[go: nahoru, domu]

igb_ethtool.c revision 53b87ce37e19939c80aaeaa5e8702b521597ce3e
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37#include <linux/sched.h>
38#include <linux/slab.h>
39#include <linux/pm_runtime.h>
40#include <linux/highmem.h>
41#include <linux/mdio.h>
42
43#include "igb.h"
44
45struct igb_stats {
46	char stat_string[ETH_GSTRING_LEN];
47	int sizeof_stat;
48	int stat_offset;
49};
50
51#define IGB_STAT(_name, _stat) { \
52	.stat_string = _name, \
53	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
54	.stat_offset = offsetof(struct igb_adapter, _stat) \
55}
56static const struct igb_stats igb_gstrings_stats[] = {
57	IGB_STAT("rx_packets", stats.gprc),
58	IGB_STAT("tx_packets", stats.gptc),
59	IGB_STAT("rx_bytes", stats.gorc),
60	IGB_STAT("tx_bytes", stats.gotc),
61	IGB_STAT("rx_broadcast", stats.bprc),
62	IGB_STAT("tx_broadcast", stats.bptc),
63	IGB_STAT("rx_multicast", stats.mprc),
64	IGB_STAT("tx_multicast", stats.mptc),
65	IGB_STAT("multicast", stats.mprc),
66	IGB_STAT("collisions", stats.colc),
67	IGB_STAT("rx_crc_errors", stats.crcerrs),
68	IGB_STAT("rx_no_buffer_count", stats.rnbc),
69	IGB_STAT("rx_missed_errors", stats.mpc),
70	IGB_STAT("tx_aborted_errors", stats.ecol),
71	IGB_STAT("tx_carrier_errors", stats.tncrs),
72	IGB_STAT("tx_window_errors", stats.latecol),
73	IGB_STAT("tx_abort_late_coll", stats.latecol),
74	IGB_STAT("tx_deferred_ok", stats.dc),
75	IGB_STAT("tx_single_coll_ok", stats.scc),
76	IGB_STAT("tx_multi_coll_ok", stats.mcc),
77	IGB_STAT("tx_timeout_count", tx_timeout_count),
78	IGB_STAT("rx_long_length_errors", stats.roc),
79	IGB_STAT("rx_short_length_errors", stats.ruc),
80	IGB_STAT("rx_align_errors", stats.algnerrc),
81	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
82	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
83	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
84	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
85	IGB_STAT("tx_flow_control_xon", stats.xontxc),
86	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
87	IGB_STAT("rx_long_byte_count", stats.gorc),
88	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
89	IGB_STAT("tx_smbus", stats.mgptc),
90	IGB_STAT("rx_smbus", stats.mgprc),
91	IGB_STAT("dropped_smbus", stats.mgpdc),
92	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
93	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
94	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
95	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
96	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
98};
99
100#define IGB_NETDEV_STAT(_net_stat) { \
101	.stat_string = __stringify(_net_stat), \
102	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
103	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
104}
105static const struct igb_stats igb_gstrings_net_stats[] = {
106	IGB_NETDEV_STAT(rx_errors),
107	IGB_NETDEV_STAT(tx_errors),
108	IGB_NETDEV_STAT(tx_dropped),
109	IGB_NETDEV_STAT(rx_length_errors),
110	IGB_NETDEV_STAT(rx_over_errors),
111	IGB_NETDEV_STAT(rx_frame_errors),
112	IGB_NETDEV_STAT(rx_fifo_errors),
113	IGB_NETDEV_STAT(tx_fifo_errors),
114	IGB_NETDEV_STAT(tx_heartbeat_errors)
115};
116
117#define IGB_GLOBAL_STATS_LEN	\
118	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
119#define IGB_NETDEV_STATS_LEN	\
120	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
121#define IGB_RX_QUEUE_STATS_LEN \
122	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
123
124#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
125
126#define IGB_QUEUE_STATS_LEN \
127	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
128	  IGB_RX_QUEUE_STATS_LEN) + \
129	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
130	  IGB_TX_QUEUE_STATS_LEN))
131#define IGB_STATS_LEN \
132	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
133
134static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
135	"Register test  (offline)", "Eeprom test    (offline)",
136	"Interrupt test (offline)", "Loopback test  (offline)",
137	"Link test   (on/offline)"
138};
139#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
140
141static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
142{
143	struct igb_adapter *adapter = netdev_priv(netdev);
144	struct e1000_hw *hw = &adapter->hw;
145	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
146	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
147	u32 status;
148
149	if (hw->phy.media_type == e1000_media_type_copper) {
150
151		ecmd->supported = (SUPPORTED_10baseT_Half |
152				   SUPPORTED_10baseT_Full |
153				   SUPPORTED_100baseT_Half |
154				   SUPPORTED_100baseT_Full |
155				   SUPPORTED_1000baseT_Full|
156				   SUPPORTED_Autoneg |
157				   SUPPORTED_TP |
158				   SUPPORTED_Pause);
159		ecmd->advertising = ADVERTISED_TP;
160
161		if (hw->mac.autoneg == 1) {
162			ecmd->advertising |= ADVERTISED_Autoneg;
163			/* the e1000 autoneg seems to match ethtool nicely */
164			ecmd->advertising |= hw->phy.autoneg_advertised;
165		}
166
167		ecmd->port = PORT_TP;
168		ecmd->phy_address = hw->phy.addr;
169		ecmd->transceiver = XCVR_INTERNAL;
170	} else {
171		ecmd->supported = (SUPPORTED_FIBRE |
172				   SUPPORTED_Autoneg |
173				   SUPPORTED_Pause);
174		ecmd->advertising = ADVERTISED_FIBRE;
175		if (hw->mac.type == e1000_i354) {
176			ecmd->supported |= SUPPORTED_2500baseX_Full;
177			ecmd->advertising |= ADVERTISED_2500baseX_Full;
178		}
179		if ((eth_flags->e1000_base_lx) || (eth_flags->e1000_base_sx)) {
180			ecmd->supported |= SUPPORTED_1000baseT_Full;
181			ecmd->advertising |= ADVERTISED_1000baseT_Full;
182		}
183		if (eth_flags->e100_base_fx) {
184			ecmd->supported |= SUPPORTED_100baseT_Full;
185			ecmd->advertising |= ADVERTISED_100baseT_Full;
186		}
187		if (hw->mac.autoneg == 1)
188			ecmd->advertising |= ADVERTISED_Autoneg;
189
190		ecmd->port = PORT_FIBRE;
191		ecmd->transceiver = XCVR_EXTERNAL;
192	}
193
194	if (hw->mac.autoneg != 1)
195		ecmd->advertising &= ~(ADVERTISED_Pause |
196				       ADVERTISED_Asym_Pause);
197
198	if (hw->fc.requested_mode == e1000_fc_full)
199		ecmd->advertising |= ADVERTISED_Pause;
200	else if (hw->fc.requested_mode == e1000_fc_rx_pause)
201		ecmd->advertising |= (ADVERTISED_Pause |
202				      ADVERTISED_Asym_Pause);
203	else if (hw->fc.requested_mode == e1000_fc_tx_pause)
204		ecmd->advertising |=  ADVERTISED_Asym_Pause;
205	else
206		ecmd->advertising &= ~(ADVERTISED_Pause |
207				       ADVERTISED_Asym_Pause);
208
209	status = rd32(E1000_STATUS);
210
211	if (status & E1000_STATUS_LU) {
212		if ((hw->mac.type == e1000_i354) &&
213		    (status & E1000_STATUS_2P5_SKU) &&
214		    !(status & E1000_STATUS_2P5_SKU_OVER))
215			ecmd->speed = SPEED_2500;
216		else if (status & E1000_STATUS_SPEED_1000)
217			ecmd->speed = SPEED_1000;
218		else if (status & E1000_STATUS_SPEED_100)
219			ecmd->speed = SPEED_100;
220		else
221			ecmd->speed = SPEED_10;
222		if ((status & E1000_STATUS_FD) ||
223		    hw->phy.media_type != e1000_media_type_copper)
224			ecmd->duplex = DUPLEX_FULL;
225		else
226			ecmd->duplex = DUPLEX_HALF;
227	} else {
228		ecmd->speed = -1;
229		ecmd->duplex = -1;
230	}
231
232	if ((hw->phy.media_type == e1000_media_type_fiber) ||
233	    hw->mac.autoneg)
234		ecmd->autoneg = AUTONEG_ENABLE;
235	else
236		ecmd->autoneg = AUTONEG_DISABLE;
237
238	/* MDI-X => 2; MDI =>1; Invalid =>0 */
239	if (hw->phy.media_type == e1000_media_type_copper)
240		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
241						      ETH_TP_MDI;
242	else
243		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
244
245	if (hw->phy.mdix == AUTO_ALL_MODES)
246		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
247	else
248		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
249
250	return 0;
251}
252
253static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
254{
255	struct igb_adapter *adapter = netdev_priv(netdev);
256	struct e1000_hw *hw = &adapter->hw;
257
258	/* When SoL/IDER sessions are active, autoneg/speed/duplex
259	 * cannot be changed
260	 */
261	if (igb_check_reset_block(hw)) {
262		dev_err(&adapter->pdev->dev,
263			"Cannot change link characteristics when SoL/IDER is active.\n");
264		return -EINVAL;
265	}
266
267	/* MDI setting is only allowed when autoneg enabled because
268	 * some hardware doesn't allow MDI setting when speed or
269	 * duplex is forced.
270	 */
271	if (ecmd->eth_tp_mdix_ctrl) {
272		if (hw->phy.media_type != e1000_media_type_copper)
273			return -EOPNOTSUPP;
274
275		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
276		    (ecmd->autoneg != AUTONEG_ENABLE)) {
277			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
278			return -EINVAL;
279		}
280	}
281
282	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
283		msleep(1);
284
285	if (ecmd->autoneg == AUTONEG_ENABLE) {
286		hw->mac.autoneg = 1;
287		if (hw->phy.media_type == e1000_media_type_fiber) {
288			hw->phy.autoneg_advertised = ecmd->advertising |
289						     ADVERTISED_FIBRE |
290						     ADVERTISED_Autoneg;
291			switch (adapter->link_speed) {
292			case SPEED_2500:
293				hw->phy.autoneg_advertised =
294					ADVERTISED_2500baseX_Full;
295				break;
296			case SPEED_1000:
297				hw->phy.autoneg_advertised =
298					ADVERTISED_1000baseT_Full;
299				break;
300			case SPEED_100:
301				hw->phy.autoneg_advertised =
302					ADVERTISED_100baseT_Full;
303				break;
304			default:
305				break;
306			}
307		} else {
308			hw->phy.autoneg_advertised = ecmd->advertising |
309						     ADVERTISED_TP |
310						     ADVERTISED_Autoneg;
311		}
312		ecmd->advertising = hw->phy.autoneg_advertised;
313		if (adapter->fc_autoneg)
314			hw->fc.requested_mode = e1000_fc_default;
315	} else {
316		u32 speed = ethtool_cmd_speed(ecmd);
317		/* calling this overrides forced MDI setting */
318		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
319			clear_bit(__IGB_RESETTING, &adapter->state);
320			return -EINVAL;
321		}
322	}
323
324	/* MDI-X => 2; MDI => 1; Auto => 3 */
325	if (ecmd->eth_tp_mdix_ctrl) {
326		/* fix up the value for auto (3 => 0) as zero is mapped
327		 * internally to auto
328		 */
329		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
330			hw->phy.mdix = AUTO_ALL_MODES;
331		else
332			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
333	}
334
335	/* reset the link */
336	if (netif_running(adapter->netdev)) {
337		igb_down(adapter);
338		igb_up(adapter);
339	} else
340		igb_reset(adapter);
341
342	clear_bit(__IGB_RESETTING, &adapter->state);
343	return 0;
344}
345
346static u32 igb_get_link(struct net_device *netdev)
347{
348	struct igb_adapter *adapter = netdev_priv(netdev);
349	struct e1000_mac_info *mac = &adapter->hw.mac;
350
351	/* If the link is not reported up to netdev, interrupts are disabled,
352	 * and so the physical link state may have changed since we last
353	 * looked. Set get_link_status to make sure that the true link
354	 * state is interrogated, rather than pulling a cached and possibly
355	 * stale link state from the driver.
