[go: nahoru, domu]

igb_ethtool.c revision 58e4e1f6cacddb7823c44bcfb272174553f6c645
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37#include <linux/sched.h>
38#include <linux/slab.h>
39#include <linux/pm_runtime.h>
40#include <linux/highmem.h>
41#include <linux/mdio.h>
42
43#include "igb.h"
44
45struct igb_stats {
46	char stat_string[ETH_GSTRING_LEN];
47	int sizeof_stat;
48	int stat_offset;
49};
50
51#define IGB_STAT(_name, _stat) { \
52	.stat_string = _name, \
53	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
54	.stat_offset = offsetof(struct igb_adapter, _stat) \
55}
56static const struct igb_stats igb_gstrings_stats[] = {
57	IGB_STAT("rx_packets", stats.gprc),
58	IGB_STAT("tx_packets", stats.gptc),
59	IGB_STAT("rx_bytes", stats.gorc),
60	IGB_STAT("tx_bytes", stats.gotc),
61	IGB_STAT("rx_broadcast", stats.bprc),
62	IGB_STAT("tx_broadcast", stats.bptc),
63	IGB_STAT("rx_multicast", stats.mprc),
64	IGB_STAT("tx_multicast", stats.mptc),
65	IGB_STAT("multicast", stats.mprc),
66	IGB_STAT("collisions", stats.colc),
67	IGB_STAT("rx_crc_errors", stats.crcerrs),
68	IGB_STAT("rx_no_buffer_count", stats.rnbc),
69	IGB_STAT("rx_missed_errors", stats.mpc),
70	IGB_STAT("tx_aborted_errors", stats.ecol),
71	IGB_STAT("tx_carrier_errors", stats.tncrs),
72	IGB_STAT("tx_window_errors", stats.latecol),
73	IGB_STAT("tx_abort_late_coll", stats.latecol),
74	IGB_STAT("tx_deferred_ok", stats.dc),
75	IGB_STAT("tx_single_coll_ok", stats.scc),
76	IGB_STAT("tx_multi_coll_ok", stats.mcc),
77	IGB_STAT("tx_timeout_count", tx_timeout_count),
78	IGB_STAT("rx_long_length_errors", stats.roc),
79	IGB_STAT("rx_short_length_errors", stats.ruc),
80	IGB_STAT("rx_align_errors", stats.algnerrc),
81	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
82	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
83	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
84	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
85	IGB_STAT("tx_flow_control_xon", stats.xontxc),
86	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
87	IGB_STAT("rx_long_byte_count", stats.gorc),
88	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
89	IGB_STAT("tx_smbus", stats.mgptc),
90	IGB_STAT("rx_smbus", stats.mgprc),
91	IGB_STAT("dropped_smbus", stats.mgpdc),
92	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
93	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
94	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
95	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
96	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
98};
99
100#define IGB_NETDEV_STAT(_net_stat) { \
101	.stat_string = __stringify(_net_stat), \
102	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
103	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
104}
105static const struct igb_stats igb_gstrings_net_stats[] = {
106	IGB_NETDEV_STAT(rx_errors),
107	IGB_NETDEV_STAT(tx_errors),
108	IGB_NETDEV_STAT(tx_dropped),
109	IGB_NETDEV_STAT(rx_length_errors),
110	IGB_NETDEV_STAT(rx_over_errors),
111	IGB_NETDEV_STAT(rx_frame_errors),
112	IGB_NETDEV_STAT(rx_fifo_errors),
113	IGB_NETDEV_STAT(tx_fifo_errors),
114	IGB_NETDEV_STAT(tx_heartbeat_errors)
115};
116
117#define IGB_GLOBAL_STATS_LEN	\
118	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
119#define IGB_NETDEV_STATS_LEN	\
120	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
121#define IGB_RX_QUEUE_STATS_LEN \
122	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
123
124#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
125
126#define IGB_QUEUE_STATS_LEN \
127	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
128	  IGB_RX_QUEUE_STATS_LEN) + \
129	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
130	  IGB_TX_QUEUE_STATS_LEN))
131#define IGB_STATS_LEN \
132	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
133
134static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
135	"Register test  (offline)", "Eeprom test    (offline)",
136	"Interrupt test (offline)", "Loopback test  (offline)",
137	"Link test   (on/offline)"
138};
139#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
140
141static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
142{
143	struct igb_adapter *adapter = netdev_priv(netdev);
144	struct e1000_hw *hw = &adapter->hw;
145	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
146	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
147	u32 status;
148
149	if (hw->phy.media_type == e1000_media_type_copper) {
150
151		ecmd->supported = (SUPPORTED_10baseT_Half |
152				   SUPPORTED_10baseT_Full |
153				   SUPPORTED_100baseT_Half |
154				   SUPPORTED_100baseT_Full |
155				   SUPPORTED_1000baseT_Full|
156				   SUPPORTED_Autoneg |
157				   SUPPORTED_TP |
158				   SUPPORTED_Pause);
159		ecmd->advertising = ADVERTISED_TP;
160
161		if (hw->mac.autoneg == 1) {
162			ecmd->advertising |= ADVERTISED_Autoneg;
163			/* the e1000 autoneg seems to match ethtool nicely */
164			ecmd->advertising |= hw->phy.autoneg_advertised;
165		}
166
167		ecmd->port = PORT_TP;
168		ecmd->phy_address = hw->phy.addr;
169		ecmd->transceiver = XCVR_INTERNAL;
170	} else {
171		ecmd->supported = (SUPPORTED_FIBRE |
172				   SUPPORTED_Autoneg |
173				   SUPPORTED_Pause);
174		ecmd->advertising = ADVERTISED_FIBRE;
175
176		if ((eth_flags->e1000_base_lx) || (eth_flags->e1000_base_sx)) {
177			ecmd->supported |= SUPPORTED_1000baseT_Full;
178			ecmd->advertising |= ADVERTISED_1000baseT_Full;
179		}
180		if (eth_flags->e100_base_fx) {
181			ecmd->supported |= SUPPORTED_100baseT_Full;
182			ecmd->advertising |= ADVERTISED_100baseT_Full;
183		}
184		if (hw->mac.autoneg == 1)
185			ecmd->advertising |= ADVERTISED_Autoneg;
186
187		ecmd->port = PORT_FIBRE;
188		ecmd->transceiver = XCVR_EXTERNAL;
189	}
190
191	if (hw->mac.autoneg != 1)
192		ecmd->advertising &= ~(ADVERTISED_Pause |
193				       ADVERTISED_Asym_Pause);
194
195	if (hw->fc.requested_mode == e1000_fc_full)
196		ecmd->advertising |= ADVERTISED_Pause;
197	else if (hw->fc.requested_mode == e1000_fc_rx_pause)
198		ecmd->advertising |= (ADVERTISED_Pause |
199				      ADVERTISED_Asym_Pause);
200	else if (hw->fc.requested_mode == e1000_fc_tx_pause)
201		ecmd->advertising |=  ADVERTISED_Asym_Pause;
202	else
203		ecmd->advertising &= ~(ADVERTISED_Pause |
204				       ADVERTISED_Asym_Pause);
205
206	status = rd32(E1000_STATUS);
207
208	if (status & E1000_STATUS_LU) {
209		if (hw->mac.type == e1000_i354) {
210			if ((status & E1000_STATUS_2P5_SKU) &&
211			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
212				ecmd->supported = SUPPORTED_2500baseX_Full;
213				ecmd->advertising = ADVERTISED_2500baseX_Full;
214				ecmd->speed = SPEED_2500;
215			} else {
216				ecmd->supported = SUPPORTED_1000baseT_Full;
217				ecmd->advertising = ADVERTISED_1000baseT_Full;
218			}
219		} else if (status & E1000_STATUS_SPEED_1000) {
220			ecmd->speed = SPEED_1000;
221		} else if (status & E1000_STATUS_SPEED_100) {
222			ecmd->speed = SPEED_100;
223		} else {
224			ecmd->speed = SPEED_10;
225		}
226		if ((status & E1000_STATUS_FD) ||
227		    hw->phy.media_type != e1000_media_type_copper)
228			ecmd->duplex = DUPLEX_FULL;
229		else
230			ecmd->duplex = DUPLEX_HALF;
231	} else {
232		ecmd->speed = -1;
233		ecmd->duplex = -1;
234	}
235
236	if ((hw->phy.media_type == e1000_media_type_fiber) ||
237	    hw->mac.autoneg)
238		ecmd->autoneg = AUTONEG_ENABLE;
239	else
240		ecmd->autoneg = AUTONEG_DISABLE;
241
242	/* MDI-X => 2; MDI =>1; Invalid =>0 */
243	if (hw->phy.media_type == e1000_media_type_copper)
244		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
245						      ETH_TP_MDI;
246	else
247		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
248
249	if (hw->phy.mdix == AUTO_ALL_MODES)
250		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
251	else
252		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
253
254	return 0;
255}
256
257static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
258{
259	struct igb_adapter *adapter = netdev_priv(netdev);
260	struct e1000_hw *hw = &adapter->hw;
261
262	/* When SoL/IDER sessions are active, autoneg/speed/duplex
263	 * cannot be changed
264	 */
265	if (igb_check_reset_block(hw)) {
266		dev_err(&adapter->pdev->dev,
267			"Cannot change link characteristics when SoL/IDER is active.\n");
268		return -EINVAL;
269	}
270
271	/* MDI setting is only allowed when autoneg enabled because
272	 * some hardware doesn't allow MDI setting when speed or
273	 * duplex is forced.
274	 */
275	if (ecmd->eth_tp_mdix_ctrl) {
276		if (hw->phy.media_type != e1000_media_type_copper)
277			return -EOPNOTSUPP;
278
279		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
280		    (ecmd->autoneg != AUTONEG_ENABLE)) {
281			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
282			return -EINVAL;
283		}
284	}
285
286	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
287		msleep(1);
288
289	if (ecmd->autoneg == AUTONEG_ENABLE) {
290		hw->mac.autoneg = 1;
291		if (hw->phy.media_type == e1000_media_type_fiber) {
292			hw->phy.autoneg_advertised = ecmd->advertising |
293						     ADVERTISED_FIBRE |
294						     ADVERTISED_Autoneg;
295			switch (adapter->link_speed) {
296			case SPEED_2500:
297				hw->phy.autoneg_advertised =
298					ADVERTISED_2500baseX_Full;
299				break;
300			case SPEED_1000:
301				hw->phy.autoneg_advertised =
302					ADVERTISED_1000baseT_Full;
303				break;
304			case SPEED_100:
305				hw->phy.autoneg_advertised =
306					ADVERTISED_100baseT_Full;
307				break;
308			default:
309				break;
310			}
311		} else {
312			hw->phy.autoneg_advertised = ecmd->advertising |
313						     ADVERTISED_TP |
314						     ADVERTISED_Autoneg;
315		}
316		ecmd->advertising = hw->phy.autoneg_advertised;
317		if (adapter->fc_autoneg)
318			hw->fc.requested_mode = e1000_fc_default;
319	} else {
320		u32 speed = ethtool_cmd_speed(ecmd);
321		/* calling this overrides forced MDI setting */
322		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
323			clear_bit(__IGB_RESETTING, &adapter->state);
324			return -EINVAL;
325		}
326	}
327
328	/* MDI-X => 2; MDI => 1; Auto => 3 */
329	if (ecmd->eth_tp_mdix_ctrl) {
330		/* fix up the value for auto (3 => 0) as zero is mapped
331		 * internally to auto
332		 */
333		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
334			hw->phy.mdix = AUTO_ALL_MODES;
335		else
336			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
337	}
338
339	/* reset the link */
340	if (netif_running(adapter->netdev)) {
341		igb_down(adapter);
342		igb_up(adapter);
343	} else
344		igb_reset(adapter);
345
346	clear_bit(__IGB_RESETTING, &adapter->state);
347	return 0;
348}
349
350static u32 igb_get_link(struct net_device *netdev)
351{
352	struct igb_adapter *adapter = netdev_priv(netdev);
353	struct e1000_mac_info *mac = &adapter->hw.mac;
354
355	/* If the link is not reported up to netdev, interrupts are disabled,
356	 * and so the physical link state may have changed since we last
357	 * looked. Set get_link_status to make sure that the true link
358	 * state is interrogated, rather than pulling a cached and possibly
359	 * stale link state from the driver.
