[go: nahoru, domu]

igb_ethtool.c revision 428f1f715131ea5ae32e29502541ce007f556b5b
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37#include <linux/sched.h>
38#include <linux/slab.h>
39#include <linux/pm_runtime.h>
40#include <linux/highmem.h>
41
42#include "igb.h"
43
44struct igb_stats {
45	char stat_string[ETH_GSTRING_LEN];
46	int sizeof_stat;
47	int stat_offset;
48};
49
50#define IGB_STAT(_name, _stat) { \
51	.stat_string = _name, \
52	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
53	.stat_offset = offsetof(struct igb_adapter, _stat) \
54}
55static const struct igb_stats igb_gstrings_stats[] = {
56	IGB_STAT("rx_packets", stats.gprc),
57	IGB_STAT("tx_packets", stats.gptc),
58	IGB_STAT("rx_bytes", stats.gorc),
59	IGB_STAT("tx_bytes", stats.gotc),
60	IGB_STAT("rx_broadcast", stats.bprc),
61	IGB_STAT("tx_broadcast", stats.bptc),
62	IGB_STAT("rx_multicast", stats.mprc),
63	IGB_STAT("tx_multicast", stats.mptc),
64	IGB_STAT("multicast", stats.mprc),
65	IGB_STAT("collisions", stats.colc),
66	IGB_STAT("rx_crc_errors", stats.crcerrs),
67	IGB_STAT("rx_no_buffer_count", stats.rnbc),
68	IGB_STAT("rx_missed_errors", stats.mpc),
69	IGB_STAT("tx_aborted_errors", stats.ecol),
70	IGB_STAT("tx_carrier_errors", stats.tncrs),
71	IGB_STAT("tx_window_errors", stats.latecol),
72	IGB_STAT("tx_abort_late_coll", stats.latecol),
73	IGB_STAT("tx_deferred_ok", stats.dc),
74	IGB_STAT("tx_single_coll_ok", stats.scc),
75	IGB_STAT("tx_multi_coll_ok", stats.mcc),
76	IGB_STAT("tx_timeout_count", tx_timeout_count),
77	IGB_STAT("rx_long_length_errors", stats.roc),
78	IGB_STAT("rx_short_length_errors", stats.ruc),
79	IGB_STAT("rx_align_errors", stats.algnerrc),
80	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
81	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
82	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
83	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
84	IGB_STAT("tx_flow_control_xon", stats.xontxc),
85	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
86	IGB_STAT("rx_long_byte_count", stats.gorc),
87	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
88	IGB_STAT("tx_smbus", stats.mgptc),
89	IGB_STAT("rx_smbus", stats.mgprc),
90	IGB_STAT("dropped_smbus", stats.mgpdc),
91	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
92	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
93	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
94	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
95	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
96};
97
98#define IGB_NETDEV_STAT(_net_stat) { \
99	.stat_string = __stringify(_net_stat), \
100	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
101	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
102}
103static const struct igb_stats igb_gstrings_net_stats[] = {
104	IGB_NETDEV_STAT(rx_errors),
105	IGB_NETDEV_STAT(tx_errors),
106	IGB_NETDEV_STAT(tx_dropped),
107	IGB_NETDEV_STAT(rx_length_errors),
108	IGB_NETDEV_STAT(rx_over_errors),
109	IGB_NETDEV_STAT(rx_frame_errors),
110	IGB_NETDEV_STAT(rx_fifo_errors),
111	IGB_NETDEV_STAT(tx_fifo_errors),
112	IGB_NETDEV_STAT(tx_heartbeat_errors)
113};
114
115#define IGB_GLOBAL_STATS_LEN	\
116	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
117#define IGB_NETDEV_STATS_LEN	\
118	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
119#define IGB_RX_QUEUE_STATS_LEN \
120	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
121
122#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
123
124#define IGB_QUEUE_STATS_LEN \
125	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
126	  IGB_RX_QUEUE_STATS_LEN) + \
127	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
128	  IGB_TX_QUEUE_STATS_LEN))
129#define IGB_STATS_LEN \
130	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
131
132static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
133	"Register test  (offline)", "Eeprom test    (offline)",
134	"Interrupt test (offline)", "Loopback test  (offline)",
135	"Link test   (on/offline)"
136};
137#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
138
139static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
140{
141	struct igb_adapter *adapter = netdev_priv(netdev);
142	struct e1000_hw *hw = &adapter->hw;
143	u32 status;
144
145	if (hw->phy.media_type == e1000_media_type_copper) {
146
147		ecmd->supported = (SUPPORTED_10baseT_Half |
148				   SUPPORTED_10baseT_Full |
149				   SUPPORTED_100baseT_Half |
150				   SUPPORTED_100baseT_Full |
151				   SUPPORTED_1000baseT_Full|
152				   SUPPORTED_Autoneg |
153				   SUPPORTED_TP |
154				   SUPPORTED_Pause);
155		ecmd->advertising = ADVERTISED_TP;
156
157		if (hw->mac.autoneg == 1) {
158			ecmd->advertising |= ADVERTISED_Autoneg;
159			/* the e1000 autoneg seems to match ethtool nicely */
160			ecmd->advertising |= hw->phy.autoneg_advertised;
161		}
162
163		if (hw->mac.autoneg != 1)
164			ecmd->advertising &= ~(ADVERTISED_Pause |
165					       ADVERTISED_Asym_Pause);
166
167		if (hw->fc.requested_mode == e1000_fc_full)
168			ecmd->advertising |= ADVERTISED_Pause;
169		else if (hw->fc.requested_mode == e1000_fc_rx_pause)
170			ecmd->advertising |= (ADVERTISED_Pause |
171					      ADVERTISED_Asym_Pause);
172		else if (hw->fc.requested_mode == e1000_fc_tx_pause)
173			ecmd->advertising |=  ADVERTISED_Asym_Pause;
174		else
175			ecmd->advertising &= ~(ADVERTISED_Pause |
176					       ADVERTISED_Asym_Pause);
177
178		ecmd->port = PORT_TP;
179		ecmd->phy_address = hw->phy.addr;
180	} else {
181		ecmd->supported   = (SUPPORTED_1000baseT_Full |
182				     SUPPORTED_FIBRE |
183				     SUPPORTED_Autoneg);
184
185		ecmd->advertising = (ADVERTISED_1000baseT_Full |
186				     ADVERTISED_FIBRE |
187				     ADVERTISED_Autoneg |
188				     ADVERTISED_Pause);
189
190		ecmd->port = PORT_FIBRE;
191	}
192
193	ecmd->transceiver = XCVR_INTERNAL;
194
195	status = rd32(E1000_STATUS);
196
197	if (status & E1000_STATUS_LU) {
198
199		if ((status & E1000_STATUS_SPEED_1000) ||
200		    hw->phy.media_type != e1000_media_type_copper)
201			ethtool_cmd_speed_set(ecmd, SPEED_1000);
202		else if (status & E1000_STATUS_SPEED_100)
203			ethtool_cmd_speed_set(ecmd, SPEED_100);
204		else
205			ethtool_cmd_speed_set(ecmd, SPEED_10);
206
207		if ((status & E1000_STATUS_FD) ||
208		    hw->phy.media_type != e1000_media_type_copper)
209			ecmd->duplex = DUPLEX_FULL;
210		else
211			ecmd->duplex = DUPLEX_HALF;
212	} else {
213		ethtool_cmd_speed_set(ecmd, -1);
214		ecmd->duplex = -1;
215	}
216
217	ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
218
219	/* MDI-X => 2; MDI =>1; Invalid =>0 */
220	if (hw->phy.media_type == e1000_media_type_copper)
221		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
222						      ETH_TP_MDI;
223	else
224		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
225
226	if (hw->phy.mdix == AUTO_ALL_MODES)
227		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
228	else
229		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
230
231	return 0;
232}
233
234static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
235{
236	struct igb_adapter *adapter = netdev_priv(netdev);
237	struct e1000_hw *hw = &adapter->hw;
238
239	/* When SoL/IDER sessions are active, autoneg/speed/duplex
240	 * cannot be changed */
241	if (igb_check_reset_block(hw)) {
242		dev_err(&adapter->pdev->dev,
243			"Cannot change link characteristics when SoL/IDER is active.\n");
244		return -EINVAL;
245	}
246
247	/*
248	 * MDI setting is only allowed when autoneg enabled because
249	 * some hardware doesn't allow MDI setting when speed or
250	 * duplex is forced.
251	 */
252	if (ecmd->eth_tp_mdix_ctrl) {
253		if (hw->phy.media_type != e1000_media_type_copper)
254			return -EOPNOTSUPP;
255
256		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
257		    (ecmd->autoneg != AUTONEG_ENABLE)) {
258			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
259			return -EINVAL;
260		}
261	}
262
263	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
264		msleep(1);
265
266	if (ecmd->autoneg == AUTONEG_ENABLE) {
267		hw->mac.autoneg = 1;
268		hw->phy.autoneg_advertised = ecmd->advertising |
269					     ADVERTISED_TP |
270					     ADVERTISED_Autoneg;
271		ecmd->advertising = hw->phy.autoneg_advertised;
272		if (adapter->fc_autoneg)
273			hw->fc.requested_mode = e1000_fc_default;
274	} else {
275		u32 speed = ethtool_cmd_speed(ecmd);
276		/* calling this overrides forced MDI setting */
277		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
278			clear_bit(__IGB_RESETTING, &adapter->state);
279			return -EINVAL;
280		}
281	}
282
283	/* MDI-X => 2; MDI => 1; Auto => 3 */
284	if (ecmd->eth_tp_mdix_ctrl) {
285		/*
286		 * fix up the value for auto (3 => 0) as zero is mapped
287		 * internally to auto
288		 */
289		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
290			hw->phy.mdix = AUTO_ALL_MODES;
291		else
292			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
293	}
294
295	/* reset the link */
296	if (netif_running(adapter->netdev)) {
297		igb_down(adapter);
298		igb_up(adapter);
299	} else
300		igb_reset(adapter);
301
302	clear_bit(__IGB_RESETTING, &adapter->state);
303	return 0;
304}
305
306static u32 igb_get_link(struct net_device *netdev)
307{
308	struct igb_adapter *adapter = netdev_priv(netdev);
309	struct e1000_mac_info *mac = &adapter->hw.mac;
310
311	/*
312	 * If the link is not reported up to netdev, interrupts are disabled,
313	 * and so the physical link state may have changed since we last
314	 * looked. Set get_link_status to make sure that the true link
315	 * state is interrogated, rather than pulling a cached and possibly
316	 * stale link state from the driver.
