[go: nahoru, domu]

igb_ethtool.c revision 373e6978f9c5c05af3b3ec4cd0295b0bfbe11644
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37#include <linux/sched.h>
38#include <linux/slab.h>
39#include <linux/pm_runtime.h>
40#include <linux/highmem.h>
41#include <linux/mdio.h>
42
43#include "igb.h"
44
45struct igb_stats {
46	char stat_string[ETH_GSTRING_LEN];
47	int sizeof_stat;
48	int stat_offset;
49};
50
51#define IGB_STAT(_name, _stat) { \
52	.stat_string = _name, \
53	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
54	.stat_offset = offsetof(struct igb_adapter, _stat) \
55}
56static const struct igb_stats igb_gstrings_stats[] = {
57	IGB_STAT("rx_packets", stats.gprc),
58	IGB_STAT("tx_packets", stats.gptc),
59	IGB_STAT("rx_bytes", stats.gorc),
60	IGB_STAT("tx_bytes", stats.gotc),
61	IGB_STAT("rx_broadcast", stats.bprc),
62	IGB_STAT("tx_broadcast", stats.bptc),
63	IGB_STAT("rx_multicast", stats.mprc),
64	IGB_STAT("tx_multicast", stats.mptc),
65	IGB_STAT("multicast", stats.mprc),
66	IGB_STAT("collisions", stats.colc),
67	IGB_STAT("rx_crc_errors", stats.crcerrs),
68	IGB_STAT("rx_no_buffer_count", stats.rnbc),
69	IGB_STAT("rx_missed_errors", stats.mpc),
70	IGB_STAT("tx_aborted_errors", stats.ecol),
71	IGB_STAT("tx_carrier_errors", stats.tncrs),
72	IGB_STAT("tx_window_errors", stats.latecol),
73	IGB_STAT("tx_abort_late_coll", stats.latecol),
74	IGB_STAT("tx_deferred_ok", stats.dc),
75	IGB_STAT("tx_single_coll_ok", stats.scc),
76	IGB_STAT("tx_multi_coll_ok", stats.mcc),
77	IGB_STAT("tx_timeout_count", tx_timeout_count),
78	IGB_STAT("rx_long_length_errors", stats.roc),
79	IGB_STAT("rx_short_length_errors", stats.ruc),
80	IGB_STAT("rx_align_errors", stats.algnerrc),
81	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
82	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
83	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
84	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
85	IGB_STAT("tx_flow_control_xon", stats.xontxc),
86	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
87	IGB_STAT("rx_long_byte_count", stats.gorc),
88	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
89	IGB_STAT("tx_smbus", stats.mgptc),
90	IGB_STAT("rx_smbus", stats.mgprc),
91	IGB_STAT("dropped_smbus", stats.mgpdc),
92	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
93	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
94	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
95	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
96	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
98};
99
100#define IGB_NETDEV_STAT(_net_stat) { \
101	.stat_string = __stringify(_net_stat), \
102	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
103	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
104}
105static const struct igb_stats igb_gstrings_net_stats[] = {
106	IGB_NETDEV_STAT(rx_errors),
107	IGB_NETDEV_STAT(tx_errors),
108	IGB_NETDEV_STAT(tx_dropped),
109	IGB_NETDEV_STAT(rx_length_errors),
110	IGB_NETDEV_STAT(rx_over_errors),
111	IGB_NETDEV_STAT(rx_frame_errors),
112	IGB_NETDEV_STAT(rx_fifo_errors),
113	IGB_NETDEV_STAT(tx_fifo_errors),
114	IGB_NETDEV_STAT(tx_heartbeat_errors)
115};
116
117#define IGB_GLOBAL_STATS_LEN	\
118	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
119#define IGB_NETDEV_STATS_LEN	\
120	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
121#define IGB_RX_QUEUE_STATS_LEN \
122	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
123
124#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
125
126#define IGB_QUEUE_STATS_LEN \
127	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
128	  IGB_RX_QUEUE_STATS_LEN) + \
129	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
130	  IGB_TX_QUEUE_STATS_LEN))
131#define IGB_STATS_LEN \
132	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
133
134static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
135	"Register test  (offline)", "Eeprom test    (offline)",
136	"Interrupt test (offline)", "Loopback test  (offline)",
137	"Link test   (on/offline)"
138};
139#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
140
141static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
142{
143	struct igb_adapter *adapter = netdev_priv(netdev);
144	struct e1000_hw *hw = &adapter->hw;
145	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
146	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
147	u32 status;
148
149	if (hw->phy.media_type == e1000_media_type_copper) {
150
151		ecmd->supported = (SUPPORTED_10baseT_Half |
152				   SUPPORTED_10baseT_Full |
153				   SUPPORTED_100baseT_Half |
154				   SUPPORTED_100baseT_Full |
155				   SUPPORTED_1000baseT_Full|
156				   SUPPORTED_Autoneg |
157				   SUPPORTED_TP |
158				   SUPPORTED_Pause);
159		ecmd->advertising = ADVERTISED_TP;
160
161		if (hw->mac.autoneg == 1) {
162			ecmd->advertising |= ADVERTISED_Autoneg;
163			/* the e1000 autoneg seems to match ethtool nicely */
164			ecmd->advertising |= hw->phy.autoneg_advertised;
165		}
166
167		ecmd->port = PORT_TP;
168		ecmd->phy_address = hw->phy.addr;
169		ecmd->transceiver = XCVR_INTERNAL;
170	} else {
171		ecmd->supported = (SUPPORTED_FIBRE |
172				   SUPPORTED_Autoneg |
173				   SUPPORTED_Pause);
174		ecmd->advertising = ADVERTISED_FIBRE;
175		if (hw->mac.type == e1000_i354) {
176			ecmd->supported |= SUPPORTED_2500baseX_Full;
177			ecmd->advertising |= ADVERTISED_2500baseX_Full;
178		}
179		if ((eth_flags->e1000_base_lx) || (eth_flags->e1000_base_sx)) {
180			ecmd->supported |= SUPPORTED_1000baseT_Full;
181			ecmd->advertising |= ADVERTISED_1000baseT_Full;
182		}
183		if (eth_flags->e100_base_fx) {
184			ecmd->supported |= SUPPORTED_100baseT_Full;
185			ecmd->advertising |= ADVERTISED_100baseT_Full;
186		}
187		if (hw->mac.autoneg == 1)
188			ecmd->advertising |= ADVERTISED_Autoneg;
189
190		ecmd->port = PORT_FIBRE;
191		ecmd->transceiver = XCVR_EXTERNAL;
192	}
193
194	if (hw->mac.autoneg != 1)
195		ecmd->advertising &= ~(ADVERTISED_Pause |
196				       ADVERTISED_Asym_Pause);
197
198	if (hw->fc.requested_mode == e1000_fc_full)
199		ecmd->advertising |= ADVERTISED_Pause;
200	else if (hw->fc.requested_mode == e1000_fc_rx_pause)
201		ecmd->advertising |= (ADVERTISED_Pause |
202				      ADVERTISED_Asym_Pause);
203	else if (hw->fc.requested_mode == e1000_fc_tx_pause)
204		ecmd->advertising |=  ADVERTISED_Asym_Pause;
205	else
206		ecmd->advertising &= ~(ADVERTISED_Pause |
207				       ADVERTISED_Asym_Pause);
208
209	status = rd32(E1000_STATUS);
210
211	if (status & E1000_STATUS_LU) {
212		if ((hw->mac.type == e1000_i354) &&
213		    (status & E1000_STATUS_2P5_SKU) &&
214		    !(status & E1000_STATUS_2P5_SKU_OVER))
215			ecmd->speed = SPEED_2500;
216		else if (status & E1000_STATUS_SPEED_1000)
217			ecmd->speed = SPEED_1000;
218		else if (status & E1000_STATUS_SPEED_100)
219			ecmd->speed = SPEED_100;
220		else
221			ecmd->speed = SPEED_10;
222		if ((status & E1000_STATUS_FD) ||
223		    hw->phy.media_type != e1000_media_type_copper)
224			ecmd->duplex = DUPLEX_FULL;
225		else
226			ecmd->duplex = DUPLEX_HALF;
227	} else {
228		ecmd->speed = -1;
229		ecmd->duplex = -1;
230	}
231
232	if ((hw->phy.media_type == e1000_media_type_fiber) ||
233	    hw->mac.autoneg)
234		ecmd->autoneg = AUTONEG_ENABLE;
235	else
236		ecmd->autoneg = AUTONEG_DISABLE;
237
238	/* MDI-X => 2; MDI =>1; Invalid =>0 */
239	if (hw->phy.media_type == e1000_media_type_copper)
240		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
241						      ETH_TP_MDI;
242	else
243		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
244
245	if (hw->phy.mdix == AUTO_ALL_MODES)
246		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
247	else
248		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
249
250	return 0;
251}
252
253static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
254{
255	struct igb_adapter *adapter = netdev_priv(netdev);
256	struct e1000_hw *hw = &adapter->hw;
257
258	/* When SoL/IDER sessions are active, autoneg/speed/duplex
259	 * cannot be changed
260	 */
261	if (igb_check_reset_block(hw)) {
262		dev_err(&adapter->pdev->dev,
263			"Cannot change link characteristics when SoL/IDER is active.\n");
264		return -EINVAL;
265	}
266
267	/* MDI setting is only allowed when autoneg enabled because
268	 * some hardware doesn't allow MDI setting when speed or
269	 * duplex is forced.
270	 */
271	if (ecmd->eth_tp_mdix_ctrl) {
272		if (hw->phy.media_type != e1000_media_type_copper)
273			return -EOPNOTSUPP;
274
275		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
276		    (ecmd->autoneg != AUTONEG_ENABLE)) {
277			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
278			return -EINVAL;
279		}
280	}
281
282	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
283		msleep(1);
284
285	if (ecmd->autoneg == AUTONEG_ENABLE) {
286		hw->mac.autoneg = 1;
287		if (hw->phy.media_type == e1000_media_type_fiber) {
288			hw->phy.autoneg_advertised = ecmd->advertising |
289						     ADVERTISED_FIBRE |
290						     ADVERTISED_Autoneg;
291			switch (adapter->link_speed) {
292			case SPEED_2500:
293				hw->phy.autoneg_advertised =
294					ADVERTISED_2500baseX_Full;
295				break;
296			case SPEED_1000:
297				hw->phy.autoneg_advertised =
298					ADVERTISED_1000baseT_Full;
299				break;
300			case SPEED_100:
301				hw->phy.autoneg_advertised =
302					ADVERTISED_100baseT_Full;
303				break;
304			default:
305				break;
306			}
307		} else {
308			hw->phy.autoneg_advertised = ecmd->advertising |
309						     ADVERTISED_TP |
310						     ADVERTISED_Autoneg;
311		}
312		ecmd->advertising = hw->phy.autoneg_advertised;
313		if (adapter->fc_autoneg)
314			hw->fc.requested_mode = e1000_fc_default;
315	} else {
316		u32 speed = ethtool_cmd_speed(ecmd);
317		/* calling this overrides forced MDI setting */
318		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
319			clear_bit(__IGB_RESETTING, &adapter->state);
320			return -EINVAL;
321		}
322	}
323
324	/* MDI-X => 2; MDI => 1; Auto => 3 */
325	if (ecmd->eth_tp_mdix_ctrl) {
326		/* fix up the value for auto (3 => 0) as zero is mapped
327		 * internally to auto
328		 */
329		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
330			hw->phy.mdix = AUTO_ALL_MODES;
331		else
332			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
333	}
334
335	/* reset the link */
336	if (netif_running(adapter->netdev)) {
337		igb_down(adapter);
338		igb_up(adapter);
339	} else
340		igb_reset(adapter);
341
342	clear_bit(__IGB_RESETTING, &adapter->state);
343	return 0;
344}
345
346static u32 igb_get_link(struct net_device *netdev)
347{
348	struct igb_adapter *adapter = netdev_priv(netdev);
349	struct e1000_mac_info *mac = &adapter->hw.mac;
350
351	/* If the link is not reported up to netdev, interrupts are disabled,
352	 * and so the physical link state may have changed since we last
353	 * looked. Set get_link_status to make sure that the true link
354	 * state is interrogated, rather than pulling a cached and possibly
355	 * stale link state from the driver.