360	 */
361	if (!netif_carrier_ok(netdev))
362		mac->get_link_status = 1;
363
364	return igb_has_link(adapter);
365}
366
367static void igb_get_pauseparam(struct net_device *netdev,
368			       struct ethtool_pauseparam *pause)
369{
370	struct igb_adapter *adapter = netdev_priv(netdev);
371	struct e1000_hw *hw = &adapter->hw;
372
373	pause->autoneg =
374		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
375
376	if (hw->fc.current_mode == e1000_fc_rx_pause)
377		pause->rx_pause = 1;
378	else if (hw->fc.current_mode == e1000_fc_tx_pause)
379		pause->tx_pause = 1;
380	else if (hw->fc.current_mode == e1000_fc_full) {
381		pause->rx_pause = 1;
382		pause->tx_pause = 1;
383	}
384}
385
386static int igb_set_pauseparam(struct net_device *netdev,
387			      struct ethtool_pauseparam *pause)
388{
389	struct igb_adapter *adapter = netdev_priv(netdev);
390	struct e1000_hw *hw = &adapter->hw;
391	int retval = 0;
392
393	/* 100basefx does not support setting link flow control */
394	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
395		return -EINVAL;
396
397	adapter->fc_autoneg = pause->autoneg;
398
399	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
400		msleep(1);
401
402	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
403		hw->fc.requested_mode = e1000_fc_default;
404		if (netif_running(adapter->netdev)) {
405			igb_down(adapter);
406			igb_up(adapter);
407		} else {
408			igb_reset(adapter);
409		}
410	} else {
411		if (pause->rx_pause && pause->tx_pause)
412			hw->fc.requested_mode = e1000_fc_full;
413		else if (pause->rx_pause && !pause->tx_pause)
414			hw->fc.requested_mode = e1000_fc_rx_pause;
415		else if (!pause->rx_pause && pause->tx_pause)
416			hw->fc.requested_mode = e1000_fc_tx_pause;
417		else if (!pause->rx_pause && !pause->tx_pause)
418			hw->fc.requested_mode = e1000_fc_none;
419
420		hw->fc.current_mode = hw->fc.requested_mode;
421
422		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
423			  igb_force_mac_fc(hw) : igb_setup_link(hw));
424	}
425
426	clear_bit(__IGB_RESETTING, &adapter->state);
427	return retval;
428}
429
430static u32 igb_get_msglevel(struct net_device *netdev)
431{
432	struct igb_adapter *adapter = netdev_priv(netdev);
433	return adapter->msg_enable;
434}
435
436static void igb_set_msglevel(struct net_device *netdev, u32 data)
437{
438	struct igb_adapter *adapter = netdev_priv(netdev);
439	adapter->msg_enable = data;
440}
441
442static int igb_get_regs_len(struct net_device *netdev)
443{
444#define IGB_REGS_LEN 739
445	return IGB_REGS_LEN * sizeof(u32);
446}
447
448static void igb_get_regs(struct net_device *netdev,
449			 struct ethtool_regs *regs, void *p)
450{
451	struct igb_adapter *adapter = netdev_priv(netdev);
452	struct e1000_hw *hw = &adapter->hw;
453	u32 *regs_buff = p;
454	u8 i;
455
456	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
457
458	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
459
460	/* General Registers */
461	regs_buff[0] = rd32(E1000_CTRL);
462	regs_buff[1] = rd32(E1000_STATUS);
463	regs_buff[2] = rd32(E1000_CTRL_EXT);
464	regs_buff[3] = rd32(E1000_MDIC);
465	regs_buff[4] = rd32(E1000_SCTL);
466	regs_buff[5] = rd32(E1000_CONNSW);
467	regs_buff[6] = rd32(E1000_VET);
468	regs_buff[7] = rd32(E1000_LEDCTL);
469	regs_buff[8] = rd32(E1000_PBA);
470	regs_buff[9] = rd32(E1000_PBS);
471	regs_buff[10] = rd32(E1000_FRTIMER);
472	regs_buff[11] = rd32(E1000_TCPTIMER);
473
474	/* NVM Register */
475	regs_buff[12] = rd32(E1000_EECD);
476
477	/* Interrupt */
478	/* Reading EICS for EICR because they read the
479	 * same but EICS does not clear on read
480	 */
481	regs_buff[13] = rd32(E1000_EICS);
482	regs_buff[14] = rd32(E1000_EICS);
483	regs_buff[15] = rd32(E1000_EIMS);
484	regs_buff[16] = rd32(E1000_EIMC);
485	regs_buff[17] = rd32(E1000_EIAC);
486	regs_buff[18] = rd32(E1000_EIAM);
487	/* Reading ICS for ICR because they read the
488	 * same but ICS does not clear on read
489	 */
490	regs_buff[19] = rd32(E1000_ICS);
491	regs_buff[20] = rd32(E1000_ICS);
492	regs_buff[21] = rd32(E1000_IMS);
493	regs_buff[22] = rd32(E1000_IMC);
494	regs_buff[23] = rd32(E1000_IAC);
495	regs_buff[24] = rd32(E1000_IAM);
496	regs_buff[25] = rd32(E1000_IMIRVP);
497
498	/* Flow Control */
499	regs_buff[26] = rd32(E1000_FCAL);
500	regs_buff[27] = rd32(E1000_FCAH);
501	regs_buff[28] = rd32(E1000_FCTTV);
502	regs_buff[29] = rd32(E1000_FCRTL);
503	regs_buff[30] = rd32(E1000_FCRTH);
504	regs_buff[31] = rd32(E1000_FCRTV);
505
506	/* Receive */
507	regs_buff[32] = rd32(E1000_RCTL);
508	regs_buff[33] = rd32(E1000_RXCSUM);
509	regs_buff[34] = rd32(E1000_RLPML);
510	regs_buff[35] = rd32(E1000_RFCTL);
511	regs_buff[36] = rd32(E1000_MRQC);
512	regs_buff[37] = rd32(E1000_VT_CTL);
513
514	/* Transmit */
515	regs_buff[38] = rd32(E1000_TCTL);
516	regs_buff[39] = rd32(E1000_TCTL_EXT);
517	regs_buff[40] = rd32(E1000_TIPG);
518	regs_buff[41] = rd32(E1000_DTXCTL);
519
520	/* Wake Up */
521	regs_buff[42] = rd32(E1000_WUC);
522	regs_buff[43] = rd32(E1000_WUFC);
523	regs_buff[44] = rd32(E1000_WUS);
524	regs_buff[45] = rd32(E1000_IPAV);
525	regs_buff[46] = rd32(E1000_WUPL);
526
527	/* MAC */
528	regs_buff[47] = rd32(E1000_PCS_CFG0);
529	regs_buff[48] = rd32(E1000_PCS_LCTL);
530	regs_buff[49] = rd32(E1000_PCS_LSTAT);
531	regs_buff[50] = rd32(E1000_PCS_ANADV);
532	regs_buff[51] = rd32(E1000_PCS_LPAB);
533	regs_buff[52] = rd32(E1000_PCS_NPTX);
534	regs_buff[53] = rd32(E1000_PCS_LPABNP);
535
536	/* Statistics */
537	regs_buff[54] = adapter->stats.crcerrs;
538	regs_buff[55] = adapter->stats.algnerrc;
539	regs_buff[56] = adapter->stats.symerrs;
540	regs_buff[57] = adapter->stats.rxerrc;
541	regs_buff[58] = adapter->stats.mpc;
542	regs_buff[59] = adapter->stats.scc;
543	regs_buff[60] = adapter->stats.ecol;
544	regs_buff[61] = adapter->stats.mcc;
545	regs_buff[62] = adapter->stats.latecol;
546	regs_buff[63] = adapter->stats.colc;
547	regs_buff[64] = adapter->stats.dc;
548	regs_buff[65] = adapter->stats.tncrs;
549	regs_buff[66] = adapter->stats.sec;
550	regs_buff[67] = adapter->stats.htdpmc;
551	regs_buff[68] = adapter->stats.rlec;
552	regs_buff[69] = adapter->stats.xonrxc;
553	regs_buff[70] = adapter->stats.xontxc;
554	regs_buff[71] = adapter->stats.xoffrxc;
555	regs_buff[72] = adapter->stats.xofftxc;
556	regs_buff[73] = adapter->stats.fcruc;
557	regs_buff[74] = adapter->stats.prc64;
558	regs_buff[75] = adapter->stats.prc127;
559	regs_buff[76] = adapter->stats.prc255;
560	regs_buff[77] = adapter->stats.prc511;
561	regs_buff[78] = adapter->stats.prc1023;
562	regs_buff[79] = adapter->stats.prc1522;
563	regs_buff[80] = adapter->stats.gprc;
564	regs_buff[81] = adapter->stats.bprc;
565	regs_buff[82] = adapter->stats.mprc;
566	regs_buff[83] = adapter->stats.gptc;
567	regs_buff[84] = adapter->stats.gorc;
568	regs_buff[86] = adapter->stats.gotc;
569	regs_buff[88] = adapter->stats.rnbc;
570	regs_buff[89] = adapter->stats.ruc;
571	regs_buff[90] = adapter->stats.rfc;
572	regs_buff[91] = adapter->stats.roc;
573	regs_buff[92] = adapter->stats.rjc;
574	regs_buff[93] = adapter->stats.mgprc;
575	regs_buff[94] = adapter->stats.mgpdc;
576	regs_buff[95] = adapter->stats.mgptc;
577	regs_buff[96] = adapter->stats.tor;
578	regs_buff[98] = adapter->stats.tot;
579	regs_buff[100] = adapter->stats.tpr;
580	regs_buff[101] = adapter->stats.tpt;
581	regs_buff[102] = adapter->stats.ptc64;
582	regs_buff[103] = adapter->stats.ptc127;
583	regs_buff[104] = adapter->stats.ptc255;
584	regs_buff[105] = adapter->stats.ptc511;
585	regs_buff[106] = adapter->stats.ptc1023;
586	regs_buff[107] = adapter->stats.ptc1522;
587	regs_buff[108] = adapter->stats.mptc;
588	regs_buff[109] = adapter->stats.bptc;
589	regs_buff[110] = adapter->stats.tsctc;
590	regs_buff[111] = adapter->stats.iac;
591	regs_buff[112] = adapter->stats.rpthc;
592	regs_buff[113] = adapter->stats.hgptc;
593	regs_buff[114] = adapter->stats.hgorc;
594	regs_buff[116] = adapter->stats.hgotc;
595	regs_buff[118] = adapter->stats.lenerrs;
596	regs_buff[119] = adapter->stats.scvpc;
597	regs_buff[120] = adapter->stats.hrmpc;
598
599	for (i = 0; i < 4; i++)
600		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
601	for (i = 0; i < 4; i++)
602		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
603	for (i = 0; i < 4; i++)
604		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
605	for (i = 0; i < 4; i++)
606		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
607	for (i = 0; i < 4; i++)
608		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
609	for (i = 0; i < 4; i++)
610		regs_buff[141 + i] = rd32(E1000_RDH(i));
611	for (i = 0; i < 4; i++)
612		regs_buff[145 + i] = rd32(E1000_RDT(i));
613	for (i = 0; i < 4; i++)
614		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
615
616	for (i = 0; i < 10; i++)
617		regs_buff[153 + i] = rd32(E1000_EITR(i));
618	for (i = 0; i < 8; i++)
619		regs_buff[163 + i] = rd32(E1000_IMIR(i));
620	for (i = 0; i < 8; i++)
621		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
622	for (i = 0; i < 16; i++)
623		regs_buff[179 + i] = rd32(E1000_RAL(i));
624	for (i = 0; i < 16; i++)
625		regs_buff[195 + i] = rd32(E1000_RAH(i));
626
627	for (i = 0; i < 4; i++)
628		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
629	for (i = 0; i < 4; i++)
630		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
631	for (i = 0; i < 4; i++)
632		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
633	for (i = 0; i < 4; i++)
634		regs_buff[223 + i] = rd32(E1000_TDH(i));
635	for (i = 0; i < 4; i++)
636		regs_buff[227 + i] = rd32(E1000_TDT(i));
637	for (i = 0; i < 4; i++)
638		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
639	for (i = 0; i < 4; i++)
640		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
641	for (i = 0; i < 4; i++)
642		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
643	for (i = 0; i < 4; i++)
644		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
645
646	for (i = 0; i < 4; i++)
647		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
648	for (i = 0; i < 4; i++)
649		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
650	for (i = 0; i < 32; i++)
651		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
652	for (i = 0; i < 128; i++)
653		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
654	for (i = 0; i < 128; i++)
655		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