317	 */
318	if (!netif_carrier_ok(netdev))
319		mac->get_link_status = 1;
320
321	return igb_has_link(adapter);
322}
323
324static void igb_get_pauseparam(struct net_device *netdev,
325			       struct ethtool_pauseparam *pause)
326{
327	struct igb_adapter *adapter = netdev_priv(netdev);
328	struct e1000_hw *hw = &adapter->hw;
329
330	pause->autoneg =
331		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
332
333	if (hw->fc.current_mode == e1000_fc_rx_pause)
334		pause->rx_pause = 1;
335	else if (hw->fc.current_mode == e1000_fc_tx_pause)
336		pause->tx_pause = 1;
337	else if (hw->fc.current_mode == e1000_fc_full) {
338		pause->rx_pause = 1;
339		pause->tx_pause = 1;
340	}
341}
342
343static int igb_set_pauseparam(struct net_device *netdev,
344			      struct ethtool_pauseparam *pause)
345{
346	struct igb_adapter *adapter = netdev_priv(netdev);
347	struct e1000_hw *hw = &adapter->hw;
348	int retval = 0;
349
350	adapter->fc_autoneg = pause->autoneg;
351
352	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
353		msleep(1);
354
355	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
356		hw->fc.requested_mode = e1000_fc_default;
357		if (netif_running(adapter->netdev)) {
358			igb_down(adapter);
359			igb_up(adapter);
360		} else {
361			igb_reset(adapter);
362		}
363	} else {
364		if (pause->rx_pause && pause->tx_pause)
365			hw->fc.requested_mode = e1000_fc_full;
366		else if (pause->rx_pause && !pause->tx_pause)
367			hw->fc.requested_mode = e1000_fc_rx_pause;
368		else if (!pause->rx_pause && pause->tx_pause)
369			hw->fc.requested_mode = e1000_fc_tx_pause;
370		else if (!pause->rx_pause && !pause->tx_pause)
371			hw->fc.requested_mode = e1000_fc_none;
372
373		hw->fc.current_mode = hw->fc.requested_mode;
374
375		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
376			  igb_force_mac_fc(hw) : igb_setup_link(hw));
377	}
378
379	clear_bit(__IGB_RESETTING, &adapter->state);
380	return retval;
381}
382
383static u32 igb_get_msglevel(struct net_device *netdev)
384{
385	struct igb_adapter *adapter = netdev_priv(netdev);
386	return adapter->msg_enable;
387}
388
389static void igb_set_msglevel(struct net_device *netdev, u32 data)
390{
391	struct igb_adapter *adapter = netdev_priv(netdev);
392	adapter->msg_enable = data;
393}
394
395static int igb_get_regs_len(struct net_device *netdev)
396{
397#define IGB_REGS_LEN 739
398	return IGB_REGS_LEN * sizeof(u32);
399}
400
401static void igb_get_regs(struct net_device *netdev,
402			 struct ethtool_regs *regs, void *p)
403{
404	struct igb_adapter *adapter = netdev_priv(netdev);
405	struct e1000_hw *hw = &adapter->hw;
406	u32 *regs_buff = p;
407	u8 i;
408
409	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
410
411	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
412
413	/* General Registers */
414	regs_buff[0] = rd32(E1000_CTRL);
415	regs_buff[1] = rd32(E1000_STATUS);
416	regs_buff[2] = rd32(E1000_CTRL_EXT);
417	regs_buff[3] = rd32(E1000_MDIC);
418	regs_buff[4] = rd32(E1000_SCTL);
419	regs_buff[5] = rd32(E1000_CONNSW);
420	regs_buff[6] = rd32(E1000_VET);
421	regs_buff[7] = rd32(E1000_LEDCTL);
422	regs_buff[8] = rd32(E1000_PBA);
423	regs_buff[9] = rd32(E1000_PBS);
424	regs_buff[10] = rd32(E1000_FRTIMER);
425	regs_buff[11] = rd32(E1000_TCPTIMER);
426
427	/* NVM Register */
428	regs_buff[12] = rd32(E1000_EECD);
429
430	/* Interrupt */
431	/* Reading EICS for EICR because they read the
432	 * same but EICS does not clear on read */
433	regs_buff[13] = rd32(E1000_EICS);
434	regs_buff[14] = rd32(E1000_EICS);
435	regs_buff[15] = rd32(E1000_EIMS);
436	regs_buff[16] = rd32(E1000_EIMC);
437	regs_buff[17] = rd32(E1000_EIAC);
438	regs_buff[18] = rd32(E1000_EIAM);
439	/* Reading ICS for ICR because they read the
440	 * same but ICS does not clear on read */
441	regs_buff[19] = rd32(E1000_ICS);
442	regs_buff[20] = rd32(E1000_ICS);
443	regs_buff[21] = rd32(E1000_IMS);
444	regs_buff[22] = rd32(E1000_IMC);
445	regs_buff[23] = rd32(E1000_IAC);
446	regs_buff[24] = rd32(E1000_IAM);
447	regs_buff[25] = rd32(E1000_IMIRVP);
448
449	/* Flow Control */
450	regs_buff[26] = rd32(E1000_FCAL);
451	regs_buff[27] = rd32(E1000_FCAH);
452	regs_buff[28] = rd32(E1000_FCTTV);
453	regs_buff[29] = rd32(E1000_FCRTL);
454	regs_buff[30] = rd32(E1000_FCRTH);
455	regs_buff[31] = rd32(E1000_FCRTV);
456
457	/* Receive */
458	regs_buff[32] = rd32(E1000_RCTL);
459	regs_buff[33] = rd32(E1000_RXCSUM);
460	regs_buff[34] = rd32(E1000_RLPML);
461	regs_buff[35] = rd32(E1000_RFCTL);
462	regs_buff[36] = rd32(E1000_MRQC);
463	regs_buff[37] = rd32(E1000_VT_CTL);
464
465	/* Transmit */
466	regs_buff[38] = rd32(E1000_TCTL);
467	regs_buff[39] = rd32(E1000_TCTL_EXT);
468	regs_buff[40] = rd32(E1000_TIPG);
469	regs_buff[41] = rd32(E1000_DTXCTL);
470
471	/* Wake Up */
472	regs_buff[42] = rd32(E1000_WUC);
473	regs_buff[43] = rd32(E1000_WUFC);
474	regs_buff[44] = rd32(E1000_WUS);
475	regs_buff[45] = rd32(E1000_IPAV);
476	regs_buff[46] = rd32(E1000_WUPL);
477
478	/* MAC */
479	regs_buff[47] = rd32(E1000_PCS_CFG0);
480	regs_buff[48] = rd32(E1000_PCS_LCTL);
481	regs_buff[49] = rd32(E1000_PCS_LSTAT);
482	regs_buff[50] = rd32(E1000_PCS_ANADV);
483	regs_buff[51] = rd32(E1000_PCS_LPAB);
484	regs_buff[52] = rd32(E1000_PCS_NPTX);
485	regs_buff[53] = rd32(E1000_PCS_LPABNP);
486
487	/* Statistics */
488	regs_buff[54] = adapter->stats.crcerrs;
489	regs_buff[55] = adapter->stats.algnerrc;
490	regs_buff[56] = adapter->stats.symerrs;
491	regs_buff[57] = adapter->stats.rxerrc;
492	regs_buff[58] = adapter->stats.mpc;
493	regs_buff[59] = adapter->stats.scc;
494	regs_buff[60] = adapter->stats.ecol;
495	regs_buff[61] = adapter->stats.mcc;
496	regs_buff[62] = adapter->stats.latecol;
497	regs_buff[63] = adapter->stats.colc;
498	regs_buff[64] = adapter->stats.dc;
499	regs_buff[65] = adapter->stats.tncrs;
500	regs_buff[66] = adapter->stats.sec;
501	regs_buff[67] = adapter->stats.htdpmc;
502	regs_buff[68] = adapter->stats.rlec;
503	regs_buff[69] = adapter->stats.xonrxc;
504	regs_buff[70] = adapter->stats.xontxc;
505	regs_buff[71] = adapter->stats.xoffrxc;
506	regs_buff[72] = adapter->stats.xofftxc;
507	regs_buff[73] = adapter->stats.fcruc;
508	regs_buff[74] = adapter->stats.prc64;
509	regs_buff[75] = adapter->stats.prc127;
510	regs_buff[76] = adapter->stats.prc255;
511	regs_buff[77] = adapter->stats.prc511;
512	regs_buff[78] = adapter->stats.prc1023;
513	regs_buff[79] = adapter->stats.prc1522;
514	regs_buff[80] = adapter->stats.gprc;
515	regs_buff[81] = adapter->stats.bprc;
516	regs_buff[82] = adapter->stats.mprc;
517	regs_buff[83] = adapter->stats.gptc;
518	regs_buff[84] = adapter->stats.gorc;
519	regs_buff[86] = adapter->stats.gotc;
520	regs_buff[88] = adapter->stats.rnbc;
521	regs_buff[89] = adapter->stats.ruc;
522	regs_buff[90] = adapter->stats.rfc;
523	regs_buff[91] = adapter->stats.roc;
524	regs_buff[92] = adapter->stats.rjc;
525	regs_buff[93] = adapter->stats.mgprc;
526	regs_buff[94] = adapter->stats.mgpdc;
527	regs_buff[95] = adapter->stats.mgptc;
528	regs_buff[96] = adapter->stats.tor;
529	regs_buff[98] = adapter->stats.tot;
530	regs_buff[100] = adapter->stats.tpr;
531	regs_buff[101] = adapter->stats.tpt;
532	regs_buff[102] = adapter->stats.ptc64;
533	regs_buff[103] = adapter->stats.ptc127;
534	regs_buff[104] = adapter->stats.ptc255;
535	regs_buff[105] = adapter->stats.ptc511;
536	regs_buff[106] = adapter->stats.ptc1023;
537	regs_buff[107] = adapter->stats.ptc1522;
538	regs_buff[108] = adapter->stats.mptc;
539	regs_buff[109] = adapter->stats.bptc;
540	regs_buff[110] = adapter->stats.tsctc;
541	regs_buff[111] = adapter->stats.iac;
542	regs_buff[112] = adapter->stats.rpthc;
543	regs_buff[113] = adapter->stats.hgptc;
544	regs_buff[114] = adapter->stats.hgorc;
545	regs_buff[116] = adapter->stats.hgotc;
546	regs_buff[118] = adapter->stats.lenerrs;
547	regs_buff[119] = adapter->stats.scvpc;
548	regs_buff[120] = adapter->stats.hrmpc;
549
550	for (i = 0; i < 4; i++)
551		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
552	for (i = 0; i < 4; i++)
553		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
554	for (i = 0; i < 4; i++)
555		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
556	for (i = 0; i < 4; i++)
557		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
558	for (i = 0; i < 4; i++)
559		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
560	for (i = 0; i < 4; i++)
561		regs_buff[141 + i] = rd32(E1000_RDH(i));
562	for (i = 0; i < 4; i++)
563		regs_buff[145 + i] = rd32(E1000_RDT(i));
564	for (i = 0; i < 4; i++)
565		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
566
567	for (i = 0; i < 10; i++)
568		regs_buff[153 + i] = rd32(E1000_EITR(i));
569	for (i = 0; i < 8; i++)
570		regs_buff[163 + i] = rd32(E1000_IMIR(i));
571	for (i = 0; i < 8; i++)
572		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
573	for (i = 0; i < 16; i++)
574		regs_buff[179 + i] = rd32(E1000_RAL(i));
575	for (i = 0; i < 16; i++)
576		regs_buff[195 + i] = rd32(E1000_RAH(i));
577
578	for (i = 0; i < 4; i++)
579		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
580	for (i = 0; i < 4; i++)
581		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
582	for (i = 0; i < 4; i++)
583		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
584	for (i = 0; i < 4; i++)
585		regs_buff[223 + i] = rd32(E1000_TDH(i));