356	 */
357	if (!netif_carrier_ok(netdev))
358		mac->get_link_status = 1;
359
360	return igb_has_link(adapter);
361}
362
363static void igb_get_pauseparam(struct net_device *netdev,
364			       struct ethtool_pauseparam *pause)
365{
366	struct igb_adapter *adapter = netdev_priv(netdev);
367	struct e1000_hw *hw = &adapter->hw;
368
369	pause->autoneg =
370		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
371
372	if (hw->fc.current_mode == e1000_fc_rx_pause)
373		pause->rx_pause = 1;
374	else if (hw->fc.current_mode == e1000_fc_tx_pause)
375		pause->tx_pause = 1;
376	else if (hw->fc.current_mode == e1000_fc_full) {
377		pause->rx_pause = 1;
378		pause->tx_pause = 1;
379	}
380}
381
382static int igb_set_pauseparam(struct net_device *netdev,
383			      struct ethtool_pauseparam *pause)
384{
385	struct igb_adapter *adapter = netdev_priv(netdev);
386	struct e1000_hw *hw = &adapter->hw;
387	int retval = 0;
388
389	/* 100basefx does not support setting link flow control */
390	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
391		return -EINVAL;
392
393	adapter->fc_autoneg = pause->autoneg;
394
395	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
396		msleep(1);
397
398	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
399		hw->fc.requested_mode = e1000_fc_default;
400		if (netif_running(adapter->netdev)) {
401			igb_down(adapter);
402			igb_up(adapter);
403		} else {
404			igb_reset(adapter);
405		}
406	} else {
407		if (pause->rx_pause && pause->tx_pause)
408			hw->fc.requested_mode = e1000_fc_full;
409		else if (pause->rx_pause && !pause->tx_pause)
410			hw->fc.requested_mode = e1000_fc_rx_pause;
411		else if (!pause->rx_pause && pause->tx_pause)
412			hw->fc.requested_mode = e1000_fc_tx_pause;
413		else if (!pause->rx_pause && !pause->tx_pause)
414			hw->fc.requested_mode = e1000_fc_none;
415
416		hw->fc.current_mode = hw->fc.requested_mode;
417
418		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
419			  igb_force_mac_fc(hw) : igb_setup_link(hw));
420	}
421
422	clear_bit(__IGB_RESETTING, &adapter->state);
423	return retval;
424}
425
426static u32 igb_get_msglevel(struct net_device *netdev)
427{
428	struct igb_adapter *adapter = netdev_priv(netdev);
429	return adapter->msg_enable;
430}
431
432static void igb_set_msglevel(struct net_device *netdev, u32 data)
433{
434	struct igb_adapter *adapter = netdev_priv(netdev);
435	adapter->msg_enable = data;
436}
437
438static int igb_get_regs_len(struct net_device *netdev)
439{
440#define IGB_REGS_LEN 739
441	return IGB_REGS_LEN * sizeof(u32);
442}
443
444static void igb_get_regs(struct net_device *netdev,
445			 struct ethtool_regs *regs, void *p)
446{
447	struct igb_adapter *adapter = netdev_priv(netdev);
448	struct e1000_hw *hw = &adapter->hw;
449	u32 *regs_buff = p;
450	u8 i;
451
452	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
453
454	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
455
456	/* General Registers */
457	regs_buff[0] = rd32(E1000_CTRL);
458	regs_buff[1] = rd32(E1000_STATUS);
459	regs_buff[2] = rd32(E1000_CTRL_EXT);
460	regs_buff[3] = rd32(E1000_MDIC);
461	regs_buff[4] = rd32(E1000_SCTL);
462	regs_buff[5] = rd32(E1000_CONNSW);
463	regs_buff[6] = rd32(E1000_VET);
464	regs_buff[7] = rd32(E1000_LEDCTL);
465	regs_buff[8] = rd32(E1000_PBA);
466	regs_buff[9] = rd32(E1000_PBS);
467	regs_buff[10] = rd32(E1000_FRTIMER);
468	regs_buff[11] = rd32(E1000_TCPTIMER);
469
470	/* NVM Register */
471	regs_buff[12] = rd32(E1000_EECD);
472
473	/* Interrupt */
474	/* Reading EICS for EICR because they read the
475	 * same but EICS does not clear on read
476	 */
477	regs_buff[13] = rd32(E1000_EICS);
478	regs_buff[14] = rd32(E1000_EICS);
479	regs_buff[15] = rd32(E1000_EIMS);
480	regs_buff[16] = rd32(E1000_EIMC);
481	regs_buff[17] = rd32(E1000_EIAC);
482	regs_buff[18] = rd32(E1000_EIAM);
483	/* Reading ICS for ICR because they read the
484	 * same but ICS does not clear on read
485	 */
486	regs_buff[19] = rd32(E1000_ICS);
487	regs_buff[20] = rd32(E1000_ICS);
488	regs_buff[21] = rd32(E1000_IMS);
489	regs_buff[22] = rd32(E1000_IMC);
490	regs_buff[23] = rd32(E1000_IAC);
491	regs_buff[24] = rd32(E1000_IAM);
492	regs_buff[25] = rd32(E1000_IMIRVP);
493
494	/* Flow Control */
495	regs_buff[26] = rd32(E1000_FCAL);
496	regs_buff[27] = rd32(E1000_FCAH);
497	regs_buff[28] = rd32(E1000_FCTTV);
498	regs_buff[29] = rd32(E1000_FCRTL);
499	regs_buff[30] = rd32(E1000_FCRTH);
500	regs_buff[31] = rd32(E1000_FCRTV);
501
502	/* Receive */
503	regs_buff[32] = rd32(E1000_RCTL);
504	regs_buff[33] = rd32(E1000_RXCSUM);
505	regs_buff[34] = rd32(E1000_RLPML);
506	regs_buff[35] = rd32(E1000_RFCTL);
507	regs_buff[36] = rd32(E1000_MRQC);
508	regs_buff[37] = rd32(E1000_VT_CTL);
509
510	/* Transmit */
511	regs_buff[38] = rd32(E1000_TCTL);
512	regs_buff[39] = rd32(E1000_TCTL_EXT);
513	regs_buff[40] = rd32(E1000_TIPG);
514	regs_buff[41] = rd32(E1000_DTXCTL);
515
516	/* Wake Up */
517	regs_buff[42] = rd32(E1000_WUC);
518	regs_buff[43] = rd32(E1000_WUFC);
519	regs_buff[44] = rd32(E1000_WUS);
520	regs_buff[45] = rd32(E1000_IPAV);
521	regs_buff[46] = rd32(E1000_WUPL);
522
523	/* MAC */
524	regs_buff[47] = rd32(E1000_PCS_CFG0);
525	regs_buff[48] = rd32(E1000_PCS_LCTL);
526	regs_buff[49] = rd32(E1000_PCS_LSTAT);
527	regs_buff[50] = rd32(E1000_PCS_ANADV);
528	regs_buff[51] = rd32(E1000_PCS_LPAB);
529	regs_buff[52] = rd32(E1000_PCS_NPTX);
530	regs_buff[53] = rd32(E1000_PCS_LPABNP);
531
532	/* Statistics */
533	regs_buff[54] = adapter->stats.crcerrs;
534	regs_buff[55] = adapter->stats.algnerrc;
535	regs_buff[56] = adapter->stats.symerrs;
536	regs_buff[57] = adapter->stats.rxerrc;
537	regs_buff[58] = adapter->stats.mpc;
538	regs_buff[59] = adapter->stats.scc;
539	regs_buff[60] = adapter->stats.ecol;
540	regs_buff[61] = adapter->stats.mcc;
541	regs_buff[62] = adapter->stats.latecol;
542	regs_buff[63] = adapter->stats.colc;
543	regs_buff[64] = adapter->stats.dc;
544	regs_buff[65] = adapter->stats.tncrs;
545	regs_buff[66] = adapter->stats.sec;
546	regs_buff[67] = adapter->stats.htdpmc;
547	regs_buff[68] = adapter->stats.rlec;
548	regs_buff[69] = adapter->stats.xonrxc;
549	regs_buff[70] = adapter->stats.xontxc;
550	regs_buff[71] = adapter->stats.xoffrxc;
551	regs_buff[72] = adapter->stats.xofftxc;
552	regs_buff[73] = adapter->stats.fcruc;
553	regs_buff[74] = adapter->stats.prc64;
554	regs_buff[75] = adapter->stats.prc127;
555	regs_buff[76] = adapter->stats.prc255;
556	regs_buff[77] = adapter->stats.prc511;
557	regs_buff[78] = adapter->stats.prc1023;
558	regs_buff[79] = adapter->stats.prc1522;
559	regs_buff[80] = adapter->stats.gprc;
560	regs_buff[81] = adapter->stats.bprc;
561	regs_buff[82] = adapter->stats.mprc;
562	regs_buff[83] = adapter->stats.gptc;
563	regs_buff[84] = adapter->stats.gorc;
564	regs_buff[86] = adapter->stats.gotc;
565	regs_buff[88] = adapter->stats.rnbc;
566	regs_buff[89] = adapter->stats.ruc;
567	regs_buff[90] = adapter->stats.rfc;
568	regs_buff[91] = adapter->stats.roc;
569	regs_buff[92] = adapter->stats.rjc;
570	regs_buff[93] = adapter->stats.mgprc;
571	regs_buff[94] = adapter->stats.mgpdc;
572	regs_buff[95] = adapter->stats.mgptc;
573	regs_buff[96] = adapter->stats.tor;
574	regs_buff[98] = adapter->stats.tot;
575	regs_buff[100] = adapter->stats.tpr;
576	regs_buff[101] = adapter->stats.tpt;
577	regs_buff[102] = adapter->stats.ptc64;
578	regs_buff[103] = adapter->stats.ptc127;
579	regs_buff[104] = adapter->stats.ptc255;
580	regs_buff[105] = adapter->stats.ptc511;
581	regs_buff[106] = adapter->stats.ptc1023;
582	regs_buff[107] = adapter->stats.ptc1522;
583	regs_buff[108] = adapter->stats.mptc;
584	regs_buff[109] = adapter->stats.bptc;
585	regs_buff[110] = adapter->stats.tsctc;
586	regs_buff[111] = adapter->stats.iac;
587	regs_buff[112] = adapter->stats.rpthc;
588	regs_buff[113] = adapter->stats.hgptc;
589	regs_buff[114] = adapter->stats.hgorc;
590	regs_buff[116] = adapter->stats.hgotc;
591	regs_buff[118] = adapter->stats.lenerrs;
592	regs_buff[119] = adapter->stats.scvpc;
593	regs_buff[120] = adapter->stats.hrmpc;
594
595	for (i = 0; i < 4; i++)
596		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
597	for (i = 0; i < 4; i++)
598		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
599	for (i = 0; i < 4; i++)
600		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
601	for (i = 0; i < 4; i++)
602		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
603	for (i = 0; i < 4; i++)
604		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
605	for (i = 0; i < 4; i++)
606		regs_buff[141 + i] = rd32(E1000_RDH(i));
607	for (i = 0; i < 4; i++)
608		regs_buff[145 + i] = rd32(E1000_RDT(i));
609	for (i = 0; i < 4; i++)
610		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
611
612	for (i = 0; i < 10; i++)
613		regs_buff[153 + i] = rd32(E1000_EITR(i));
614	for (i = 0; i < 8; i++)
615		regs_buff[163 + i] = rd32(E1000_IMIR(i));
616	for (i = 0; i < 8; i++)
617		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
618	for (i = 0; i < 16; i++)
619		regs_buff[179 + i] = rd32(E1000_RAL(i));
620	for (i = 0; i < 16; i++)
621		regs_buff[195 + i] = rd32(E1000_RAH(i));
622
623	for (i = 0; i < 4; i++)
624		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
625	for (i = 0; i < 4; i++)
626		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
627	for (i = 0; i < 4; i++)