656	for (i = 0; i < 4; i++)
657		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
658
659	regs_buff[547] = rd32(E1000_TDFH);
660	regs_buff[548] = rd32(E1000_TDFT);
661	regs_buff[549] = rd32(E1000_TDFHS);
662	regs_buff[550] = rd32(E1000_TDFPC);
663
664	if (hw->mac.type > e1000_82580) {
665		regs_buff[551] = adapter->stats.o2bgptc;
666		regs_buff[552] = adapter->stats.b2ospc;
667		regs_buff[553] = adapter->stats.o2bspc;
668		regs_buff[554] = adapter->stats.b2ogprc;
669	}
670
671	if (hw->mac.type != e1000_82576)
672		return;
673	for (i = 0; i < 12; i++)
674		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
675	for (i = 0; i < 4; i++)
676		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
677	for (i = 0; i < 12; i++)
678		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
679	for (i = 0; i < 12; i++)
680		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
681	for (i = 0; i < 12; i++)
682		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
683	for (i = 0; i < 12; i++)
684		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
685	for (i = 0; i < 12; i++)
686		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
687	for (i = 0; i < 12; i++)
688		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
689
690	for (i = 0; i < 12; i++)
691		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
692	for (i = 0; i < 12; i++)
693		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
694	for (i = 0; i < 12; i++)
695		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
696	for (i = 0; i < 12; i++)
697		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
698	for (i = 0; i < 12; i++)
699		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
700	for (i = 0; i < 12; i++)
701		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
702	for (i = 0; i < 12; i++)
703		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
704	for (i = 0; i < 12; i++)
705		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
706}
707
708static int igb_get_eeprom_len(struct net_device *netdev)
709{
710	struct igb_adapter *adapter = netdev_priv(netdev);
711	return adapter->hw.nvm.word_size * 2;
712}
713
714static int igb_get_eeprom(struct net_device *netdev,
715			  struct ethtool_eeprom *eeprom, u8 *bytes)
716{
717	struct igb_adapter *adapter = netdev_priv(netdev);
718	struct e1000_hw *hw = &adapter->hw;
719	u16 *eeprom_buff;
720	int first_word, last_word;
721	int ret_val = 0;
722	u16 i;
723
724	if (eeprom->len == 0)
725		return -EINVAL;
726
727	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
728
729	first_word = eeprom->offset >> 1;
730	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
731
732	eeprom_buff = kmalloc(sizeof(u16) *
733			(last_word - first_word + 1), GFP_KERNEL);
734	if (!eeprom_buff)
735		return -ENOMEM;
736
737	if (hw->nvm.type == e1000_nvm_eeprom_spi)
738		ret_val = hw->nvm.ops.read(hw, first_word,
739					   last_word - first_word + 1,
740					   eeprom_buff);
741	else {
742		for (i = 0; i < last_word - first_word + 1; i++) {
743			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
744						   &eeprom_buff[i]);
745			if (ret_val)
746				break;
747		}
748	}
749
750	/* Device's eeprom is always little-endian, word addressable */
751	for (i = 0; i < last_word - first_word + 1; i++)
752		le16_to_cpus(&eeprom_buff[i]);
753
754	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
755			eeprom->len);
756	kfree(eeprom_buff);
757
758	return ret_val;
759}
760
761static int igb_set_eeprom(struct net_device *netdev,
762			  struct ethtool_eeprom *eeprom, u8 *bytes)
763{
764	struct igb_adapter *adapter = netdev_priv(netdev);
765	struct e1000_hw *hw = &adapter->hw;
766	u16 *eeprom_buff;
767	void *ptr;
768	int max_len, first_word, last_word, ret_val = 0;
769	u16 i;
770
771	if (eeprom->len == 0)
772		return -EOPNOTSUPP;
773
774	if (hw->mac.type == e1000_i211)
775		return -EOPNOTSUPP;
776
777	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
778		return -EFAULT;
779
780	max_len = hw->nvm.word_size * 2;
781
782	first_word = eeprom->offset >> 1;
783	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
784	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
785	if (!eeprom_buff)
786		return -ENOMEM;
787
788	ptr = (void *)eeprom_buff;
789
790	if (eeprom->offset & 1) {
791		/* need read/modify/write of first changed EEPROM word
792		 * only the second byte of the word is being modified
793		 */
794		ret_val = hw->nvm.ops.read(hw, first_word, 1,
795					    &eeprom_buff[0]);
796		ptr++;
797	}
798	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
799		/* need read/modify/write of last changed EEPROM word
800		 * only the first byte of the word is being modified
801		 */
802		ret_val = hw->nvm.ops.read(hw, last_word, 1,
803				   &eeprom_buff[last_word - first_word]);
804	}
805
806	/* Device's eeprom is always little-endian, word addressable */
807	for (i = 0; i < last_word - first_word + 1; i++)
808		le16_to_cpus(&eeprom_buff[i]);
809
810	memcpy(ptr, bytes, eeprom->len);
811
812	for (i = 0; i < last_word - first_word + 1; i++)
813		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
814
815	ret_val = hw->nvm.ops.write(hw, first_word,
816				    last_word - first_word + 1, eeprom_buff);
817
818	/* Update the checksum if nvm write succeeded */
819	if (ret_val == 0)
820		hw->nvm.ops.update(hw);
821
822	igb_set_fw_version(adapter);
823	kfree(eeprom_buff);
824	return ret_val;
825}
826
827static void igb_get_drvinfo(struct net_device *netdev,
828			    struct ethtool_drvinfo *drvinfo)
829{
830	struct igb_adapter *adapter = netdev_priv(netdev);
831
832	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
833	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
834
835	/* EEPROM image version # is reported as firmware version # for
836	 * 82575 controllers
837	 */
838	strlcpy(drvinfo->fw_version, adapter->fw_version,
839		sizeof(drvinfo->fw_version));
840	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
841		sizeof(drvinfo->bus_info));
842	drvinfo->n_stats = IGB_STATS_LEN;
843	drvinfo->testinfo_len = IGB_TEST_LEN;
844	drvinfo->regdump_len = igb_get_regs_len(netdev);
845	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
846}
847
848static void igb_get_ringparam(struct net_device *netdev,
849			      struct ethtool_ringparam *ring)
850{
851	struct igb_adapter *adapter = netdev_priv(netdev);
852
853	ring->rx_max_pending = IGB_MAX_RXD;
854	ring->tx_max_pending = IGB_MAX_TXD;
855	ring->rx_pending = adapter->rx_ring_count;
856	ring->tx_pending = adapter->tx_ring_count;
857}
858
859static int igb_set_ringparam(struct net_device *netdev,
860			     struct ethtool_ringparam *ring)
861{
862	struct igb_adapter *adapter = netdev_priv(netdev);
863	struct igb_ring *temp_ring;
864	int i, err = 0;
865	u16 new_rx_count, new_tx_count;
866
867	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
868		return -EINVAL;
869
870	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
871	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
872	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
873
874	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
875	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
876	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
877
878	if ((new_tx_count == adapter->tx_ring_count) &&
879	    (new_rx_count == adapter->rx_ring_count)) {
880		/* nothing to do */
881		return 0;
882	}
883
884	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
885		msleep(1);
886
887	if (!netif_running(adapter->netdev)) {
888		for (i = 0; i < adapter->num_tx_queues; i++)
889			adapter->tx_ring[i]->count = new_tx_count;
890		for (i = 0; i < adapter->num_rx_queues; i++)
891			adapter->rx_ring[i]->count = new_rx_count;
892		adapter->tx_ring_count = new_tx_count;
893		adapter->rx_ring_count = new_rx_count;
894		goto clear_reset;
895	}
896
897	if (adapter->num_tx_queues > adapter->num_rx_queues)
898		temp_ring = vmalloc(adapter->num_tx_queues *
899				    sizeof(struct igb_ring));
900	else
901		temp_ring = vmalloc(adapter->num_rx_queues *
902				    sizeof(struct igb_ring));
903
904	if (!temp_ring) {
905		err = -ENOMEM;
906		goto clear_reset;
907	}
908
909	igb_down(adapter);
910
911	/* We can't just free everything and then setup again,
912	 * because the ISRs in MSI-X mode get passed pointers
913	 * to the Tx and Rx ring structs.
914	 */
915	if (new_tx_count != adapter->tx_ring_count) {
916		for (i = 0; i < adapter->num_tx_queues; i++) {
917			memcpy(&temp_ring[i], adapter->tx_ring[i],
918			       sizeof(struct igb_ring));
919
920			temp_ring[i].count = new_tx_count;
921			err = igb_setup_tx_resources(&temp_ring[i]);
922			if (err) {
923				while (i) {
924					i--;
925					igb_free_tx_resources(&temp_ring[i]);
926				}
927				goto err_setup;
928			}
929		}
930
931		for (i = 0; i < adapter->num_tx_queues; i++) {
932			igb_free_tx_resources(adapter->tx_ring[i]);
933
934			memcpy(adapter->tx_ring[i], &temp_ring[i],
935			       sizeof(struct igb_ring));
936		}
937
938		adapter->tx_ring_count = new_tx_count;
939	}
940
941	if (new_rx_count != adapter->rx_ring_count) {
942		for (i = 0; i < adapter->num_rx_queues; i++) {
943			memcpy(&temp_ring[i], adapter->rx_ring[i],
944			       sizeof(struct igb_ring));
945
946			temp_ring[i].count = new_rx_count;
947			err = igb_setup_rx_resources(&temp_ring[i]);
948			if (err) {
949				while (i) {
950					i--;
951					igb_free_rx_resources(&temp_ring[i]);
952				}
953				goto err_setup;
954			}
955
956		}
957
958		for (i = 0; i < adapter->num_rx_queues; i++) {
959			igb_free_rx_resources(adapter->rx_ring[i]);
960
961			memcpy(adapter->rx_ring[i], &temp_ring[i],
962			       sizeof(struct igb_ring));
963		}
964
965		adapter->rx_ring_count = new_rx_count;
966	}
967err_setup:
968	igb_up(adapter);
969	vfree(temp_ring);
970clear_reset:
971	clear_bit(__IGB_RESETTING, &adapter->state);
972	return err;
973}
974
975/* ethtool register test data */
976struct igb_reg_test {
977	u16 reg;
978	u16 reg_offset;
979	u16 array_len;
980	u16 test_type;
981	u32 mask;
982	u32 write;
983};
984
985/* In the hardware, registers are laid out either singly, in arrays
986 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
987 * most tests take place on arrays or single registers (handled
988 * as a single-element array) and special-case the tables.