356	 */
357	if (!netif_carrier_ok(netdev))
358		mac->get_link_status = 1;
359
360	return igb_has_link(adapter);
361}
362
363static void igb_get_pauseparam(struct net_device *netdev,
364			       struct ethtool_pauseparam *pause)
365{
366	struct igb_adapter *adapter = netdev_priv(netdev);
367	struct e1000_hw *hw = &adapter->hw;
368
369	pause->autoneg =
370		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
371
372	if (hw->fc.current_mode == e1000_fc_rx_pause)
373		pause->rx_pause = 1;
374	else if (hw->fc.current_mode == e1000_fc_tx_pause)
375		pause->tx_pause = 1;
376	else if (hw->fc.current_mode == e1000_fc_full) {
377		pause->rx_pause = 1;
378		pause->tx_pause = 1;
379	}
380}
381
382static int igb_set_pauseparam(struct net_device *netdev,
383			      struct ethtool_pauseparam *pause)
384{
385	struct igb_adapter *adapter = netdev_priv(netdev);
386	struct e1000_hw *hw = &adapter->hw;
387	int retval = 0;
388
389	/* 100basefx does not support setting link flow control */
390	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
391		return -EINVAL;
392
393	adapter->fc_autoneg = pause->autoneg;
394
395	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
396		msleep(1);
397
398	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
399		hw->fc.requested_mode = e1000_fc_default;
400		if (netif_running(adapter->netdev)) {
401			igb_down(adapter);
402			igb_up(adapter);
403		} else {
404			igb_reset(adapter);
405		}
406	} else {
407		if (pause->rx_pause && pause->tx_pause)
408			hw->fc.requested_mode = e1000_fc_full;
409		else if (pause->rx_pause && !pause->tx_pause)
410			hw->fc.requested_mode = e1000_fc_rx_pause;
411		else if (!pause->rx_pause && pause->tx_pause)
412			hw->fc.requested_mode = e1000_fc_tx_pause;
413		else if (!pause->rx_pause && !pause->tx_pause)
414			hw->fc.requested_mode = e1000_fc_none;
415
416		hw->fc.current_mode = hw->fc.requested_mode;
417
418		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
419			  igb_force_mac_fc(hw) : igb_setup_link(hw));
420	}
421
422	clear_bit(__IGB_RESETTING, &adapter->state);
423	return retval;
424}
425
426static u32 igb_get_msglevel(struct net_device *netdev)
427{
428	struct igb_adapter *adapter = netdev_priv(netdev);
429	return adapter->msg_enable;
430}
431
432static void igb_set_msglevel(struct net_device *netdev, u32 data)
433{
434	struct igb_adapter *adapter = netdev_priv(netdev);
435	adapter->msg_enable = data;
436}
437
438static int igb_get_regs_len(struct net_device *netdev)
439{
440#define IGB_REGS_LEN 739
441	return IGB_REGS_LEN * sizeof(u32);
442}
443
444static void igb_get_regs(struct net_device *netdev,
445			 struct ethtool_regs *regs, void *p)
446{
447	struct igb_adapter *adapter = netdev_priv(netdev);
448	struct e1000_hw *hw = &adapter->hw;
449	u32 *regs_buff = p;
450	u8 i;
451
452	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
453
454	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
455
456	/* General Registers */
457	regs_buff[0] = rd32(E1000_CTRL);
458	regs_buff[1] = rd32(E1000_STATUS);
459	regs_buff[2] = rd32(E1000_CTRL_EXT);
460	regs_buff[3] = rd32(E1000_MDIC);
461	regs_buff[4] = rd32(E1000_SCTL);
462	regs_buff[5] = rd32(E1000_CONNSW);
463	regs_buff[6] = rd32(E1000_VET);
464	regs_buff[7] = rd32(E1000_LEDCTL);
465	regs_buff[8] = rd32(E1000_PBA);
466	regs_buff[9] = rd32(E1000_PBS);
467	regs_buff[10] = rd32(E1000_FRTIMER);
468	regs_buff[11] = rd32(E1000_TCPTIMER);
469
470	/* NVM Register */
471	regs_buff[12] = rd32(E1000_EECD);
472
473	/* Interrupt */
474	/* Reading EICS for EICR because they read the
475	 * same but EICS does not clear on read
476	 */
477	regs_buff[13] = rd32(E1000_EICS);
478	regs_buff[14] = rd32(E1000_EICS);
479	regs_buff[15] = rd32(E1000_EIMS);
480	regs_buff[16] = rd32(E1000_EIMC);
481	regs_buff[17] = rd32(E1000_EIAC);
482	regs_buff[18] = rd32(E1000_EIAM);
483	/* Reading ICS for ICR because they read the
484	 * same but ICS does not clear on read
485	 */
486	regs_buff[19] = rd32(E1000_ICS);
487	regs_buff[20] = rd32(E1000_ICS);
488	regs_buff[21] = rd32(E1000_IMS);
489	regs_buff[22] = rd32(E1000_IMC);
490	regs_buff[23] = rd32(E1000_IAC);
491	regs_buff[24] = rd32(E1000_IAM);
492	regs_buff[25] = rd32(E1000_IMIRVP);
493
494	/* Flow Control */
495	regs_buff[26] = rd32(E1000_FCAL);
496	regs_buff[27] = rd32(E1000_FCAH);
497	regs_buff[28] = rd32(E1000_FCTTV);
498	regs_buff[29] = rd32(E1000_FCRTL);
499	regs_buff[30] = rd32(E1000_FCRTH);
500	regs_buff[31] = rd32(E1000_FCRTV);
501
502	/* Receive */
503	regs_buff[32] = rd32(E1000_RCTL);
504	regs_buff[33] = rd32(E1000_RXCSUM);
505	regs_buff[34] = rd32(E1000_RLPML);
506	regs_buff[35] = rd32(E1000_RFCTL);
507	regs_buff[36] = rd32(E1000_MRQC);
508	regs_buff[37] = rd32(E1000_VT_CTL);
509
510	/* Transmit */
511	regs_buff[38] = rd32(E1000_TCTL);
512	regs_buff[39] = rd32(E1000_TCTL_EXT);
513	regs_buff[40] = rd32(E1000_TIPG);
514	regs_buff[41] = rd32(E1000_DTXCTL);
515
516	/* Wake Up */
517	regs_buff[42] = rd32(E1000_WUC);
518	regs_buff[43] = rd32(E1000_WUFC);
519	regs_buff[44] = rd32(E1000_WUS);
520	regs_buff[45] = rd32(E1000_IPAV);
521	regs_buff[46] = rd32(E1000_WUPL);
522
523	/* MAC */
524	regs_buff[47] = rd32(E1000_PCS_CFG0);
525	regs_buff[48] = rd32(E1000_PCS_LCTL);
526	regs_buff[49] = rd32(E1000_PCS_LSTAT);
527	regs_buff[50] = rd32(E1000_PCS_ANADV);
528	regs_buff[51] = rd32(E1000_PCS_LPAB);
529	regs_buff[52] = rd32(E1000_PCS_NPTX);
530	regs_buff[53] = rd32(E1000_PCS_LPABNP);
531
532	/* Statistics */
533	regs_buff[54] = adapter->stats.crcerrs;
534	regs_buff[55] = adapter->stats.algnerrc;
535	regs_buff[56] = adapter->stats.symerrs;
536	regs_buff[57] = adapter->stats.rxerrc;
537	regs_buff[58] = adapter->stats.mpc;
538	regs_buff[59] = adapter->stats.scc;
539	regs_buff[60] = adapter->stats.ecol;
540	regs_buff[61] = adapter->stats.mcc;
541	regs_buff[62] = adapter->stats.latecol;
542	regs_buff[63] = adapter->stats.colc;
543	regs_buff[64] = adapter->stats.dc;
544	regs_buff[65] = adapter->stats.tncrs;
545	regs_buff[66] = adapter->stats.sec;
546	regs_buff[67] = adapter->stats.htdpmc;
547	regs_buff[68] = adapter->stats.rlec;
548	regs_buff[69] = adapter->stats.xonrxc;
549	regs_buff[70] = adapter->stats.xontxc;
550	regs_buff[71] = adapter->stats.xoffrxc;
551	regs_buff[72] = adapter->stats.xofftxc;
552	regs_buff[73] = adapter->stats.fcruc;
553	regs_buff[74] = adapter->stats.prc64;
554	regs_buff[75] = adapter->stats.prc127;
555	regs_buff[76] = adapter->stats.prc255;
556	regs_buff[77] = adapter->stats.prc511;
557	regs_buff[78] = adapter->stats.prc1023;
558	regs_buff[79] = adapter->stats.prc1522;
559	regs_buff[80] = adapter->stats.gprc;
560	regs_buff[81] = adapter->stats.bprc;
561	regs_buff[82] = adapter->stats.mprc;
562	regs_buff[83] = adapter->stats.gptc;
563	regs_buff[84] = adapter->stats.gorc;
564	regs_buff[86] = adapter->stats.gotc;
565	regs_buff[88] = adapter->stats.rnbc;
566	regs_buff[89] = adapter->stats.ruc;
567	regs_buff[90] = adapter->stats.rfc;
568	regs_buff[91] = adapter->stats.roc;
569	regs_buff[92] = adapter->stats.rjc;
570	regs_buff[93] = adapter->stats.mgprc;
571	regs_buff[94] = adapter->stats.mgpdc;
572	regs_buff[95] = adapter->stats.mgptc;
573	regs_buff[96] = adapter->stats.tor;
574	regs_buff[98] = adapter->stats.tot;
575	regs_buff[100] = adapter->stats.tpr;
576	regs_buff[101] = adapter->stats.tpt;
577	regs_buff[102] = adapter->stats.ptc64;
578	regs_buff[103] = adapter->stats.ptc127;
579	regs_buff[104] = adapter->stats.ptc255;
580	regs_buff[105] = adapter->stats.ptc511;
581	regs_buff[106] = adapter->stats.ptc1023;
582	regs_buff[107] = adapter->stats.ptc1522;
583	regs_buff[108] = adapter->stats.mptc;
584	regs_buff[109] = adapter->stats.bptc;
585	regs_buff[110] = adapter->stats.tsctc;
586	regs_buff[111] = adapter->stats.iac;
587	regs_buff[112] = adapter->stats.rpthc;
588	regs_buff[113] = adapter->stats.hgptc;
589	regs_buff[114] = adapter->stats.hgorc;
590	regs_buff[116] = adapter->stats.hgotc;
591	regs_buff[118] = adapter->stats.lenerrs;
592	regs_buff[119] = adapter->stats.scvpc;
593	regs_buff[120] = adapter->stats.hrmpc;
594
595	for (i = 0; i < 4; i++)
596		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
597	for (i = 0; i < 4; i++)
598		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
599	for (i = 0; i < 4; i++)
600		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
601	for (i = 0; i < 4; i++)
602		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
603	for (i = 0; i < 4; i++)
604		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
605	for (i = 0; i < 4; i++)
606		regs_buff[141 + i] = rd32(E1000_RDH(i));
607	for (i = 0; i < 4; i++)
608		regs_buff[145 + i] = rd32(E1000_RDT(i));
609	for (i = 0; i < 4; i++)
610		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
611
612	for (i = 0; i < 10; i++)
613		regs_buff[153 + i] = rd32(E1000_EITR(i));
614	for (i = 0; i < 8; i++)
615		regs_buff[163 + i] = rd32(E1000_IMIR(i));
616	for (i = 0; i < 8; i++)
617		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
618	for (i = 0; i < 16; i++)
619		regs_buff[179 + i] = rd32(E1000_RAL(i));
620	for (i = 0; i < 16; i++)
621		regs_buff[195 + i] = rd32(E1000_RAH(i));
622
623	for (i = 0; i < 4; i++)
624		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
625	for (i = 0; i < 4; i++)
626		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
627	for (i = 0; i < 4; i++)
628		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