628		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
629	for (i = 0; i < 4; i++)
630		regs_buff[223 + i] = rd32(E1000_TDH(i));
631	for (i = 0; i < 4; i++)
632		regs_buff[227 + i] = rd32(E1000_TDT(i));
633	for (i = 0; i < 4; i++)
634		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
635	for (i = 0; i < 4; i++)
636		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
637	for (i = 0; i < 4; i++)
638		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
639	for (i = 0; i < 4; i++)
640		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
641
642	for (i = 0; i < 4; i++)
643		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
644	for (i = 0; i < 4; i++)
645		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
646	for (i = 0; i < 32; i++)
647		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
648	for (i = 0; i < 128; i++)
649		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
650	for (i = 0; i < 128; i++)
651		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
652	for (i = 0; i < 4; i++)
653		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
654
655	regs_buff[547] = rd32(E1000_TDFH);
656	regs_buff[548] = rd32(E1000_TDFT);
657	regs_buff[549] = rd32(E1000_TDFHS);
658	regs_buff[550] = rd32(E1000_TDFPC);
659
660	if (hw->mac.type > e1000_82580) {
661		regs_buff[551] = adapter->stats.o2bgptc;
662		regs_buff[552] = adapter->stats.b2ospc;
663		regs_buff[553] = adapter->stats.o2bspc;
664		regs_buff[554] = adapter->stats.b2ogprc;
665	}
666
667	if (hw->mac.type != e1000_82576)
668		return;
669	for (i = 0; i < 12; i++)
670		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
671	for (i = 0; i < 4; i++)
672		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
673	for (i = 0; i < 12; i++)
674		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
675	for (i = 0; i < 12; i++)
676		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
677	for (i = 0; i < 12; i++)
678		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
679	for (i = 0; i < 12; i++)
680		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
681	for (i = 0; i < 12; i++)
682		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
683	for (i = 0; i < 12; i++)
684		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
685
686	for (i = 0; i < 12; i++)
687		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
688	for (i = 0; i < 12; i++)
689		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
690	for (i = 0; i < 12; i++)
691		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
692	for (i = 0; i < 12; i++)
693		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
694	for (i = 0; i < 12; i++)
695		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
696	for (i = 0; i < 12; i++)
697		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
698	for (i = 0; i < 12; i++)
699		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
700	for (i = 0; i < 12; i++)
701		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
702}
703
704static int igb_get_eeprom_len(struct net_device *netdev)
705{
706	struct igb_adapter *adapter = netdev_priv(netdev);
707	return adapter->hw.nvm.word_size * 2;
708}
709
710static int igb_get_eeprom(struct net_device *netdev,
711			  struct ethtool_eeprom *eeprom, u8 *bytes)
712{
713	struct igb_adapter *adapter = netdev_priv(netdev);
714	struct e1000_hw *hw = &adapter->hw;
715	u16 *eeprom_buff;
716	int first_word, last_word;
717	int ret_val = 0;
718	u16 i;
719
720	if (eeprom->len == 0)
721		return -EINVAL;
722
723	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
724
725	first_word = eeprom->offset >> 1;
726	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
727
728	eeprom_buff = kmalloc(sizeof(u16) *
729			(last_word - first_word + 1), GFP_KERNEL);
730	if (!eeprom_buff)
731		return -ENOMEM;
732
733	if (hw->nvm.type == e1000_nvm_eeprom_spi)
734		ret_val = hw->nvm.ops.read(hw, first_word,
735					   last_word - first_word + 1,
736					   eeprom_buff);
737	else {
738		for (i = 0; i < last_word - first_word + 1; i++) {
739			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
740						   &eeprom_buff[i]);
741			if (ret_val)
742				break;
743		}
744	}
745
746	/* Device's eeprom is always little-endian, word addressable */
747	for (i = 0; i < last_word - first_word + 1; i++)
748		le16_to_cpus(&eeprom_buff[i]);
749
750	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
751			eeprom->len);
752	kfree(eeprom_buff);
753
754	return ret_val;
755}
756
757static int igb_set_eeprom(struct net_device *netdev,
758			  struct ethtool_eeprom *eeprom, u8 *bytes)
759{
760	struct igb_adapter *adapter = netdev_priv(netdev);
761	struct e1000_hw *hw = &adapter->hw;
762	u16 *eeprom_buff;
763	void *ptr;
764	int max_len, first_word, last_word, ret_val = 0;
765	u16 i;
766
767	if (eeprom->len == 0)
768		return -EOPNOTSUPP;
769
770	if (hw->mac.type == e1000_i211)
771		return -EOPNOTSUPP;
772
773	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
774		return -EFAULT;
775
776	max_len = hw->nvm.word_size * 2;
777
778	first_word = eeprom->offset >> 1;
779	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
780	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
781	if (!eeprom_buff)
782		return -ENOMEM;
783
784	ptr = (void *)eeprom_buff;
785
786	if (eeprom->offset & 1) {
787		/* need read/modify/write of first changed EEPROM word
788		 * only the second byte of the word is being modified
789		 */
790		ret_val = hw->nvm.ops.read(hw, first_word, 1,
791					    &eeprom_buff[0]);
792		ptr++;
793	}
794	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
795		/* need read/modify/write of last changed EEPROM word
796		 * only the first byte of the word is being modified
797		 */
798		ret_val = hw->nvm.ops.read(hw, last_word, 1,
799				   &eeprom_buff[last_word - first_word]);
800	}
801
802	/* Device's eeprom is always little-endian, word addressable */
803	for (i = 0; i < last_word - first_word + 1; i++)
804		le16_to_cpus(&eeprom_buff[i]);
805
806	memcpy(ptr, bytes, eeprom->len);
807
808	for (i = 0; i < last_word - first_word + 1; i++)
809		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
810
811	ret_val = hw->nvm.ops.write(hw, first_word,
812				    last_word - first_word + 1, eeprom_buff);
813
814	/* Update the checksum if nvm write succeeded */
815	if (ret_val == 0)
816		hw->nvm.ops.update(hw);
817
818	igb_set_fw_version(adapter);
819	kfree(eeprom_buff);
820	return ret_val;
821}
822
823static void igb_get_drvinfo(struct net_device *netdev,
824			    struct ethtool_drvinfo *drvinfo)
825{
826	struct igb_adapter *adapter = netdev_priv(netdev);
827
828	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
829	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
830
831	/* EEPROM image version # is reported as firmware version # for
832	 * 82575 controllers
833	 */
834	strlcpy(drvinfo->fw_version, adapter->fw_version,
835		sizeof(drvinfo->fw_version));
836	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
837		sizeof(drvinfo->bus_info));
838	drvinfo->n_stats = IGB_STATS_LEN;
839	drvinfo->testinfo_len = IGB_TEST_LEN;
840	drvinfo->regdump_len = igb_get_regs_len(netdev);
841	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
842}
843
844static void igb_get_ringparam(struct net_device *netdev,
845			      struct ethtool_ringparam *ring)
846{
847	struct igb_adapter *adapter = netdev_priv(netdev);
848
849	ring->rx_max_pending = IGB_MAX_RXD;
850	ring->tx_max_pending = IGB_MAX_TXD;
851	ring->rx_pending = adapter->rx_ring_count;
852	ring->tx_pending = adapter->tx_ring_count;
853}
854
855static int igb_set_ringparam(struct net_device *netdev,
856			     struct ethtool_ringparam *ring)
857{
858	struct igb_adapter *adapter = netdev_priv(netdev);
859	struct igb_ring *temp_ring;
860	int i, err = 0;
861	u16 new_rx_count, new_tx_count;
862
863	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
864		return -EINVAL;
865
866	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
867	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
868	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
869
870	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
871	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
872	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
873
874	if ((new_tx_count == adapter->tx_ring_count) &&
875	    (new_rx_count == adapter->rx_ring_count)) {
876		/* nothing to do */
877		return 0;
878	}
879
880	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
881		msleep(1);
882
883	if (!netif_running(adapter->netdev)) {
884		for (i = 0; i < adapter->num_tx_queues; i++)
885			adapter->tx_ring[i]->count = new_tx_count;
886		for (i = 0; i < adapter->num_rx_queues; i++)
887			adapter->rx_ring[i]->count = new_rx_count;
888		adapter->tx_ring_count = new_tx_count;
889		adapter->rx_ring_count = new_rx_count;
890		goto clear_reset;
891	}
892
893	if (adapter->num_tx_queues > adapter->num_rx_queues)
894		temp_ring = vmalloc(adapter->num_tx_queues *
895				    sizeof(struct igb_ring));
896	else
897		temp_ring = vmalloc(adapter->num_rx_queues *
898				    sizeof(struct igb_ring));
899
900	if (!temp_ring) {
901		err = -ENOMEM;
902		goto clear_reset;
903	}
904
905	igb_down(adapter);
906
907	/* We can't just free everything and then setup again,
908	 * because the ISRs in MSI-X mode get passed pointers
909	 * to the Tx and Rx ring structs.