989 * Table tests are always pattern tests.
990 *
991 * We also make provision for some required setup steps by specifying
992 * registers to be written without any read-back testing.
993 */
994
995#define PATTERN_TEST	1
996#define SET_READ_TEST	2
997#define WRITE_NO_TEST	3
998#define TABLE32_TEST	4
999#define TABLE64_TEST_LO	5
1000#define TABLE64_TEST_HI	6
1001
1002/* i210 reg test */
1003static struct igb_reg_test reg_test_i210[] = {
1004	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1005	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1006	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1007	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1008	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1009	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1010	/* RDH is read-only for i210, only test RDT. */
1011	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1012	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1013	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1014	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1015	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1016	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1017	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1018	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1019	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1020	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1021	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1022	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1023	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1024						0xFFFFFFFF, 0xFFFFFFFF },
1025	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1026						0x900FFFFF, 0xFFFFFFFF },
1027	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1028						0xFFFFFFFF, 0xFFFFFFFF },
1029	{ 0, 0, 0, 0, 0 }
1030};
1031
1032/* i350 reg test */
1033static struct igb_reg_test reg_test_i350[] = {
1034	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1035	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1036	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1037	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1038	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1039	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1041	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1042	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1043	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1044	/* RDH is read-only for i350, only test RDT. */
1045	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1046	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1047	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1048	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1049	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1050	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1051	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1052	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1053	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1054	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1055	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1056	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1057	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1058	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1059	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1060	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1061	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1062	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1063						0xFFFFFFFF, 0xFFFFFFFF },
1064	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1065						0xC3FFFFFF, 0xFFFFFFFF },
1066	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1067						0xFFFFFFFF, 0xFFFFFFFF },
1068	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1069						0xC3FFFFFF, 0xFFFFFFFF },
1070	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1071						0xFFFFFFFF, 0xFFFFFFFF },
1072	{ 0, 0, 0, 0 }
1073};
1074
1075/* 82580 reg test */
1076static struct igb_reg_test reg_test_82580[] = {
1077	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1078	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1079	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1080	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1081	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1082	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1083	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1084	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1085	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1086	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1087	/* RDH is read-only for 82580, only test RDT. */
1088	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1089	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1090	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1091	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1092	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1093	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1094	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1095	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1096	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1097	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1098	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1099	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1100	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1101	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1102	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1103	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1104	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1105	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1106						0xFFFFFFFF, 0xFFFFFFFF },
1107	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1108						0x83FFFFFF, 0xFFFFFFFF },
1109	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1110						0xFFFFFFFF, 0xFFFFFFFF },
1111	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1112						0x83FFFFFF, 0xFFFFFFFF },
1113	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1114						0xFFFFFFFF, 0xFFFFFFFF },
1115	{ 0, 0, 0, 0 }
1116};
1117
1118/* 82576 reg test */
1119static struct igb_reg_test reg_test_82576[] = {
1120	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1121	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1122	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1123	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1124	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1125	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1126	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1127	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1128	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1129	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1130	/* Enable all RX queues before testing. */
1131	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1132	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1133	/* RDH is read-only for 82576, only test RDT. */
1134	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1135	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1136	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1137	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1138	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1139	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1140	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1141	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1142	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1143	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1144	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1145	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1146	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1147	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1148	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1149	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1150	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1151	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1152	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1153	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1154	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1155	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1156	{ 0, 0, 0, 0 }
1157};
1158
1159/* 82575 register test */
1160static struct igb_reg_test reg_test_82575[] = {
1161	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1162	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1163	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1164	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1165	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1166	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1168	/* Enable all four RX queues before testing. */
1169	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1170	/* RDH is read-only for 82575, only test RDT. */
1171	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1172	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1173	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1174	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1175	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1176	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1177	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1178	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1179	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1180	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1181	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1182	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1183	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1184	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1185	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1186	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1187	{ 0, 0, 0, 0 }
1188};
1189
1190static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1191			     int reg, u32 mask, u32 write)
1192{
1193	struct e1000_hw *hw = &adapter->hw;
1194	u32 pat, val;
1195	static const u32 _test[] =
1196		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1197	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1198		wr32(reg, (_test[pat] & write));
1199		val = rd32(reg) & mask;
1200		if (val != (_test[pat] & write & mask)) {
1201			dev_err(&adapter->pdev->dev,
1202				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1203				reg, val, (_test[pat] & write & mask));
1204			*data = reg;
1205			return 1;
1206		}
1207	}
1208
1209	return 0;
1210}
1211
1212static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1213			      int reg, u32 mask, u32 write)
1214{
1215	struct e1000_hw *hw = &adapter->hw;
1216	u32 val;
1217	wr32(reg, write & mask);
1218	val = rd32(reg);
1219	if ((write & mask) != (val & mask)) {
1220		dev_err(&adapter->pdev->dev,
1221			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1222			(val & mask), (write & mask));
1223		*data = reg;
1224		return 1;
1225	}
1226
1227	return 0;
1228}
1229
1230#define REG_PATTERN_TEST(reg, mask, write) \
1231	do { \
1232		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1233			return 1; \
1234	} while (0)
1235
1236#define REG_SET_AND_CHECK(reg, mask, write) \
1237	do { \
1238		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1239			return 1; \
1240	} while (0)
1241
1242static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1243{
1244	struct e1000_hw *hw = &adapter->hw;
1245	struct igb_reg_test *test;
1246	u32 value, before, after;
1247	u32 i, toggle;
1248
1249	switch (adapter->hw.mac.type) {
1250	case e1000_i350:
1251	case e1000_i354:
1252		test = reg_test_i350;
1253		toggle = 0x7FEFF3FF;
1254		break;
1255	case e1000_i210:
1256	case e1000_i211:
1257		test = reg_test_i210;
1258		toggle = 0x7FEFF3FF;
1259		break;
1260	case e1000_82580:
1261		test = reg_test_82580;
1262		toggle = 0x7FEFF3FF;
1263		break;
1264	case e1000_82576:
1265		test = reg_test_82576;
1266		toggle = 0x7FFFF3FF;
1267		break;
1268	default:
1269		test = reg_test_82575;
1270		toggle = 0x7FFFF3FF;
1271		break;
1272	}
1273
1274	/* Because the status register is such a special case,
1275	 * we handle it separately from the rest of the register
1276	 * tests.  Some bits are read-only, some toggle, and some
1277	 * are writable on newer MACs.
1278	 */
1279	before = rd32(E1000_STATUS);
1280	value = (rd32(E1000_STATUS) & toggle);
1281	wr32(E1000_STATUS, toggle);
1282	after = rd32(E1000_STATUS) & toggle;
1283	if (value != after) {
1284		dev_err(&adapter->pdev->dev,
1285			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1286			after, value);
1287		*data = 1;
1288		return 1;
1289	}
1290	/* restore previous status */
1291	wr32(E1000_STATUS, before);
1292
1293	/* Perform the remainder of the register test, looping through
1294	 * the test table until we either fail or reach the null entry.
1295	 */
1296	while (test->reg) {
1297		for (i = 0; i < test->array_len; i++) {
1298			switch (test->test_type) {
1299			case PATTERN_TEST:
1300				REG_PATTERN_TEST(test->reg +
1301						(i * test->reg_offset),
1302						test->mask,
1303						test->write);
1304				break;
1305			case SET_READ_TEST:
1306				REG_SET_AND_CHECK(test->reg +
1307						(i * test->reg_offset),
1308						test->mask,
1309						test->write);
1310				break;
1311			case WRITE_NO_TEST:
1312				writel(test->write,
1313				    (adapter->hw.hw_addr + test->reg)
1314					+ (i * test->reg_offset));
1315				break;
1316			case TABLE32_TEST:
1317				REG_PATTERN_TEST(test->reg + (i * 4),
1318						test->mask,
1319						test->write);
1320				break;
1321			case TABLE64_TEST_LO:
1322				REG_PATTERN_TEST(test->reg + (i * 8),
1323						test->mask,
1324						test->write);
1325				break;
1326			case TABLE64_TEST_HI:
1327				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1328						test->mask,
1329						test->write);
1330				break;
1331			}
1332		}
1333		test++;
1334	}
1335
1336	*data = 0;
1337	return 0;
1338}
1339
1340static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1341{
1342	struct e1000_hw *hw = &adapter->hw;
1343
1344	*data = 0;
1345
1346	/* Validate eeprom on all parts but flashless */
1347	switch (hw->mac.type) {
1348	case e1000_i210:
1349	case e1000_i211:
1350		if (igb_get_flash_presence_i210(hw)) {
1351			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1352				*data = 2;
1353		}
1354		break;
1355	default:
1356		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1357			*data = 2;
1358		break;
1359	}
1360
1361	return *data;
1362}
1363
1364static irqreturn_t igb_test_intr(int irq, void *data)
1365{
1366	struct igb_adapter *adapter = (struct igb_adapter *) data;
1367	struct e1000_hw *hw = &adapter->hw;
1368
1369	adapter->test_icr |= rd32(E1000_ICR);
1370
1371	return IRQ_HANDLED;
1372}
1373
1374static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1375{
1376	struct e1000_hw *hw = &adapter->hw;
1377	struct net_device *netdev = adapter->netdev;
1378	u32 mask, ics_mask, i = 0, shared_int = true;
1379	u32 irq = adapter->pdev->irq;
1380
1381	*data = 0;
1382
1383	/* Hook up test interrupt handler just for this test */
1384	if (adapter->msix_entries) {
1385		if (request_irq(adapter->msix_entries[0].vector,
1386		                igb_test_intr, 0, netdev->name, adapter)) {
1387			*data = 1;
1388			return -1;
1389		}
1390	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1391		shared_int = false;
1392		if (request_irq(irq,
1393		                igb_test_intr, 0, netdev->name, adapter)) {
1394			*data = 1;
1395			return -1;
1396		}
1397	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1398				netdev->name, adapter)) {
1399		shared_int = false;
1400	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1401		 netdev->name, adapter)) {
1402		*data = 1;
1403		return -1;
1404	}
1405	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1406		(shared_int ? "shared" : "unshared"));
1407
1408	/* Disable all the interrupts */
1409	wr32(E1000_IMC, ~0);
1410	wrfl();
1411	msleep(10);
1412
1413	/* Define all writable bits for ICS */
1414	switch (hw->mac.type) {
1415	case e1000_82575:
1416		ics_mask = 0x37F47EDD;
1417		break;
1418	case e1000_82576:
1419		ics_mask = 0x77D4FBFD;
1420		break;
1421	case e1000_82580:
1422		ics_mask = 0x77DCFED5;
1423		break;
1424	case e1000_i350:
1425	case e1000_i354:
1426	case e1000_i210:
1427	case e1000_i211:
1428		ics_mask = 0x77DCFED5;
1429		break;
1430	default:
1431		ics_mask = 0x7FFFFFFF;
1432		break;
1433	}
1434
1435	/* Test each interrupt */
1436	for (; i < 31; i++) {
1437		/* Interrupt to test */
1438		mask = 1 << i;
1439
1440		if (!(mask & ics_mask))
1441			continue;
1442
1443		if (!shared_int) {
1444			/* Disable the interrupt to be reported in
1445			 * the cause register and then force the same
1446			 * interrupt and see if one gets posted.  If
1447			 * an interrupt was posted to the bus, the
1448			 * test failed.