586	for (i = 0; i < 4; i++)
587		regs_buff[227 + i] = rd32(E1000_TDT(i));
588	for (i = 0; i < 4; i++)
589		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
590	for (i = 0; i < 4; i++)
591		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
592	for (i = 0; i < 4; i++)
593		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
594	for (i = 0; i < 4; i++)
595		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
596
597	for (i = 0; i < 4; i++)
598		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
599	for (i = 0; i < 4; i++)
600		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
601	for (i = 0; i < 32; i++)
602		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
603	for (i = 0; i < 128; i++)
604		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
605	for (i = 0; i < 128; i++)
606		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
607	for (i = 0; i < 4; i++)
608		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
609
610	regs_buff[547] = rd32(E1000_TDFH);
611	regs_buff[548] = rd32(E1000_TDFT);
612	regs_buff[549] = rd32(E1000_TDFHS);
613	regs_buff[550] = rd32(E1000_TDFPC);
614
615	if (hw->mac.type > e1000_82580) {
616		regs_buff[551] = adapter->stats.o2bgptc;
617		regs_buff[552] = adapter->stats.b2ospc;
618		regs_buff[553] = adapter->stats.o2bspc;
619		regs_buff[554] = adapter->stats.b2ogprc;
620	}
621
622	if (hw->mac.type != e1000_82576)
623		return;
624	for (i = 0; i < 12; i++)
625		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
626	for (i = 0; i < 4; i++)
627		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
628	for (i = 0; i < 12; i++)
629		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
630	for (i = 0; i < 12; i++)
631		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
632	for (i = 0; i < 12; i++)
633		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
634	for (i = 0; i < 12; i++)
635		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
636	for (i = 0; i < 12; i++)
637		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
638	for (i = 0; i < 12; i++)
639		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
640
641	for (i = 0; i < 12; i++)
642		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
643	for (i = 0; i < 12; i++)
644		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
645	for (i = 0; i < 12; i++)
646		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
647	for (i = 0; i < 12; i++)
648		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
649	for (i = 0; i < 12; i++)
650		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
651	for (i = 0; i < 12; i++)
652		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
653	for (i = 0; i < 12; i++)
654		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
655	for (i = 0; i < 12; i++)
656		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
657}
658
659static int igb_get_eeprom_len(struct net_device *netdev)
660{
661	struct igb_adapter *adapter = netdev_priv(netdev);
662	return adapter->hw.nvm.word_size * 2;
663}
664
665static int igb_get_eeprom(struct net_device *netdev,
666			  struct ethtool_eeprom *eeprom, u8 *bytes)
667{
668	struct igb_adapter *adapter = netdev_priv(netdev);
669	struct e1000_hw *hw = &adapter->hw;
670	u16 *eeprom_buff;
671	int first_word, last_word;
672	int ret_val = 0;
673	u16 i;
674
675	if (eeprom->len == 0)
676		return -EINVAL;
677
678	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
679
680	first_word = eeprom->offset >> 1;
681	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
682
683	eeprom_buff = kmalloc(sizeof(u16) *
684			(last_word - first_word + 1), GFP_KERNEL);
685	if (!eeprom_buff)
686		return -ENOMEM;
687
688	if (hw->nvm.type == e1000_nvm_eeprom_spi)
689		ret_val = hw->nvm.ops.read(hw, first_word,
690					    last_word - first_word + 1,
691					    eeprom_buff);
692	else {
693		for (i = 0; i < last_word - first_word + 1; i++) {
694			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
695						    &eeprom_buff[i]);
696			if (ret_val)
697				break;
698		}
699	}
700
701	/* Device's eeprom is always little-endian, word addressable */
702	for (i = 0; i < last_word - first_word + 1; i++)
703		le16_to_cpus(&eeprom_buff[i]);
704
705	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
706			eeprom->len);
707	kfree(eeprom_buff);
708
709	return ret_val;
710}
711
712static int igb_set_eeprom(struct net_device *netdev,
713			  struct ethtool_eeprom *eeprom, u8 *bytes)
714{
715	struct igb_adapter *adapter = netdev_priv(netdev);
716	struct e1000_hw *hw = &adapter->hw;
717	u16 *eeprom_buff;
718	void *ptr;
719	int max_len, first_word, last_word, ret_val = 0;
720	u16 i;
721
722	if (eeprom->len == 0)
723		return -EOPNOTSUPP;
724
725	if (hw->mac.type == e1000_i211)
726		return -EOPNOTSUPP;
727
728	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
729		return -EFAULT;
730
731	max_len = hw->nvm.word_size * 2;
732
733	first_word = eeprom->offset >> 1;
734	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
735	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
736	if (!eeprom_buff)
737		return -ENOMEM;
738
739	ptr = (void *)eeprom_buff;
740
741	if (eeprom->offset & 1) {
742		/* need read/modify/write of first changed EEPROM word */
743		/* only the second byte of the word is being modified */
744		ret_val = hw->nvm.ops.read(hw, first_word, 1,
745					    &eeprom_buff[0]);
746		ptr++;
747	}
748	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
749		/* need read/modify/write of last changed EEPROM word */
750		/* only the first byte of the word is being modified */
751		ret_val = hw->nvm.ops.read(hw, last_word, 1,
752				   &eeprom_buff[last_word - first_word]);
753	}
754
755	/* Device's eeprom is always little-endian, word addressable */
756	for (i = 0; i < last_word - first_word + 1; i++)
757		le16_to_cpus(&eeprom_buff[i]);
758
759	memcpy(ptr, bytes, eeprom->len);
760
761	for (i = 0; i < last_word - first_word + 1; i++)
762		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
763
764	ret_val = hw->nvm.ops.write(hw, first_word,
765				     last_word - first_word + 1, eeprom_buff);
766
767	/* Update the checksum over the first part of the EEPROM if needed
768	 * and flush shadow RAM for 82573 controllers */
769	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
770		hw->nvm.ops.update(hw);
771
772	igb_set_fw_version(adapter);
773	kfree(eeprom_buff);
774	return ret_val;
775}
776
777static void igb_get_drvinfo(struct net_device *netdev,
778			    struct ethtool_drvinfo *drvinfo)
779{
780	struct igb_adapter *adapter = netdev_priv(netdev);
781
782	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
783	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
784
785	/*
786	 * EEPROM image version # is reported as firmware version # for
787	 * 82575 controllers
788	 */
789	strlcpy(drvinfo->fw_version, adapter->fw_version,
790		sizeof(drvinfo->fw_version));
791	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
792		sizeof(drvinfo->bus_info));
793	drvinfo->n_stats = IGB_STATS_LEN;
794	drvinfo->testinfo_len = IGB_TEST_LEN;
795	drvinfo->regdump_len = igb_get_regs_len(netdev);
796	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
797}
798
799static void igb_get_ringparam(struct net_device *netdev,
800			      struct ethtool_ringparam *ring)
801{
802	struct igb_adapter *adapter = netdev_priv(netdev);
803
804	ring->rx_max_pending = IGB_MAX_RXD;
805	ring->tx_max_pending = IGB_MAX_TXD;
806	ring->rx_pending = adapter->rx_ring_count;
807	ring->tx_pending = adapter->tx_ring_count;
808}
809
810static int igb_set_ringparam(struct net_device *netdev,
811			     struct ethtool_ringparam *ring)
812{
813	struct igb_adapter *adapter = netdev_priv(netdev);
814	struct igb_ring *temp_ring;
815	int i, err = 0;
816	u16 new_rx_count, new_tx_count;
817
818	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
819		return -EINVAL;
820
821	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
822	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
823	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
824
825	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
826	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
827	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
828
829	if ((new_tx_count == adapter->tx_ring_count) &&
830	    (new_rx_count == adapter->rx_ring_count)) {
831		/* nothing to do */
832		return 0;
833	}
834
835	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
836		msleep(1);
837
838	if (!netif_running(adapter->netdev)) {
839		for (i = 0; i < adapter->num_tx_queues; i++)
840			adapter->tx_ring[i]->count = new_tx_count;
841		for (i = 0; i < adapter->num_rx_queues; i++)
842			adapter->rx_ring[i]->count = new_rx_count;
843		adapter->tx_ring_count = new_tx_count;
844		adapter->rx_ring_count = new_rx_count;
845		goto clear_reset;
846	}
847
848	if (adapter->num_tx_queues > adapter->num_rx_queues)
849		temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
850	else
851		temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
852
853	if (!temp_ring) {
854		err = -ENOMEM;
855		goto clear_reset;
856	}
857
858	igb_down(adapter);
859
860	/*
861	 * We can't just free everything and then setup again,
862	 * because the ISRs in MSI-X mode get passed pointers
863	 * to the tx and rx ring structs.