629	for (i = 0; i < 4; i++)
630		regs_buff[223 + i] = rd32(E1000_TDH(i));
631	for (i = 0; i < 4; i++)
632		regs_buff[227 + i] = rd32(E1000_TDT(i));
633	for (i = 0; i < 4; i++)
634		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
635	for (i = 0; i < 4; i++)
636		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
637	for (i = 0; i < 4; i++)
638		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
639	for (i = 0; i < 4; i++)
640		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
641
642	for (i = 0; i < 4; i++)
643		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
644	for (i = 0; i < 4; i++)
645		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
646	for (i = 0; i < 32; i++)
647		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
648	for (i = 0; i < 128; i++)
649		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
650	for (i = 0; i < 128; i++)
651		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
652	for (i = 0; i < 4; i++)
653		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
654
655	regs_buff[547] = rd32(E1000_TDFH);
656	regs_buff[548] = rd32(E1000_TDFT);
657	regs_buff[549] = rd32(E1000_TDFHS);
658	regs_buff[550] = rd32(E1000_TDFPC);
659
660	if (hw->mac.type > e1000_82580) {
661		regs_buff[551] = adapter->stats.o2bgptc;
662		regs_buff[552] = adapter->stats.b2ospc;
663		regs_buff[553] = adapter->stats.o2bspc;
664		regs_buff[554] = adapter->stats.b2ogprc;
665	}
666
667	if (hw->mac.type != e1000_82576)
668		return;
669	for (i = 0; i < 12; i++)
670		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
671	for (i = 0; i < 4; i++)
672		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
673	for (i = 0; i < 12; i++)
674		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
675	for (i = 0; i < 12; i++)
676		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
677	for (i = 0; i < 12; i++)
678		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
679	for (i = 0; i < 12; i++)
680		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
681	for (i = 0; i < 12; i++)
682		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
683	for (i = 0; i < 12; i++)
684		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
685
686	for (i = 0; i < 12; i++)
687		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
688	for (i = 0; i < 12; i++)
689		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
690	for (i = 0; i < 12; i++)
691		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
692	for (i = 0; i < 12; i++)
693		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
694	for (i = 0; i < 12; i++)
695		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
696	for (i = 0; i < 12; i++)
697		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
698	for (i = 0; i < 12; i++)
699		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
700	for (i = 0; i < 12; i++)
701		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
702}
703
704static int igb_get_eeprom_len(struct net_device *netdev)
705{
706	struct igb_adapter *adapter = netdev_priv(netdev);
707	return adapter->hw.nvm.word_size * 2;
708}
709
710static int igb_get_eeprom(struct net_device *netdev,
711			  struct ethtool_eeprom *eeprom, u8 *bytes)
712{
713	struct igb_adapter *adapter = netdev_priv(netdev);
714	struct e1000_hw *hw = &adapter->hw;
715	u16 *eeprom_buff;
716	int first_word, last_word;
717	int ret_val = 0;
718	u16 i;
719
720	if (eeprom->len == 0)
721		return -EINVAL;
722
723	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
724
725	first_word = eeprom->offset >> 1;
726	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
727
728	eeprom_buff = kmalloc(sizeof(u16) *
729			(last_word - first_word + 1), GFP_KERNEL);
730	if (!eeprom_buff)
731		return -ENOMEM;
732
733	if (hw->nvm.type == e1000_nvm_eeprom_spi)
734		ret_val = hw->nvm.ops.read(hw, first_word,
735					   last_word - first_word + 1,
736					   eeprom_buff);
737	else {
738		for (i = 0; i < last_word - first_word + 1; i++) {
739			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
740						   &eeprom_buff[i]);
741			if (ret_val)
742				break;
743		}
744	}
745
746	/* Device's eeprom is always little-endian, word addressable */
747	for (i = 0; i < last_word - first_word + 1; i++)
748		le16_to_cpus(&eeprom_buff[i]);
749
750	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
751			eeprom->len);
752	kfree(eeprom_buff);
753
754	return ret_val;
755}
756
757static int igb_set_eeprom(struct net_device *netdev,
758			  struct ethtool_eeprom *eeprom, u8 *bytes)
759{
760	struct igb_adapter *adapter = netdev_priv(netdev);
761	struct e1000_hw *hw = &adapter->hw;
762	u16 *eeprom_buff;
763	void *ptr;
764	int max_len, first_word, last_word, ret_val = 0;
765	u16 i;
766
767	if (eeprom->len == 0)
768		return -EOPNOTSUPP;
769
770	if (hw->mac.type == e1000_i211)
771		return -EOPNOTSUPP;
772
773	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
774		return -EFAULT;
775
776	max_len = hw->nvm.word_size * 2;
777
778	first_word = eeprom->offset >> 1;
779	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
780	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
781	if (!eeprom_buff)
782		return -ENOMEM;
783
784	ptr = (void *)eeprom_buff;
785
786	if (eeprom->offset & 1) {
787		/* need read/modify/write of first changed EEPROM word
788		 * only the second byte of the word is being modified
789		 */
790		ret_val = hw->nvm.ops.read(hw, first_word, 1,
791					    &eeprom_buff[0]);
792		ptr++;
793	}
794	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
795		/* need read/modify/write of last changed EEPROM word
796		 * only the first byte of the word is being modified
797		 */
798		ret_val = hw->nvm.ops.read(hw, last_word, 1,
799				   &eeprom_buff[last_word - first_word]);
800	}
801
802	/* Device's eeprom is always little-endian, word addressable */
803	for (i = 0; i < last_word - first_word + 1; i++)
804		le16_to_cpus(&eeprom_buff[i]);
805
806	memcpy(ptr, bytes, eeprom->len);
807
808	for (i = 0; i < last_word - first_word + 1; i++)
809		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
810
811	ret_val = hw->nvm.ops.write(hw, first_word,
812				    last_word - first_word + 1, eeprom_buff);
813
814	/* Update the checksum over the first part of the EEPROM if needed
815	 * and flush shadow RAM for 82573 controllers
816	 */
817	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
818		hw->nvm.ops.update(hw);
819
820	igb_set_fw_version(adapter);
821	kfree(eeprom_buff);
822	return ret_val;
823}
824
825static void igb_get_drvinfo(struct net_device *netdev,
826			    struct ethtool_drvinfo *drvinfo)
827{
828	struct igb_adapter *adapter = netdev_priv(netdev);
829
830	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
831	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
832
833	/* EEPROM image version # is reported as firmware version # for
834	 * 82575 controllers
835	 */
836	strlcpy(drvinfo->fw_version, adapter->fw_version,
837		sizeof(drvinfo->fw_version));
838	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
839		sizeof(drvinfo->bus_info));
840	drvinfo->n_stats = IGB_STATS_LEN;
841	drvinfo->testinfo_len = IGB_TEST_LEN;
842	drvinfo->regdump_len = igb_get_regs_len(netdev);
843	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
844}
845
846static void igb_get_ringparam(struct net_device *netdev,
847			      struct ethtool_ringparam *ring)
848{
849	struct igb_adapter *adapter = netdev_priv(netdev);
850
851	ring->rx_max_pending = IGB_MAX_RXD;
852	ring->tx_max_pending = IGB_MAX_TXD;
853	ring->rx_pending = adapter->rx_ring_count;
854	ring->tx_pending = adapter->tx_ring_count;
855}
856
857static int igb_set_ringparam(struct net_device *netdev,
858			     struct ethtool_ringparam *ring)
859{
860	struct igb_adapter *adapter = netdev_priv(netdev);
861	struct igb_ring *temp_ring;
862	int i, err = 0;
863	u16 new_rx_count, new_tx_count;
864
865	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
866		return -EINVAL;
867
868	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
869	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
870	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
871
872	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
873	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
874	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
875
876	if ((new_tx_count == adapter->tx_ring_count) &&
877	    (new_rx_count == adapter->rx_ring_count)) {
878		/* nothing to do */
879		return 0;
880	}
881
882	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
883		msleep(1);
884
885	if (!netif_running(adapter->netdev)) {
886		for (i = 0; i < adapter->num_tx_queues; i++)
887			adapter->tx_ring[i]->count = new_tx_count;
888		for (i = 0; i < adapter->num_rx_queues; i++)
889			adapter->rx_ring[i]->count = new_rx_count;
890		adapter->tx_ring_count = new_tx_count;
891		adapter->rx_ring_count = new_rx_count;
892		goto clear_reset;
893	}
894
895	if (adapter->num_tx_queues > adapter->num_rx_queues)
896		temp_ring = vmalloc(adapter->num_tx_queues *
897				    sizeof(struct igb_ring));
898	else
899		temp_ring = vmalloc(adapter->num_rx_queues *
900				    sizeof(struct igb_ring));
901
902	if (!temp_ring) {
903		err = -ENOMEM;
904		goto clear_reset;
905	}
906
907	igb_down(adapter);
908
909	/* We can't just free everything and then setup again,
910	 * because the ISRs in MSI-X mode get passed pointers
911	 * to the Tx and Rx ring structs.