1449			 */
1450			adapter->test_icr = 0;
1451
1452			/* Flush any pending interrupts */
1453			wr32(E1000_ICR, ~0);
1454
1455			wr32(E1000_IMC, mask);
1456			wr32(E1000_ICS, mask);
1457			wrfl();
1458			msleep(10);
1459
1460			if (adapter->test_icr & mask) {
1461				*data = 3;
1462				break;
1463			}
1464		}
1465
1466		/* Enable the interrupt to be reported in
1467		 * the cause register and then force the same
1468		 * interrupt and see if one gets posted.  If
1469		 * an interrupt was not posted to the bus, the
1470		 * test failed.
1471		 */
1472		adapter->test_icr = 0;
1473
1474		/* Flush any pending interrupts */
1475		wr32(E1000_ICR, ~0);
1476
1477		wr32(E1000_IMS, mask);
1478		wr32(E1000_ICS, mask);
1479		wrfl();
1480		msleep(10);
1481
1482		if (!(adapter->test_icr & mask)) {
1483			*data = 4;
1484			break;
1485		}
1486
1487		if (!shared_int) {
1488			/* Disable the other interrupts to be reported in
1489			 * the cause register and then force the other
1490			 * interrupts and see if any get posted.  If
1491			 * an interrupt was posted to the bus, the
1492			 * test failed.
1493			 */
1494			adapter->test_icr = 0;
1495
1496			/* Flush any pending interrupts */
1497			wr32(E1000_ICR, ~0);
1498
1499			wr32(E1000_IMC, ~mask);
1500			wr32(E1000_ICS, ~mask);
1501			wrfl();
1502			msleep(10);
1503
1504			if (adapter->test_icr & mask) {
1505				*data = 5;
1506				break;
1507			}
1508		}
1509	}
1510
1511	/* Disable all the interrupts */
1512	wr32(E1000_IMC, ~0);
1513	wrfl();
1514	msleep(10);
1515
1516	/* Unhook test interrupt handler */
1517	if (adapter->msix_entries)
1518		free_irq(adapter->msix_entries[0].vector, adapter);
1519	else
1520		free_irq(irq, adapter);
1521
1522	return *data;
1523}
1524
1525static void igb_free_desc_rings(struct igb_adapter *adapter)
1526{
1527	igb_free_tx_resources(&adapter->test_tx_ring);
1528	igb_free_rx_resources(&adapter->test_rx_ring);
1529}
1530
1531static int igb_setup_desc_rings(struct igb_adapter *adapter)
1532{
1533	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1534	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1535	struct e1000_hw *hw = &adapter->hw;
1536	int ret_val;
1537
1538	/* Setup Tx descriptor ring and Tx buffers */
1539	tx_ring->count = IGB_DEFAULT_TXD;
1540	tx_ring->dev = &adapter->pdev->dev;
1541	tx_ring->netdev = adapter->netdev;
1542	tx_ring->reg_idx = adapter->vfs_allocated_count;
1543
1544	if (igb_setup_tx_resources(tx_ring)) {
1545		ret_val = 1;
1546		goto err_nomem;
1547	}
1548
1549	igb_setup_tctl(adapter);
1550	igb_configure_tx_ring(adapter, tx_ring);
1551
1552	/* Setup Rx descriptor ring and Rx buffers */
1553	rx_ring->count = IGB_DEFAULT_RXD;
1554	rx_ring->dev = &adapter->pdev->dev;
1555	rx_ring->netdev = adapter->netdev;
1556	rx_ring->reg_idx = adapter->vfs_allocated_count;
1557
1558	if (igb_setup_rx_resources(rx_ring)) {
1559		ret_val = 3;
1560		goto err_nomem;
1561	}
1562
1563	/* set the default queue to queue 0 of PF */
1564	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1565
1566	/* enable receive ring */
1567	igb_setup_rctl(adapter);
1568	igb_configure_rx_ring(adapter, rx_ring);
1569
1570	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1571
1572	return 0;
1573
1574err_nomem:
1575	igb_free_desc_rings(adapter);
1576	return ret_val;
1577}
1578
1579static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1580{
1581	struct e1000_hw *hw = &adapter->hw;
1582
1583	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1584	igb_write_phy_reg(hw, 29, 0x001F);
1585	igb_write_phy_reg(hw, 30, 0x8FFC);
1586	igb_write_phy_reg(hw, 29, 0x001A);
1587	igb_write_phy_reg(hw, 30, 0x8FF0);
1588}
1589
1590static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1591{
1592	struct e1000_hw *hw = &adapter->hw;
1593	u32 ctrl_reg = 0;
1594
1595	hw->mac.autoneg = false;
1596
1597	if (hw->phy.type == e1000_phy_m88) {
1598		if (hw->phy.id != I210_I_PHY_ID) {
1599			/* Auto-MDI/MDIX Off */
1600			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1601			/* reset to update Auto-MDI/MDIX */
1602			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1603			/* autoneg off */
1604			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1605		} else {
1606			/* force 1000, set loopback  */
1607			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1608			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1609		}
1610	} else if (hw->phy.type == e1000_phy_82580) {
1611		/* enable MII loopback */
1612		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1613	}
1614
1615	/* add small delay to avoid loopback test failure */
1616	msleep(50);
1617
1618	/* force 1000, set loopback */
1619	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1620
1621	/* Now set up the MAC to the same speed/duplex as the PHY. */
1622	ctrl_reg = rd32(E1000_CTRL);
1623	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1624	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1625		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1626		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1627		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1628		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1629
1630	if (hw->phy.type == e1000_phy_m88)
1631		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1632
1633	wr32(E1000_CTRL, ctrl_reg);
1634
1635	/* Disable the receiver on the PHY so when a cable is plugged in, the
1636	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1637	 */
1638	if (hw->phy.type == e1000_phy_m88)
1639		igb_phy_disable_receiver(adapter);
1640
1641	mdelay(500);
1642	return 0;
1643}
1644
1645static int igb_set_phy_loopback(struct igb_adapter *adapter)
1646{
1647	return igb_integrated_phy_loopback(adapter);
1648}
1649
1650static int igb_setup_loopback_test(struct igb_adapter *adapter)
1651{
1652	struct e1000_hw *hw = &adapter->hw;
1653	u32 reg;
1654
1655	reg = rd32(E1000_CTRL_EXT);
1656
1657	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1658	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1659		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1660		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1661		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1662		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1663
1664			/* Enable DH89xxCC MPHY for near end loopback */
1665			reg = rd32(E1000_MPHY_ADDR_CTL);
1666			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1667			E1000_MPHY_PCS_CLK_REG_OFFSET;
1668			wr32(E1000_MPHY_ADDR_CTL, reg);
1669
1670			reg = rd32(E1000_MPHY_DATA);
1671			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1672			wr32(E1000_MPHY_DATA, reg);
1673		}
1674
1675		reg = rd32(E1000_RCTL);
1676		reg |= E1000_RCTL_LBM_TCVR;
1677		wr32(E1000_RCTL, reg);
1678
1679		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1680
1681		reg = rd32(E1000_CTRL);
1682		reg &= ~(E1000_CTRL_RFCE |
1683			 E1000_CTRL_TFCE |
1684			 E1000_CTRL_LRST);
1685		reg |= E1000_CTRL_SLU |
1686		       E1000_CTRL_FD;
1687		wr32(E1000_CTRL, reg);
1688
1689		/* Unset switch control to serdes energy detect */
1690		reg = rd32(E1000_CONNSW);
1691		reg &= ~E1000_CONNSW_ENRGSRC;
1692		wr32(E1000_CONNSW, reg);
1693
1694		/* Unset sigdetect for SERDES loopback on
1695		 * 82580 and newer devices.
1696		 */
1697		if (hw->mac.type >= e1000_82580) {
1698			reg = rd32(E1000_PCS_CFG0);
1699			reg |= E1000_PCS_CFG_IGN_SD;
1700			wr32(E1000_PCS_CFG0, reg);
1701		}
1702
1703		/* Set PCS register for forced speed */
1704		reg = rd32(E1000_PCS_LCTL);
1705		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1706		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1707		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1708		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1709		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1710		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1711		wr32(E1000_PCS_LCTL, reg);
1712
1713		return 0;
1714	}
1715
1716	return igb_set_phy_loopback(adapter);
1717}
1718
1719static void igb_loopback_cleanup(struct igb_adapter *adapter)
1720{
1721	struct e1000_hw *hw = &adapter->hw;
1722	u32 rctl;
1723	u16 phy_reg;
1724
1725	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1726	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1727	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1728	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1729		u32 reg;
1730
1731		/* Disable near end loopback on DH89xxCC */
1732		reg = rd32(E1000_MPHY_ADDR_CTL);
1733		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1734		E1000_MPHY_PCS_CLK_REG_OFFSET;
1735		wr32(E1000_MPHY_ADDR_CTL, reg);
1736
1737		reg = rd32(E1000_MPHY_DATA);
1738		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1739		wr32(E1000_MPHY_DATA, reg);
1740	}
1741
1742	rctl = rd32(E1000_RCTL);
1743	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1744	wr32(E1000_RCTL, rctl);
1745
1746	hw->mac.autoneg = true;
1747	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1748	if (phy_reg & MII_CR_LOOPBACK) {
1749		phy_reg &= ~MII_CR_LOOPBACK;
1750		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1751		igb_phy_sw_reset(hw);
1752	}
1753}
1754
1755static void igb_create_lbtest_frame(struct sk_buff *skb,
1756				    unsigned int frame_size)
1757{
1758	memset(skb->data, 0xFF, frame_size);
1759	frame_size /= 2;
1760	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1761	memset(&skb->data[frame_size + 10], 0xBE, 1);
1762	memset(&skb->data[frame_size + 12], 0xAF, 1);
1763}
1764
1765static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1766				  unsigned int frame_size)
1767{
1768	unsigned char *data;
1769	bool match = true;
1770
1771	frame_size >>= 1;
1772
1773	data = kmap(rx_buffer->page);
1774
1775	if (data[3] != 0xFF ||
1776	    data[frame_size + 10] != 0xBE ||
1777	    data[frame_size + 12] != 0xAF)
1778		match = false;
1779
1780	kunmap(rx_buffer->page);
1781
1782	return match;
1783}
1784
1785static int igb_clean_test_rings(struct igb_ring *rx_ring,
1786				struct igb_ring *tx_ring,
1787				unsigned int size)
1788{
1789	union e1000_adv_rx_desc *rx_desc;
1790	struct igb_rx_buffer *rx_buffer_info;
1791	struct igb_tx_buffer *tx_buffer_info;
1792	u16 rx_ntc, tx_ntc, count = 0;
1793
1794	/* initialize next to clean and descriptor values */
1795	rx_ntc = rx_ring->next_to_clean;
1796	tx_ntc = tx_ring->next_to_clean;
1797	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1798
1799	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1800		/* check Rx buffer */
1801		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1802
1803		/* sync Rx buffer for CPU read */
1804		dma_sync_single_for_cpu(rx_ring->dev,
1805					rx_buffer_info->dma,
1806					IGB_RX_BUFSZ,
1807					DMA_FROM_DEVICE);
1808
1809		/* verify contents of skb */
1810		if (igb_check_lbtest_frame(rx_buffer_info, size))
1811			count++;
1812
1813		/* sync Rx buffer for device write */
1814		dma_sync_single_for_device(rx_ring->dev,
1815					   rx_buffer_info->dma,
