2;
2257
2258		i += IGB_TX_QUEUE_STATS_LEN;
2259	}
2260	for (j = 0; j < adapter->num_rx_queues; j++) {
2261		ring = adapter->rx_ring[j];
2262		do {
2263			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2264			data[i]   = ring->rx_stats.packets;
2265			data[i+1] = ring->rx_stats.bytes;
2266			data[i+2] = ring->rx_stats.drops;
2267			data[i+3] = ring->rx_stats.csum_err;
2268			data[i+4] = ring->rx_stats.alloc_failed;
2269		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2270		i += IGB_RX_QUEUE_STATS_LEN;
2271	}
2272	spin_unlock(&adapter->stats64_lock);
2273}
2274
2275static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2276{
2277	struct igb_adapter *adapter = netdev_priv(netdev);
2278	u8 *p = data;
2279	int i;
2280
2281	switch (stringset) {
2282	case ETH_SS_TEST:
2283		memcpy(data, *igb_gstrings_test,
2284			IGB_TEST_LEN*ETH_GSTRING_LEN);
2285		break;
2286	case ETH_SS_STATS:
2287		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2288			memcpy(p, igb_gstrings_stats[i].stat_string,
2289			       ETH_GSTRING_LEN);
2290			p += ETH_GSTRING_LEN;
2291		}
2292		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2293			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2294			       ETH_GSTRING_LEN);
2295			p += ETH_GSTRING_LEN;
2296		}
2297		for (i = 0; i < adapter->num_tx_queues; i++) {
2298			sprintf(p, "tx_queue_%u_packets", i);
2299			p += ETH_GSTRING_LEN;
2300			sprintf(p, "tx_queue_%u_bytes", i);
2301			p += ETH_GSTRING_LEN;
2302			sprintf(p, "tx_queue_%u_restart", i);
2303			p += ETH_GSTRING_LEN;
2304		}
2305		for (i = 0; i < adapter->num_rx_queues; i++) {
2306			sprintf(p, "rx_queue_%u_packets", i);
2307			p += ETH_GSTRING_LEN;
2308			sprintf(p, "rx_queue_%u_bytes", i);
2309			p += ETH_GSTRING_LEN;
2310			sprintf(p, "rx_queue_%u_drops", i);
2311			p += ETH_GSTRING_LEN;
2312			sprintf(p, "rx_queue_%u_csum_err", i);
2313			p += ETH_GSTRING_LEN;
2314			sprintf(p, "rx_queue_%u_alloc_failed", i);
2315			p += ETH_GSTRING_LEN;
2316		}
2317		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2318		break;
2319	}
2320}
2321
2322static int igb_get_ts_info(struct net_device *dev,
2323			   struct ethtool_ts_info *info)
2324{
2325	struct igb_adapter *adapter = netdev_priv(dev);
2326
2327	switch (adapter->hw.mac.type) {
2328	case e1000_82575:
2329		info->so_timestamping =
2330			SOF_TIMESTAMPING_TX_SOFTWARE |
2331			SOF_TIMESTAMPING_RX_SOFTWARE |
2332			SOF_TIMESTAMPING_SOFTWARE;
2333		return 0;
2334	case e1000_82576:
2335	case e1000_82580:
2336	case e1000_i350:
2337	case e1000_i354:
2338	case e1000_i210:
2339	case e1000_i211:
2340		info->so_timestamping =
2341			SOF_TIMESTAMPING_TX_SOFTWARE |
2342			SOF_TIMESTAMPING_RX_SOFTWARE |
2343			SOF_TIMESTAMPING_SOFTWARE |
2344			SOF_TIMESTAMPING_TX_HARDWARE |
2345			SOF_TIMESTAMPING_RX_HARDWARE |
2346			SOF_TIMESTAMPING_RAW_HARDWARE;
2347
2348		if (adapter->ptp_clock)
2349			info->phc_index = ptp_clock_index(adapter->ptp_clock);
2350		else
2351			info->phc_index = -1;
2352
2353		info->tx_types =
2354			(1 << HWTSTAMP_TX_OFF) |
2355			(1 << HWTSTAMP_TX_ON);
2356
2357		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2358
2359		/* 82576 does not support timestamping all packets. */
2360		if (adapter->hw.mac.type >= e1000_82580)
2361			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2362		else
2363			info->rx_filters |=
2364				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2365				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2366				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2367				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2368				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2369				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2370				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2371
2372		return 0;
2373	default:
2374		return -EOPNOTSUPP;
2375	}
2376}
2377
2378static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2379				 struct ethtool_rxnfc *cmd)
2380{
2381	cmd->data = 0;
2382
2383	/* Report default options for RSS on igb */
2384	switch (cmd->flow_type) {
2385	case TCP_V4_FLOW:
2386		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2387	case UDP_V4_FLOW:
2388		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2389			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2390	case SCTP_V4_FLOW:
2391	case AH_ESP_V4_FLOW:
2392	case AH_V4_FLOW:
2393	case ESP_V4_FLOW:
2394	case IPV4_FLOW:
2395		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2396		break;
2397	case TCP_V6_FLOW:
2398		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2399	case UDP_V6_FLOW:
2400		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2401			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2402	case SCTP_V6_FLOW:
2403	case AH_ESP_V6_FLOW:
2404	case AH_V6_FLOW:
2405	case ESP_V6_FLOW:
2406	case IPV6_FLOW:
2407		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2408		break;
2409	default:
2410		return -EINVAL;
2411	}
2412
2413	return 0;
2414}
2415
2416static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2417			 u32 *rule_locs)
2418{
2419	struct igb_adapter *adapter = netdev_priv(dev);
2420	int ret = -EOPNOTSUPP;
2421
2422	switch (cmd->cmd) {
2423	case ETHTOOL_GRXRINGS:
2424		cmd->data = adapter->num_rx_queues;
2425		ret = 0;
2426		break;
2427	case ETHTOOL_GRXFH:
2428		ret = igb_get_rss_hash_opts(adapter, cmd);
2429		break;
2430	default:
2431		break;
2432	}
2433
2434	return ret;
2435}
2436
2437#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2438		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2439static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2440				struct ethtool_rxnfc *nfc)
2441{
2442	u32 flags = adapter->flags;
2443
2444	/* RSS does not support anything other than hashing
2445	 * to queues on src and dst IPs and ports
2446	 */
2447	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2448			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2449		return -EINVAL;
2450
2451	switch (nfc->flow_type) {
2452	case TCP_V4_FLOW:
2453	case TCP_V6_FLOW:
2454		if (!(nfc->data & RXH_IP_SRC) ||
2455		    !(nfc->data & RXH_IP_DST) ||
2456		    !(nfc->data & RXH_L4_B_0_1) ||
2457		    !(nfc->data & RXH_L4_B_2_3))
2458			return -EINVAL;
2459		break;
2460	case UDP_V4_FLOW:
2461		if (!(nfc->data & RXH_IP_SRC) ||
2462		    !(nfc->data & RXH_IP_DST))
2463			return -EINVAL;
2464		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2465		case 0:
2466			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2467			break;
2468		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2469			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2470			break;
2471		default:
2472			return -EINVAL;
2473		}
2474		break;
2475	case UDP_V6_FLOW:
2476		if (!(nfc->data & RXH_IP_SRC) ||
2477		    !(nfc->data & RXH_IP_DST))
2478			return -EINVAL;
2479		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2480		case 0:
2481			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2482			break;
2483		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2484			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2485			break;
2486		default:
2487			return -EINVAL;
2488		}
2489		break;
2490	case AH_ESP_V4_FLOW:
2491	case AH_V4_FLOW:
2492	case ESP_V4_FLOW:
2493	case SCTP_V4_FLOW:
2494	case AH_ESP_V6_FLOW:
2495	case AH_V6_FLOW:
2496	case ESP_V6_FLOW:
2497	case SCTP_V6_FLOW:
2498		if (!(nfc->data & RXH_IP_SRC) ||
2499		    !(nfc->data & RXH_IP_DST) ||
2500		    (nfc->data & RXH_L4_B_0_1) ||
2501		    (nfc->data & RXH_L4_B_2_3))
2502			return -EINVAL;
2503		break;
2504	default:
2505		return -EINVAL;
2506	}
2507
2508	/* if we changed something we need to update flags */
2509	if (flags != adapter->flags) {
2510		struct e1000_hw *hw = &adapter->hw;
2511		u32 mrqc = rd32(E1000_MRQC);
2512
2513		if ((flags & UDP_RSS_FLAGS) &&
2514		    !(adapter->flags & UDP_RSS_FLAGS))
2515			dev_err(&adapter->pdev->dev,
2516				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2517
2518		adapter->flags = flags;
2519
2520		/* Perform hash on these packet types */
2521		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2522			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2523			E1000_MRQC_RSS_FIELD_IPV6 |
2524			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2525
2526		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2527			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2528
2529		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2530			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2531