912	 */
913	if (new_tx_count != adapter->tx_ring_count) {
914		for (i = 0; i < adapter->num_tx_queues; i++) {
915			memcpy(&temp_ring[i], adapter->tx_ring[i],
916			       sizeof(struct igb_ring));
917
918			temp_ring[i].count = new_tx_count;
919			err = igb_setup_tx_resources(&temp_ring[i]);
920			if (err) {
921				while (i) {
922					i--;
923					igb_free_tx_resources(&temp_ring[i]);
924				}
925				goto err_setup;
926			}
927		}
928
929		for (i = 0; i < adapter->num_tx_queues; i++) {
930			igb_free_tx_resources(adapter->tx_ring[i]);
931
932			memcpy(adapter->tx_ring[i], &temp_ring[i],
933			       sizeof(struct igb_ring));
934		}
935
936		adapter->tx_ring_count = new_tx_count;
937	}
938
939	if (new_rx_count != adapter->rx_ring_count) {
940		for (i = 0; i < adapter->num_rx_queues; i++) {
941			memcpy(&temp_ring[i], adapter->rx_ring[i],
942			       sizeof(struct igb_ring));
943
944			temp_ring[i].count = new_rx_count;
945			err = igb_setup_rx_resources(&temp_ring[i]);
946			if (err) {
947				while (i) {
948					i--;
949					igb_free_rx_resources(&temp_ring[i]);
950				}
951				goto err_setup;
952			}
953
954		}
955
956		for (i = 0; i < adapter->num_rx_queues; i++) {
957			igb_free_rx_resources(adapter->rx_ring[i]);
958
959			memcpy(adapter->rx_ring[i], &temp_ring[i],
960			       sizeof(struct igb_ring));
961		}
962
963		adapter->rx_ring_count = new_rx_count;
964	}
965err_setup:
966	igb_up(adapter);
967	vfree(temp_ring);
968clear_reset:
969	clear_bit(__IGB_RESETTING, &adapter->state);
970	return err;
971}
972
973/* ethtool register test data */
974struct igb_reg_test {
975	u16 reg;
976	u16 reg_offset;
977	u16 array_len;
978	u16 test_type;
979	u32 mask;
980	u32 write;
981};
982
983/* In the hardware, registers are laid out either singly, in arrays
984 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
985 * most tests take place on arrays or single registers (handled
986 * as a single-element array) and special-case the tables.
987 * Table tests are always pattern tests.
988 *
989 * We also make provision for some required setup steps by specifying
990 * registers to be written without any read-back testing.
991 */
992
993#define PATTERN_TEST	1
994#define SET_READ_TEST	2
995#define WRITE_NO_TEST	3
996#define TABLE32_TEST	4
997#define TABLE64_TEST_LO	5
998#define TABLE64_TEST_HI	6
999
1000/* i210 reg test */
1001static struct igb_reg_test reg_test_i210[] = {
1002	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1003	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1004	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1005	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1006	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1007	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1008	/* RDH is read-only for i210, only test RDT. */
1009	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1010	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1011	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1012	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1013	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1014	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1015	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1016	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1017	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1018	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1019	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1020	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1021	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1022						0xFFFFFFFF, 0xFFFFFFFF },
1023	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1024						0x900FFFFF, 0xFFFFFFFF },
1025	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1026						0xFFFFFFFF, 0xFFFFFFFF },
1027	{ 0, 0, 0, 0, 0 }
1028};
1029
1030/* i350 reg test */
1031static struct igb_reg_test reg_test_i350[] = {
1032	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1033	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1034	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1035	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1036	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1037	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1038	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1039	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1040	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1041	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1042	/* RDH is read-only for i350, only test RDT. */
1043	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1044	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1045	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1046	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1047	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1048	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1049	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1050	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1051	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1052	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1053	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1054	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1055	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1056	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1057	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1058	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1059	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1060	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1061						0xFFFFFFFF, 0xFFFFFFFF },
1062	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1063						0xC3FFFFFF, 0xFFFFFFFF },
1064	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1065						0xFFFFFFFF, 0xFFFFFFFF },
1066	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1067						0xC3FFFFFF, 0xFFFFFFFF },
1068	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1069						0xFFFFFFFF, 0xFFFFFFFF },
1070	{ 0, 0, 0, 0 }
1071};
1072
1073/* 82580 reg test */
1074static struct igb_reg_test reg_test_82580[] = {
1075	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1076	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1077	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1078	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1079	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1080	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1081	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1082	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1083	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1084	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1085	/* RDH is read-only for 82580, only test RDT. */
1086	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1087	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1088	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1089	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1090	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1091	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1092	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1093	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1094	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1095	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1096	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1097	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1098	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1099	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1100	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1101	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1102	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1103	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1104						0xFFFFFFFF, 0xFFFFFFFF },
1105	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1106						0x83FFFFFF, 0xFFFFFFFF },
1107	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1108						0xFFFFFFFF, 0xFFFFFFFF },
1109	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1110						0x83FFFFFF, 0xFFFFFFFF },
1111	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1112						0xFFFFFFFF, 0xFFFFFFFF },
1113	{ 0, 0, 0, 0 }
1114};
1115
1116/* 82576 reg test */
1117static struct igb_reg_test reg_test_82576[] = {
1118	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1119	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1120	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1121	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1122	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1123	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1124	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1125	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1126	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1127	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1128	/* Enable all RX queues before testing. */
1129	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1130	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1131	/* RDH is read-only for 82576, only test RDT. */
1132	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1133	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1134	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1135	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1136	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1137	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1138	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1139	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1140	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1141	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1142	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1143	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1144	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1145	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1146	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1147	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1148	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1149	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1150	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1151	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1152	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1153	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1154	{ 0, 0, 0, 0 }
1155};
1156
1157/* 82575 register test */
1158static struct igb_reg_test reg_test_82575[] = {
1159	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1160	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1161	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1162	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1163	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1164	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1165	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1166	/* Enable all four RX queues before testing. */
1167	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1168	/* RDH is read-only for 82575, only test RDT. */
1169	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1170	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1171	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1172	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1173	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1174	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1175	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1176	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1177	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1178	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1179	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1180	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1181	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1182	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1183	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1184	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1185	{ 0, 0, 0, 0 }
1186};
1187
1188static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1189			     int reg, u32 mask, u32 write)
1190{
1191	struct e1000_hw *hw = &adapter->hw;
1192	u32 pat, val;
1193	static const u32 _test[] =
1194		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1195	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1196		wr32(reg, (_test[pat] & write));
1197		val = rd32(reg) & mask;
1198		if (val != (_test[pat] & write & mask)) {
1199			dev_err(&adapter->pdev->dev,
1200				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1201				reg, val, (_test[pat] & write & mask));
1202			*data = reg;
1203			return 1;
1204		}
1205	}
1206
1207	return 0;
1208}
1209
1210static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1211			      int reg, u32 mask, u32 write)
1212{
1213	struct e1000_hw *hw = &adapter->hw;
1214	u32 val;
1215	wr32(reg, write & mask);
1216	val = rd32(reg);
1217	if ((write & mask) != (val & mask)) {
1218		dev_err(&adapter->pdev->dev,
1219			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1220			(val & mask), (write & mask));
1221		*data = reg;
1222		return 1;
1223	}
1224
1225	return 0;
1226}
1227
1228#define REG_PATTERN_TEST(reg, mask, write) \
1229	do { \
1230		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1231			return 1; \
1232	} while (0)
1233
1234#define REG_SET_AND_CHECK(reg, mask, write) \
1235	do { \
1236		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1237			return 1; \
1238	} while (0)
1239
1240static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1241{
1242	struct e1000_hw *hw = &adapter->hw;
1243	struct igb_reg_test *test;
1244	u32 value, before, after;
1245	u32 i, toggle;
1246
1247	switch (adapter->hw.mac.type) {
1248	case e1000_i350:
1249	case e1000_i354:
1250		test = reg_test_i350;
1251		toggle = 0x7FEFF3FF;
1252		break;
1253	case e1000_i210:
1254	case e1000_i211:
1255		test = reg_test_i210;
1256		toggle = 0x7FEFF3FF;
1257		break;
1258	case e1000_82580:
1259		test = reg_test_82580;
1260		toggle = 0x7FEFF3FF;
1261		break;
1262	case e1000_82576:
1263		test = reg_test_82576;
1264		toggle = 0x7FFFF3FF;
1265		break;
1266	default:
1267		test = reg_test_82575;
1268		toggle = 0x7FFFF3FF;
1269		break;
1270	}
1271
1272	/* Because the status register is such a special case,
1273	 * we handle it separately from the rest of the register
1274	 * tests.  Some bits are read-only, some toggle, and some
1275	 * are writable on newer MACs.
1276	 */
1277	before = rd32(E1000_STATUS);
1278	value = (rd32(E1000_STATUS) & toggle);
1279	wr32(E1000_STATUS, toggle);
1280	after = rd32(E1000_STATUS) & toggle;
1281	if (value != after) {
1282		dev_err(&adapter->pdev->dev,
1283			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1284			after, value);
1285		*data = 1;
1286		return 1;
1287	}
1288	/* restore previous status */
1289	wr32(E1000_STATUS, before);
1290
1291	/* Perform the remainder of the register test, looping through
1292	 * the test table until we either fail or reach the null entry.
1293	 */
1294	while (test->reg) {
1295		for (i = 0; i < test->array_len; i++) {
1296			switch (test->test_type) {
1297			case PATTERN_TEST:
1298				REG_PATTERN_TEST(test->reg +
1299						(i * test->reg_offset),
1300						test->mask,
1301						test->write);
1302				break;
1303			case SET_READ_TEST:
1304				REG_SET_AND_CHECK(test->reg +
1305						(i * test->reg_offset),
1306						test->mask,
1307						test->write);
1308				break;
1309			case WRITE_NO_TEST:
1310				writel(test->write,
1311				    (adapter->hw.hw_addr + test->reg)
1312					+ (i * test->reg_offset));
1313				break;
1314			case TABLE32_TEST:
1315				REG_PATTERN_TEST(test->reg + (i * 4),
1316						test->mask,
1317						test->write);
1318				break;
1319			case TABLE64_TEST_LO:
1320				REG_PATTERN_TEST(test->reg + (i * 8),
1321						test->mask,
1322						test->write);
1323				break;
1324			case TABLE64_TEST_HI:
1325				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1326						test->mask,
1327						test->write);
1328				break;
1329			}
1330		}
1331		test++;
1332	}
1333
1334	*data = 0;
1335	return 0;
1336}
1337
1338static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1339{
1340	*data = 0;
1341
1342	/* Validate eeprom on all parts but i211 */
1343	if (adapter->hw.mac.type != e1000_i211) {
1344		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1345			*data = 2;
1346	}
1347
1348	return *data;
1349}
1350
1351static irqreturn_t igb_test_intr(int irq, void *data)
1352{
1353	struct igb_adapter *adapter = (struct igb_adapter *) data;
1354	struct e1000_hw *hw = &adapter->hw;
1355
1356	adapter->test_icr |= rd32(E1000_ICR);
1357
1358	return IRQ_HANDLED;
1359}
1360
1361static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1362{
1363	struct e1000_hw *hw = &adapter->hw;
1364	struct net_device *netdev = adapter->netdev;
1365	u32 mask, ics_mask, i = 0, shared_int = true;
1366	u32 irq = adapter->pdev->irq;
1367
1368	*data = 0;
1369
1370	/* Hook up test interrupt handler just for this test */
1371	if (adapter->msix_entries) {
1372		if (request_irq(adapter->msix_entries[0].vector,
1373		                igb_test_intr, 0, netdev->name, adapter)) {
1374			*data = 1;
1375			return -1;
1376		}
1377	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1378		shared_int = false;
1379		if (request_irq(irq,
1380		                igb_test_intr, 0, netdev->name, adapter)) {
1381			*data = 1;
1382			return -1;
1383		}
1384	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1385				netdev->name, adapter)) {
1386		shared_int = false;
1387	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1388		 netdev->name, adapter)) {
1389		*data = 1;
1390		return -1;
1391	}
1392	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1393		(shared_int ? "shared" : "unshared"));
1394
1395	/* Disable all the interrupts */
1396	wr32(E1000_IMC, ~0);
1397	wrfl();
1398	msleep(10);
1399
1400	/* Define all writable bits for ICS */
1401	switch (hw->mac.type) {
1402	case e1000_82575:
1403		ics_mask = 0x37F47EDD;
1404		break;
1405	case e1000_82576:
1406		ics_mask = 0x77D4FBFD;
1407		break;
1408	case e1000_82580:
1409		ics_mask = 0x77DCFED5;
1410		break;
1411	case e1000_i350:
1412	case e1000_i354:
1413	case e1000_i210:
1414	case e1000_i211:
1415		ics_mask = 0x77DCFED5;
1416		break;
1417	default:
1418		ics_mask = 0x7FFFFFFF;
1419		break;
1420	}
1421
1422	/* Test each interrupt */
1423	for (; i < 31; i++) {
1424		/* Interrupt to test */
1425		mask = 1 << i;
1426
1427		if (!(mask & ics_mask))
1428			continue;
1429
1430		if (!shared_int) {
1431			/* Disable the interrupt to be reported in
1432			 * the cause register and then force the same
1433			 * interrupt and see if one gets posted.  If
1434			 * an interrupt was posted to the bus, the
1435			 * test failed.