1816					   IGB_RX_BUFSZ,
1817					   DMA_FROM_DEVICE);
1818
1819		/* unmap buffer on Tx side */
1820		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1821		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1822
1823		/* increment Rx/Tx next to clean counters */
1824		rx_ntc++;
1825		if (rx_ntc == rx_ring->count)
1826			rx_ntc = 0;
1827		tx_ntc++;
1828		if (tx_ntc == tx_ring->count)
1829			tx_ntc = 0;
1830
1831		/* fetch next descriptor */
1832		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1833	}
1834
1835	netdev_tx_reset_queue(txring_txq(tx_ring));
1836
1837	/* re-map buffers to ring, store next to clean values */
1838	igb_alloc_rx_buffers(rx_ring, count);
1839	rx_ring->next_to_clean = rx_ntc;
1840	tx_ring->next_to_clean = tx_ntc;
1841
1842	return count;
1843}
1844
1845static int igb_run_loopback_test(struct igb_adapter *adapter)
1846{
1847	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1848	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1849	u16 i, j, lc, good_cnt;
1850	int ret_val = 0;
1851	unsigned int size = IGB_RX_HDR_LEN;
1852	netdev_tx_t tx_ret_val;
1853	struct sk_buff *skb;
1854
1855	/* allocate test skb */
1856	skb = alloc_skb(size, GFP_KERNEL);
1857	if (!skb)
1858		return 11;
1859
1860	/* place data into test skb */
1861	igb_create_lbtest_frame(skb, size);
1862	skb_put(skb, size);
1863
1864	/* Calculate the loop count based on the largest descriptor ring
1865	 * The idea is to wrap the largest ring a number of times using 64
1866	 * send/receive pairs during each loop
1867	 */
1868
1869	if (rx_ring->count <= tx_ring->count)
1870		lc = ((tx_ring->count / 64) * 2) + 1;
1871	else
1872		lc = ((rx_ring->count / 64) * 2) + 1;
1873
1874	for (j = 0; j <= lc; j++) { /* loop count loop */
1875		/* reset count of good packets */
1876		good_cnt = 0;
1877
1878		/* place 64 packets on the transmit queue*/
1879		for (i = 0; i < 64; i++) {
1880			skb_get(skb);
1881			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1882			if (tx_ret_val == NETDEV_TX_OK)
1883				good_cnt++;
1884		}
1885
1886		if (good_cnt != 64) {
1887			ret_val = 12;
1888			break;
1889		}
1890
1891		/* allow 200 milliseconds for packets to go from Tx to Rx */
1892		msleep(200);
1893
1894		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1895		if (good_cnt != 64) {
1896			ret_val = 13;
1897			break;
1898		}
1899	} /* end loop count loop */
1900
1901	/* free the original skb */
1902	kfree_skb(skb);
1903
1904	return ret_val;
1905}
1906
1907static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1908{
1909	/* PHY loopback cannot be performed if SoL/IDER
1910	 * sessions are active
1911	 */
1912	if (igb_check_reset_block(&adapter->hw)) {
1913		dev_err(&adapter->pdev->dev,
1914			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1915		*data = 0;
1916		goto out;
1917	}
1918
1919	if (adapter->hw.mac.type == e1000_i354) {
1920		dev_info(&adapter->pdev->dev,
1921			"Loopback test not supported on i354.\n");
1922		*data = 0;
1923		goto out;
1924	}
1925	*data = igb_setup_desc_rings(adapter);
1926	if (*data)
1927		goto out;
1928	*data = igb_setup_loopback_test(adapter);
1929	if (*data)
1930		goto err_loopback;
1931	*data = igb_run_loopback_test(adapter);
1932	igb_loopback_cleanup(adapter);
1933
1934err_loopback:
1935	igb_free_desc_rings(adapter);
1936out:
1937	return *data;
1938}
1939
1940static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1941{
1942	struct e1000_hw *hw = &adapter->hw;
1943	*data = 0;
1944	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1945		int i = 0;
1946		hw->mac.serdes_has_link = false;
1947
1948		/* On some blade server designs, link establishment
1949		 * could take as long as 2-3 minutes
1950		 */
1951		do {
1952			hw->mac.ops.check_for_link(&adapter->hw);
1953			if (hw->mac.serdes_has_link)
1954				return *data;
1955			msleep(20);
1956		} while (i++ < 3750);
1957
1958		*data = 1;
1959	} else {
1960		hw->mac.ops.check_for_link(&adapter->hw);
1961		if (hw->mac.autoneg)
1962			msleep(5000);
1963
1964		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1965			*data = 1;
1966	}
1967	return *data;
1968}
1969
1970static void igb_diag_test(struct net_device *netdev,
1971			  struct ethtool_test *eth_test, u64 *data)
1972{
1973	struct igb_adapter *adapter = netdev_priv(netdev);
1974	u16 autoneg_advertised;
1975	u8 forced_speed_duplex, autoneg;
1976	bool if_running = netif_running(netdev);
1977
1978	set_bit(__IGB_TESTING, &adapter->state);
1979	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1980		/* Offline tests */
1981
1982		/* save speed, duplex, autoneg settings */
1983		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1984		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1985		autoneg = adapter->hw.mac.autoneg;
1986
1987		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1988
1989		/* power up link for link test */
1990		igb_power_up_link(adapter);
1991
1992		/* Link test performed before hardware reset so autoneg doesn't
1993		 * interfere with test result
1994		 */
1995		if (igb_link_test(adapter, &data[4]))
1996			eth_test->flags |= ETH_TEST_FL_FAILED;
1997
1998		if (if_running)
1999			/* indicate we're in test mode */
2000			dev_close(netdev);
2001		else
2002			igb_reset(adapter);
2003
2004		if (igb_reg_test(adapter, &data[0]))
2005			eth_test->flags |= ETH_TEST_FL_FAILED;
2006
2007		igb_reset(adapter);
2008		if (igb_eeprom_test(adapter, &data[1]))
2009			eth_test->flags |= ETH_TEST_FL_FAILED;
2010
2011		igb_reset(adapter);
2012		if (igb_intr_test(adapter, &data[2]))
2013			eth_test->flags |= ETH_TEST_FL_FAILED;
2014
2015		igb_reset(adapter);
2016		/* power up link for loopback test */
2017		igb_power_up_link(adapter);
2018		if (igb_loopback_test(adapter, &data[3]))
2019			eth_test->flags |= ETH_TEST_FL_FAILED;
2020
2021		/* restore speed, duplex, autoneg settings */
2022		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2023		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2024		adapter->hw.mac.autoneg = autoneg;
2025
2026		/* force this routine to wait until autoneg complete/timeout */
2027		adapter->hw.phy.autoneg_wait_to_complete = true;
2028		igb_reset(adapter);
2029		adapter->hw.phy.autoneg_wait_to_complete = false;
2030
2031		clear_bit(__IGB_TESTING, &adapter->state);
2032		if (if_running)
2033			dev_open(netdev);
2034	} else {
2035		dev_info(&adapter->pdev->dev, "online testing starting\n");
2036
2037		/* PHY is powered down when interface is down */
2038		if (if_running && igb_link_test(adapter, &data[4]))
2039			eth_test->flags |= ETH_TEST_FL_FAILED;
2040		else
2041			data[4] = 0;
2042
2043		/* Online tests aren't run; pass by default */
2044		data[0] = 0;
2045		data[1] = 0;
2046		data[2] = 0;
2047		data[3] = 0;
2048
2049		clear_bit(__IGB_TESTING, &adapter->state);
2050	}
2051	msleep_interruptible(4 * 1000);
2052}
2053
2054static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2055{
2056	struct igb_adapter *adapter = netdev_priv(netdev);
2057
2058	wol->supported = WAKE_UCAST | WAKE_MCAST |
2059			 WAKE_BCAST | WAKE_MAGIC |
2060			 WAKE_PHY;
2061	wol->wolopts = 0;
2062
2063	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2064		return;
2065
2066	/* apply any specific unsupported masks here */
2067	switch (adapter->hw.device_id) {
2068	default:
2069		break;
2070	}
2071
2072	if (adapter->wol & E1000_WUFC_EX)
2073		wol->wolopts |= WAKE_UCAST;
2074	if (adapter->wol & E1000_WUFC_MC)
2075		wol->wolopts |= WAKE_MCAST;
2076	if (adapter->wol & E1000_WUFC_BC)
2077		wol->wolopts |= WAKE_BCAST;
2078	if (adapter->wol & E1000_WUFC_MAG)
2079		wol->wolopts |= WAKE_MAGIC;
2080	if (adapter->wol & E1000_WUFC_LNKC)
2081		wol->wolopts |= WAKE_PHY;
2082}
2083
2084static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2085{
2086	struct igb_adapter *adapter = netdev_priv(netdev);
2087
2088	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2089		return -EOPNOTSUPP;
2090
2091	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2092		return wol->wolopts ? -EOPNOTSUPP : 0;
2093
2094	/* these settings will always override what we currently have */
2095	adapter->wol = 0;
2096
2097	if (wol->wolopts & WAKE_UCAST)
2098		adapter->wol |= E1000_WUFC_EX;
2099	if (wol->wolopts & WAKE_MCAST)
2100		adapter->wol |= E1000_WUFC_MC;
2101	if (wol->wolopts & WAKE_BCAST)
2102		adapter->wol |= E1000_WUFC_BC;
2103	if (wol->wolopts & WAKE_MAGIC)
2104		adapter->wol |= E1000_WUFC_MAG;
2105	if (wol->wolopts & WAKE_PHY)
2106		adapter->wol |= E1000_WUFC_LNKC;
2107	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2108
2109	return 0;
2110}
2111
2112/* bit defines for adapter->led_status */
2113#define IGB_LED_ON		0
2114
2115static int igb_set_phys_id(struct net_device *netdev,
2116			   enum ethtool_phys_id_state state)
2117{
2118	struct igb_adapter *adapter = netdev_priv(netdev);
2119	struct e1000_hw *hw = &adapter->hw;
2120
2121	switch (state) {
2122	case ETHTOOL_ID_ACTIVE:
2123		igb_blink_led(hw);
2124		return 2;
2125	case ETHTOOL_ID_ON:
2126		igb_blink_led(hw);
2127		break;
2128	case ETHTOOL_ID_OFF:
2129		igb_led_off(hw);
2130		break;
2131	case ETHTOOL_ID_INACTIVE:
2132		igb_led_off(hw);
2133		clear_bit(IGB_LED_ON, &adapter->led_status);
2134		igb_cleanup_led(hw);
2135		break;
2136	}
2137
2138	return 0;
2139}
2140
2141static int igb_set_coalesce(struct net_device *netdev,
2142			    struct ethtool_coalesce *ec)
2143{
2144	struct igb_adapter *adapter = netdev_priv(netdev);
2145	int i;
2146
2147	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2148	    ((ec->rx_coalesce_usecs > 3) &&
2149	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2150	    (ec->rx_coalesce_usecs == 2))
2151		return -EINVAL;
2152
2153	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2154	    ((ec->tx_coalesce_usecs > 3) &&
2155	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2156	    (ec->tx_coalesce_usecs == 2))
2157		return -EINVAL;
2158
2159	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2160		return -EINVAL;
2161
2162	/* If ITR is disabled, disable DMAC */
2163	if (ec->rx_coalesce_usecs == 0) {
2164		if (adapter->flags & IGB_FLAG_DMAC)
2165			adapter->flags &= ~IGB_FLAG_DMAC;
2166	}
2167
2168	/* convert to rate of irq's per second */
2169	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2170		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2171	else
2172		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2173
2174	/* convert to rate of irq's per second */
2175	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2176		adapter->tx_itr_setting = adapter->rx_itr_setting;
2177	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2178		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2179	else
2180		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2181
2182	for (i = 0; i < adapter->num_q_vectors; i++) {
2183		struct igb_q_vector *q_vector = adapter->q_vector[i];
2184		q_vector->tx.work_limit = adapter->tx_work_limit;
2185		if (q_vector->rx.ring)