864	 */
865	if (new_tx_count != adapter->tx_ring_count) {
866		for (i = 0; i < adapter->num_tx_queues; i++) {
867			memcpy(&temp_ring[i], adapter->tx_ring[i],
868			       sizeof(struct igb_ring));
869
870			temp_ring[i].count = new_tx_count;
871			err = igb_setup_tx_resources(&temp_ring[i]);
872			if (err) {
873				while (i) {
874					i--;
875					igb_free_tx_resources(&temp_ring[i]);
876				}
877				goto err_setup;
878			}
879		}
880
881		for (i = 0; i < adapter->num_tx_queues; i++) {
882			igb_free_tx_resources(adapter->tx_ring[i]);
883
884			memcpy(adapter->tx_ring[i], &temp_ring[i],
885			       sizeof(struct igb_ring));
886		}
887
888		adapter->tx_ring_count = new_tx_count;
889	}
890
891	if (new_rx_count != adapter->rx_ring_count) {
892		for (i = 0; i < adapter->num_rx_queues; i++) {
893			memcpy(&temp_ring[i], adapter->rx_ring[i],
894			       sizeof(struct igb_ring));
895
896			temp_ring[i].count = new_rx_count;
897			err = igb_setup_rx_resources(&temp_ring[i]);
898			if (err) {
899				while (i) {
900					i--;
901					igb_free_rx_resources(&temp_ring[i]);
902				}
903				goto err_setup;
904			}
905
906		}
907
908		for (i = 0; i < adapter->num_rx_queues; i++) {
909			igb_free_rx_resources(adapter->rx_ring[i]);
910
911			memcpy(adapter->rx_ring[i], &temp_ring[i],
912			       sizeof(struct igb_ring));
913		}
914
915		adapter->rx_ring_count = new_rx_count;
916	}
917err_setup:
918	igb_up(adapter);
919	vfree(temp_ring);
920clear_reset:
921	clear_bit(__IGB_RESETTING, &adapter->state);
922	return err;
923}
924
925/* ethtool register test data */
926struct igb_reg_test {
927	u16 reg;
928	u16 reg_offset;
929	u16 array_len;
930	u16 test_type;
931	u32 mask;
932	u32 write;
933};
934
935/* In the hardware, registers are laid out either singly, in arrays
936 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
937 * most tests take place on arrays or single registers (handled
938 * as a single-element array) and special-case the tables.
939 * Table tests are always pattern tests.
940 *
941 * We also make provision for some required setup steps by specifying
942 * registers to be written without any read-back testing.
943 */
944
945#define PATTERN_TEST	1
946#define SET_READ_TEST	2
947#define WRITE_NO_TEST	3
948#define TABLE32_TEST	4
949#define TABLE64_TEST_LO	5
950#define TABLE64_TEST_HI	6
951
952/* i210 reg test */
953static struct igb_reg_test reg_test_i210[] = {
954	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
955	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
956	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
957	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
958	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
959	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
960	/* RDH is read-only for i210, only test RDT. */
961	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
962	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
963	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
964	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
965	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
966	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
967	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
968	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
969	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
970	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
971	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
972	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
973	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
974						0xFFFFFFFF, 0xFFFFFFFF },
975	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
976						0x900FFFFF, 0xFFFFFFFF },
977	{ E1000_MTA,	   0, 128, TABLE32_TEST,
978						0xFFFFFFFF, 0xFFFFFFFF },
979	{ 0, 0, 0, 0, 0 }
980};
981
982/* i350 reg test */
983static struct igb_reg_test reg_test_i350[] = {
984	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
985	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
986	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
987	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
988	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
989	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
990	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
991	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
992	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
993	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
994	/* RDH is read-only for i350, only test RDT. */
995	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
996	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
997	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
998	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
999	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1000	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1001	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1002	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1003	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1004	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1005	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1006	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1007	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1008	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1009	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1010	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1011	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1012	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1013						0xFFFFFFFF, 0xFFFFFFFF },
1014	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1015						0xC3FFFFFF, 0xFFFFFFFF },
1016	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1017						0xFFFFFFFF, 0xFFFFFFFF },
1018	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1019						0xC3FFFFFF, 0xFFFFFFFF },
1020	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1021						0xFFFFFFFF, 0xFFFFFFFF },
1022	{ 0, 0, 0, 0 }
1023};
1024
1025/* 82580 reg test */
1026static struct igb_reg_test reg_test_82580[] = {
1027	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1028	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1029	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1030	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1032	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1033	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1034	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1035	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1036	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1037	/* RDH is read-only for 82580, only test RDT. */
1038	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1039	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1040	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1041	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1042	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1043	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1044	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1045	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1046	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1047	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1048	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1049	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1050	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1051	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1052	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1053	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1054	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1055	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1056						0xFFFFFFFF, 0xFFFFFFFF },
1057	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1058						0x83FFFFFF, 0xFFFFFFFF },
1059	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1060						0xFFFFFFFF, 0xFFFFFFFF },
1061	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1062						0x83FFFFFF, 0xFFFFFFFF },
1063	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1064						0xFFFFFFFF, 0xFFFFFFFF },
1065	{ 0, 0, 0, 0 }
1066};
1067
1068/* 82576 reg test */
1069static struct igb_reg_test reg_test_82576[] = {
1070	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1071	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1072	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1073	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1074	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1075	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1076	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1077	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1078	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1079	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1080	/* Enable all RX queues before testing. */
1081	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1082	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1083	/* RDH is read-only for 82576, only test RDT. */
1084	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1085	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1086	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1087	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1088	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1089	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1090	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1091	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1092	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1093	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1094	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1095	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1096	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1097	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1098	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1099	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1100	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1101	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1102	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1103	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1104	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1105	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1106	{ 0, 0, 0, 0 }
1107};
1108
1109/* 82575 register test */
1110static struct igb_reg_test reg_test_82575[] = {
1111	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1112	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1113	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1114	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1115	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1116	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1117	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1118	/* Enable all four RX queues before testing. */
1119	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1120	/* RDH is read-only for 82575, only test RDT. */
1121	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1122	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1123	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1124	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1125	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1126	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1127	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1128	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1129	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1130	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1131	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1132	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1133	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1134	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1135	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1136	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1137	{ 0, 0, 0, 0 }
1138};
1139
1140static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1141			     int reg, u32 mask, u32 write)
1142{
1143	struct e1000_hw *hw = &adapter->hw;
1144	u32 pat, val;
1145	static const u32 _test[] =
1146		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1147	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1148		wr32(reg, (_test[pat] & write));
1149		val = rd32(reg) & mask;
1150		if (val != (_test[pat] & write & mask)) {
1151			dev_err(&adapter->pdev->dev,
1152				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1153				reg, val, (_test[pat] & write & mask));
1154			*data = reg;
1155			return 1;
1156		}
1157	}
1158
1159	return 0;
1160}
1161
1162static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1163			      int reg, u32 mask, u32 write)
1164{
1165	struct e1000_hw *hw = &adapter->hw;
1166	u32 val;
1167	wr32(reg, write & mask);
1168	val = rd32(reg);
1169	if ((write & mask) != (val & mask)) {
1170		dev_err(&adapter->pdev->dev,
1171			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1172			(val & mask), (write & mask));
1173		*data = reg;
1174		return 1;
1175	}
1176
1177	return 0;
1178}
1179
1180#define REG_PATTERN_TEST(reg, mask, write) \
1181	do { \
1182		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1183			return 1; \
1184	} while (0)
1185
1186#define REG_SET_AND_CHECK(reg, mask, write) \
1187	do { \
1188		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1189			return 1; \
1190	} while (0)
1191
1192static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1193{
1194	struct e1000_hw *hw = &adapter->hw;
1195	struct igb_reg_test *test;
1196	u32 value, before, after;
1197	u32 i, toggle;
1198
1199	switch (adapter->hw.mac.type) {
1200	case e1000_i350:
1201		test = reg_test_i350;
1202		toggle = 0x7FEFF3FF;
1203		break;
1204	case e1000_i210:
1205	case e1000_i211:
1206		test = reg_test_i210;
1207		toggle = 0x7FEFF3FF;
1208		break;
1209	case e1000_82580:
1210		test = reg_test_82580;
1211		toggle = 0x7FEFF3FF;
1212		break;
1213	case e1000_82576:
1214		test = reg_test_82576;
1215		toggle = 0x7FFFF3FF;
1216		break;
1217	default:
1218		test = reg_test_82575;
1219		toggle = 0x7FFFF3FF;
1220		break;
1221	}
1222
1223	/* Because the status register is such a special case,
1224	 * we handle it separately from the rest of the register
1225	 * tests.  Some bits are read-only, some toggle, and some
1226	 * are writable on newer MACs.
1227	 */
1228	before = rd32(E1000_STATUS);
1229	value = (rd32(E1000_STATUS) & toggle);
1230	wr32(E1000_STATUS, toggle);
1231	after = rd32(E1000_STATUS) & toggle;
1232	if (value != after) {
1233		dev_err(&adapter->pdev->dev,
1234			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1235			after, value);
1236		*data = 1;
1237		return 1;
1238	}
1239	/* restore previous status */
1240	wr32(E1000_STATUS, before);
1241
1242	/* Perform the remainder of the register test, looping through
1243	 * the test table until we either fail or reach the null entry.
1244	 */
1245	while (test->reg) {
1246		for (i = 0; i < test->array_len; i++) {
1247			switch (test->test_type) {
1248			case PATTERN_TEST:
1249				REG_PATTERN_TEST(test->reg +
1250						(i * test->reg_offset),
1251						test->mask,
1252						test->write);
1253				break;
1254			case SET_READ_TEST:
1255				REG_SET_AND_CHECK(test->reg +
1256						(i * test->reg_offset),
1257						test->mask,
1258						test->write);
1259				break;
1260			case WRITE_NO_TEST:
1261				writel(test->write,
1262				    (adapter->hw.hw_addr + test->reg)
1263					+ (i * test->reg_offset));
1264				break;
1265			case TABLE32_TEST:
1266				REG_PATTERN_TEST(test->reg + (i * 4),
1267						test->mask,
1268						test->write);
1269				break;
1270			case TABLE64_TEST_LO:
1271				REG_PATTERN_TEST(test->reg + (i * 8),
1272						test->mask,
1273						test->write);
1274				break;
1275			case TABLE64_TEST_HI:
1276				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1277						test->mask,
1278						test->write);
1279				break;
1280			}
1281		}
1282		test++;
1283	}
1284
1285	*data = 0;
1286	return 0;
1287}
1288
1289static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1290{
1291	*data = 0;
1292
1293	/* Validate eeprom on all parts but i211 */
1294	if (adapter->hw.mac.type != e1000_i211) {
1295		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1296			*data = 2;
1297	}
1298
1299	return *data;
1300}
1301
1302static irqreturn_t igb_test_intr(int irq, void *data)
1303{
1304	struct igb_adapter *adapter = (struct igb_adapter *) data;
1305	struct e1000_hw *hw = &adapter->hw;
1306
1307	adapter->test_icr |= rd32(E1000_ICR);
1308
1309	return IRQ_HANDLED;
1310}
1311
1312static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1313{
1314	struct e1000_hw *hw = &adapter->hw;
1315	struct net_device *netdev = adapter->netdev;
1316	u32 mask, ics_mask, i = 0, shared_int = true;
1317	u32 irq = adapter->pdev->irq;
1318
1319	*data = 0;
1320
1321	/* Hook up test interrupt handler just for this test */
1322	if (adapter->msix_entries) {
1323		if (request_irq(adapter->msix_entries[0].vector,
1324		                igb_test_intr, 0, netdev->name, adapter)) {
1325			*data = 1;
1326			return -1;
1327		}
1328	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1329		shared_int = false;
1330		if (request_irq(irq,
1331		                igb_test_intr, 0, netdev->name, adapter)) {
1332			*data = 1;
1333			return -1;
1334		}
1335	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1336				netdev->name, adapter)) {
1337		shared_int = false;
1338	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1339		 netdev->name, adapter)) {
1340		*data = 1;
1341		return -1;
1342	}
1343	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1344		(shared_int ? "shared" : "unshared"));
1345
1346	/* Disable all the interrupts */
1347	wr32(E1000_IMC, ~0);
1348	wrfl();
1349	msleep(10);
1350
1351	/* Define all writable bits for ICS */
1352	switch (hw->mac.type) {
1353	case e1000_82575:
1354		ics_mask = 0x37F47EDD;
1355		break;
1356	case e1000_82576:
1357		ics_mask = 0x77D4FBFD;
1358		break;
1359	case e1000_82580:
1360		ics_mask = 0x77DCFED5;
1361		break;
1362	case e1000_i350:
1363	case e1000_i210:
1364	case e1000_i211:
1365		ics_mask = 0x77DCFED5;
1366		break;
1367	default:
1368		ics_mask = 0x7FFFFFFF;
1369		break;
1370	}
1371
1372	/* Test each interrupt */
1373	for (; i < 31; i++) {
1374		/* Interrupt to test */
1375		mask = 1 << i;
1376
1377		if (!(mask & ics_mask))
1378			continue;
1379
1380		if (!shared_int) {
1381			/* Disable the interrupt to be reported in
1382			 * the cause register and then force the same
1383			 * interrupt and see if one gets posted.  If
1384			 * an interrupt was posted to the bus, the
1385			 * test failed.