2532		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2533			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2534
2535		wr32(E1000_MRQC, mrqc);
2536	}
2537
2538	return 0;
2539}
2540
2541static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2542{
2543	struct igb_adapter *adapter = netdev_priv(dev);
2544	int ret = -EOPNOTSUPP;
2545
2546	switch (cmd->cmd) {
2547	case ETHTOOL_SRXFH:
2548		ret = igb_set_rss_hash_opt(adapter, cmd);
2549		break;
2550	default:
2551		break;
2552	}
2553
2554	return ret;
2555}
2556
2557static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2558{
2559	struct igb_adapter *adapter = netdev_priv(netdev);
2560	struct e1000_hw *hw = &adapter->hw;
2561	u32 ipcnfg, eeer, ret_val;
2562	u16 phy_data;
2563
2564	if ((hw->mac.type < e1000_i350) ||
2565	    (hw->phy.media_type != e1000_media_type_copper))
2566		return -EOPNOTSUPP;
2567
2568	edata->supported = (SUPPORTED_1000baseT_Full |
2569			    SUPPORTED_100baseT_Full);
2570
2571	ipcnfg = rd32(E1000_IPCNFG);
2572	eeer = rd32(E1000_EEER);
2573
2574	/* EEE status on negotiated link */
2575	if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2576		edata->advertised = ADVERTISED_1000baseT_Full;
2577
2578	if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2579		edata->advertised |= ADVERTISED_100baseT_Full;
2580
2581	/* EEE Link Partner Advertised */
2582	switch (hw->mac.type) {
2583	case e1000_i350:
2584		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2585					   &phy_data);
2586		if (ret_val)
2587			return -ENODATA;
2588
2589		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2590
2591		break;
2592	case e1000_i210:
2593	case e1000_i211:
2594		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2595					     E1000_EEE_LP_ADV_DEV_I210,
2596					     &phy_data);
2597		if (ret_val)
2598			return -ENODATA;
2599
2600		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2601
2602		break;
2603	default:
2604		break;
2605	}
2606
2607	if (eeer & E1000_EEER_EEE_NEG)
2608		edata->eee_active = true;
2609
2610	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2611
2612	if (eeer & E1000_EEER_TX_LPI_EN)
2613		edata->tx_lpi_enabled = true;
2614
2615	/* Report correct negotiated EEE status for devices that
2616	 * wrongly report EEE at half-duplex
2617	 */
2618	if (adapter->link_duplex == HALF_DUPLEX) {
2619		edata->eee_enabled = false;
2620		edata->eee_active = false;
2621		edata->tx_lpi_enabled = false;
2622		edata->advertised &= ~edata->advertised;
2623	}
2624
2625	return 0;
2626}
2627
2628static int igb_set_eee(struct net_device *netdev,
2629		       struct ethtool_eee *edata)
2630{
2631	struct igb_adapter *adapter = netdev_priv(netdev);
2632	struct e1000_hw *hw = &adapter->hw;
2633	struct ethtool_eee eee_curr;
2634	s32 ret_val;
2635
2636	if ((hw->mac.type < e1000_i350) ||
2637	    (hw->phy.media_type != e1000_media_type_copper))
2638		return -EOPNOTSUPP;
2639
2640	ret_val = igb_get_eee(netdev, &eee_curr);
2641	if (ret_val)
2642		return ret_val;
2643
2644	if (eee_curr.eee_enabled) {
2645		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2646			dev_err(&adapter->pdev->dev,
2647				"Setting EEE tx-lpi is not supported\n");
2648			return -EINVAL;
2649		}
2650
2651		/* Tx LPI timer is not implemented currently */
2652		if (edata->tx_lpi_timer) {
2653			dev_err(&adapter->pdev->dev,
2654				"Setting EEE Tx LPI timer is not supported\n");
2655			return -EINVAL;
2656		}
2657
2658		if (eee_curr.advertised != edata->advertised) {
2659			dev_err(&adapter->pdev->dev,
2660				"Setting EEE Advertisement is not supported\n");
2661			return -EINVAL;
2662		}
2663
2664	} else if (!edata->eee_enabled) {
2665		dev_err(&adapter->pdev->dev,
2666			"Setting EEE options are not supported with EEE disabled\n");
2667			return -EINVAL;
2668		}
2669
2670	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2671		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2672		igb_set_eee_i350(hw);
2673
2674		/* reset link */
2675		if (!netif_running(netdev))
2676			igb_reset(adapter);
2677	}
2678
2679	return 0;
2680}
2681
2682static int igb_get_module_info(struct net_device *netdev,
2683			       struct ethtool_modinfo *modinfo)
2684{