1436			 */
1437			adapter->test_icr = 0;
1438
1439			/* Flush any pending interrupts */
1440			wr32(E1000_ICR, ~0);
1441
1442			wr32(E1000_IMC, mask);
1443			wr32(E1000_ICS, mask);
1444			wrfl();
1445			msleep(10);
1446
1447			if (adapter->test_icr & mask) {
1448				*data = 3;
1449				break;
1450			}
1451		}
1452
1453		/* Enable the interrupt to be reported in
1454		 * the cause register and then force the same
1455		 * interrupt and see if one gets posted.  If
1456		 * an interrupt was not posted to the bus, the
1457		 * test failed.
1458		 */
1459		adapter->test_icr = 0;
1460
1461		/* Flush any pending interrupts */
1462		wr32(E1000_ICR, ~0);
1463
1464		wr32(E1000_IMS, mask);
1465		wr32(E1000_ICS, mask);
1466		wrfl();
1467		msleep(10);
1468
1469		if (!(adapter->test_icr & mask)) {
1470			*data = 4;
1471			break;
1472		}
1473
1474		if (!shared_int) {
1475			/* Disable the other interrupts to be reported in
1476			 * the cause register and then force the other
1477			 * interrupts and see if any get posted.  If
1478			 * an interrupt was posted to the bus, the
1479			 * test failed.
1480			 */
1481			adapter->test_icr = 0;
1482
1483			/* Flush any pending interrupts */
1484			wr32(E1000_ICR, ~0);
1485
1486			wr32(E1000_IMC, ~mask);
1487			wr32(E1000_ICS, ~mask);
1488			wrfl();
1489			msleep(10);
1490
1491			if (adapter->test_icr & mask) {
1492				*data = 5;
1493				break;
1494			}
1495		}
1496	}
1497
1498	/* Disable all the interrupts */
1499	wr32(E1000_IMC, ~0);
1500	wrfl();
1501	msleep(10);
1502
1503	/* Unhook test interrupt handler */
1504	if (adapter->msix_entries)
1505		free_irq(adapter->msix_entries[0].vector, adapter);
1506	else
1507		free_irq(irq, adapter);
1508
1509	return *data;
1510}
1511
1512static void igb_free_desc_rings(struct igb_adapter *adapter)
1513{
1514	igb_free_tx_resources(&adapter->test_tx_ring);
1515	igb_free_rx_resources(&adapter->test_rx_ring);
1516}
1517
1518static int igb_setup_desc_rings(struct igb_adapter *adapter)
1519{
1520	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1521	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1522	struct e1000_hw *hw = &adapter->hw;
1523	int ret_val;
1524
1525	/* Setup Tx descriptor ring and Tx buffers */
1526	tx_ring->count = IGB_DEFAULT_TXD;
1527	tx_ring->dev = &adapter->pdev->dev;
1528	tx_ring->netdev = adapter->netdev;
1529	tx_ring->reg_idx = adapter->vfs_allocated_count;
1530
1531	if (igb_setup_tx_resources(tx_ring)) {
1532		ret_val = 1;
1533		goto err_nomem;
1534	}
1535
1536	igb_setup_tctl(adapter);
1537	igb_configure_tx_ring(adapter, tx_ring);
1538
1539	/* Setup Rx descriptor ring and Rx buffers */
1540	rx_ring->count = IGB_DEFAULT_RXD;
1541	rx_ring->dev = &adapter->pdev->dev;
1542	rx_ring->netdev = adapter->netdev;
1543	rx_ring->reg_idx = adapter->vfs_allocated_count;
1544
1545	if (igb_setup_rx_resources(rx_ring)) {
1546		ret_val = 3;
1547		goto err_nomem;
1548	}
1549
1550	/* set the default queue to queue 0 of PF */
1551	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1552
1553	/* enable receive ring */
1554	igb_setup_rctl(adapter);
1555	igb_configure_rx_ring(adapter, rx_ring);
1556
1557	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1558
1559	return 0;
1560
1561err_nomem:
1562	igb_free_desc_rings(adapter);
1563	return ret_val;
1564}
1565
1566static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1567{
1568	struct e1000_hw *hw = &adapter->hw;
1569
1570	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1571	igb_write_phy_reg(hw, 29, 0x001F);
1572	igb_write_phy_reg(hw, 30, 0x8FFC);
1573	igb_write_phy_reg(hw, 29, 0x001A);
1574	igb_write_phy_reg(hw, 30, 0x8FF0);
1575}
1576
1577static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1578{
1579	struct e1000_hw *hw = &adapter->hw;
1580	u32 ctrl_reg = 0;
1581
1582	hw->mac.autoneg = false;
1583
1584	if (hw->phy.type == e1000_phy_m88) {
1585		if (hw->phy.id != I210_I_PHY_ID) {
1586			/* Auto-MDI/MDIX Off */
1587			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1588			/* reset to update Auto-MDI/MDIX */
1589			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1590			/* autoneg off */
1591			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1592		} else {
1593			/* force 1000, set loopback  */
1594			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1595			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1596		}
1597	}
1598
1599	/* add small delay to avoid loopback test failure */
1600	msleep(50);
1601
1602	/* force 1000, set loopback */
1603	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1604
1605	/* Now set up the MAC to the same speed/duplex as the PHY. */
1606	ctrl_reg = rd32(E1000_CTRL);
1607	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1608	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1609		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1610		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1611		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1612		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1613
1614	if (hw->phy.type == e1000_phy_m88)
1615		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1616
1617	wr32(E1000_CTRL, ctrl_reg);
1618
1619	/* Disable the receiver on the PHY so when a cable is plugged in, the
1620	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1621	 */
1622	if (hw->phy.type == e1000_phy_m88)
1623		igb_phy_disable_receiver(adapter);
1624
1625	mdelay(500);
1626	return 0;
1627}
1628
1629static int igb_set_phy_loopback(struct igb_adapter *adapter)
1630{
1631	return igb_integrated_phy_loopback(adapter);
1632}
1633
1634static int igb_setup_loopback_test(struct igb_adapter *adapter)
1635{
1636	struct e1000_hw *hw = &adapter->hw;
1637	u32 reg;
1638
1639	reg = rd32(E1000_CTRL_EXT);
1640
1641	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1642	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1643		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1644		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1645		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1646		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1647
1648			/* Enable DH89xxCC MPHY for near end loopback */
1649			reg = rd32(E1000_MPHY_ADDR_CTL);
1650			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1651			E1000_MPHY_PCS_CLK_REG_OFFSET;
1652			wr32(E1000_MPHY_ADDR_CTL, reg);
1653
1654			reg = rd32(E1000_MPHY_DATA);
1655			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1656			wr32(E1000_MPHY_DATA, reg);
1657		}
1658
1659		reg = rd32(E1000_RCTL);
1660		reg |= E1000_RCTL_LBM_TCVR;
1661		wr32(E1000_RCTL, reg);
1662
1663		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1664
1665		reg = rd32(E1000_CTRL);
1666		reg &= ~(E1000_CTRL_RFCE |
1667			 E1000_CTRL_TFCE |
1668			 E1000_CTRL_LRST);
1669		reg |= E1000_CTRL_SLU |
1670		       E1000_CTRL_FD;
1671		wr32(E1000_CTRL, reg);
1672
1673		/* Unset switch control to serdes energy detect */
1674		reg = rd32(E1000_CONNSW);
1675		reg &= ~E1000_CONNSW_ENRGSRC;
1676		wr32(E1000_CONNSW, reg);
1677
1678		/* Unset sigdetect for SERDES loopback on
1679		 * 82580 and newer devices.