1386			 */
1387			adapter->test_icr = 0;
1388
1389			/* Flush any pending interrupts */
1390			wr32(E1000_ICR, ~0);
1391
1392			wr32(E1000_IMC, mask);
1393			wr32(E1000_ICS, mask);
1394			wrfl();
1395			msleep(10);
1396
1397			if (adapter->test_icr & mask) {
1398				*data = 3;
1399				break;
1400			}
1401		}
1402
1403		/* Enable the interrupt to be reported in
1404		 * the cause register and then force the same
1405		 * interrupt and see if one gets posted.  If
1406		 * an interrupt was not posted to the bus, the
1407		 * test failed.
1408		 */
1409		adapter->test_icr = 0;
1410
1411		/* Flush any pending interrupts */
1412		wr32(E1000_ICR, ~0);
1413
1414		wr32(E1000_IMS, mask);
1415		wr32(E1000_ICS, mask);
1416		wrfl();
1417		msleep(10);
1418
1419		if (!(adapter->test_icr & mask)) {
1420			*data = 4;
1421			break;
1422		}
1423
1424		if (!shared_int) {
1425			/* Disable the other interrupts to be reported in
1426			 * the cause register and then force the other
1427			 * interrupts and see if any get posted.  If
1428			 * an interrupt was posted to the bus, the
1429			 * test failed.
1430			 */
1431			adapter->test_icr = 0;
1432
1433			/* Flush any pending interrupts */
1434			wr32(E1000_ICR, ~0);
1435
1436			wr32(E1000_IMC, ~mask);
1437			wr32(E1000_ICS, ~mask);
1438			wrfl();
1439			msleep(10);
1440
1441			if (adapter->test_icr & mask) {
1442				*data = 5;
1443				break;
1444			}
1445		}
1446	}
1447
1448	/* Disable all the interrupts */
1449	wr32(E1000_IMC, ~0);
1450	wrfl();
1451	msleep(10);
1452
1453	/* Unhook test interrupt handler */
1454	if (adapter->msix_entries)
1455		free_irq(adapter->msix_entries[0].vector, adapter);
1456	else
1457		free_irq(irq, adapter);
1458
1459	return *data;
1460}
1461
1462static void igb_free_desc_rings(struct igb_adapter *adapter)
1463{
1464	igb_free_tx_resources(&adapter->test_tx_ring);
1465	igb_free_rx_resources(&adapter->test_rx_ring);
1466}
1467
1468static int igb_setup_desc_rings(struct igb_adapter *adapter)
1469{
1470	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1471	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1472	struct e1000_hw *hw = &adapter->hw;
1473	int ret_val;
1474
1475	/* Setup Tx descriptor ring and Tx buffers */
1476	tx_ring->count = IGB_DEFAULT_TXD;
1477	tx_ring->dev = &adapter->pdev->dev;
1478	tx_ring->netdev = adapter->netdev;
1479	tx_ring->reg_idx = adapter->vfs_allocated_count;
1480
1481	if (igb_setup_tx_resources(tx_ring)) {
1482		ret_val = 1;
1483		goto err_nomem;
1484	}
1485
1486	igb_setup_tctl(adapter);
1487	igb_configure_tx_ring(adapter, tx_ring);
1488
1489	/* Setup Rx descriptor ring and Rx buffers */
1490	rx_ring->count = IGB_DEFAULT_RXD;
1491	rx_ring->dev = &adapter->pdev->dev;
1492	rx_ring->netdev = adapter->netdev;
1493	rx_ring->reg_idx = adapter->vfs_allocated_count;
1494
1495	if (igb_setup_rx_resources(rx_ring)) {
1496		ret_val = 3;
1497		goto err_nomem;
1498	}
1499
1500	/* set the default queue to queue 0 of PF */
1501	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1502
1503	/* enable receive ring */
1504	igb_setup_rctl(adapter);
1505	igb_configure_rx_ring(adapter, rx_ring);
1506
1507	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1508
1509	return 0;
1510
1511err_nomem:
1512	igb_free_desc_rings(adapter);
1513	return ret_val;
1514}
1515
1516static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1517{
1518	struct e1000_hw *hw = &adapter->hw;
1519
1520	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1521	igb_write_phy_reg(hw, 29, 0x001F);
1522	igb_write_phy_reg(hw, 30, 0x8FFC);
1523	igb_write_phy_reg(hw, 29, 0x001A);
1524	igb_write_phy_reg(hw, 30, 0x8FF0);
1525}
1526
1527static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1528{
1529	struct e1000_hw *hw = &adapter->hw;
1530	u32 ctrl_reg = 0;
1531
1532	hw->mac.autoneg = false;
1533
1534	if (hw->phy.type == e1000_phy_m88) {
1535		if (hw->phy.id != I210_I_PHY_ID) {
1536			/* Auto-MDI/MDIX Off */
1537			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1538			/* reset to update Auto-MDI/MDIX */
1539			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1540			/* autoneg off */
1541			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1542		} else {
1543			/* force 1000, set loopback  */
1544			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1545			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1546		}
1547	}
1548
1549	/* add small delay to avoid loopback test failure */
1550	msleep(50);
1551
1552	/* force 1000, set loopback */
1553	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1554
1555	/* Now set up the MAC to the same speed/duplex as the PHY. */
1556	ctrl_reg = rd32(E1000_CTRL);
1557	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1558	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1559		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1560		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1561		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1562		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1563
1564	if (hw->phy.type == e1000_phy_m88)
1565		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1566
1567	wr32(E1000_CTRL, ctrl_reg);
1568
1569	/* Disable the receiver on the PHY so when a cable is plugged in, the
1570	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1571	 */
1572	if (hw->phy.type == e1000_phy_m88)
1573		igb_phy_disable_receiver(adapter);
1574
1575	mdelay(500);
1576	return 0;
1577}
1578
1579static int igb_set_phy_loopback(struct igb_adapter *adapter)
1580{
1581	return igb_integrated_phy_loopback(adapter);
1582}
1583
1584static int igb_setup_loopback_test(struct igb_adapter *adapter)
1585{
1586	struct e1000_hw *hw = &adapter->hw;
1587	u32 reg;
1588
1589	reg = rd32(E1000_CTRL_EXT);
1590
1591	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1592	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1593		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1594		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1595		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1596		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1597
1598			/* Enable DH89xxCC MPHY for near end loopback */
1599			reg = rd32(E1000_MPHY_ADDR_CTL);
1600			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1601			E1000_MPHY_PCS_CLK_REG_OFFSET;
1602			wr32(E1000_MPHY_ADDR_CTL, reg);
1603
1604			reg = rd32(E1000_MPHY_DATA);
1605			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1606			wr32(E1000_MPHY_DATA, reg);
1607		}
1608
1609		reg = rd32(E1000_RCTL);
1610		reg |= E1000_RCTL_LBM_TCVR;
1611		wr32(E1000_RCTL, reg);
1612
1613		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1614
1615		reg = rd32(E1000_CTRL);
1616		reg &= ~(E1000_CTRL_RFCE |
1617			 E1000_CTRL_TFCE |
1618			 E1000_CTRL_LRST);
1619		reg |= E1000_CTRL_SLU |
1620		       E1000_CTRL_FD;
1621		wr32(E1000_CTRL, reg);
1622
1623		/* Unset switch control to serdes energy detect */
1624		reg = rd32(E1000_CONNSW);
1625		reg &= ~E1000_CONNSW_ENRGSRC;
1626		wr32(E1000_CONNSW, reg);
1627
1628		/* Unset sigdetect for SERDES loopback on
1629		 * 82580 and i350 devices.