910	 */
911	if (new_tx_count != adapter->tx_ring_count) {
912		for (i = 0; i < adapter->num_tx_queues; i++) {
913			memcpy(&temp_ring[i], adapter->tx_ring[i],
914			       sizeof(struct igb_ring));
915
916			temp_ring[i].count = new_tx_count;
917			err = igb_setup_tx_resources(&temp_ring[i]);
918			if (err) {
919				while (i) {
920					i--;
921					igb_free_tx_resources(&temp_ring[i]);
922				}
923				goto err_setup;
924			}
925		}
926
927		for (i = 0; i < adapter->num_tx_queues; i++) {
928			igb_free_tx_resources(adapter->tx_ring[i]);
929
930			memcpy(adapter->tx_ring[i], &temp_ring[i],
931			       sizeof(struct igb_ring));
932		}
933
934		adapter->tx_ring_count = new_tx_count;
935	}
936
937	if (new_rx_count != adapter->rx_ring_count) {
938		for (i = 0; i < adapter->num_rx_queues; i++) {
939			memcpy(&temp_ring[i], adapter->rx_ring[i],
940			       sizeof(struct igb_ring));
941
942			temp_ring[i].count = new_rx_count;
943			err = igb_setup_rx_resources(&temp_ring[i]);
944			if (err) {
945				while (i) {
946					i--;
947					igb_free_rx_resources(&temp_ring[i]);
948				}
949				goto err_setup;
950			}
951
952		}
953
954		for (i = 0; i < adapter->num_rx_queues; i++) {
955			igb_free_rx_resources(adapter->rx_ring[i]);
956
957			memcpy(adapter->rx_ring[i], &temp_ring[i],
958			       sizeof(struct igb_ring));
959		}
960
961		adapter->rx_ring_count = new_rx_count;
962	}
963err_setup:
964	igb_up(adapter);
965	vfree(temp_ring);
966clear_reset:
967	clear_bit(__IGB_RESETTING, &adapter->state);
968	return err;
969}
970
971/* ethtool register test data */
972struct igb_reg_test {
973	u16 reg;
974	u16 reg_offset;
975	u16 array_len;
976	u16 test_type;
977	u32 mask;
978	u32 write;
979};
980
981/* In the hardware, registers are laid out either singly, in arrays
982 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
983 * most tests take place on arrays or single registers (handled
984 * as a single-element array) and special-case the tables.
985 * Table tests are always pattern tests.
986 *
987 * We also make provision for some required setup steps by specifying
988 * registers to be written without any read-back testing.
989 */
990
991#define PATTERN_TEST	1
992#define SET_READ_TEST	2
993#define WRITE_NO_TEST	3
994#define TABLE32_TEST	4
995#define TABLE64_TEST_LO	5
996#define TABLE64_TEST_HI	6
997
998/* i210 reg test */
999static struct igb_reg_test reg_test_i210[] = {
1000	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1001	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1002	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1003	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1004	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1005	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1006	/* RDH is read-only for i210, only test RDT. */
1007	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1008	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1009	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1010	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1011	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1012	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1014	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1015	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1016	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1017	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1018	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1019	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1020						0xFFFFFFFF, 0xFFFFFFFF },
1021	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1022						0x900FFFFF, 0xFFFFFFFF },
1023	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1024						0xFFFFFFFF, 0xFFFFFFFF },
1025	{ 0, 0, 0, 0, 0 }
1026};
1027
1028/* i350 reg test */
1029static struct igb_reg_test reg_test_i350[] = {
1030	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1032	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1033	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1034	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1035	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1036	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1037	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1038	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1039	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1040	/* RDH is read-only for i350, only test RDT. */
1041	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1042	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1043	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1044	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1045	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1046	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1047	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1048	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1049	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1050	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1051	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1052	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1053	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1054	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1055	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1056	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1057	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1058	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1059						0xFFFFFFFF, 0xFFFFFFFF },
1060	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1061						0xC3FFFFFF, 0xFFFFFFFF },
1062	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1063						0xFFFFFFFF, 0xFFFFFFFF },
1064	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1065						0xC3FFFFFF, 0xFFFFFFFF },
1066	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1067						0xFFFFFFFF, 0xFFFFFFFF },
1068	{ 0, 0, 0, 0 }
1069};
1070
1071/* 82580 reg test */
1072static struct igb_reg_test reg_test_82580[] = {
1073	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1074	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1075	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1076	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1078	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1079	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1080	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1081	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1082	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1083	/* RDH is read-only for 82580, only test RDT. */
1084	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1085	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1086	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1087	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1088	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1089	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1090	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1091	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1092	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1093	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1094	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1095	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1096	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1097	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1098	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1099	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1100	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1101	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1102						0xFFFFFFFF, 0xFFFFFFFF },
1103	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1104						0x83FFFFFF, 0xFFFFFFFF },
1105	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1106						0xFFFFFFFF, 0xFFFFFFFF },
1107	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1108						0x83FFFFFF, 0xFFFFFFFF },
1109	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1110						0xFFFFFFFF, 0xFFFFFFFF },
1111	{ 0, 0, 0, 0 }
1112};
1113
1114/* 82576 reg test */
1115static struct igb_reg_test reg_test_82576[] = {
1116	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1117	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1118	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1119	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1121	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1122	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1123	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1124	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1125	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1126	/* Enable all RX queues before testing. */
1127	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1128	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1129	/* RDH is read-only for 82576, only test RDT. */
1130	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1131	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1132	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1133	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1134	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1135	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1136	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1137	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1138	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1139	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1140	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1141	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1142	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1143	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1144	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1145	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1146	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1147	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1148	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1149	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1150	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1151	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1152	{ 0, 0, 0, 0 }
1153};
1154
1155/* 82575 register test */
1156static struct igb_reg_test reg_test_82575[] = {
1157	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1158	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1159	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1160	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1161	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1162	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1163	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1164	/* Enable all four RX queues before testing. */
1165	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1166	/* RDH is read-only for 82575, only test RDT. */
1167	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1168	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1169	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1170	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1171	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1172	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1173	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1174	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1175	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1176	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1177	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1178	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1179	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1180	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1181	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1182	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1183	{ 0, 0, 0, 0 }
1184};
1185
1186static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1187			     int reg, u32 mask, u32 write)
1188{
1189	struct e1000_hw *hw = &adapter->hw;
1190	u32 pat, val;
1191	static const u32 _test[] =
1192		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1193	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1194		wr32(reg, (_test[pat] & write));
1195		val = rd32(reg) & mask;
1196		if (val != (_test[pat] & write & mask)) {
1197			dev_err(&adapter->pdev->dev,
1198				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1199				reg, val, (_test[pat] & write & mask));
1200			*data = reg;
1201			return 1;
1202		}
1203	}
1204
1205	return 0;
1206}
1207
1208static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1209			      int reg, u32 mask, u32 write)
1210{
1211	struct e1000_hw *hw = &adapter->hw;
1212	u32 val;
1213	wr32(reg, write & mask);
1214	val = rd32(reg);
1215	if ((write & mask) != (val & mask)) {
1216		dev_err(&adapter->pdev->dev,
1217			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1218			(val & mask), (write & mask));
1219		*data = reg;
1220		return 1;
1221	}
1222
1223	return 0;
1224}
1225
1226#define REG_PATTERN_TEST(reg, mask, write) \
1227	do { \
1228		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1229			return 1; \
1230	} while (0)
1231
1232#define REG_SET_AND_CHECK(reg, mask, write) \
1233	do { \
1234		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1235			return 1; \
1236	} while (0)
1237
1238static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1239{
1240	struct e1000_hw *hw = &adapter->hw;
1241	struct igb_reg_test *test;
1242	u32 value, before, after;
1243	u32 i, toggle;
1244
1245	switch (adapter->hw.mac.type) {
1246	case e1000_i350:
1247	case e1000_i354:
1248		test = reg_test_i350;
1249		toggle = 0x7FEFF3FF;
1250		break;
1251	case e1000_i210:
1252	case e1000_i211:
1253		test = reg_test_i210;
1254		toggle = 0x7FEFF3FF;
1255		break;
1256	case e1000_82580:
1257		test = reg_test_82580;
1258		toggle = 0x7FEFF3FF;
1259		break;
1260	case e1000_82576:
1261		test = reg_test_82576;
1262		toggle = 0x7FFFF3FF;
1263		break;
1264	default:
1265		test = reg_test_82575;
1266		toggle = 0x7FFFF3FF;
1267		break;
1268	}
1269
1270	/* Because the status register is such a special case,
1271	 * we handle it separately from the rest of the register
1272	 * tests.  Some bits are read-only, some toggle, and some
1273	 * are writable on newer MACs.
1274	 */
1275	before = rd32(E1000_STATUS);
1276	value = (rd32(E1000_STATUS) & toggle);
1277	wr32(E1000_STATUS, toggle);
1278	after = rd32(E1000_STATUS) & toggle;
1279	if (value != after) {
1280		dev_err(&adapter->pdev->dev,
1281			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1282			after, value);
1283		*data = 1;
1284		return 1;
1285	}
1286	/* restore previous status */
1287	wr32(E1000_STATUS, before);
1288
1289	/* Perform the remainder of the register test, looping through
1290	 * the test table until we either fail or reach the null entry.
1291	 */
1292	while (test->reg) {
1293		for (i = 0; i < test->array_len; i++) {
1294			switch (test->test_type) {
1295			case PATTERN_TEST:
1296				REG_PATTERN_TEST(test->reg +
1297						(i * test->reg_offset),
1298						test->mask,
1299						test->write);
1300				break;
1301			case SET_READ_TEST:
1302				REG_SET_AND_CHECK(test->reg +
1303						(i * test->reg_offset),
1304						test->mask,
1305						test->write);
1306				break;
1307			case WRITE_NO_TEST:
1308				writel(test->write,
1309				    (adapter->hw.hw_addr + test->reg)
1310					+ (i * test->reg_offset));
1311				break;
1312			case TABLE32_TEST:
1313				REG_PATTERN_TEST(test->reg + (i * 4),
1314						test->mask,
1315						test->write);
1316				break;
1317			case TABLE64_TEST_LO:
1318				REG_PATTERN_TEST(test->reg + (i * 8),
1319						test->mask,
1320						test->write);
1321				break;
1322			case TABLE64_TEST_HI:
1323				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1324						test->mask,
1325						test->write);
1326				break;
1327			}
1328		}
1329		test++;
1330	}
1331
1332	*data = 0;
1333	return 0;
1334}
1335
1336static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1337{
1338	struct e1000_hw *hw = &adapter->hw;
1339
1340	*data = 0;
1341
1342	/* Validate eeprom on all parts but flashless */
1343	switch (hw->mac.type) {
1344	case e1000_i210:
1345	case e1000_i211:
1346		if (igb_get_flash_presence_i210(hw)) {
1347			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1348				*data = 2;
1349		}
1350		break;
1351	default:
1352		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1353			*data = 2;
1354		break;
1355	}
1356
1357	return *data;
1358}
1359
1360static irqreturn_t igb_test_intr(int irq, void *data)
1361{
1362	struct igb_adapter *adapter = (struct igb_adapter *) data;
1363	struct e1000_hw *hw = &adapter->hw;
1364
1365	adapter->test_icr |= rd32(E1000_ICR);
1366
1367	return IRQ_HANDLED;
1368}
1369
1370static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1371{
1372	struct e1000_hw *hw = &adapter->hw;
1373	struct net_device *netdev = adapter->netdev;
1374	u32 mask, ics_mask, i = 0, shared_int = true;
1375	u32 irq = adapter->pdev->irq;
1376
1377	*data = 0;
1378
1379	/* Hook up test interrupt handler just for this test */
1380	if (adapter->msix_entries) {
1381		if (request_irq(adapter->msix_entries[0].vector,
1382		                igb_test_intr, 0, netdev->name, adapter)) {
1383			*data = 1;
1384			return -1;
1385		}
1386	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1387		shared_int = false;
1388		if (request_irq(irq,
1389		                igb_test_intr, 0, netdev->name, adapter)) {
1390			*data = 1;
1391			return -1;
1392		}
1393	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1394				netdev->name, adapter)) {
1395		shared_int = false;
1396	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1397		 netdev->name, adapter)) {
1398		*data = 1;
1399		return -1;
1400	}
1401	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1402		(shared_int ? "shared" : "unshared"));
1403
1404	/* Disable all the interrupts */
1405	wr32(E1000_IMC, ~0);
1406	wrfl();
1407	msleep(10);
1408
1409	/* Define all writable bits for ICS */
1410	switch (hw->mac.type) {
1411	case e1000_82575:
1412		ics_mask = 0x37F47EDD;
1413		break;
1414	case e1000_82576:
1415		ics_mask = 0x77D4FBFD;
1416		break;
1417	case e1000_82580:
1418		ics_mask = 0x77DCFED5;
1419		break;
1420	case e1000_i350:
1421	case e1000_i354:
1422	case e1000_i210:
1423	case e1000_i211:
1424		ics_mask = 0x77DCFED5;
1425		break;
1426	default:
1427		ics_mask = 0x7FFFFFFF;
1428		break;
1429	}
1430
1431	/* Test each interrupt */
1432	for (; i < 31; i++) {
1433		/* Interrupt to test */
1434		mask = 1 << i;
1435
1436		if (!(mask & ics_mask))
1437			continue;
1438
1439		if (!shared_int) {
1440			/* Disable the interrupt to be reported in
1441			 * the cause register and then force the same
1442			 * interrupt and see if one gets posted.  If
1443			 * an interrupt was posted to the bus, the
1444			 * test failed.