1680		 */
1681		if (hw->mac.type >= e1000_82580) {
1682			reg = rd32(E1000_PCS_CFG0);
1683			reg |= E1000_PCS_CFG_IGN_SD;
1684			wr32(E1000_PCS_CFG0, reg);
1685		}
1686
1687		/* Set PCS register for forced speed */
1688		reg = rd32(E1000_PCS_LCTL);
1689		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1690		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1691		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1692		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1693		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1694		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1695		wr32(E1000_PCS_LCTL, reg);
1696
1697		return 0;
1698	}
1699
1700	return igb_set_phy_loopback(adapter);
1701}
1702
1703static void igb_loopback_cleanup(struct igb_adapter *adapter)
1704{
1705	struct e1000_hw *hw = &adapter->hw;
1706	u32 rctl;
1707	u16 phy_reg;
1708
1709	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1710	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1711	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1712	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1713		u32 reg;
1714
1715		/* Disable near end loopback on DH89xxCC */
1716		reg = rd32(E1000_MPHY_ADDR_CTL);
1717		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1718		E1000_MPHY_PCS_CLK_REG_OFFSET;
1719		wr32(E1000_MPHY_ADDR_CTL, reg);
1720
1721		reg = rd32(E1000_MPHY_DATA);
1722		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1723		wr32(E1000_MPHY_DATA, reg);
1724	}
1725
1726	rctl = rd32(E1000_RCTL);
1727	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1728	wr32(E1000_RCTL, rctl);
1729
1730	hw->mac.autoneg = true;
1731	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1732	if (phy_reg & MII_CR_LOOPBACK) {
1733		phy_reg &= ~MII_CR_LOOPBACK;
1734		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1735		igb_phy_sw_reset(hw);
1736	}
1737}
1738
1739static void igb_create_lbtest_frame(struct sk_buff *skb,
1740				    unsigned int frame_size)
1741{
1742	memset(skb->data, 0xFF, frame_size);
1743	frame_size /= 2;
1744	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1745	memset(&skb->data[frame_size + 10], 0xBE, 1);
1746	memset(&skb->data[frame_size + 12], 0xAF, 1);
1747}
1748
1749static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1750				  unsigned int frame_size)
1751{
1752	unsigned char *data;
1753	bool match = true;
1754
1755	frame_size >>= 1;
1756
1757	data = kmap(rx_buffer->page);
1758
1759	if (data[3] != 0xFF ||
1760	    data[frame_size + 10] != 0xBE ||
1761	    data[frame_size + 12] != 0xAF)
1762		match = false;
1763
1764	kunmap(rx_buffer->page);
1765
1766	return match;
1767}
1768
1769static int igb_clean_test_rings(struct igb_ring *rx_ring,
1770				struct igb_ring *tx_ring,
1771				unsigned int size)
1772{
1773	union e1000_adv_rx_desc *rx_desc;
1774	struct igb_rx_buffer *rx_buffer_info;
1775	struct igb_tx_buffer *tx_buffer_info;
1776	u16 rx_ntc, tx_ntc, count = 0;
1777
1778	/* initialize next to clean and descriptor values */
1779	rx_ntc = rx_ring->next_to_clean;
1780	tx_ntc = tx_ring->next_to_clean;
1781	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1782
1783	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1784		/* check Rx buffer */
1785		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1786
1787		/* sync Rx buffer for CPU read */
1788		dma_sync_single_for_cpu(rx_ring->dev,
1789					rx_buffer_info->dma,
1790					IGB_RX_BUFSZ,
1791					DMA_FROM_DEVICE);
1792
1793		/* verify contents of skb */
1794		if (igb_check_lbtest_frame(rx_buffer_info, size))
1795			count++;
1796
1797		/* sync Rx buffer for device write */
1798		dma_sync_single_for_device(rx_ring->dev,
1799					   rx_buffer_info->dma,
1800					   IGB_RX_BUFSZ,
1801					   DMA_FROM_DEVICE);
1802
1803		/* unmap buffer on Tx side */
1804		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1805		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1806
1807		/* increment Rx/Tx next to clean counters */
1808		rx_ntc++;
1809		if (rx_ntc == rx_ring->count)
1810			rx_ntc = 0;
1811		tx_ntc++;
1812		if (tx_ntc == tx_ring->count)
1813			tx_ntc = 0;
1814
1815		/* fetch next descriptor */
1816		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1817	}
1818
1819	netdev_tx_reset_queue(txring_txq(tx_ring));
1820
1821	/* re-map buffers to ring, store next to clean values */
1822	igb_alloc_rx_buffers(rx_ring, count);
1823	rx_ring->next_to_clean = rx_ntc;
1824	tx_ring->next_to_clean = tx_ntc;
1825
1826	return count;
1827}
1828
1829static int igb_run_loopback_test(struct igb_adapter *adapter)
1830{
1831	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1832	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1833	u16 i, j, lc, good_cnt;
1834	int ret_val = 0;
1835	unsigned int size = IGB_RX_HDR_LEN;
1836	netdev_tx_t tx_ret_val;
1837	struct sk_buff *skb;
1838
1839	/* allocate test skb */
1840	skb = alloc_skb(size, GFP_KERNEL);
1841	if (!skb)
1842		return 11;
1843
1844	/* place data into test skb */
1845	igb_create_lbtest_frame(skb, size);
1846	skb_put(skb, size);
1847
1848	/* Calculate the loop count based on the largest descriptor ring
1849	 * The idea is to wrap the largest ring a number of times using 64
1850	 * send/receive pairs during each loop
1851	 */
1852
1853	if (rx_ring->count <= tx_ring->count)
1854		lc = ((tx_ring->count / 64) * 2) + 1;
1855	else
1856		lc = ((rx_ring->count / 64) * 2) + 1;
1857
1858	for (j = 0; j <= lc; j++) { /* loop count loop */
1859		/* reset count of good packets */
1860		good_cnt = 0;
1861
1862		/* place 64 packets on the transmit queue*/
1863		for (i = 0; i < 64; i++) {
1864			skb_get(skb);
1865			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1866			if (tx_ret_val == NETDEV_TX_OK)
1867				good_cnt++;
1868		}
1869
1870		if (good_cnt != 64) {
1871			ret_val = 12;
1872			break;
1873		}
1874
1875		/* allow 200 milliseconds for packets to go from Tx to Rx */
1876		msleep(200);
1877
1878		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1879		if (good_cnt != 64) {
1880			ret_val = 13;
1881			break;
1882		}
1883	} /* end loop count loop */
1884
1885	/* free the original skb */
1886	kfree_skb(skb);
1887
1888	return ret_val;
1889}
1890
1891static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1892{
1893	/* PHY loopback cannot be performed if SoL/IDER
1894	 * sessions are active
1895	 */
1896	if (igb_check_reset_block(&adapter->hw)) {
1897		dev_err(&adapter->pdev->dev,
1898			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1899		*data = 0;
1900		goto out;
1901	}
1902
1903	if (adapter->hw.mac.type == e1000_i354) {
1904		dev_info(&adapter->pdev->dev,
1905			"Loopback test not supported on i354.\n");
1906		*data = 0;
1907		goto out;
1908	}
1909	*data = igb_setup_desc_rings(adapter);
1910	if (*data)
1911		goto out;
1912	*data = igb_setup_loopback_test(adapter);
1913	if (*data)
1914		goto err_loopback;
1915	*data = igb_run_loopback_test(adapter);
1916	igb_loopback_cleanup(adapter);
1917
1918err_loopback:
1919	igb_free_desc_rings(adapter);
1920out:
1921	return *data;
1922}
1923
1924static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1925{
1926	struct e1000_hw *hw = &adapter->hw;
1927	*data = 0;
1928	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1929		int i = 0;
1930		hw->mac.serdes_has_link = false;
1931
1932		/* On some blade server designs, link establishment
1933		 * could take as long as 2-3 minutes
1934		 */
1935		do {
1936			hw->mac.ops.check_for_link(&adapter->hw);
1937			if (hw->mac.serdes_has_link)
1938				return *data;
1939			msleep(20);
1940		} while (i++ < 3750);
1941
1942		*data = 1;
1943	} else {
1944		hw->mac.ops.check_for_link(&adapter->hw);
1945		if (hw->mac.autoneg)
1946			msleep(5000);
1947
1948		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1949			*data = 1;
1950	}
1951	return *data;
1952}
1953
1954static void igb_diag_test(struct net_device *netdev,
1955			  struct ethtool_test *eth_test, u64 *data)
1956{
1957	struct igb_adapter *adapter = netdev_priv(netdev);
1958	u16 autoneg_advertised;
1959	u8 forced_speed_duplex, autoneg;
1960	bool if_running = netif_running(netdev);
1961
1962	set_bit(__IGB_TESTING, &adapter->state);
1963	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1964		/* Offline tests */
1965
1966		/* save speed, duplex, autoneg settings */
1967		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1968		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1969		autoneg = adapter->hw.mac.autoneg;
1970
1971		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1972
1973		/* power up link for link test */
1974		igb_power_up_link(adapter);
1975
1976		/* Link test performed before hardware reset so autoneg doesn't
1977		 * interfere with test result
1978		 */
1979		if (igb_link_test(adapter, &data[4]))
1980			eth_test->flags |= ETH_TEST_FL_FAILED;
1981
1982		if (if_running)
1983			/* indicate we're in test mode */
1984			dev_close(netdev);
1985		else
1986			igb_reset(adapter);
1987
1988		if (igb_reg_test(adapter, &data[0]))
1989			eth_test->flags |= ETH_TEST_FL_FAILED;
1990
1991		igb_reset(adapter);
1992		if (igb_eeprom_test(adapter, &data[1]))
1993			eth_test->flags |= ETH_TEST_FL_FAILED;
1994
1995		igb_reset(adapter);
1996		if (igb_intr_test(adapter, &data[2]))
1997			eth_test->flags |= ETH_TEST_FL_FAILED;
1998
1999		igb_reset(adapter);
2000		/* power up link for loopback test */
2001		igb_power_up_link(adapter);
2002		if (igb_loopback_test(adapter, &data[3]))
2003			eth_test->flags |= ETH_TEST_FL_FAILED;
2004
2005		/* restore speed, duplex, autoneg settings */
2006		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2007		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2008		adapter->hw.mac.autoneg = autoneg;
2009
2010		/* force this routine to wait until autoneg complete/timeout */
2011		adapter->hw.phy.autoneg_wait_to_complete = true;
2012		igb_reset(adapter);
2013		adapter->hw.phy.autoneg_wait_to_complete = false;
2014
2015		clear_bit(__IGB_TESTING, &adapter->state);
2016		if (if_running)
2017			dev_open(netdev);
2018	} else {
2019		dev_info(&adapter->pdev->dev, "online testing starting\n");
2020
2021		/* PHY is powered down when interface is down */
2022		if (if_running && igb_link_test(adapter, &data[4]))
2023			eth_test->flags |= ETH_TEST_FL_FAILED;
2024		else
2025			data[4] = 0;
2026
2027		/* Online tests aren't run; pass by default */
2028		data[0] = 0;
2029		data[1] = 0;
2030		data[2] = 0;
2031		data[3] = 0;
2032
2033		clear_bit(__IGB_TESTING, &adapter->state);
2034	}
2035	msleep_interruptible(4 * 1000);
2036}
2037
2038static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2039{
2040	struct igb_adapter *adapter = netdev_priv(netdev);
2041
2042	wol->supported = WAKE_UCAST | WAKE_MCAST |
2043			 WAKE_BCAST | WAKE_MAGIC |
2044			 WAKE_PHY;
2045	wol->wolopts = 0;
2046
2047	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2048		return;
2049
2050	/* apply any specific unsupported masks here */
2051	switch (adapter->hw.device_id) {
2052	default:
2053		break;
2054	}
2055
2056	if (adapter->wol & E1000_WUFC_EX)
2057		wol->wolopts |= WAKE_UCAST;
2058	if (adapter->wol & E1000_WUFC_MC)
2059		wol->wolopts |= WAKE_MCAST;
2060	if (adapter->wol & E1000_WUFC_BC)
2061		wol->wolopts |= WAKE_BCAST;
2062	if (adapter->wol & E1000_WUFC_MAG)
2063		wol->wolopts |= WAKE_MAGIC;
2064	if (adapter->wol & E1000_WUFC_LNKC)
2065		wol->wolopts |= WAKE_PHY;
2066}
2067
2068static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2069{