2186			q_vector->itr_val = adapter->rx_itr_setting;
2187		else
2188			q_vector->itr_val = adapter->tx_itr_setting;
2189		if (q_vector->itr_val && q_vector->itr_val <= 3)
2190			q_vector->itr_val = IGB_START_ITR;
2191		q_vector->set_itr = 1;
2192	}
2193
2194	return 0;
2195}
2196
2197static int igb_get_coalesce(struct net_device *netdev,
2198			    struct ethtool_coalesce *ec)
2199{
2200	struct igb_adapter *adapter = netdev_priv(netdev);
2201
2202	if (adapter->rx_itr_setting <= 3)
2203		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2204	else
2205		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2206
2207	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2208		if (adapter->tx_itr_setting <= 3)
2209			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2210		else
2211			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2212	}
2213
2214	return 0;
2215}
2216
2217static int igb_nway_reset(struct net_device *netdev)
2218{
2219	struct igb_adapter *adapter = netdev_priv(netdev);
2220	if (netif_running(netdev))
2221		igb_reinit_locked(adapter);
2222	return 0;
2223}
2224
2225static int igb_get_sset_count(struct net_device *netdev, int sset)
2226{
2227	switch (sset) {
2228	case ETH_SS_STATS:
2229		return IGB_STATS_LEN;
2230	case ETH_SS_TEST:
2231		return IGB_TEST_LEN;
2232	default:
2233		return -ENOTSUPP;
2234	}
2235}
2236
2237static void igb_get_ethtool_stats(struct net_device *netdev,
2238				  struct ethtool_stats *stats, u64 *data)
2239{
2240	struct igb_adapter *adapter = netdev_priv(netdev);
2241	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2242	unsigned int start;
2243	struct igb_ring *ring;
2244	int i, j;
2245	char *p;
2246
2247	spin_lock(&adapter->stats64_lock);
2248	igb_update_stats(adapter, net_stats);
2249
2250	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2251		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2252		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2253			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2254	}
2255	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2256		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2257		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2258			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2259	}
2260	for (j = 0; j < adapter->num_tx_queues; j++) {
2261		u64	restart2;
2262
2263		ring = adapter->tx_ring[j];
2264		do {
2265			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2266			data[i]   = ring->tx_stats.packets;
2267			data[i+1] = ring->tx_stats.bytes;
2268			data[i+2] = ring->tx_stats.restart_queue;
2269		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2270		do {
2271			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2272			restart2  = ring->tx_stats.restart_queue2;
2273		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2274		data[i+2] += restart2;
2275
2276		i += IGB_TX_QUEUE_STATS_LEN;
2277	}
2278	for (j = 0; j < adapter->num_rx_queues; j++) {
2279		ring = adapter->rx_ring[j];
2280		do {
2281			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2282			data[i]   = ring->rx_stats.packets;
2283			data[i+1] = ring->rx_stats.bytes;
2284			data[i+2] = ring->rx_stats.drops;
2285			data[i+3] = ring->rx_stats.csum_err;
2286			data[i+4] = ring->rx_stats.alloc_failed;
2287		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2288		i += IGB_RX_QUEUE_STATS_LEN;
2289	}
2290	spin_unlock(&adapter->stats64_lock);
2291}
2292
2293static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2294{
2295	struct igb_adapter *adapter = netdev_priv(netdev);
2296	u8 *p = data;
2297	int i;
2298
2299	switch (stringset) {
2300	case ETH_SS_TEST:
2301		memcpy(data, *igb_gstrings_test,
2302			IGB_TEST_LEN*ETH_GSTRING_LEN);
2303		break;
2304	case ETH_SS_STATS:
2305		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2306			memcpy(p, igb_gstrings_stats[i].stat_string,
2307			       ETH_GSTRING_LEN);
2308			p += ETH_GSTRING_LEN;
2309		}
2310		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2311			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2312			       ETH_GSTRING_LEN);
2313			p += ETH_GSTRING_LEN;
2314		}
2315		for (i = 0; i < adapter->num_tx_queues; i++) {
2316			sprintf(p, "tx_queue_%u_packets", i);
2317			p += ETH_GSTRING_LEN;
2318			sprintf(p, "tx_queue_%u_bytes", i);
2319			p += ETH_GSTRING_LEN;
2320			sprintf(p, "tx_queue_%u_restart", i);
2321			p += ETH_GSTRING_LEN;
2322		}
2323		for (i = 0; i < adapter->num_rx_queues; i++) {
2324			sprintf(p, "rx_queue_%u_packets", i);
2325			p += ETH_GSTRING_LEN;
2326			sprintf(p, "rx_queue_%u_bytes", i);
2327			p += ETH_GSTRING_LEN;
2328			sprintf(p, "rx_queue_%u_drops", i);
2329			p += ETH_GSTRING_LEN;
2330			sprintf(p, "rx_queue_%u_csum_err", i);
2331			p += ETH_GSTRING_LEN;
2332			sprintf(p, "rx_queue_%u_alloc_failed", i);
2333			p += ETH_GSTRING_LEN;
2334		}
2335		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2336		break;
2337	}
2338}
2339
2340static int igb_get_ts_info(struct net_device *dev,
2341			   struct ethtool_ts_info *info)
2342{
2343	struct igb_adapter *adapter = netdev_priv(dev);
2344
2345	switch (adapter->hw.mac.type) {
2346	case e1000_82575:
2347		info->so_timestamping =
2348			SOF_TIMESTAMPING_TX_SOFTWARE |
2349			SOF_TIMESTAMPING_RX_SOFTWARE |
2350			SOF_TIMESTAMPING_SOFTWARE;
2351		return 0;
2352	case e1000_82576:
2353	case e1000_82580:
2354	case e1000_i350:
2355	case e1000_i354:
2356	case e1000_i210:
2357	case e1000_i211:
2358		info->so_timestamping =
2359			SOF_TIMESTAMPING_TX_SOFTWARE |
2360			SOF_TIMESTAMPING_RX_SOFTWARE |
2361			SOF_TIMESTAMPING_SOFTWARE |
2362			SOF_TIMESTAMPING_TX_HARDWARE |
2363			SOF_TIMESTAMPING_RX_HARDWARE |
2364			SOF_TIMESTAMPING_RAW_HARDWARE;
2365
2366		if (adapter->ptp_clock)
2367			info->phc_index = ptp_clock_index(adapter->ptp_clock);
2368		else
2369			info->phc_index = -1;
2370
2371		info->tx_types =
2372			(1 << HWTSTAMP_TX_OFF) |
2373			(1 << HWTSTAMP_TX_ON);
2374
2375		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2376
2377		/* 82576 does not support timestamping all packets. */
2378		if (adapter->hw.mac.type >= e1000_82580)
2379			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2380		else
2381			info->rx_filters |=
2382				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2383				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2384				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2385				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2386				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2387				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2388				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2389
2390		return 0;
2391	default:
2392		return -EOPNOTSUPP;
2393	}
2394}
2395
2396static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2397				 struct ethtool_rxnfc *cmd)
2398{
2399	cmd->data = 0;
2400
2401	/* Report default options for RSS on igb */
2402	switch (cmd->flow_type) {
2403	case TCP_V4_FLOW:
2404		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2405	case UDP_V4_FLOW:
2406		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2407			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2408	case SCTP_V4_FLOW:
2409	case AH_ESP_V4_FLOW:
2410	case AH_V4_FLOW:
2411	case ESP_V4_FLOW:
2412	case IPV4_FLOW:
2413		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2414		break;
2415	case TCP_V6_FLOW:
2416		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2417	case UDP_V6_FLOW:
2418		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2419			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2420	case SCTP_V6_FLOW:
2421	case AH_ESP_V6_FLOW:
2422	case AH_V6_FLOW:
2423	case ESP_V6_FLOW:
2424	case IPV6_FLOW:
2425		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2426		break;
2427	default:
2428		return -EINVAL;
2429	}
2430
2431	return 0;
2432}
2433
2434static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2435			 u32 *rule_locs)
2436{
2437	struct igb_adapter *adapter = netdev_priv(dev);
2438	int ret = -EOPNOTSUPP;
2439
2440	switch (cmd->cmd) {
2441	case ETHTOOL_GRXRINGS:
2442		cmd->data = adapter->num_rx_queues;
2443		ret = 0;
2444		break;
2445	case ETHTOOL_GRXFH:
2446		ret = igb_get_rss_hash_opts(adapter, cmd);
2447		break;
2448	default:
2449		break;
2450	}
2451
2452	return ret;
2453}
2454
2455#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2456		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2457static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2458				struct ethtool_rxnfc *nfc)
2459{
2460	u32 flags = adapter->flags;
2461
2462	/* RSS does not support anything other than hashing
2463	 * to queues on src and dst IPs and ports
2464	 */
2465	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2466			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2467		return -EINVAL;
2468
2469	switch (nfc->flow_type) {
2470	case TCP_V4_FLOW:
2471	case TCP_V6_FLOW:
2472		if (!(nfc->data & RXH_IP_SRC) ||
2473		    !(nfc->data & RXH_IP_DST) ||
2474		    !(nfc->data & RXH_L4_B_0_1) ||
2475		    !(nfc->data & RXH_L4_B_2_3))
2476			return -EINVAL;
2477		break;
2478	case UDP_V4_FLOW:
2479		if (!(nfc->data & RXH_IP_SRC) ||
2480		    !(nfc->data & RXH_IP_DST))
2481			return -EINVAL;
2482		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2483		case 0:
2484			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2485			break;
2486		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2487			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2488			break;
2489		default:
2490			return -EINVAL;
2491		}
2492		break;
2493	case UDP_V6_FLOW:
2494		if (!(nfc->data & RXH_IP_SRC) ||
2495		    !(nfc->data & RXH_IP_DST))
2496			return -EINVAL;
2497		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2498		case 0:
2499			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2500			break;
2501		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2502			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2503			break;
2504		default:
2505			return -EINVAL;
2506		}
2507		break;
2508	case AH_ESP_V4_FLOW:
2509	case AH_V4_FLOW:
2510	case ESP_V4_FLOW:
2511	case SCTP_V4_FLOW:
2512	case AH_ESP_V6_FLOW:
2513	case AH_V6_FLOW:
2514	case ESP_V6_FLOW:
2515	case SCTP_V6_FLOW:
2516		if (!(nfc->data & RXH_IP_SRC) ||
2517		    !(nfc->data & RXH_IP_DST) ||
2518		    (nfc->data & RXH_L4_B_0_1) ||
2519		    (nfc->data & RXH_L4_B_2_3))
2520			return -EINVAL;
2521		break;
2522	default:
2523		return -EINVAL;
2524	}
2525
2526	/* if we changed something we need to update flags */
2527	if (flags != adapter->flags) {
2528		struct e1000_hw *hw = &adapter->hw;
2529		u32 mrqc = rd32(E1000_MRQC);
2530
2531		if ((flags & UDP_RSS_FLAGS) &&
2532		    !(adapter->flags & UDP_RSS_FLAGS))
2533			dev_err(&adapter->pdev->dev,
2534				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2535
2536		adapter->flags = flags;
2537
2538		/* Perform hash on these packet types */