1445			 */
1446			adapter->test_icr = 0;
1447
1448			/* Flush any pending interrupts */
1449			wr32(E1000_ICR, ~0);
1450
1451			wr32(E1000_IMC, mask);
1452			wr32(E1000_ICS, mask);
1453			wrfl();
1454			msleep(10);
1455
1456			if (adapter->test_icr & mask) {
1457				*data = 3;
1458				break;
1459			}
1460		}
1461
1462		/* Enable the interrupt to be reported in
1463		 * the cause register and then force the same
1464		 * interrupt and see if one gets posted.  If
1465		 * an interrupt was not posted to the bus, the
1466		 * test failed.
1467		 */
1468		adapter->test_icr = 0;
1469
1470		/* Flush any pending interrupts */
1471		wr32(E1000_ICR, ~0);
1472
1473		wr32(E1000_IMS, mask);
1474		wr32(E1000_ICS, mask);
1475		wrfl();
1476		msleep(10);
1477
1478		if (!(adapter->test_icr & mask)) {
1479			*data = 4;
1480			break;
1481		}
1482
1483		if (!shared_int) {
1484			/* Disable the other interrupts to be reported in
1485			 * the cause register and then force the other
1486			 * interrupts and see if any get posted.  If
1487			 * an interrupt was posted to the bus, the
1488			 * test failed.
1489			 */
1490			adapter->test_icr = 0;
1491
1492			/* Flush any pending interrupts */
1493			wr32(E1000_ICR, ~0);
1494
1495			wr32(E1000_IMC, ~mask);
1496			wr32(E1000_ICS, ~mask);
1497			wrfl();
1498			msleep(10);
1499
1500			if (adapter->test_icr & mask) {
1501				*data = 5;
1502				break;
1503			}
1504		}
1505	}
1506
1507	/* Disable all the interrupts */
1508	wr32(E1000_IMC, ~0);
1509	wrfl();
1510	msleep(10);
1511
1512	/* Unhook test interrupt handler */
1513	if (adapter->msix_entries)
1514		free_irq(adapter->msix_entries[0].vector, adapter);
1515	else
1516		free_irq(irq, adapter);
1517
1518	return *data;
1519}
1520
1521static void igb_free_desc_rings(struct igb_adapter *adapter)
1522{
1523	igb_free_tx_resources(&adapter->test_tx_ring);
1524	igb_free_rx_resources(&adapter->test_rx_ring);
1525}
1526
1527static int igb_setup_desc_rings(struct igb_adapter *adapter)
1528{
1529	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1530	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1531	struct e1000_hw *hw = &adapter->hw;
1532	int ret_val;
1533
1534	/* Setup Tx descriptor ring and Tx buffers */
1535	tx_ring->count = IGB_DEFAULT_TXD;
1536	tx_ring->dev = &adapter->pdev->dev;
1537	tx_ring->netdev = adapter->netdev;
1538	tx_ring->reg_idx = adapter->vfs_allocated_count;
1539
1540	if (igb_setup_tx_resources(tx_ring)) {
1541		ret_val = 1;
1542		goto err_nomem;
1543	}
1544
1545	igb_setup_tctl(adapter);
1546	igb_configure_tx_ring(adapter, tx_ring);
1547
1548	/* Setup Rx descriptor ring and Rx buffers */
1549	rx_ring->count = IGB_DEFAULT_RXD;
1550	rx_ring->dev = &adapter->pdev->dev;
1551	rx_ring->netdev = adapter->netdev;
1552	rx_ring->reg_idx = adapter->vfs_allocated_count;
1553
1554	if (igb_setup_rx_resources(rx_ring)) {
1555		ret_val = 3;
1556		goto err_nomem;
1557	}
1558
1559	/* set the default queue to queue 0 of PF */
1560	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1561
1562	/* enable receive ring */
1563	igb_setup_rctl(adapter);
1564	igb_configure_rx_ring(adapter, rx_ring);
1565
1566	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1567
1568	return 0;
1569
1570err_nomem:
1571	igb_free_desc_rings(adapter);
1572	return ret_val;
1573}
1574
1575static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1576{
1577	struct e1000_hw *hw = &adapter->hw;
1578
1579	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1580	igb_write_phy_reg(hw, 29, 0x001F);
1581	igb_write_phy_reg(hw, 30, 0x8FFC);
1582	igb_write_phy_reg(hw, 29, 0x001A);
1583	igb_write_phy_reg(hw, 30, 0x8FF0);
1584}
1585
1586static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1587{
1588	struct e1000_hw *hw = &adapter->hw;
1589	u32 ctrl_reg = 0;
1590
1591	hw->mac.autoneg = false;
1592
1593	if (hw->phy.type == e1000_phy_m88) {
1594		if (hw->phy.id != I210_I_PHY_ID) {
1595			/* Auto-MDI/MDIX Off */
1596			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1597			/* reset to update Auto-MDI/MDIX */
1598			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1599			/* autoneg off */
1600			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1601		} else {
1602			/* force 1000, set loopback  */
1603			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1604			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1605		}
1606	}
1607
1608	/* add small delay to avoid loopback test failure */
1609	msleep(50);
1610
1611	/* force 1000, set loopback */
1612	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1613
1614	/* Now set up the MAC to the same speed/duplex as the PHY. */
1615	ctrl_reg = rd32(E1000_CTRL);
1616	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1617	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1618		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1619		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1620		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1621		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1622
1623	if (hw->phy.type == e1000_phy_m88)
1624		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1625
1626	wr32(E1000_CTRL, ctrl_reg);
1627
1628	/* Disable the receiver on the PHY so when a cable is plugged in, the
1629	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1630	 */
1631	if (hw->phy.type == e1000_phy_m88)
1632		igb_phy_disable_receiver(adapter);
1633
1634	mdelay(500);
1635	return 0;
1636}
1637
1638static int igb_set_phy_loopback(struct igb_adapter *adapter)
1639{
1640	return igb_integrated_phy_loopback(adapter);
1641}
1642
1643static int igb_setup_loopback_test(struct igb_adapter *adapter)
1644{
1645	struct e1000_hw *hw = &adapter->hw;
1646	u32 reg;
1647
1648	reg = rd32(E1000_CTRL_EXT);
1649
1650	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1651	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1652		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1653		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1654		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1655		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1656
1657			/* Enable DH89xxCC MPHY for near end loopback */
1658			reg = rd32(E1000_MPHY_ADDR_CTL);
1659			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1660			E1000_MPHY_PCS_CLK_REG_OFFSET;
1661			wr32(E1000_MPHY_ADDR_CTL, reg);
1662
1663			reg = rd32(E1000_MPHY_DATA);
1664			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1665			wr32(E1000_MPHY_DATA, reg);
1666		}
1667
1668		reg = rd32(E1000_RCTL);
1669		reg |= E1000_RCTL_LBM_TCVR;
1670		wr32(E1000_RCTL, reg);
1671
1672		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1673
1674		reg = rd32(E1000_CTRL);
1675		reg &= ~(E1000_CTRL_RFCE |
1676			 E1000_CTRL_TFCE |
1677			 E1000_CTRL_LRST);
1678		reg |= E1000_CTRL_SLU |
1679		       E1000_CTRL_FD;
1680		wr32(E1000_CTRL, reg);
1681
1682		/* Unset switch control to serdes energy detect */
1683		reg = rd32(E1000_CONNSW);
1684		reg &= ~E1000_CONNSW_ENRGSRC;
1685		wr32(E1000_CONNSW, reg);
1686
1687		/* Unset sigdetect for SERDES loopback on
1688		 * 82580 and newer devices.