1630		 */
1631		switch (hw->mac.type) {
1632		case e1000_82580:
1633		case e1000_i350:
1634			reg = rd32(E1000_PCS_CFG0);
1635			reg |= E1000_PCS_CFG_IGN_SD;
1636			wr32(E1000_PCS_CFG0, reg);
1637			break;
1638		default:
1639			break;
1640		}
1641
1642		/* Set PCS register for forced speed */
1643		reg = rd32(E1000_PCS_LCTL);
1644		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1645		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1646		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1647		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1648		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1649		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1650		wr32(E1000_PCS_LCTL, reg);
1651
1652		return 0;
1653	}
1654
1655	return igb_set_phy_loopback(adapter);
1656}
1657
1658static void igb_loopback_cleanup(struct igb_adapter *adapter)
1659{
1660	struct e1000_hw *hw = &adapter->hw;
1661	u32 rctl;
1662	u16 phy_reg;
1663
1664	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1665	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1666	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1667	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1668		u32 reg;
1669
1670		/* Disable near end loopback on DH89xxCC */
1671		reg = rd32(E1000_MPHY_ADDR_CTL);
1672		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1673		E1000_MPHY_PCS_CLK_REG_OFFSET;
1674		wr32(E1000_MPHY_ADDR_CTL, reg);
1675
1676		reg = rd32(E1000_MPHY_DATA);
1677		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1678		wr32(E1000_MPHY_DATA, reg);
1679	}
1680
1681	rctl = rd32(E1000_RCTL);
1682	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1683	wr32(E1000_RCTL, rctl);
1684
1685	hw->mac.autoneg = true;
1686	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1687	if (phy_reg & MII_CR_LOOPBACK) {
1688		phy_reg &= ~MII_CR_LOOPBACK;
1689		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1690		igb_phy_sw_reset(hw);
1691	}
1692}
1693
1694static void igb_create_lbtest_frame(struct sk_buff *skb,
1695				    unsigned int frame_size)
1696{
1697	memset(skb->data, 0xFF, frame_size);
1698	frame_size /= 2;
1699	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1700	memset(&skb->data[frame_size + 10], 0xBE, 1);
1701	memset(&skb->data[frame_size + 12], 0xAF, 1);
1702}
1703
1704static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1705				  unsigned int frame_size)
1706{
1707	unsigned char *data;
1708	bool match = true;
1709
1710	frame_size >>= 1;
1711
1712	data = kmap(rx_buffer->page);
1713
1714	if (data[3] != 0xFF ||
1715	    data[frame_size + 10] != 0xBE ||
1716	    data[frame_size + 12] != 0xAF)
1717		match = false;
1718
1719	kunmap(rx_buffer->page);
1720
1721	return match;
1722}
1723
1724static int igb_clean_test_rings(struct igb_ring *rx_ring,
1725                                struct igb_ring *tx_ring,
1726                                unsigned int size)
1727{
1728	union e1000_adv_rx_desc *rx_desc;
1729	struct igb_rx_buffer *rx_buffer_info;
1730	struct igb_tx_buffer *tx_buffer_info;
1731	u16 rx_ntc, tx_ntc, count = 0;
1732
1733	/* initialize next to clean and descriptor values */
1734	rx_ntc = rx_ring->next_to_clean;
1735	tx_ntc = tx_ring->next_to_clean;
1736	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1737
1738	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1739		/* check rx buffer */
1740		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1741
1742		/* sync Rx buffer for CPU read */
1743		dma_sync_single_for_cpu(rx_ring->dev,
1744					rx_buffer_info->dma,
1745					IGB_RX_BUFSZ,
1746					DMA_FROM_DEVICE);
1747
1748		/* verify contents of skb */
1749		if (igb_check_lbtest_frame(rx_buffer_info, size))
1750			count++;
1751
1752		/* sync Rx buffer for device write */
1753		dma_sync_single_for_device(rx_ring->dev,
1754					   rx_buffer_info->dma,
1755					   IGB_RX_BUFSZ,
1756					   DMA_FROM_DEVICE);
1757
1758		/* unmap buffer on tx side */
1759		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1760		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1761
1762		/* increment rx/tx next to clean counters */
1763		rx_ntc++;
1764		if (rx_ntc == rx_ring->count)
1765			rx_ntc = 0;
1766		tx_ntc++;
1767		if (tx_ntc == tx_ring->count)
1768			tx_ntc = 0;
1769
1770		/* fetch next descriptor */
1771		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1772	}
1773
1774	netdev_tx_reset_queue(txring_txq(tx_ring));
1775
1776	/* re-map buffers to ring, store next to clean values */
1777	igb_alloc_rx_buffers(rx_ring, count);
1778	rx_ring->next_to_clean = rx_ntc;
1779	tx_ring->next_to_clean = tx_ntc;
1780
1781	return count;
1782}
1783
1784static int igb_run_loopback_test(struct igb_adapter *adapter)
1785{
1786	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1787	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1788	u16 i, j, lc, good_cnt;
1789	int ret_val = 0;
1790	unsigned int size = IGB_RX_HDR_LEN;
1791	netdev_tx_t tx_ret_val;
1792	struct sk_buff *skb;
1793
1794	/* allocate test skb */
1795	skb = alloc_skb(size, GFP_KERNEL);
1796	if (!skb)
1797		return 11;
1798
1799	/* place data into test skb */
1800	igb_create_lbtest_frame(skb, size);
1801	skb_put(skb, size);
1802
1803	/*
1804	 * Calculate the loop count based on the largest descriptor ring
1805	 * The idea is to wrap the largest ring a number of times using 64
1806	 * send/receive pairs during each loop
1807	 */
1808
1809	if (rx_ring->count <= tx_ring->count)
1810		lc = ((tx_ring->count / 64) * 2) + 1;
1811	else
1812		lc = ((rx_ring->count / 64) * 2) + 1;
1813
1814	for (j = 0; j <= lc; j++) { /* loop count loop */
1815		/* reset count of good packets */
1816		good_cnt = 0;
1817
1818		/* place 64 packets on the transmit queue*/
1819		for (i = 0; i < 64; i++) {
1820			skb_get(skb);
1821			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1822			if (tx_ret_val == NETDEV_TX_OK)
1823				good_cnt++;
1824		}
1825
1826		if (good_cnt != 64) {
1827			ret_val = 12;
1828			break;
1829		}
1830
1831		/* allow 200 milliseconds for packets to go from tx to rx */
1832		msleep(200);
1833
1834		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1835		if (good_cnt != 64) {
1836			ret_val = 13;
1837			break;
1838		}
1839	} /* end loop count loop */
1840
1841	/* free the original skb */
1842	kfree_skb(skb);
1843
1844	return ret_val;
1845}
1846
1847static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1848{
1849	/* PHY loopback cannot be performed if SoL/IDER
1850	 * sessions are active */
1851	if (igb_check_reset_block(&adapter->hw)) {
1852		dev_err(&adapter->pdev->dev,
1853			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1854		*data = 0;
1855		goto out;
1856	}
1857	*data = igb_setup_desc_rings(adapter);
1858	if (*data)
1859		goto out;
1860	*data = igb_setup_loopback_test(adapter);
1861	if (*data)
1862		goto err_loopback;
1863	*data = igb_run_loopback_test(adapter);
1864	igb_loopback_cleanup(adapter);
1865
1866err_loopback:
1867	igb_free_desc_rings(adapter);
1868out:
1869	return *data;
1870}
1871
1872static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1873{
1874	struct e1000_hw *hw = &adapter->hw;
1875	*data = 0;
1876	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1877		int i = 0;
1878		hw->mac.serdes_has_link = false;
1879
1880		/* On some blade server designs, link establishment
1881		 * could take as long as 2-3 minutes */
1882		do {
1883			hw->mac.ops.check_for_link(&adapter->hw);
1884			if (hw->mac.serdes_has_link)
1885				return *data;
1886			msleep(20);
1887		} while (i++ < 3750);
1888
1889		*data = 1;
1890	} else {
1891		hw->mac.ops.check_for_link(&adapter->hw);
1892		if (hw->mac.autoneg)
1893			msleep(4000);
1894
1895		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1896			*data = 1;
1897	}
1898	return *data;
1899}
1900
1901static void igb_diag_test(struct net_device *netdev,
1902			  struct ethtool_test *eth_test, u64 *data)
1903{
1904	struct igb_adapter *adapter = netdev_priv(netdev);
1905	u16 autoneg_advertised;
1906	u8 forced_speed_duplex, autoneg;
1907	bool if_running = netif_running(netdev);
1908
1909	set_bit(__IGB_TESTING, &adapter->state);
1910	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1911		/* Offline tests */
1912
1913		/* save speed, duplex, autoneg settings */
1914		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1915		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1916		autoneg = adapter->hw.mac.autoneg;
1917
1918		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1919
1920		/* power up link for link test */
1921		igb_power_up_link(adapter);
1922
1923		/* Link test performed before hardware reset so autoneg doesn't
1924		 * interfere with test result */
1925		if (igb_link_test(adapter, &data[4]))
1926			eth_test->flags |= ETH_TEST_FL_FAILED;
1927
1928		if (if_running)
1929			/* indicate we're in test mode */
1930			dev_close(netdev);
1931		else
1932			igb_reset(adapter);
1933
1934		if (igb_reg_test(adapter, &data[0]))
1935			eth_test->flags |= ETH_TEST_FL_FAILED;
1936
1937		igb_reset(adapter);
1938		if (igb_eeprom_test(adapter, &data[1]))
1939			eth_test->flags |= ETH_TEST_FL_FAILED;
1940
1941		igb_reset(adapter);
1942		if (igb_intr_test(adapter, &data[2]))
1943			eth_test->flags |= ETH_TEST_FL_FAILED;
1944
1945		igb_reset(adapter);
1946		/* power up link for loopback test */
1947		igb_power_up_link(adapter);
1948		if (igb_loopback_test(adapter, &data[3]))
1949			eth_test->flags |= ETH_TEST_FL_FAILED;
1950
1951		/* restore speed, duplex, autoneg settings */
1952		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1953		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1954		adapter->hw.mac.autoneg = autoneg;
1955
1956		/* force this routine to wait until autoneg complete/timeout */
1957		adapter->hw.phy.autoneg_wait_to_complete = true;
1958		igb_reset(adapter);
1959		adapter->hw.phy.autoneg_wait_to_complete = false;
1960
1961		clear_bit(__IGB_TESTING, &adapter->state);
1962		if (if_running)
1963			dev_open(netdev);
1964	} else {
1965		dev_info(&adapter->pdev->dev, "online testing starting\n");
1966
1967		/* PHY is powered down when interface is down */
1968		if (if_running && igb_link_test(adapter, &data[4]))
1969			eth_test->flags |= ETH_TEST_FL_FAILED;
1970		else
1971			data[4] = 0;
1972
1973		/* Online tests aren't run; pass by default */
1974		data[0] = 0;
1975		data[1] = 0;
1976		data[2] = 0;
1977		data[3] = 0;
1978
1979		clear_bit(__IGB_TESTING, &adapter->state);
1980	}