2070	struct igb_adapter *adapter = netdev_priv(netdev);
2071
2072	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2073		return -EOPNOTSUPP;
2074
2075	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2076		return wol->wolopts ? -EOPNOTSUPP : 0;
2077
2078	/* these settings will always override what we currently have */
2079	adapter->wol = 0;
2080
2081	if (wol->wolopts & WAKE_UCAST)
2082		adapter->wol |= E1000_WUFC_EX;
2083	if (wol->wolopts & WAKE_MCAST)
2084		adapter->wol |= E1000_WUFC_MC;
2085	if (wol->wolopts & WAKE_BCAST)
2086		adapter->wol |= E1000_WUFC_BC;
2087	if (wol->wolopts & WAKE_MAGIC)
2088		adapter->wol |= E1000_WUFC_MAG;
2089	if (wol->wolopts & WAKE_PHY)
2090		adapter->wol |= E1000_WUFC_LNKC;
2091	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2092
2093	return 0;
2094}
2095
2096/* bit defines for adapter->led_status */
2097#define IGB_LED_ON		0
2098
2099static int igb_set_phys_id(struct net_device *netdev,
2100			   enum ethtool_phys_id_state state)
2101{
2102	struct igb_adapter *adapter = netdev_priv(netdev);
2103	struct e1000_hw *hw = &adapter->hw;
2104
2105	switch (state) {
2106	case ETHTOOL_ID_ACTIVE:
2107		igb_blink_led(hw);
2108		return 2;
2109	case ETHTOOL_ID_ON:
2110		igb_blink_led(hw);
2111		break;
2112	case ETHTOOL_ID_OFF:
2113		igb_led_off(hw);
2114		break;
2115	case ETHTOOL_ID_INACTIVE:
2116		igb_led_off(hw);
2117		clear_bit(IGB_LED_ON, &adapter->led_status);
2118		igb_cleanup_led(hw);
2119		break;
2120	}
2121
2122	return 0;
2123}
2124
2125static int igb_set_coalesce(struct net_device *netdev,
2126			    struct ethtool_coalesce *ec)
2127{
2128	struct igb_adapter *adapter = netdev_priv(netdev);
2129	int i;
2130
2131	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2132	    ((ec->rx_coalesce_usecs > 3) &&
2133	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2134	    (ec->rx_coalesce_usecs == 2))
2135		return -EINVAL;
2136
2137	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2138	    ((ec->tx_coalesce_usecs > 3) &&
2139	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2140	    (ec->tx_coalesce_usecs == 2))
2141		return -EINVAL;
2142
2143	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2144		return -EINVAL;
2145
2146	/* If ITR is disabled, disable DMAC */
2147	if (ec->rx_coalesce_usecs == 0) {
2148		if (adapter->flags & IGB_FLAG_DMAC)
2149			adapter->flags &= ~IGB_FLAG_DMAC;
2150	}
2151
2152	/* convert to rate of irq's per second */
2153	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2154		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2155	else
2156		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2157
2158	/* convert to rate of irq's per second */
2159	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2160		adapter->tx_itr_setting = adapter->rx_itr_setting;
2161	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2162		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2163	else
2164		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2165
2166	for (i = 0; i < adapter->num_q_vectors; i++) {
2167		struct igb_q_vector *q_vector = adapter->q_vector[i];
2168		q_vector->tx.work_limit = adapter->tx_work_limit;
2169		if (q_vector->rx.ring)
2170			q_vector->itr_val = adapter->rx_itr_setting;
2171		else
2172			q_vector->itr_val = adapter->tx_itr_setting;
2173		if (q_vector->itr_val && q_vector->itr_val <= 3)
2174			q_vector->itr_val = IGB_START_ITR;
2175		q_vector->set_itr = 1;
2176	}
2177
2178	return 0;
2179}
2180
2181static int igb_get_coalesce(struct net_device *netdev,
2182			    struct ethtool_coalesce *ec)
2183{
2184	struct igb_adapter *adapter = netdev_priv(netdev);
2185
2186	if (adapter->rx_itr_setting <= 3)
2187		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2188	else
2189		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2190
2191	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2192		if (adapter->tx_itr_setting <= 3)
2193			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2194		else
2195			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2196	}
2197
2198	return 0;
2199}
2200
2201static int igb_nway_reset(struct net_device *netdev)
2202{
2203	struct igb_adapter *adapter = netdev_priv(netdev);
2204	if (netif_running(netdev))
2205		igb_reinit_locked(adapter);
2206	return 0;
2207}
2208
2209static int igb_get_sset_count(struct net_device *netdev, int sset)
2210{
2211	switch (sset) {
2212	case ETH_SS_STATS:
2213		return IGB_STATS_LEN;
2214	case ETH_SS_TEST:
2215		return IGB_TEST_LEN;
2216	default:
2217		return -ENOTSUPP;
2218	}
2219}
2220
2221static void igb_get_ethtool_stats(struct net_device *netdev,
2222				  struct ethtool_stats *stats, u64 *data)
2223{
2224	struct igb_adapter *adapter = netdev_priv(netdev);
2225	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2226	unsigned int start;
2227	struct igb_ring *ring;
2228	int i, j;
2229	char *p;
2230
2231	spin_lock(&adapter->stats64_lock);
2232	igb_update_stats(adapter, net_stats);
2233
2234	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2235		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2236		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2237			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2238	}
2239	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2240		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2241		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2242			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2243	}
2244	for (j = 0; j < adapter->num_tx_queues; j++) {
2245		u64	restart2;
2246
2247		ring = adapter->tx_ring[j];
2248		do {
2249			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2250			data[i]   = ring->tx_stats.packets;
2251			data[i+1] = ring->tx_stats.bytes;
2252			data[i+2] = ring->tx_stats.restart_queue;
2253		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2254		do {
2255			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2256			restart2  = ring->tx_stats.restart_queue2;
2257		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2258		data[i+2] += restart2;
2259
2260		i += IGB_TX_QUEUE_STATS_LEN;
2261	}
2262	for (j = 0; j < adapter->num_rx_queues; j++) {
2263		ring = adapter->rx_ring[j];
2264		do {
2265			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2266			data[i]   = ring->rx_stats.packets;
2267			data[i+1] = ring->rx_stats.bytes;
2268			data[i+2] = ring->rx_stats.drops;
2269			data[i+3] = ring->rx_stats.csum_err;
2270			data[i+4] = ring->rx_stats.alloc_failed;
2271		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2272		i += IGB_RX_QUEUE_STATS_LEN;
2273	}
2274	spin_unlock(&adapter->stats64_lock);
2275}
2276
2277static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2278{
2279	struct igb_adapter *adapter = netdev_priv(netdev);
2280	u8 *p = data;
2281	int i;
2282
2283	switch (stringset) {
2284	case ETH_SS_TEST:
2285		memcpy(data, *igb_gstrings_test,
2286			IGB_TEST_LEN*ETH_GSTRING_LEN);
2287		break;
2288	case ETH_SS_STATS:
2289		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2290			memcpy(p, igb_gstrings_stats[i].stat_string,
2291			       ETH_GSTRING_LEN);
2292			p += ETH_GSTRING_LEN;
2293		}
2294		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2295			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2296			       ETH_GSTRING_LEN);
2297			p += ETH_GSTRING_LEN;
2298		}
2299		for (i = 0; i < adapter->num_tx_queues; i++) {
2300			sprintf(p, "tx_queue_%u_packets", i);
2301			p += ETH_GSTRING_LEN;
2302			sprintf(p, "tx_queue_%u_bytes", i);
2303			p += ETH_GSTRING_LEN;
2304			sprintf(p, "tx_queue_%u_restart", i);
2305			p += ETH_GSTRING_LEN;
2306		}
2307		for (i = 0; i < adapter->num_rx_queues; i++) {
2308			sprintf(p, "rx_queue_%u_packets", i);
2309			p += ETH_GSTRING_LEN;
2310			sprintf(p, "rx_queue_%u_bytes", i);
2311			p += ETH_GSTRING_LEN;
2312			sprintf(p, "rx_queue_%u_drops", i);
2313			p += ETH_GSTRING_LEN;
2314			sprintf(p, "rx_queue_%u_csum_err", i);
2315			p += ETH_GSTRING_LEN;
2316			sprintf(p, "rx_queue_%u_alloc_failed", i);
2317			p += ETH_GSTRING_LEN;
2318		}
2319		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2320		break;
2321	}
2322}
2323
2324static int igb_get_ts_info(struct net_device *dev,
2325			   struct ethtool_ts_info *info)
2326{
2327	struct igb_adapter *adapter = netdev_priv(dev);
2328
2329	switch (adapter->hw.mac.type) {
2330	case e1000_82575:
2331		info->so_timestamping =
2332			SOF_TIMESTAMPING_TX_SOFTWARE |
2333			SOF_TIMESTAMPING_RX_SOFTWARE |
2334			SOF_TIMESTAMPING_SOFTWARE;
2335		return 0;
2336	case e1000_82576:
2337	case e1000_82580:
2338	case e1000_i350:
2339	case e1000_i354:
2340	case e1000_i210:
2341	case e1000_i211:
2342		info->so_timestamping =
2343			SOF_TIMESTAMPING_TX_SOFTWARE |
2344			SOF_TIMESTAMPING_RX_SOFTWARE |
2345			SOF_TIMESTAMPING_SOFTWARE |
2346			SOF_TIMESTAMPING_TX_HARDWARE |
2347			SOF_TIMESTAMPING_RX_HARDWARE |
2348			SOF_TIMESTAMPING_RAW_HARDWARE;
2349
2350		if (adapter->ptp_clock)
2351			info->phc_index = ptp_clock_index(adapter->ptp_clock);
2352		else
2353			info->phc_index = -1;
2354
2355		info->tx_types =
2356			(1 << HWTSTAMP_TX_OFF) |
2357			(1 << HWTSTAMP_TX_ON);
2358
2359		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2360
2361		/* 82576 does not support timestamping all packets. */
2362		if (adapter->hw.mac.type >= e1000_82580)
2363			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2364		else
2365			info->rx_filters |=
2366				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2367				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2368				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2369				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2370				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2371				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2372				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2373
2374		return 0;
2375	default:
2376		return -EOPNOTSUPP;
2377	}
2378}
2379
2380static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2381				 struct ethtool_rxnfc *cmd)
2382{
2383	cmd->data = 0;
2384
2385	/* Report default options for RSS on igb */
2386	switch (cmd->flow_type) {
2387	case TCP_V4_FLOW:
2388		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2389	case UDP_V4_FLOW:
2390		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2391			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2392	case SCTP_V4_FLOW:
2393	case AH_ESP_V4_FLOW:
2394	case AH_V4_FLOW:
2395	case ESP_V4_FLOW:
2396	case IPV4_FLOW:
2397		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2398		break;
2399	case TCP_V6_FLOW:
2400		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2401	case UDP_V6_FLOW:
2402		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2403			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2404	case SCTP_V6_FLOW:
2405	case AH_ESP_V6_FLOW:
2406	case AH_V6_FLOW:
2407	case ESP_V6_FLOW:
2408	case IPV6_FLOW:
2409		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2410		break;
2411	default:
2412		return -EINVAL;
2413	}
2414
2415	return 0;
2416}
2417
2418static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2419			 u32 *rule_locs)
2420{
2421	struct igb_adapter *adapter = netdev_priv(dev);
2422	int ret = -EOPNOTSUPP;
2423
2424	switch (cmd->cmd) {
2425	case ETHTOOL_GRXRINGS:
2426		cmd->data = adapter->num_rx_queues;
2427		ret = 0;
2428		break;
2429	case ETHTOOL_GRXFH:
2430		ret = igb_get_rss_hash_opts(adapter, cmd);
2431		break;
2432	default:
2433		break;
2434	}
2435
2436	return ret;
2437}
2438