2685	struct igb_adapter *adapter = netdev_priv(netdev);
2686	struct e1000_hw *hw = &adapter->hw;
2687	u32 status = E1000_SUCCESS;
2688	u16 sff8472_rev, addr_mode;
2689	bool page_swap = false;
2690
2691	if ((hw->phy.media_type == e1000_media_type_copper) ||
2692	    (hw->phy.media_type == e1000_media_type_unknown))
2693		return -EOPNOTSUPP;
2694
2695	/* Check whether we support SFF-8472 or not */
2696	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2697	if (status != E1000_SUCCESS)
2698		return -EIO;
2699
2700	/* addressing mode is not supported */
2701	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2702	if (status != E1000_SUCCESS)
2703		return -EIO;
2704
2705	/* addressing mode is not supported */
2706	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2707		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2708		page_swap = true;
2709	}
2710
2711	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2712		/* We have an SFP, but it does not support SFF-8472 */
2713		modinfo->type = ETH_MODULE_SFF_8079;
2714		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2715	} else {
2716		/* We have an SFP which supports a revision of SFF-8472 */
2717		modinfo->type = ETH_MODULE_SFF_8472;
2718		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2719	}
2720
2721	return 0;
2722}
2723
2724static int igb_get_module_eeprom(struct net_device *netdev,
2725				 struct ethtool_eeprom *ee, u8 *data)
2726{
2727	struct igb_adapter *adapter = netdev_priv(netdev);
2728	struct e1000_hw *hw = &adapter->hw;
2729	u32 status = E1000_SUCCESS;
2730	u16 *dataword;
2731	u16 first_word, last_word;
2732	int i = 0;
2733
2734	if (ee->len == 0)
2735		return -EINVAL;
2736
2737	first_word = ee->offset >> 1;
2738	last_word = (ee->offset + ee->len - 1) >> 1;
2739
2740	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2741			   GFP_KERNEL);
2742	if (!dataword)
2743		return -ENOMEM;
2744
2745	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2746	for (i = 0; i < last_word - first_word + 1; i++) {
2747		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2748		if (status != E1000_SUCCESS)
2749			/* Error occurred while reading module */
2750			return -EIO;
2751
2752		be16_to_cpus(&dataword[i]);
2753	}
2754
2755	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2756	kfree(dataword);
2757
2758	return 0;
2759}
2760
2761static int igb_ethtool_begin(struct net_device *netdev)
2762{
2763	struct igb_adapter *adapter = netdev_priv(netdev);
2764	pm_runtime_get_sync(&adapter->pdev->dev);
2765	return 0;
2766}
2767
2768static void igb_ethtool_complete(struct net_device *netdev)
2769{
2770	struct igb_adapter *adapter = netdev_priv(netdev);
2771	pm_runtime_put(&adapter->pdev->dev);
2772}
2773
2774static const struct ethtool_ops igb_ethtool_ops = {
2775	.get_settings		= igb_get_settings,
2776	.set_settings		= igb_set_settings,
2777	.get_drvinfo		= igb_get_drvinfo,
2778	.get_regs_len		= igb_get_regs_len,
2779	.get_regs		= igb_get_regs,
2780	.get_wol		= igb_get_wol,
2781	.set_wol		= igb_set_wol,
2782	.get_msglevel		= igb_get_msglevel,
2783	.set_msglevel		= igb_set_msglevel,
2784	.nway_reset		= igb_nway_reset,
2785	.get_link		= igb_get_link,
2786	.get_eeprom_len		= igb_get_eeprom_len,
2787	.get_eeprom		= igb_get_eeprom,
2788	.set_eeprom		= igb_set_eeprom,
2789	.get_ringparam		= igb_get_ringparam,
2790	.set_ringparam		= igb_set_ringparam,
2791	.get_pauseparam		= igb_get_pauseparam,
2792	.set_pauseparam		= igb_set_pauseparam,
2793	.self_test		= igb_diag_test,
2794	.get_strings		= igb_get_strings,
2795	.set_phys_id		= igb_set_phys_id,
2796	.get_sset_count		= igb_get_sset_count,
2797	.get_ethtool_stats	= igb_get_ethtool_stats,
2798	.get_coalesce		= igb_get_coalesce,
2799	.set_coalesce		= igb_set_coalesce,
2800	.get_ts_info		= igb_get_ts_info,
2801	.get_rxnfc		= igb_get_rxnfc,
2802	.set_rxnfc		= igb_set_rxnfc,
2803	.get_eee		= igb_get_eee,
2804	.set_eee		= igb_set_eee,
2805	.get_module_info	= igb_get_module_info,
2806	.get_module_eeprom	= igb_get_module_eeprom,
2807	.begin			= igb_ethtool_begin,
2808	.complete		= igb_ethtool_complete,
2809};
2810
2811void igb_set_ethtool_ops(struct net_device *netdev)
2812{
2813	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2814}
2815