1981	msleep_interruptible(4 * 1000);
1982}
1983
1984static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1985{
1986	struct igb_adapter *adapter = netdev_priv(netdev);
1987
1988	wol->supported = WAKE_UCAST | WAKE_MCAST |
1989	                 WAKE_BCAST | WAKE_MAGIC |
1990	                 WAKE_PHY;
1991	wol->wolopts = 0;
1992
1993	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
1994		return;
1995
1996	/* apply any specific unsupported masks here */
1997	switch (adapter->hw.device_id) {
1998	default:
1999		break;
2000	}
2001
2002	if (adapter->wol & E1000_WUFC_EX)
2003		wol->wolopts |= WAKE_UCAST;
2004	if (adapter->wol & E1000_WUFC_MC)
2005		wol->wolopts |= WAKE_MCAST;
2006	if (adapter->wol & E1000_WUFC_BC)
2007		wol->wolopts |= WAKE_BCAST;
2008	if (adapter->wol & E1000_WUFC_MAG)
2009		wol->wolopts |= WAKE_MAGIC;
2010	if (adapter->wol & E1000_WUFC_LNKC)
2011		wol->wolopts |= WAKE_PHY;
2012}
2013
2014static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2015{
2016	struct igb_adapter *adapter = netdev_priv(netdev);
2017
2018	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2019		return -EOPNOTSUPP;
2020
2021	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2022		return wol->wolopts ? -EOPNOTSUPP : 0;
2023
2024	/* these settings will always override what we currently have */
2025	adapter->wol = 0;
2026
2027	if (wol->wolopts & WAKE_UCAST)
2028		adapter->wol |= E1000_WUFC_EX;
2029	if (wol->wolopts & WAKE_MCAST)
2030		adapter->wol |= E1000_WUFC_MC;
2031	if (wol->wolopts & WAKE_BCAST)
2032		adapter->wol |= E1000_WUFC_BC;
2033	if (wol->wolopts & WAKE_MAGIC)
2034		adapter->wol |= E1000_WUFC_MAG;
2035	if (wol->wolopts & WAKE_PHY)
2036		adapter->wol |= E1000_WUFC_LNKC;
2037	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2038
2039	return 0;
2040}
2041
2042/* bit defines for adapter->led_status */
2043#define IGB_LED_ON		0
2044
2045static int igb_set_phys_id(struct net_device *netdev,
2046			   enum ethtool_phys_id_state state)
2047{
2048	struct igb_adapter *adapter = netdev_priv(netdev);
2049	struct e1000_hw *hw = &adapter->hw;
2050
2051	switch (state) {
2052	case ETHTOOL_ID_ACTIVE:
2053		igb_blink_led(hw);
2054		return 2;
2055	case ETHTOOL_ID_ON:
2056		igb_blink_led(hw);
2057		break;
2058	case ETHTOOL_ID_OFF:
2059		igb_led_off(hw);
2060		break;
2061	case ETHTOOL_ID_INACTIVE:
2062		igb_led_off(hw);
2063		clear_bit(IGB_LED_ON, &adapter->led_status);
2064		igb_cleanup_led(hw);
2065		break;
2066	}
2067
2068	return 0;
2069}
2070
2071static int igb_set_coalesce(struct net_device *netdev,
2072			    struct ethtool_coalesce *ec)
2073{
2074	struct igb_adapter *adapter = netdev_priv(netdev);
2075	int i;
2076
2077	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2078	    ((ec->rx_coalesce_usecs > 3) &&
2079	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2080	    (ec->rx_coalesce_usecs == 2))
2081		return -EINVAL;
2082
2083	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2084	    ((ec->tx_coalesce_usecs > 3) &&
2085	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2086	    (ec->tx_coalesce_usecs == 2))
2087		return -EINVAL;
2088
2089	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2090		return -EINVAL;
2091
2092	/* If ITR is disabled, disable DMAC */
2093	if (ec->rx_coalesce_usecs == 0) {
2094		if (adapter->flags & IGB_FLAG_DMAC)
2095			adapter->flags &= ~IGB_FLAG_DMAC;
2096	}
2097
2098	/* convert to rate of irq's per second */
2099	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2100		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2101	else
2102		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2103
2104	/* convert to rate of irq's per second */
2105	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2106		adapter->tx_itr_setting = adapter->rx_itr_setting;
2107	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2108		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2109	else
2110		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2111
2112	for (i = 0; i < adapter->num_q_vectors; i++) {
2113		struct igb_q_vector *q_vector = adapter->q_vector[i];
2114		q_vector->tx.work_limit = adapter->tx_work_limit;
2115		if (q_vector->rx.ring)
2116			q_vector->itr_val = adapter->rx_itr_setting;
2117		else
2118			q_vector->itr_val = adapter->tx_itr_setting;
2119		if (q_vector->itr_val && q_vector->itr_val <= 3)
2120			q_vector->itr_val = IGB_START_ITR;
2121		q_vector->set_itr = 1;
2122	}
2123
2124	return 0;
2125}
2126
2127static int igb_get_coalesce(struct net_device *netdev,
2128			    struct ethtool_coalesce *ec)
2129{
2130	struct igb_adapter *adapter = netdev_priv(netdev);
2131
2132	if (adapter->rx_itr_setting <= 3)
2133		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2134	else
2135		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2136
2137	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2138		if (adapter->tx_itr_setting <= 3)
2139			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2140		else
2141			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2142	}
2143
2144	return 0;
2145}
2146
2147static int igb_nway_reset(struct net_device *netdev)
2148{
2149	struct igb_adapter *adapter = netdev_priv(netdev);
2150	if (netif_running(netdev))
2151		igb_reinit_locked(adapter);
2152	return 0;
2153}
2154
2155static int igb_get_sset_count(struct net_device *netdev, int sset)
2156{
2157	switch (sset) {
2158	case ETH_SS_STATS:
2159		return IGB_STATS_LEN;
2160	case ETH_SS_TEST:
2161		return IGB_TEST_LEN;
2162	default:
2163		return -ENOTSUPP;
2164	}
2165}
2166
2167static void igb_get_ethtool_stats(struct net_device *netdev,
2168				  struct ethtool_stats *stats, u64 *data)
2169{
2170	struct igb_adapter *adapter = netdev_priv(netdev);
2171	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2172	unsigned int start;
2173	struct igb_ring *ring;
2174	int i, j;
2175	char *p;
2176
2177	spin_lock(&adapter->stats64_lock);
2178	igb_update_stats(adapter, net_stats);
2179
2180	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2181		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2182		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2183			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2184	}
2185	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2186		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2187		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2188			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2189	}
2190	for (j = 0; j < adapter->num_tx_queues; j++) {
2191		u64	restart2;
2192
2193		ring = adapter->tx_ring[j];
2194		do {
2195			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2196			data[i]   = ring->tx_stats.packets;
2197			data[i+1] = ring->tx_stats.bytes;
2198			data[i+2] = ring->tx_stats.restart_queue;
2199		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2200		do {
2201			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2202			restart2  = ring->tx_stats.restart_queue2;
2203		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2204		data[i+2] += restart2;
2205
2206		i += IGB_TX_QUEUE_STATS_LEN;
2207	}
2208	for (j = 0; j < adapter->num_rx_queues; j++) {
2209		ring = adapter->rx_ring[j];
2210		do {
2211			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2212			data[i]   = ring->rx_stats.packets;
2213			data[i+1] = ring->rx_stats.bytes;
2214			data[i+2] = ring->rx_stats.drops;
2215			data[i+3] = ring->rx_stats.csum_err;
2216			data[i+4] = ring->rx_stats.alloc_failed;
2217		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2218		i += IGB_RX_QUEUE_STATS_LEN;
2219	}
2220	spin_unlock(&adapter->stats64_lock);
2221}
2222
2223static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2224{
2225	struct igb_adapter *adapter = netdev_priv(netdev);
2226	u8 *p = data;
2227	int i;
2228
2229	switch (stringset) {
2230	case ETH_SS_TEST:
2231		memcpy(data, *igb_gstrings_test,
2232			IGB_TEST_LEN*ETH_GSTRING_LEN);
2233		break;
2234	case ETH_SS_STATS:
2235		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2236			memcpy(p, igb_gstrings_stats[i].stat_string,
2237			       ETH_GSTRING_LEN);
2238			p += ETH_GSTRING_LEN;
2239		}
2240		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2241			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2242			       ETH_GSTRING_LEN);
2243			p += ETH_GSTRING_LEN;
2244		}
2245		for (i = 0; i < adapter->num_tx_queues; i++) {
2246			sprintf(p, "tx_queue_%u_packets", i);
2247			p += ETH_GSTRING_LEN;
2248			sprintf(p, "tx_queue_%u_bytes", i);
2249			p += ETH_GSTRING_LEN;
2250			sprintf(p, "tx_queue_%u_restart", i);
2251			p += ETH_GSTRING_LEN;
2252		}
2253		for (i = 0; i < adapter->num_rx_queues; i++) {
2254			sprintf(p, "rx_queue_%u_packets", i);
2255			p += ETH_GSTRING_LEN;
2256			sprintf(p, "rx_queue_%u_bytes", i);
2257			p += ETH_GSTRING_LEN;
2258			sprintf(p, "rx_queue_%u_drops", i);
2259			p += ETH_GSTRING_LEN;
2260			sprintf(p, "rx_queue_%u_csum_err", i);
2261			p += ETH_GSTRING_LEN;
2262			sprintf(p, "rx_queue_%u_alloc_failed", i);
2263			p += ETH_GSTRING_LEN;
2264		}
2265/*		BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2266		break;
2267	}
2268}
2269
2270static int igb_get_ts_info(struct net_device *dev,
2271			   struct ethtool_ts_info *info)
2272{
2273	struct igb_adapter *adapter = netdev_priv(dev);
2274
2275	switch (adapter->hw.mac.type) {
2276	case e1000_82575:
2277		info->so_timestamping =
2278			SOF_TIMESTAMPING_TX_SOFTWARE |
2279			SOF_TIMESTAMPING_RX_SOFTWARE |
2280			SOF_TIMESTAMPING_SOFTWARE;
2281		return 0;
2282	case e1000_82576:
2283	case e1000_82580:
2284	case e1000_i350:
2285	case e1000_i210:
2286	case e1000_i211:
2287		info->so_timestamping =
2288			SOF_TIMESTAMPING_TX_SOFTWARE |
2289			SOF_TIMESTAMPING_RX_SOFTWARE |
2290			SOF_TIMESTAMPING_SOFTWARE |
2291			SOF_TIMESTAMPING_TX_HARDWARE |
2292			SOF_TIMESTAMPING_RX_HARDWARE |
2293			SOF_TIMESTAMPING_RAW_HARDWARE;
2294
2295		if (adapter->ptp_clock)
2296			info->phc_index = ptp_clock_index(adapter->ptp_clock);
2297		else
2298			info->phc_index = -1;
2299
2300		info->tx_types =
2301			(1 << HWTSTAMP_TX_OFF) |
2302			(1 << HWTSTAMP_TX_ON);
2303
2304		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2305
2306		/* 82576 does not support timestamping all packets. */
2307		if (adapter->hw.mac.type >= e1000_82580)
2308			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2309		else
2310			info->rx_filters |=