1689		 */
1690		if (hw->mac.type >= e1000_82580) {
1691			reg = rd32(E1000_PCS_CFG0);
1692			reg |= E1000_PCS_CFG_IGN_SD;
1693			wr32(E1000_PCS_CFG0, reg);
1694		}
1695
1696		/* Set PCS register for forced speed */
1697		reg = rd32(E1000_PCS_LCTL);
1698		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1699		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1700		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1701		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1702		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1703		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1704		wr32(E1000_PCS_LCTL, reg);
1705
1706		return 0;
1707	}
1708
1709	return igb_set_phy_loopback(adapter);
1710}
1711
1712static void igb_loopback_cleanup(struct igb_adapter *adapter)
1713{
1714	struct e1000_hw *hw = &adapter->hw;
1715	u32 rctl;
1716	u16 phy_reg;
1717
1718	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1719	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1720	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1721	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1722		u32 reg;
1723
1724		/* Disable near end loopback on DH89xxCC */
1725		reg = rd32(E1000_MPHY_ADDR_CTL);
1726		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1727		E1000_MPHY_PCS_CLK_REG_OFFSET;
1728		wr32(E1000_MPHY_ADDR_CTL, reg);
1729
1730		reg = rd32(E1000_MPHY_DATA);
1731		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1732		wr32(E1000_MPHY_DATA, reg);
1733	}
1734
1735	rctl = rd32(E1000_RCTL);
1736	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1737	wr32(E1000_RCTL, rctl);
1738
1739	hw->mac.autoneg = true;
1740	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1741	if (phy_reg & MII_CR_LOOPBACK) {
1742		phy_reg &= ~MII_CR_LOOPBACK;
1743		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1744		igb_phy_sw_reset(hw);
1745	}
1746}
1747
1748static void igb_create_lbtest_frame(struct sk_buff *skb,
1749				    unsigned int frame_size)
1750{
1751	memset(skb->data, 0xFF, frame_size);
1752	frame_size /= 2;
1753	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1754	memset(&skb->data[frame_size + 10], 0xBE, 1);
1755	memset(&skb->data[frame_size + 12], 0xAF, 1);
1756}
1757
1758static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1759				  unsigned int frame_size)
1760{
1761	unsigned char *data;
1762	bool match = true;
1763
1764	frame_size >>= 1;
1765
1766	data = kmap(rx_buffer->page);
1767
1768	if (data[3] != 0xFF ||
1769	    data[frame_size + 10] != 0xBE ||
1770	    data[frame_size + 12] != 0xAF)
1771		match = false;
1772
1773	kunmap(rx_buffer->page);
1774
1775	return match;
1776}
1777
1778static int igb_clean_test_rings(struct igb_ring *rx_ring,
1779				struct igb_ring *tx_ring,
1780				unsigned int size)
1781{
1782	union e1000_adv_rx_desc *rx_desc;
1783	struct igb_rx_buffer *rx_buffer_info;
1784	struct igb_tx_buffer *tx_buffer_info;
1785	u16 rx_ntc, tx_ntc, count = 0;
1786
1787	/* initialize next to clean and descriptor values */
1788	rx_ntc = rx_ring->next_to_clean;
1789	tx_ntc = tx_ring->next_to_clean;
1790	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1791
1792	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1793		/* check Rx buffer */
1794		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1795
1796		/* sync Rx buffer for CPU read */
1797		dma_sync_single_for_cpu(rx_ring->dev,
1798					rx_buffer_info->dma,
1799					IGB_RX_BUFSZ,
1800					DMA_FROM_DEVICE);
1801
1802		/* verify contents of skb */
1803		if (igb_check_lbtest_frame(rx_buffer_info, size))
1804			count++;
1805
1806		/* sync Rx buffer for device write */
1807		dma_sync_single_for_device(rx_ring->dev,
1808					   rx_buffer_info->dma,
1809					   IGB_RX_BUFSZ,
1810					   DMA_FROM_DEVICE);
1811
1812		/* unmap buffer on Tx side */
1813		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1814		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1815
1816		/* increment Rx/Tx next to clean counters */
1817		rx_ntc++;
1818		if (rx_ntc == rx_ring->count)
1819			rx_ntc = 0;
1820		tx_ntc++;
1821		if (tx_ntc == tx_ring->count)
1822			tx_ntc = 0;
1823
1824		/* fetch next descriptor */
1825		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1826	}
1827
1828	netdev_tx_reset_queue(txring_txq(tx_ring));
1829
1830	/* re-map buffers to ring, store next to clean values */
1831	igb_alloc_rx_buffers(rx_ring, count);
1832	rx_ring->next_to_clean = rx_ntc;
1833	tx_ring->next_to_clean = tx_ntc;
1834
1835	return count;
1836}
1837
1838static int igb_run_loopback_test(struct igb_adapter *adapter)
1839{
1840	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1841	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1842	u16 i, j, lc, good_cnt;
1843	int ret_val = 0;
1844	unsigned int size = IGB_RX_HDR_LEN;
1845	netdev_tx_t tx_ret_val;
1846	struct sk_buff *skb;
1847
1848	/* allocate test skb */
1849	skb = alloc_skb(size, GFP_KERNEL);
1850	if (!skb)
1851		return 11;
1852
1853	/* place data into test skb */
1854	igb_create_lbtest_frame(skb, size);
1855	skb_put(skb, size);
1856
1857	/* Calculate the loop count based on the largest descriptor ring
1858	 * The idea is to wrap the largest ring a number of times using 64
1859	 * send/receive pairs during each loop
1860	 */
1861
1862	if (rx_ring->count <= tx_ring->count)
1863		lc = ((tx_ring->count / 64) * 2) + 1;
1864	else
1865		lc = ((rx_ring->count / 64) * 2) + 1;
1866
1867	for (j = 0; j <= lc; j++) { /* loop count loop */
1868		/* reset count of good packets */
1869		good_cnt = 0;
1870
1871		/* place 64 packets on the transmit queue*/
1872		for (i = 0; i < 64; i++) {
1873			skb_get(skb);
1874			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1875			if (tx_ret_val == NETDEV_TX_OK)
1876				good_cnt++;
1877		}
1878
1879		if (good_cnt != 64) {
1880			ret_val = 12;
1881			break;
1882		}
1883
1884		/* allow 200 milliseconds for packets to go from Tx to Rx */
1885		msleep(200);
1886
1887		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1888		if (good_cnt != 64) {
1889			ret_val = 13;
1890			break;
1891		}
1892	} /* end loop count loop */
1893
1894	/* free the original skb */
1895	kfree_skb(skb);
1896
1897	return ret_val;
1898}
1899
1900static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1901{
1902	/* PHY loopback cannot be performed if SoL/IDER
1903	 * sessions are active
1904	 */
1905	if (igb_check_reset_block(&adapter->hw)) {
1906		dev_err(&adapter->pdev->dev,
1907			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1908		*data = 0;
1909		goto out;
1910	}
1911
1912	if (adapter->hw.mac.type == e1000_i354) {
1913		dev_info(&adapter->pdev->dev,
1914			"Loopback test not supported on i354.\n");
1915		*data = 0;
1916		goto out;
1917	}
1918	*data = igb_setup_desc_rings(adapter);
1919	if (*data)
1920		goto out;
1921	*data = igb_setup_loopback_test(adapter);
1922	if (*data)
1923		goto err_loopback;
1924	*data = igb_run_loopback_test(adapter);
1925	igb_loopback_cleanup(adapter);
1926
1927err_loopback:
1928	igb_free_desc_rings(adapter);
1929out:
1930	return *data;
1931}
1932
1933static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1934{
1935	struct e1000_hw *hw = &adapter->hw;
1936	*data = 0;
1937	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1938		int i = 0;
1939		hw->mac.serdes_has_link = false;
1940
1941		/* On some blade server designs, link establishment
1942		 * could take as long as 2-3 minutes
1943		 */
1944		do {
1945			hw->mac.ops.check_for_link(&adapter->hw);
1946			if (hw->mac.serdes_has_link)
1947				return *data;
1948			msleep(20);
1949		} while (i++ < 3750);
1950
1951		*data = 1;
1952	} else {
1953		hw->mac.ops.check_for_link(&adapter->hw);
1954		if (hw->mac.autoneg)
1955			msleep(5000);
1956
1957		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1958			*data = 1;
1959	}
1960	return *data;
1961}
1962
1963static void igb_diag_test(struct net_device *netdev,
1964			  struct ethtool_test *eth_test, u64 *data)
1965{
1966	struct igb_adapter *adapter = netdev_priv(netdev);
1967	u16 autoneg_advertised;
1968	u8 forced_speed_duplex, autoneg;
1969	bool if_running = netif_running(netdev);
1970
1971	set_bit(__IGB_TESTING, &adapter->state);
1972	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1973		/* Offline tests */
1974
1975		/* save speed, duplex, autoneg settings */
1976		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1977		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1978		autoneg = adapter->hw.mac.autoneg;
1979
1980		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1981
1982		/* power up link for link test */
1983		igb_power_up_link(adapter);
1984
1985		/* Link test performed before hardware reset so autoneg doesn't
1986		 * interfere with test result
1987		 */
1988		if (igb_link_test(adapter, &data[4]))
1989			eth_test->flags |= ETH_TEST_FL_FAILED;
1990
1991		if (if_running)
1992			/* indicate we're in test mode */
1993			dev_close(netdev);
1994		else
1995			igb_reset(adapter);
1996
1997		if (igb_reg_test(adapter, &data[0]))
1998			eth_test->flags |= ETH_TEST_FL_FAILED;
1999
2000		igb_reset(adapter);
2001		if (igb_eeprom_test(adapter, &data[1]))
2002			eth_test->flags |= ETH_TEST_FL_FAILED;
2003
2004		igb_reset(adapter);
2005		if (igb_intr_test(adapter, &data[2]))
2006			eth_test->flags |= ETH_TEST_FL_FAILED;
2007
2008		igb_reset(adapter);
2009		/* power up link for loopback test */
2010		igb_power_up_link(adapter);
2011		if (igb_loopback_test(adapter, &data[3]))
2012			eth_test->flags |= ETH_TEST_FL_FAILED;
2013
2014		/* restore speed, duplex, autoneg settings */
2015		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2016		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2017		adapter->hw.mac.autoneg = autoneg;
2018
2019		/* force this routine to wait until autoneg complete/timeout */
2020		adapter->hw.phy.autoneg_wait_to_complete = true;
2021		igb_reset(adapter);
2022		adapter->hw.phy.autoneg_wait_to_complete = false;
2023
2024		clear_bit(__IGB_TESTING, &adapter->state);
2025		if (if_running)
2026			dev_open(netdev);
2027	} else {
2028		dev_info(&adapter->pdev->dev, "online testing starting\n");
2029
2030		/* PHY is powered down when interface is down */
2031		if (if_running && igb_link_test(adapter, &data[4]))
2032			eth_test->flags |= ETH_TEST_FL_FAILED;
2033		else
2034			data[4] = 0;
2035
2036		/* Online tests aren't run; pass by default */
2037		data[0] = 0;
2038		data[1] = 0;
2039		data[2] = 0;
2040		data[3] = 0;
2041
2042		clear_bit(__IGB_TESTING, &adapter->state);
2043	}
2044	msleep_interruptible(4 * 1000);
2045}
2046
2047static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2048{
2049	struct igb_adapter *adapter = netdev_priv(netdev);
2050
2051	wol->supported = WAKE_UCAST | WAKE_MCAST |
2052			 WAKE_BCAST | WAKE_MAGIC |
2053			 WAKE_PHY;
2054	wol->wolopts = 0;
2055
2056	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2057		return;
2058
2059	/* apply any specific unsupported masks here */
2060	switch (adapter->hw.device_id) {
2061	default:
2062		break;
2063	}
2064
2065	if (adapter->wol & E1000_WUFC_EX)
2066		wol->wolopts |= WAKE_UCAST;
2067	if (adapter->wol & E1000_WUFC_MC)
2068		wol->wolopts |= WAKE_MCAST;
2069	if (adapter->wol & E1000_WUFC_BC)
2070		wol->wolopts |= WAKE_BCAST;
2071	if (adapter->wol & E1000_WUFC_MAG)
2072		wol->wolopts |= WAKE_MAGIC;
2073	if (adapter->wol & E1000_WUFC_LNKC)
2074		wol->wolopts |= WAKE_PHY;
2075}
2076
2077static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2078{