2539		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2540			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2541			E1000_MRQC_RSS_FIELD_IPV6 |
2542			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2543
2544		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2545			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2546
2547		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2548			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2549
2550		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2551			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2552
2553		wr32(E1000_MRQC, mrqc);
2554	}
2555
2556	return 0;
2557}
2558
2559static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2560{
2561	struct igb_adapter *adapter = netdev_priv(dev);
2562	int ret = -EOPNOTSUPP;
2563
2564	switch (cmd->cmd) {
2565	case ETHTOOL_SRXFH:
2566		ret = igb_set_rss_hash_opt(adapter, cmd);
2567		break;
2568	default:
2569		break;
2570	}
2571
2572	return ret;
2573}
2574
2575static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2576{
2577	struct igb_adapter *adapter = netdev_priv(netdev);
2578	struct e1000_hw *hw = &adapter->hw;
2579	u32 ipcnfg, eeer, ret_val;
2580	u16 phy_data;
2581
2582	if ((hw->mac.type < e1000_i350) ||
2583	    (hw->phy.media_type != e1000_media_type_copper))
2584		return -EOPNOTSUPP;
2585
2586	edata->supported = (SUPPORTED_1000baseT_Full |
2587			    SUPPORTED_100baseT_Full);
2588
2589	ipcnfg = rd32(E1000_IPCNFG);
2590	eeer = rd32(E1000_EEER);
2591
2592	/* EEE status on negotiated link */
2593	if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2594		edata->advertised = ADVERTISED_1000baseT_Full;
2595
2596	if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2597		edata->advertised |= ADVERTISED_100baseT_Full;
2598
2599	/* EEE Link Partner Advertised */
2600	switch (hw->mac.type) {
2601	case e1000_i350:
2602		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2603					   &phy_data);
2604		if (ret_val)
2605			return -ENODATA;
2606
2607		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2608
2609		break;
2610	case e1000_i210:
2611	case e1000_i211:
2612		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2613					     E1000_EEE_LP_ADV_DEV_I210,
2614					     &phy_data);
2615		if (ret_val)
2616			return -ENODATA;
2617
2618		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2619
2620		break;
2621	default:
2622		break;
2623	}
2624
2625	if (eeer & E1000_EEER_EEE_NEG)
2626		edata->eee_active = true;
2627
2628	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2629
2630	if (eeer & E1000_EEER_TX_LPI_EN)
2631		edata->tx_lpi_enabled = true;
2632
2633	/* Report correct negotiated EEE status for devices that
2634	 * wrongly report EEE at half-duplex
2635	 */
2636	if (adapter->link_duplex == HALF_DUPLEX) {
2637		edata->eee_enabled = false;
2638		edata->eee_active = false;
2639		edata->tx_lpi_enabled = false;
2640		edata->advertised &= ~edata->advertised;
2641	}
2642
2643	return 0;
2644}
2645
2646static int igb_set_eee(struct net_device *netdev,
2647		       struct ethtool_eee *edata)
2648{
2649	struct igb_adapter *adapter = netdev_priv(netdev);
2650	struct e1000_hw *hw = &adapter->hw;
2651	struct ethtool_eee eee_curr;
2652	s32 ret_val;
2653
2654	if ((hw->mac.type < e1000_i350) ||
2655	    (hw->phy.media_type != e1000_media_type_copper))
2656		return -EOPNOTSUPP;
2657
2658	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2659
2660	ret_val = igb_get_eee(netdev, &eee_curr);
2661	if (ret_val)
2662		return ret_val;
2663
2664	if (eee_curr.eee_enabled) {
2665		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2666			dev_err(&adapter->pdev->dev,
2667				"Setting EEE tx-lpi is not supported\n");
2668			return -EINVAL;
2669		}
2670
2671		/* Tx LPI timer is not implemented currently */
2672		if (edata->tx_lpi_timer) {
2673			dev_err(&adapter->pdev->dev,
2674				"Setting EEE Tx LPI timer is not supported\n");
2675			return -EINVAL;
2676		}
2677
2678		if (eee_curr.advertised != edata->advertised) {
2679			dev_err(&adapter->pdev->dev,
2680				"Setting EEE Advertisement is not supported\n");
2681			return -EINVAL;
2682		}
2683
2684	} else if (!edata->eee_enabled) {
2685		dev_err(&adapter->pdev->dev,
2686			"Setting EEE options are not supported with EEE disabled\n");
2687			return -EINVAL;
2688		}
2689
2690	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2691		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2692		igb_set_eee_i350(hw);
2693
2694		/* reset link */
2695		if (netif_running(netdev))
2696			igb_reinit_locked(adapter);
2697		else
2698			igb_reset(adapter);
2699	}
2700
2701	return 0;
2702}
2703
2704static int igb_get_module_info(struct net_device *netdev,
2705			       struct ethtool_modinfo *modinfo)
2706{
2707	struct igb_adapter *adapter = netdev_priv(netdev);
2708	struct e1000_hw *hw = &adapter->hw;
2709	u32 status = E1000_SUCCESS;
2710	u16 sff8472_rev, addr_mode;
2711	bool page_swap = false;
2712
2713	if ((hw->phy.media_type == e1000_media_type_copper) ||
2714	    (hw->phy.media_type == e1000_media_type_unknown))
2715		return -EOPNOTSUPP;
2716
2717	/* Check whether we support SFF-8472 or not */
2718	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2719	if (status != E1000_SUCCESS)
2720		return -EIO;
2721
2722	/* addressing mode is not supported */
2723	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2724	if (status != E1000_SUCCESS)
2725		return -EIO;
2726
2727	/* addressing mode is not supported */
2728	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2729		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2730		page_swap = true;
2731	}
2732
2733	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2734		/* We have an SFP, but it does not support SFF-8472 */
2735		modinfo->type = ETH_MODULE_SFF_8079;
2736		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2737	} else {
2738		/* We have an SFP which supports a revision of SFF-8472 */
2739		modinfo->type = ETH_MODULE_SFF_8472;
2740		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2741	}
2742
2743	return 0;
2744}
2745
2746static int igb_get_module_eeprom(struct net_device *netdev,
2747				 struct ethtool_eeprom *ee, u8 *data)
2748{
2749	struct igb_adapter *adapter = netdev_priv(netdev);
2750	struct e1000_hw *hw = &adapter->hw;
2751	u32 status = E1000_SUCCESS;
2752	u16 *dataword;
2753	u16 first_word, last_word;
2754	int i = 0;
2755
2756	if (ee->len == 0)
2757		return -EINVAL;
2758
2759	first_word = ee->offset >> 1;
2760	last_word = (ee->offset + ee->len - 1) >> 1;
2761
2762	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2763			   GFP_KERNEL);
2764	if (!dataword)
2765		return -ENOMEM;
2766
2767	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2768	for (i = 0; i < last_word - first_word + 1; i++) {
2769		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2770		if (status != E1000_SUCCESS)
2771			/* Error occurred while reading module */
2772			return -EIO;
2773
2774		be16_to_cpus(&dataword[i]);
2775	}
2776
2777	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2778	kfree(dataword);
2779
2780	return 0;
2781}
2782
2783static int igb_ethtool_begin(struct net_device *netdev)
2784{
2785	struct igb_adapter *adapter = netdev_priv(netdev);
2786	pm_runtime_get_sync(&adapter->pdev->dev);
2787	return 0;
2788}
2789
2790static void igb_ethtool_complete(struct net_device *netdev)
2791{
2792	struct igb_adapter *adapter = netdev_priv(netdev);
2793	pm_runtime_put(&adapter->pdev->dev);
2794}
2795
2796static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2797{
2798	return IGB_RETA_SIZE;
2799}
2800
2801static int igb_get_rxfh_indir(struct net_device *netdev, u32 *indir)
2802{
2803	struct igb_adapter *adapter = netdev_priv(netdev);
2804	int i;
2805
2806	for (i = 0; i < IGB_RETA_SIZE; i++)
2807		indir[i] = adapter->rss_indir_tbl[i];
2808
2809	return 0;
2810}
2811
2812void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2813{
2814	struct e1000_hw *hw = &adapter->hw;
2815	u32 reg = E1000_RETA(0);
2816	u32 shift = 0;
2817	int i = 0;
2818
2819	switch (hw->mac.type) {
2820	case e1000_82575:
2821		shift = 6;
2822		break;
2823	case e1000_82576:
2824		/* 82576 supports 2 RSS queues for SR-IOV */
2825		if (adapter->vfs_allocated_count)
2826			shift = 3;
2827		break;
2828	default:
2829		break;
2830	}
2831
2832	while (i < IGB_RETA_SIZE) {
2833		u32 val = 0;
2834		int j;
2835
2836		for (j = 3; j >= 0; j--) {
2837			val <<= 8;
2838			val |= adapter->rss_indir_tbl[i + j];
2839		}
2840
2841		wr32(reg, val << shift);
2842		reg += 4;
2843		i += 4;
2844	}
2845}
2846
2847static int igb_set_rxfh_indir(struct net_device *netdev, const u32 *indir)
2848{
2849	struct igb_adapter *adapter = netdev_priv(netdev);
2850	struct e1000_hw *hw = &adapter->hw;
2851	int i;
2852	u32 num_queues;
2853
2854	num_queues = adapter->rss_queues;
2855
2856	switch (hw->mac.type) {
2857	case e1000_82576:
2858		/* 82576 supports 2 RSS queues for SR-IOV */
2859		if (adapter->vfs_allocated_count)
2860			num_queues = 2;
2861		break;
2862	default:
2863		break;
2864	}
2865
2866	/* Verify user input. */
2867	for (i = 0; i < IGB_RETA_SIZE; i++)
2868		if (indir[i] >= num_queues)
2869			return -EINVAL;
2870
2871
2872	for (i = 0; i < IGB_RETA_SIZE; i++)
2873		adapter->rss_indir_tbl[i] = indir[i];
2874
2875	igb_write_rss_indir_tbl(adapter);
2876
2877	return 0;
2878}
2879
2880static const struct ethtool_ops igb_ethtool_ops = {
2881	.get_settings		= igb_get_settings,
2882	.set_settings		= igb_set_settings,
2883	.get_drvinfo		= igb_get_drvinfo,
2884	.get_regs_len		= igb_get_regs_len,
2885	.get_regs		= igb_get_regs,
2886	.get_wol		= igb_get_wol,
2887	.set_wol		= igb_set_wol,
2888	.get_msglevel		= igb_get_msglevel,
2889	.set_msglevel		= igb_set_msglevel,
2890	.nway_reset		= igb_nway_reset,
2891	.get_link		= igb_get_link,
2892	.get_eeprom_len		= igb_get_eeprom_len,
2893	.get_eeprom		= igb_get_eeprom,
2894	.set_eeprom		= igb_set_eeprom,
2895	.get_ringparam		= igb_get_ringparam,
2896	.set_ringparam		= igb_set_ringparam,
2897	.get_pauseparam		= igb_get_pauseparam,
2898	.set_pauseparam		= igb_set_pauseparam,
2899	.self_test		= igb_diag_test,
2900	.get_strings		= igb_get_strings,
2901	.set_phys_id		= igb_set_phys_id,
2902	.get_sset_count		= igb_get_sset_count,
2903	.get_ethtool_stats	= igb_get_ethtool_stats,
2904	.get_coalesce		= igb_get_coalesce,
2905	.set_coalesce		= igb_set_coalesce,
2906	.get_ts_info		= igb_get_ts_info,
2907	.get_rxnfc		= igb_get_rxnfc,
2908	.set_rxnfc		= igb_set_rxnfc,
2909	.get_eee		= igb_get_eee,
2910	.set_eee		= igb_set_eee,
2911	.get_module_info	= igb_get_module_info,
2912	.get_module_eeprom	= igb_get_module_eeprom,
2913	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
2914	.get_rxfh_indir		= igb_get_rxfh_indir,
2915	.set_rxfh_indir		= igb_set_rxfh_indir,
2916	.begin			= igb_ethtool_begin,
2917	.complete		= igb_ethtool_complete,
2918};
2919
2920void igb_set_ethtool_ops(struct net_device *netdev)
2921{
2922	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2923}
2924