2439#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2440		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2441static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2442				struct ethtool_rxnfc *nfc)
2443{
2444	u32 flags = adapter->flags;
2445
2446	/* RSS does not support anything other than hashing
2447	 * to queues on src and dst IPs and ports
2448	 */
2449	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2450			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2451		return -EINVAL;
2452
2453	switch (nfc->flow_type) {
2454	case TCP_V4_FLOW:
2455	case TCP_V6_FLOW:
2456		if (!(nfc->data & RXH_IP_SRC) ||
2457		    !(nfc->data & RXH_IP_DST) ||
2458		    !(nfc->data & RXH_L4_B_0_1) ||
2459		    !(nfc->data & RXH_L4_B_2_3))
2460			return -EINVAL;
2461		break;
2462	case UDP_V4_FLOW:
2463		if (!(nfc->data & RXH_IP_SRC) ||
2464		    !(nfc->data & RXH_IP_DST))
2465			return -EINVAL;
2466		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2467		case 0:
2468			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2469			break;
2470		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2471			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2472			break;
2473		default:
2474			return -EINVAL;
2475		}
2476		break;
2477	case UDP_V6_FLOW:
2478		if (!(nfc->data & RXH_IP_SRC) ||
2479		    !(nfc->data & RXH_IP_DST))
2480			return -EINVAL;
2481		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2482		case 0:
2483			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2484			break;
2485		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2486			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2487			break;
2488		default:
2489			return -EINVAL;
2490		}
2491		break;
2492	case AH_ESP_V4_FLOW:
2493	case AH_V4_FLOW:
2494	case ESP_V4_FLOW:
2495	case SCTP_V4_FLOW:
2496	case AH_ESP_V6_FLOW:
2497	case AH_V6_FLOW:
2498	case ESP_V6_FLOW:
2499	case SCTP_V6_FLOW:
2500		if (!(nfc->data & RXH_IP_SRC) ||
2501		    !(nfc->data & RXH_IP_DST) ||
2502		    (nfc->data & RXH_L4_B_0_1) ||
2503		    (nfc->data & RXH_L4_B_2_3))
2504			return -EINVAL;
2505		break;
2506	default:
2507		return -EINVAL;
2508	}
2509
2510	/* if we changed something we need to update flags */
2511	if (flags != adapter->flags) {
2512		struct e1000_hw *hw = &adapter->hw;
2513		u32 mrqc = rd32(E1000_MRQC);
2514
2515		if ((flags & UDP_RSS_FLAGS) &&
2516		    !(adapter->flags & UDP_RSS_FLAGS))
2517			dev_err(&adapter->pdev->dev,
2518				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2519
2520		adapter->flags = flags;
2521
2522		/* Perform hash on these packet types */
2523		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2524			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2525			E1000_MRQC_RSS_FIELD_IPV6 |
2526			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2527
2528		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2529			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2530
2531		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2532			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2533
2534		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2535			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2536
2537		wr32(E1000_MRQC, mrqc);
2538	}
2539
2540	return 0;
2541}
2542
2543static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2544{
2545	struct igb_adapter *adapter = netdev_priv(dev);
2546	int ret = -EOPNOTSUPP;
2547
2548	switch (cmd->cmd) {
2549	case ETHTOOL_SRXFH:
2550		ret = igb_set_rss_hash_opt(adapter, cmd);
2551		break;
2552	default:
2553		break;
2554	}
2555
2556	return ret;
2557}
2558
2559static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2560{
2561	struct igb_adapter *adapter = netdev_priv(netdev);
2562	struct e1000_hw *hw = &adapter->hw;
2563	u32 ipcnfg, eeer, ret_val;
2564	u16 phy_data;
2565
2566	if ((hw->mac.type < e1000_i350) ||
2567	    (hw->phy.media_type != e1000_media_type_copper))
2568		return -EOPNOTSUPP;
2569
2570	edata->supported = (SUPPORTED_1000baseT_Full |
2571			    SUPPORTED_100baseT_Full);
2572
2573	ipcnfg = rd32(E1000_IPCNFG);
2574	eeer = rd32(E1000_EEER);
2575
2576	/* EEE status on negotiated link */
2577	if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2578		edata->advertised = ADVERTISED_1000baseT_Full;
2579
2580	if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2581		edata->advertised |= ADVERTISED_100baseT_Full;
2582
2583	/* EEE Link Partner Advertised */
2584	switch (hw->mac.type) {
2585	case e1000_i350:
2586		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2587					   &phy_data);
2588		if (ret_val)
2589			return -ENODATA;
2590
2591		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2592
2593		break;
2594	case e1000_i210:
2595	case e1000_i211:
2596		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2597					     E1000_EEE_LP_ADV_DEV_I210,
2598					     &phy_data);
2599		if (ret_val)
2600			return -ENODATA;
2601
2602		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2603
2604		break;
2605	default:
2606		break;
2607	}
2608
2609	if (eeer & E1000_EEER_EEE_NEG)
2610		edata->eee_active = true;
2611
2612	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2613
2614	if (eeer & E1000_EEER_TX_LPI_EN)
2615		edata->tx_lpi_enabled = true;
2616
2617	/* Report correct negotiated EEE status for devices that
2618	 * wrongly report EEE at half-duplex
2619	 */
2620	if (adapter->link_duplex == HALF_DUPLEX) {
2621		edata->eee_enabled = false;
2622		edata->eee_active = false;
2623		edata->tx_lpi_enabled = false;
2624		edata->advertised &= ~edata->advertised;
2625	}
2626
2627	return 0;
2628}
2629
2630static int igb_set_eee(struct net_device *netdev,
2631		       struct ethtool_eee *edata)
2632{
2633	struct igb_adapter *adapter = netdev_priv(netdev);
2634	struct e1000_hw *hw = &adapter->hw;
2635	struct ethtool_eee eee_curr;
2636	s32 ret_val;
2637
2638	if ((hw->mac.type < e1000_i350) ||
2639	    (hw->phy.media_type != e1000_media_type_copper))
2640		return -EOPNOTSUPP;
2641
2642	ret_val = igb_get_eee(netdev, &eee_curr);
2643	if (ret_val)
2644		return ret_val;
2645
2646	if (eee_curr.eee_enabled) {
2647		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2648			dev_err(&adapter->pdev->dev,
2649				"Setting EEE tx-lpi is not supported\n");
2650			return -EINVAL;
2651		}
2652
2653		/* Tx LPI timer is not implemented currently */
2654		if (edata->tx_lpi_timer) {
2655			dev_err(&adapter->pdev->dev,
2656				"Setting EEE Tx LPI timer is not supported\n");
2657			return -EINVAL;
2658		}
2659
2660		if (eee_curr.advertised != edata->advertised) {
2661			dev_err(&adapter->pdev->dev,
2662				"Setting EEE Advertisement is not supported\n");
2663			return -EINVAL;
2664		}
2665
2666	} else if (!edata->eee_enabled) {
2667		dev_err(&adapter->pdev->dev,
2668			"Setting EEE options are not supported with EEE disabled\n");
2669			return -EINVAL;
2670		}
2671
2672	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2673		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2674		igb_set_eee_i350(hw);
2675
2676		/* reset link */
2677		if (!netif_running(netdev))
2678			igb_reset(adapter);
2679	}
2680
2681	return 0;
2682}
2683
2684static int igb_get_module_info(struct net_device *netdev,
2685			       struct ethtool_modinfo *modinfo)
2686{
2687	struct igb_adapter *adapter = netdev_priv(netdev);
2688	struct e1000_hw *hw = &adapter->hw;
2689	u32 status = E1000_SUCCESS;
2690	u16 sff8472_rev, addr_mode;
2691	bool page_swap = false;
2692
2693	if ((hw->phy.media_type == e1000_media_type_copper) ||
2694	    (hw->phy.media_type == e1000_media_type_unknown))
2695		return -EOPNOTSUPP;
2696
2697	/* Check whether we support SFF-8472 or not */
2698	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2699	if (status != E1000_SUCCESS)
2700		return -EIO;
2701
2702	/* addressing mode is not supported */
2703	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2704	if (status != E1000_SUCCESS)
2705		return -EIO;
2706
2707	/* addressing mode is not supported */
2708	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2709		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2710		page_swap = true;
2711	}
2712
2713	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2714		/* We have an SFP, but it does not support SFF-8472 */
2715		modinfo->type = ETH_MODULE_SFF_8079;
2716		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2717	} else {
2718		/* We have an SFP which supports a revision of SFF-8472 */
2719		modinfo->type = ETH_MODULE_SFF_8472;
2720		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2721	}
2722
2723	return 0;
2724}
2725
2726static int igb_get_module_eeprom(struct net_device *netdev,
2727				 struct ethtool_eeprom *ee, u8 *data)
2728{
2729	struct igb_adapter *adapter = netdev_priv(netdev);
2730	struct e1000_hw *hw = &adapter->hw;
2731	u32 status = E1000_SUCCESS;
2732	u16 *dataword;
2733	u16 first_word, last_word;
2734	int i = 0;
2735
2736	if (ee->len == 0)
2737		return -EINVAL;
2738
2739	first_word = ee->offset >> 1;
2740	last_word = (ee->offset + ee->len - 1) >> 1;
2741
2742	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2743			   GFP_KERNEL);
2744	if (!dataword)
2745		return -ENOMEM;
2746
2747	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2748	for (i = 0; i < last_word - first_word + 1; i++) {
2749		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2750		if (status != E1000_SUCCESS)
2751			/* Error occurred while reading module */
2752			return -EIO;
2753
2754		be16_to_cpus(&dataword[i]);
2755	}
2756
2757	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2758	kfree(dataword);
2759
2760	return 0;
2761}
2762
2763static int igb_ethtool_begin(struct net_device *netdev)
2764{
2765	struct igb_adapter *adapter = netdev_priv(netdev);
2766	pm_runtime_get_sync(&adapter->pdev->dev);
2767	return 0;
2768}
2769
2770static void igb_ethtool_complete(struct net_device *netdev)
2771{
2772	struct igb_adapter *adapter = netdev_priv(netdev);
2773	pm_runtime_put(&adapter->pdev->dev);
2774}
2775
2776static const struct ethtool_ops igb_ethtool_ops = {
2777	.get_settings		= igb_get_settings,
2778	.set_settings		= igb_set_settings,
2779	.get_drvinfo		= igb_get_drvinfo,
2780	.get_regs_len		= igb_get_regs_len,
2781	.get_regs		= igb_get_regs,
2782	.get_wol		= igb_get_wol,
2783	.set_wol		= igb_set_wol,
2784	.get_msglevel		= igb_get_msglevel,
2785	.set_msglevel		= igb_set_msglevel,
2786	.nway_reset		= igb_nway_reset,
2787	.get_link		= igb_get_link,
2788	.get_eeprom_len		= igb_get_eeprom_len,
2789	.get_eeprom		= igb_get_eeprom,
2790	.set_eeprom		= igb_set_eeprom,
2791	.get_ringparam		= igb_get_ringparam,
2792	.set_ringparam		= igb_set_ringparam,
2793	.get_pauseparam		= igb_get_pauseparam,
2794	.set_pauseparam		= igb_set_pauseparam,
2795	.self_test		= igb_diag_test,
2796	.get_strings		= igb_get_strings,
2797	.set_phys_id		= igb_set_phys_id,
2798	.get_sset_count		= igb_get_sset_count,
2799	.get_ethtool_stats	= igb_get_ethtool_stats,
2800	.get_coalesce		= igb_get_coalesce,
2801	.set_coalesce		= igb_set_coalesce,
2802	.get_ts_info		= igb_get_ts_info,
2803	.get_rxnfc		= igb_get_rxnfc,
2804	.set_rxnfc		= igb_set_rxnfc,
2805	.get_eee		= igb_get_eee,
2806	.set_eee		= igb_set_eee,
2807	.get_module_info	= igb_get_module_info,
2808	.get_module_eeprom	= igb_get_module_eeprom,
2809	.begin			= igb_ethtool_begin,
2810	.complete		= igb_ethtool_complete,
2811};
2812
2813void igb_set_ethtool_ops(struct net_device *netdev)
2814{
2815	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2816}
2817