2079	struct igb_adapter *adapter = netdev_priv(netdev);
2080
2081	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2082		return -EOPNOTSUPP;
2083
2084	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2085		return wol->wolopts ? -EOPNOTSUPP : 0;
2086
2087	/* these settings will always override what we currently have */
2088	adapter->wol = 0;
2089
2090	if (wol->wolopts & WAKE_UCAST)
2091		adapter->wol |= E1000_WUFC_EX;
2092	if (wol->wolopts & WAKE_MCAST)
2093		adapter->wol |= E1000_WUFC_MC;
2094	if (wol->wolopts & WAKE_BCAST)
2095		adapter->wol |= E1000_WUFC_BC;
2096	if (wol->wolopts & WAKE_MAGIC)
2097		adapter->wol |= E1000_WUFC_MAG;
2098	if (wol->wolopts & WAKE_PHY)
2099		adapter->wol |= E1000_WUFC_LNKC;
2100	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2101
2102	return 0;
2103}
2104
2105/* bit defines for adapter->led_status */
2106#define IGB_LED_ON		0
2107
2108static int igb_set_phys_id(struct net_device *netdev,
2109			   enum ethtool_phys_id_state state)
2110{
2111	struct igb_adapter *adapter = netdev_priv(netdev);
2112	struct e1000_hw *hw = &adapter->hw;
2113
2114	switch (state) {
2115	case ETHTOOL_ID_ACTIVE:
2116		igb_blink_led(hw);
2117		return 2;
2118	case ETHTOOL_ID_ON:
2119		igb_blink_led(hw);
2120		break;
2121	case ETHTOOL_ID_OFF:
2122		igb_led_off(hw);
2123		break;
2124	case ETHTOOL_ID_INACTIVE:
2125		igb_led_off(hw);
2126		clear_bit(IGB_LED_ON, &adapter->led_status);
2127		igb_cleanup_led(hw);
2128		break;
2129	}
2130
2131	return 0;
2132}
2133
2134static int igb_set_coalesce(struct net_device *netdev,
2135			    struct ethtool_coalesce *ec)
2136{
2137	struct igb_adapter *adapter = netdev_priv(netdev);
2138	int i;
2139
2140	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2141	    ((ec->rx_coalesce_usecs > 3) &&
2142	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2143	    (ec->rx_coalesce_usecs == 2))
2144		return -EINVAL;
2145
2146	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2147	    ((ec->tx_coalesce_usecs > 3) &&
2148	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2149	    (ec->tx_coalesce_usecs == 2))
2150		return -EINVAL;
2151
2152	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2153		return -EINVAL;
2154
2155	/* If ITR is disabled, disable DMAC */
2156	if (ec->rx_coalesce_usecs == 0) {
2157		if (adapter->flags & IGB_FLAG_DMAC)
2158			adapter->flags &= ~IGB_FLAG_DMAC;
2159	}
2160
2161	/* convert to rate of irq's per second */
2162	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2163		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2164	else
2165		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2166
2167	/* convert to rate of irq's per second */
2168	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2169		adapter->tx_itr_setting = adapter->rx_itr_setting;
2170	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2171		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2172	else
2173		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2174
2175	for (i = 0; i < adapter->num_q_vectors; i++) {
2176		struct igb_q_vector *q_vector = adapter->q_vector[i];
2177		q_vector->tx.work_limit = adapter->tx_work_limit;
2178		if (q_vector->rx.ring)
2179			q_vector->itr_val = adapter->rx_itr_setting;
2180		else
2181			q_vector->itr_val = adapter->tx_itr_setting;
2182		if (q_vector->itr_val && q_vector->itr_val <= 3)
2183			q_vector->itr_val = IGB_START_ITR;
2184		q_vector->set_itr = 1;
2185	}
2186
2187	return 0;
2188}
2189
2190static int igb_get_coalesce(struct net_device *netdev,
2191			    struct ethtool_coalesce *ec)
2192{
2193	struct igb_adapter *adapter = netdev_priv(netdev);
2194
2195	if (adapter->rx_itr_setting <= 3)
2196		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2197	else
2198		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2199
2200	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2201		if (adapter->tx_itr_setting <= 3)
2202			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2203		else
2204			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2205	}
2206
2207	return 0;
2208}
2209
2210static int igb_nway_reset(struct net_device *netdev)
2211{
2212	struct igb_adapter *adapter = netdev_priv(netdev);
2213	if (netif_running(netdev))
2214		igb_reinit_locked(adapter);
2215	return 0;
2216}
2217
2218static int igb_get_sset_count(struct net_device *netdev, int sset)
2219{
2220	switch (sset) {
2221	case ETH_SS_STATS:
2222		return IGB_STATS_LEN;
2223	case ETH_SS_TEST:
2224		return IGB_TEST_LEN;
2225	default:
2226		return -ENOTSUPP;
2227	}
2228}
2229
2230static void igb_get_ethtool_stats(struct net_device *netdev,
2231				  struct ethtool_stats *stats, u64 *data)
2232{
2233	struct igb_adapter *adapter = netdev_priv(netdev);
2234	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2235	unsigned int start;
2236	struct igb_ring *ring;
2237	int i, j;
2238	char *p;
2239
2240	spin_lock(&adapter->stats64_lock);
2241	igb_update_stats(adapter, net_stats);
2242
2243	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2244		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2245		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2246			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2247	}
2248	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2249		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2250		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2251			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2252	}
2253	for (j = 0; j < adapter->num_tx_queues; j++) {
2254		u64	restart2;
2255
2256		ring = adapter->tx_ring[j];
2257		do {
2258			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2259			data[i]   = ring->tx_stats.packets;
2260			data[i+1] = ring->tx_stats.bytes;
2261			data[i+2] = ring->tx_stats.restart_queue;
2262		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2263		do {
2264			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2265			restart2  = ring->tx_stats.restart_queue2;
2266		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2267		data[i+2] += restart2;
2268
2269		i += IGB_TX_QUEUE_STATS_LEN;
2270	}
2271	for (j = 0; j < adapter->num_rx_queues; j++) {
2272		ring = adapter->rx_ring[j];
2273		do {
2274			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2275			data[i]   = ring->rx_stats.packets;
2276			data[i+1] = ring->rx_stats.bytes;
2277			data[i+2] = ring->rx_stats.drops;
2278			data[i+3] = ring->rx_stats.csum_err;
2279			data[i+4] = ring->rx_stats.alloc_failed;
2280		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2281		i += IGB_RX_QUEUE_STATS_LEN;
2282	}
2283	spin_unlock(&adapter->stats64_lock);
2284}
2285
2286static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2287{
2288	struct igb_adapter *adapter = netdev_priv(netdev);
2289	u8 *p = data;
2290	int i;
2291
2292	switch (stringset) {
2293	case ETH_SS_TEST:
2294		memcpy(data, *igb_gstrings_test,
2295			IGB_TEST_LEN*ETH_GSTRING_LEN);
2296		break;
2297	case ETH_SS_STATS:
2298		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2299			memcpy(p, igb_gstrings_stats[i].stat_string,
2300			       ETH_GSTRING_LEN);
2301			p += ETH_GSTRING_LEN;
2302		}
2303		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2304			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2305			       ETH_GSTRING_LEN);
2306			p += ETH_GSTRING_LEN;
2307		}
2308		for (i = 0; i < adapter->num_tx_queues; i++) {
2309			sprintf(p, "tx_queue_%u_packets", i);
2310			p += ETH_GSTRING_LEN;
2311			sprintf(p, "tx_queue_%u_bytes", i);
2312			p += ETH_GSTRING_LEN;
2313			sprintf(p, "tx_queue_%u_restart", i);
2314			p += ETH_GSTRING_LEN;
2315		}
2316		for (i = 0; i < adapter->num_rx_queues; i++) {
2317			sprintf(p, "rx_queue_%u_packets", i);
2318			p += ETH_GSTRING_LEN;
2319			sprintf(p, "rx_queue_%u_bytes", i);
2320			p += ETH_GSTRING_LEN;
2321			sprintf(p, "rx_queue_%u_drops", i);
2322			p += ETH_GSTRING_LEN;
2323			sprintf(p, "rx_queue_%u_csum_err", i);
2324			p += ETH_GSTRING_LEN;
2325			sprintf(p, "rx_queue_%u_alloc_failed", i);
2326			p += ETH_GSTRING_LEN;
2327		}
2328		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2329		break;
2330	}
2331}
2332
2333static int igb_get_ts_info(struct net_device *dev,
2334			   struct ethtool_ts_info *info)
2335{
2336	struct igb_adapter *adapter = netdev_priv(dev);
2337
2338	switch (adapter->hw.mac.type) {
2339	case e1000_82575:
2340		info->so_timestamping =
2341			SOF_TIMESTAMPING_TX_SOFTWARE |
2342			SOF_TIMESTAMPING_RX_SOFTWARE |
2343			SOF_TIMESTAMPING_SOFTWARE;
2344		return 0;
2345	case e1000_82576:
2346	case e1000_82580:
2347	case e1000_i350:
2348	case e1000_i354:
2349	case e1000_i210:
2350	case e1000_i211:
2351		info->so_timestamping =
2352			SOF_TIMESTAMPING_TX_SOFTWARE |
2353			SOF_TIMESTAMPING_RX_SOFTWARE |
2354			SOF_TIMESTAMPING_SOFTWARE |
2355			SOF_TIMESTAMPING_TX_HARDWARE |
2356			SOF_TIMESTAMPING_RX_HARDWARE |
2357			SOF_TIMESTAMPING_RAW_HARDWARE;
2358
2359		if (adapter->ptp_clock)
2360			info->phc_index = ptp_clock_index(adapter->ptp_clock);
2361		else
2362			info->phc_index = -1;
2363
2364		info->tx_types =
2365			(1 << HWTSTAMP_TX_OFF) |
2366			(1 << HWTSTAMP_TX_ON);
2367
2368		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2369
2370		/* 82576 does not support timestamping all packets. */
2371		if (adapter->hw.mac.type >= e1000_82580)
2372			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2373		else
2374			info->rx_filters |=
2375				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2376				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2377				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2378				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2379				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2380				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2381				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2382
2383		return 0;
2384	default:
2385		return -EOPNOTSUPP;
2386	}
2387}
2388
2389static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2390				 struct ethtool_rxnfc *cmd)
2391{
2392	cmd->data = 0;
2393
2394	/* Report default options for RSS on igb */
2395	switch (cmd->flow_type) {
2396	case TCP_V4_FLOW:
2397		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2398	case UDP_V4_FLOW:
2399		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2400			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2401	case SCTP_V4_FLOW:
2402	case AH_ESP_V4_FLOW:
2403	case AH_V4_FLOW:
2404	case ESP_V4_FLOW:
2405	case IPV4_FLOW:
2406		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2407		break;
2408	case TCP_V6_FLOW:
2409		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2410	case UDP_V6_FLOW:
2411		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2412			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2413	case SCTP_V6_FLOW:
2414	case AH_ESP_V6_FLOW:
2415	case AH_V6_FLOW:
2416	case ESP_V6_FLOW:
2417	case IPV6_FLOW:
2418		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2419		break;
2420	default:
2421		return -EINVAL;
2422	}
2423
2424	return 0;
2425}
2426
2427static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2428			 u32 *rule_locs)
2429{
2430	struct igb_adapter *adapter = netdev_priv(dev);
2431	int ret = -EOPNOTSUPP;
2432
2433	switch (cmd->cmd) {
2434	case ETHTOOL_GRXRINGS:
2435		cmd->data = adapter->num_rx_queues;
2436		ret = 0;
2437		break;
2438	case ETHTOOL_GRXFH:
2439		ret = igb_get_rss_hash_opts(adapter, cmd);
2440		break;
2441	default:
2442		break;
2443	}
2444
2445	return ret;
2446}
2447