2311				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2312				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2313				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2314				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2315				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2316				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2317				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2318
2319		return 0;
2320	default:
2321		return -EOPNOTSUPP;
2322	}
2323}
2324
2325static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2326				 struct ethtool_rxnfc *cmd)
2327{
2328	cmd->data = 0;
2329
2330	/* Report default options for RSS on igb */
2331	switch (cmd->flow_type) {
2332	case TCP_V4_FLOW:
2333		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2334	case UDP_V4_FLOW:
2335		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2336			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2337	case SCTP_V4_FLOW:
2338	case AH_ESP_V4_FLOW:
2339	case AH_V4_FLOW:
2340	case ESP_V4_FLOW:
2341	case IPV4_FLOW:
2342		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2343		break;
2344	case TCP_V6_FLOW:
2345		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2346	case UDP_V6_FLOW:
2347		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2348			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2349	case SCTP_V6_FLOW:
2350	case AH_ESP_V6_FLOW:
2351	case AH_V6_FLOW:
2352	case ESP_V6_FLOW:
2353	case IPV6_FLOW:
2354		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2355		break;
2356	default:
2357		return -EINVAL;
2358	}
2359
2360	return 0;
2361}
2362
2363static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2364			   u32 *rule_locs)
2365{
2366	struct igb_adapter *adapter = netdev_priv(dev);
2367	int ret = -EOPNOTSUPP;
2368
2369	switch (cmd->cmd) {
2370	case ETHTOOL_GRXRINGS:
2371		cmd->data = adapter->num_rx_queues;
2372		ret = 0;
2373		break;
2374	case ETHTOOL_GRXFH:
2375		ret = igb_get_rss_hash_opts(adapter, cmd);
2376		break;
2377	default:
2378		break;
2379	}
2380
2381	return ret;
2382}
2383
2384#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2385		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2386static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2387				struct ethtool_rxnfc *nfc)
2388{
2389	u32 flags = adapter->flags;
2390
2391	/* RSS does not support anything other than hashing
2392	 * to queues on src and dst IPs and ports
2393	 */
2394	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2395			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2396		return -EINVAL;
2397
2398	switch (nfc->flow_type) {
2399	case TCP_V4_FLOW:
2400	case TCP_V6_FLOW:
2401		if (!(nfc->data & RXH_IP_SRC) ||
2402		    !(nfc->data & RXH_IP_DST) ||
2403		    !(nfc->data & RXH_L4_B_0_1) ||
2404		    !(nfc->data & RXH_L4_B_2_3))
2405			return -EINVAL;
2406		break;
2407	case UDP_V4_FLOW:
2408		if (!(nfc->data & RXH_IP_SRC) ||
2409		    !(nfc->data & RXH_IP_DST))
2410			return -EINVAL;
2411		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2412		case 0:
2413			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2414			break;
2415		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2416			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2417			break;
2418		default:
2419			return -EINVAL;
2420		}
2421		break;
2422	case UDP_V6_FLOW:
2423		if (!(nfc->data & RXH_IP_SRC) ||
2424		    !(nfc->data & RXH_IP_DST))
2425			return -EINVAL;
2426		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2427		case 0:
2428			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2429			break;
2430		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2431			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2432			break;
2433		default:
2434			return -EINVAL;
2435		}
2436		break;
2437	case AH_ESP_V4_FLOW:
2438	case AH_V4_FLOW:
2439	case ESP_V4_FLOW:
2440	case SCTP_V4_FLOW:
2441	case AH_ESP_V6_FLOW:
2442	case AH_V6_FLOW:
2443	case ESP_V6_FLOW:
2444	case SCTP_V6_FLOW:
2445		if (!(nfc->data & RXH_IP_SRC) ||
2446		    !(nfc->data & RXH_IP_DST) ||
2447		    (nfc->data & RXH_L4_B_0_1) ||
2448		    (nfc->data & RXH_L4_B_2_3))
2449			return -EINVAL;
2450		break;
2451	default:
2452		return -EINVAL;
2453	}
2454
2455	/* if we changed something we need to update flags */
2456	if (flags != adapter->flags) {
2457		struct e1000_hw *hw = &adapter->hw;
2458		u32 mrqc = rd32(E1000_MRQC);
2459
2460		if ((flags & UDP_RSS_FLAGS) &&
2461		    !(adapter->flags & UDP_RSS_FLAGS))
2462			dev_err(&adapter->pdev->dev,
2463				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2464
2465		adapter->flags = flags;
2466
2467		/* Perform hash on these packet types */
2468		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2469			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2470			E1000_MRQC_RSS_FIELD_IPV6 |
2471			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2472
2473		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2474			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2475
2476		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2477			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2478
2479		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2480			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2481
2482		wr32(E1000_MRQC, mrqc);
2483	}
2484
2485	return 0;
2486}
2487
2488static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2489{
2490	struct igb_adapter *adapter = netdev_priv(dev);
2491	int ret = -EOPNOTSUPP;
2492
2493	switch (cmd->cmd) {
2494	case ETHTOOL_SRXFH:
2495		ret = igb_set_rss_hash_opt(adapter, cmd);
2496		break;
2497	default:
2498		break;
2499	}
2500
2501	return ret;
2502}
2503
2504static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2505{
2506	struct igb_adapter *adapter = netdev_priv(netdev);
2507	struct e1000_hw *hw = &adapter->hw;
2508	u32 ipcnfg, eeer;
2509
2510	if ((hw->mac.type < e1000_i350) ||
2511	    (hw->phy.media_type != e1000_media_type_copper))
2512		return -EOPNOTSUPP;
2513
2514	edata->supported = (SUPPORTED_1000baseT_Full |
2515			    SUPPORTED_100baseT_Full);
2516
2517	ipcnfg = rd32(E1000_IPCNFG);
2518	eeer = rd32(E1000_EEER);
2519
2520	/* EEE status on negotiated link */
2521	if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2522		edata->advertised = ADVERTISED_1000baseT_Full;
2523
2524	if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2525		edata->advertised |= ADVERTISED_100baseT_Full;
2526
2527	if (eeer & E1000_EEER_EEE_NEG)
2528		edata->eee_active = true;
2529
2530	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2531
2532	if (eeer & E1000_EEER_TX_LPI_EN)
2533		edata->tx_lpi_enabled = true;
2534
2535	/* Report correct negotiated EEE status for devices that
2536	 * wrongly report EEE at half-duplex
2537	 */
2538	if (adapter->link_duplex == HALF_DUPLEX) {
2539		edata->eee_enabled = false;
2540		edata->eee_active = false;
2541		edata->tx_lpi_enabled = false;
2542		edata->advertised &= ~edata->advertised;
2543	}
2544
2545	return 0;
2546}
2547
2548static int igb_set_eee(struct net_device *netdev,
2549		       struct ethtool_eee *edata)
2550{
2551	struct igb_adapter *adapter = netdev_priv(netdev);
2552	struct e1000_hw *hw = &adapter->hw;
2553	struct ethtool_eee eee_curr;
2554	s32 ret_val;
2555
2556	if ((hw->mac.type < e1000_i350) ||
2557	    (hw->phy.media_type != e1000_media_type_copper))
2558		return -EOPNOTSUPP;
2559
2560	ret_val = igb_get_eee(netdev, &eee_curr);
2561	if (ret_val)
2562		return ret_val;
2563
2564	if (eee_curr.eee_enabled) {
2565		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2566			dev_err(&adapter->pdev->dev,
2567				"Setting EEE tx-lpi is not supported\n");
2568			return -EINVAL;
2569		}
2570
2571		/* Tx LPI timer is not implemented currently */
2572		if (edata->tx_lpi_timer) {
2573			dev_err(&adapter->pdev->dev,
2574				"Setting EEE Tx LPI timer is not supported\n");
2575			return -EINVAL;
2576		}
2577
2578		if (eee_curr.advertised != edata->advertised) {
2579			dev_err(&adapter->pdev->dev,
2580				"Setting EEE Advertisement is not supported\n");
2581			return -EINVAL;
2582		}
2583
2584	} else if (!edata->eee_enabled) {
2585		dev_err(&adapter->pdev->dev,
2586			"Setting EEE options are not supported with EEE disabled\n");
2587			return -EINVAL;
2588		}
2589
2590	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2591		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2592		igb_set_eee_i350(hw);
2593
2594		/* reset link */
2595		if (!netif_running(netdev))
2596			igb_reset(adapter);
2597	}
2598
2599	return 0;
2600}
2601
2602static int igb_ethtool_begin(struct net_device *netdev)
2603{
2604	struct igb_adapter *adapter = netdev_priv(netdev);
2605	pm_runtime_get_sync(&adapter->pdev->dev);
2606	return 0;
2607}
2608
2609static void igb_ethtool_complete(struct net_device *netdev)
2610{
2611	struct igb_adapter *adapter = netdev_priv(netdev);
2612	pm_runtime_put(&adapter->pdev->dev);
2613}
2614
2615static const struct ethtool_ops igb_ethtool_ops = {
2616	.get_settings           = igb_get_settings,
2617	.set_settings           = igb_set_settings,
2618	.get_drvinfo            = igb_get_drvinfo,
2619	.get_regs_len           = igb_get_regs_len,
2620	.get_regs               = igb_get_regs,
2621	.get_wol                = igb_get_wol,
2622	.set_wol                = igb_set_wol,
2623	.get_msglevel           = igb_get_msglevel,
2624	.set_msglevel           = igb_set_msglevel,
2625	.nway_reset             = igb_nway_reset,
2626	.get_link               = igb_get_link,
2627	.get_eeprom_len         = igb_get_eeprom_len,
2628	.get_eeprom             = igb_get_eeprom,
2629	.set_eeprom             = igb_set_eeprom,
2630	.get_ringparam          = igb_get_ringparam,
2631	.set_ringparam          = igb_set_ringparam,
2632	.get_pauseparam         = igb_get_pauseparam,
2633	.set_pauseparam         = igb_set_pauseparam,
2634	.self_test              = igb_diag_test,
2635	.get_strings            = igb_get_strings,
2636	.set_phys_id            = igb_set_phys_id,
2637	.get_sset_count         = igb_get_sset_count,
2638	.get_ethtool_stats      = igb_get_ethtool_stats,
2639	.get_coalesce           = igb_get_coalesce,
2640	.set_coalesce           = igb_set_coalesce,
2641	.get_ts_info            = igb_get_ts_info,
2642	.get_rxnfc		= igb_get_rxnfc,
2643	.set_rxnfc		= igb_set_rxnfc,
2644	.get_eee		= igb_get_eee,
2645	.set_eee		= igb_set_eee,
2646	.begin			= igb_ethtool_begin,
2647	.complete		= igb_ethtool_complete,
2648};
2649
2650void igb_set_ethtool_ops(struct net_device *netdev)
2651{
2652	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2653}
2654