2448#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2449		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2450static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2451				struct ethtool_rxnfc *nfc)
2452{
2453	u32 flags = adapter->flags;
2454
2455	/* RSS does not support anything other than hashing
2456	 * to queues on src and dst IPs and ports
2457	 */
2458	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2459			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2460		return -EINVAL;
2461
2462	switch (nfc->flow_type) {
2463	case TCP_V4_FLOW:
2464	case TCP_V6_FLOW:
2465		if (!(nfc->data & RXH_IP_SRC) ||
2466		    !(nfc->data & RXH_IP_DST) ||
2467		    !(nfc->data & RXH_L4_B_0_1) ||
2468		    !(nfc->data & RXH_L4_B_2_3))
2469			return -EINVAL;
2470		break;
2471	case UDP_V4_FLOW:
2472		if (!(nfc->data & RXH_IP_SRC) ||
2473		    !(nfc->data & RXH_IP_DST))
2474			return -EINVAL;
2475		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2476		case 0:
2477			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2478			break;
2479		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2480			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2481			break;
2482		default:
2483			return -EINVAL;
2484		}
2485		break;
2486	case UDP_V6_FLOW:
2487		if (!(nfc->data & RXH_IP_SRC) ||
2488		    !(nfc->data & RXH_IP_DST))
2489			return -EINVAL;
2490		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2491		case 0:
2492			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2493			break;
2494		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2495			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2496			break;
2497		default:
2498			return -EINVAL;
2499		}
2500		break;
2501	case AH_ESP_V4_FLOW:
2502	case AH_V4_FLOW:
2503	case ESP_V4_FLOW:
2504	case SCTP_V4_FLOW:
2505	case AH_ESP_V6_FLOW:
2506	case AH_V6_FLOW:
2507	case ESP_V6_FLOW:
2508	case SCTP_V6_FLOW:
2509		if (!(nfc->data & RXH_IP_SRC) ||
2510		    !(nfc->data & RXH_IP_DST) ||
2511		    (nfc->data & RXH_L4_B_0_1) ||
2512		    (nfc->data & RXH_L4_B_2_3))
2513			return -EINVAL;
2514		break;
2515	default:
2516		return -EINVAL;
2517	}
2518
2519	/* if we changed something we need to update flags */
2520	if (flags != adapter->flags) {
2521		struct e1000_hw *hw = &adapter->hw;
2522		u32 mrqc = rd32(E1000_MRQC);
2523
2524		if ((flags & UDP_RSS_FLAGS) &&
2525		    !(adapter->flags & UDP_RSS_FLAGS))
2526			dev_err(&adapter->pdev->dev,
2527				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2528
2529		adapter->flags = flags;
2530
2531		/* Perform hash on these packet types */
2532		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2533			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2534			E1000_MRQC_RSS_FIELD_IPV6 |
2535			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2536
2537		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2538			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2539
2540		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2541			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2542
2543		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2544			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2545
2546		wr32(E1000_MRQC, mrqc);
2547	}
2548
2549	return 0;
2550}
2551
2552static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2553{
2554	struct igb_adapter *adapter = netdev_priv(dev);
2555	int ret = -EOPNOTSUPP;
2556
2557	switch (cmd->cmd) {
2558	case ETHTOOL_SRXFH:
2559		ret = igb_set_rss_hash_opt(adapter, cmd);
2560		break;
2561	default:
2562		break;
2563	}
2564
2565	return ret;
2566}
2567
2568static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2569{
2570	struct igb_adapter *adapter = netdev_priv(netdev);
2571	struct e1000_hw *hw = &adapter->hw;
2572	u32 ipcnfg, eeer, ret_val;
2573	u16 phy_data;
2574
2575	if ((hw->mac.type < e1000_i350) ||
2576	    (hw->phy.media_type != e1000_media_type_copper))
2577		return -EOPNOTSUPP;
2578
2579	edata->supported = (SUPPORTED_1000baseT_Full |
2580			    SUPPORTED_100baseT_Full);
2581
2582	ipcnfg = rd32(E1000_IPCNFG);
2583	eeer = rd32(E1000_EEER);
2584
2585	/* EEE status on negotiated link */
2586	if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2587		edata->advertised = ADVERTISED_1000baseT_Full;
2588
2589	if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2590		edata->advertised |= ADVERTISED_100baseT_Full;
2591
2592	/* EEE Link Partner Advertised */
2593	switch (hw->mac.type) {
2594	case e1000_i350:
2595		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2596					   &phy_data);
2597		if (ret_val)
2598			return -ENODATA;
2599
2600		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2601
2602		break;
2603	case e1000_i210:
2604	case e1000_i211:
2605		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2606					     E1000_EEE_LP_ADV_DEV_I210,
2607					     &phy_data);
2608		if (ret_val)
2609			return -ENODATA;
2610
2611		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2612
2613		break;
2614	default:
2615		break;
2616	}
2617
2618	if (eeer & E1000_EEER_EEE_NEG)
2619		edata->eee_active = true;
2620
2621	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2622
2623	if (eeer & E1000_EEER_TX_LPI_EN)
2624		edata->tx_lpi_enabled = true;
2625
2626	/* Report correct negotiated EEE status for devices that
2627	 * wrongly report EEE at half-duplex
2628	 */
2629	if (adapter->link_duplex == HALF_DUPLEX) {
2630		edata->eee_enabled = false;
2631		edata->eee_active = false;
2632		edata->tx_lpi_enabled = false;
2633		edata->advertised &= ~edata->advertised;
2634	}
2635
2636	return 0;
2637}
2638
2639static int igb_set_eee(struct net_device *netdev,
2640		       struct ethtool_eee *edata)
2641{
2642	struct igb_adapter *adapter = netdev_priv(netdev);
2643	struct e1000_hw *hw = &adapter->hw;
2644	struct ethtool_eee eee_curr;
2645	s32 ret_val;
2646
2647	if ((hw->mac.type < e1000_i350) ||
2648	    (hw->phy.media_type != e1000_media_type_copper))
2649		return -EOPNOTSUPP;
2650
2651	ret_val = igb_get_eee(netdev, &eee_curr);
2652	if (ret_val)
2653		return ret_val;
2654
2655	if (eee_curr.eee_enabled) {
2656		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2657			dev_err(&adapter->pdev->dev,
2658				"Setting EEE tx-lpi is not supported\n");
2659			return -EINVAL;
2660		}
2661
2662		/* Tx LPI timer is not implemented currently */
2663		if (edata->tx_lpi_timer) {
2664			dev_err(&adapter->pdev->dev,
2665				"Setting EEE Tx LPI timer is not supported\n");
2666			return -EINVAL;
2667		}
2668
2669		if (eee_curr.advertised != edata->advertised) {
2670			dev_err(&adapter->pdev->dev,
2671				"Setting EEE Advertisement is not supported\n");
2672			return -EINVAL;
2673		}
2674
2675	} else if (!edata->eee_enabled) {
2676		dev_err(&adapter->pdev->dev,
2677			"Setting EEE options are not supported with EEE disabled\n");
2678			return -EINVAL;
2679		}
2680
2681	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2682		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2683		igb_set_eee_i350(hw);
2684
2685		/* reset link */
2686		if (netif_running(netdev))
2687			igb_reinit_locked(adapter);
2688		else
2689			igb_reset(adapter);
2690	}
2691
2692	return 0;
2693}
2694
2695static int igb_get_module_info(struct net_device *netdev,
2696			       struct ethtool_modinfo *modinfo)
2697{
2698	struct igb_adapter *adapter = netdev_priv(netdev);
2699	struct e1000_hw *hw = &adapter->hw;
2700	u32 status = E1000_SUCCESS;
2701	u16 sff8472_rev, addr_mode;
2702	bool page_swap = false;
2703
2704	if ((hw->phy.media_type == e1000_media_type_copper) ||
2705	    (hw->phy.media_type == e1000_media_type_unknown))
2706		return -EOPNOTSUPP;
2707
2708	/* Check whether we support SFF-8472 or not */
2709	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2710	if (status != E1000_SUCCESS)
2711		return -EIO;
2712
2713	/* addressing mode is not supported */
2714	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2715	if (status != E1000_SUCCESS)
2716		return -EIO;
2717
2718	/* addressing mode is not supported */
2719	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2720		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2721		page_swap = true;
2722	}
2723
2724	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2725		/* We have an SFP, but it does not support SFF-8472 */
2726		modinfo->type = ETH_MODULE_SFF_8079;
2727		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2728	} else {
2729		/* We have an SFP which supports a revision of SFF-8472 */
2730		modinfo->type = ETH_MODULE_SFF_8472;
2731		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2732	}
2733
2734	return 0;
2735}
2736
2737static int igb_get_module_eeprom(struct net_device *netdev,
2738				 struct ethtool_eeprom *ee, u8 *data)
2739{
2740	struct igb_adapter *adapter = netdev_priv(netdev);
2741	struct e1000_hw *hw = &adapter->hw;
2742	u32 status = E1000_SUCCESS;
2743	u16 *dataword;
2744	u16 first_word, last_word;
2745	int i = 0;
2746
2747	if (ee->len == 0)
2748		return -EINVAL;
2749
2750	first_word = ee->offset >> 1;
2751	last_word = (ee->offset + ee->len - 1) >> 1;
2752
2753	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2754			   GFP_KERNEL);
2755	if (!dataword)
2756		return -ENOMEM;
2757
2758	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2759	for (i = 0; i < last_word - first_word + 1; i++) {
2760		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2761		if (status != E1000_SUCCESS)
2762			/* Error occurred while reading module */
2763			return -EIO;
2764
2765		be16_to_cpus(&dataword[i]);
2766	}
2767
2768	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2769	kfree(dataword);
2770
2771	return 0;
2772}
2773
2774static int igb_ethtool_begin(struct net_device *netdev)
2775{
2776	struct igb_adapter *adapter = netdev_priv(netdev);
2777	pm_runtime_get_sync(&adapter->pdev->dev);
2778	return 0;
2779}
2780
2781static void igb_ethtool_complete(struct net_device *netdev)
2782{
2783	struct igb_adapter *adapter = netdev_priv(netdev);
2784	pm_runtime_put(&adapter->pdev->dev);
2785}
2786
2787static const struct ethtool_ops igb_ethtool_ops = {
2788	.get_settings		= igb_get_settings,
2789	.set_settings		= igb_set_settings,
2790	.get_drvinfo		= igb_get_drvinfo,
2791	.get_regs_len		= igb_get_regs_len,
2792	.get_regs		= igb_get_regs,
2793	.get_wol		= igb_get_wol,
2794	.set_wol		= igb_set_wol,
2795	.get_msglevel		= igb_get_msglevel,
2796	.set_msglevel		= igb_set_msglevel,
2797	.nway_reset		= igb_nway_reset,
2798	.get_link		= igb_get_link,
2799	.get_eeprom_len		= igb_get_eeprom_len,
2800	.get_eeprom		= igb_get_eeprom,
2801	.set_eeprom		= igb_set_eeprom,
2802	.get_ringparam		= igb_get_ringparam,
2803	.set_ringparam		= igb_set_ringparam,
2804	.get_pauseparam		= igb_get_pauseparam,
2805	.set_pauseparam		= igb_set_pauseparam,
2806	.self_test		= igb_diag_test,
2807	.get_strings		= igb_get_strings,
2808	.set_phys_id		= igb_set_phys_id,
2809	.get_sset_count		= igb_get_sset_count,
2810	.get_ethtool_stats	= igb_get_ethtool_stats,
2811	.get_coalesce		= igb_get_coalesce,
2812	.set_coalesce		= igb_set_coalesce,
2813	.get_ts_info		= igb_get_ts_info,
2814	.get_rxnfc		= igb_get_rxnfc,
2815	.set_rxnfc		= igb_set_rxnfc,
2816	.get_eee		= igb_get_eee,
2817	.set_eee		= igb_set_eee,
2818	.get_module_info	= igb_get_module_info,
2819	.get_module_eeprom	= igb_get_module_eeprom,
2820	.begin			= igb_ethtool_begin,
2821	.complete		= igb_ethtool_complete,
2822};
2823
2824void igb_set_ethtool_ops(struct net_device *netdev)
2825{
2826	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2827}
2828