[go: nahoru, domu]

igb_ethtool.c revision 87371b9de5becc32af2f9be84008b8a8a424c58a
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37#include <linux/sched.h>
38#include <linux/slab.h>
39#include <linux/pm_runtime.h>
40#include <linux/highmem.h>
41#include <linux/mdio.h>
42
43#include "igb.h"
44
45struct igb_stats {
46	char stat_string[ETH_GSTRING_LEN];
47	int sizeof_stat;
48	int stat_offset;
49};
50
51#define IGB_STAT(_name, _stat) { \
52	.stat_string = _name, \
53	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
54	.stat_offset = offsetof(struct igb_adapter, _stat) \
55}
56static const struct igb_stats igb_gstrings_stats[] = {
57	IGB_STAT("rx_packets", stats.gprc),
58	IGB_STAT("tx_packets", stats.gptc),
59	IGB_STAT("rx_bytes", stats.gorc),
60	IGB_STAT("tx_bytes", stats.gotc),
61	IGB_STAT("rx_broadcast", stats.bprc),
62	IGB_STAT("tx_broadcast", stats.bptc),
63	IGB_STAT("rx_multicast", stats.mprc),
64	IGB_STAT("tx_multicast", stats.mptc),
65	IGB_STAT("multicast", stats.mprc),
66	IGB_STAT("collisions", stats.colc),
67	IGB_STAT("rx_crc_errors", stats.crcerrs),
68	IGB_STAT("rx_no_buffer_count", stats.rnbc),
69	IGB_STAT("rx_missed_errors", stats.mpc),
70	IGB_STAT("tx_aborted_errors", stats.ecol),
71	IGB_STAT("tx_carrier_errors", stats.tncrs),
72	IGB_STAT("tx_window_errors", stats.latecol),
73	IGB_STAT("tx_abort_late_coll", stats.latecol),
74	IGB_STAT("tx_deferred_ok", stats.dc),
75	IGB_STAT("tx_single_coll_ok", stats.scc),
76	IGB_STAT("tx_multi_coll_ok", stats.mcc),
77	IGB_STAT("tx_timeout_count", tx_timeout_count),
78	IGB_STAT("rx_long_length_errors", stats.roc),
79	IGB_STAT("rx_short_length_errors", stats.ruc),
80	IGB_STAT("rx_align_errors", stats.algnerrc),
81	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
82	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
83	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
84	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
85	IGB_STAT("tx_flow_control_xon", stats.xontxc),
86	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
87	IGB_STAT("rx_long_byte_count", stats.gorc),
88	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
89	IGB_STAT("tx_smbus", stats.mgptc),
90	IGB_STAT("rx_smbus", stats.mgprc),
91	IGB_STAT("dropped_smbus", stats.mgpdc),
92	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
93	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
94	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
95	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
96	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
98};
99
100#define IGB_NETDEV_STAT(_net_stat) { \
101	.stat_string = __stringify(_net_stat), \
102	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
103	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
104}
105static const struct igb_stats igb_gstrings_net_stats[] = {
106	IGB_NETDEV_STAT(rx_errors),
107	IGB_NETDEV_STAT(tx_errors),
108	IGB_NETDEV_STAT(tx_dropped),
109	IGB_NETDEV_STAT(rx_length_errors),
110	IGB_NETDEV_STAT(rx_over_errors),
111	IGB_NETDEV_STAT(rx_frame_errors),
112	IGB_NETDEV_STAT(rx_fifo_errors),
113	IGB_NETDEV_STAT(tx_fifo_errors),
114	IGB_NETDEV_STAT(tx_heartbeat_errors)
115};
116
117#define IGB_GLOBAL_STATS_LEN	\
118	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
119#define IGB_NETDEV_STATS_LEN	\
120	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
121#define IGB_RX_QUEUE_STATS_LEN \
122	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
123
124#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
125
126#define IGB_QUEUE_STATS_LEN \
127	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
128	  IGB_RX_QUEUE_STATS_LEN) + \
129	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
130	  IGB_TX_QUEUE_STATS_LEN))
131#define IGB_STATS_LEN \
132	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
133
134static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
135	"Register test  (offline)", "Eeprom test    (offline)",
136	"Interrupt test (offline)", "Loopback test  (offline)",
137	"Link test   (on/offline)"
138};
139#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
140
141static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
142{
143	struct igb_adapter *adapter = netdev_priv(netdev);
144	struct e1000_hw *hw = &adapter->hw;
145	u32 status;
146
147	if (hw->phy.media_type == e1000_media_type_copper) {
148
149		ecmd->supported = (SUPPORTED_10baseT_Half |
150				   SUPPORTED_10baseT_Full |
151				   SUPPORTED_100baseT_Half |
152				   SUPPORTED_100baseT_Full |
153				   SUPPORTED_1000baseT_Full|
154				   SUPPORTED_Autoneg |
155				   SUPPORTED_TP |
156				   SUPPORTED_Pause);
157		ecmd->advertising = ADVERTISED_TP;
158
159		if (hw->mac.autoneg == 1) {
160			ecmd->advertising |= ADVERTISED_Autoneg;
161			/* the e1000 autoneg seems to match ethtool nicely */
162			ecmd->advertising |= hw->phy.autoneg_advertised;
163		}
164
165		if (hw->mac.autoneg != 1)
166			ecmd->advertising &= ~(ADVERTISED_Pause |
167					       ADVERTISED_Asym_Pause);
168
169		if (hw->fc.requested_mode == e1000_fc_full)
170			ecmd->advertising |= ADVERTISED_Pause;
171		else if (hw->fc.requested_mode == e1000_fc_rx_pause)
172			ecmd->advertising |= (ADVERTISED_Pause |
173					      ADVERTISED_Asym_Pause);
174		else if (hw->fc.requested_mode == e1000_fc_tx_pause)
175			ecmd->advertising |=  ADVERTISED_Asym_Pause;
176		else
177			ecmd->advertising &= ~(ADVERTISED_Pause |
178					       ADVERTISED_Asym_Pause);
179
180		ecmd->port = PORT_TP;
181		ecmd->phy_address = hw->phy.addr;
182		ecmd->transceiver = XCVR_INTERNAL;
183	} else {
184		ecmd->supported   = (SUPPORTED_1000baseT_Full |
185				     SUPPORTED_100baseT_Full |
186				     SUPPORTED_Autoneg |
187				     SUPPORTED_FIBRE |
188				     SUPPORTED_Pause);
189
190		ecmd->advertising = ADVERTISED_FIBRE;
191
192		if (adapter->link_speed == SPEED_100)
193			ecmd->advertising = ADVERTISED_100baseT_Full;
194		else if (adapter->link_speed == SPEED_1000)
195			ecmd->advertising = ADVERTISED_1000baseT_Full;
196
197		if (hw->mac.autoneg == 1)
198			ecmd->advertising |= ADVERTISED_Autoneg;
199
200		ecmd->port = PORT_FIBRE;
201		ecmd->transceiver = XCVR_EXTERNAL;
202	}
203
204	status = rd32(E1000_STATUS);
205
206	if (status & E1000_STATUS_LU) {
207
208		if (status & E1000_STATUS_SPEED_1000)
209			ethtool_cmd_speed_set(ecmd, SPEED_1000);
210		else if (status & E1000_STATUS_SPEED_100)
211			ethtool_cmd_speed_set(ecmd, SPEED_100);
212		else
213			ethtool_cmd_speed_set(ecmd, SPEED_10);
214
215		if ((status & E1000_STATUS_FD) ||
216		    hw->phy.media_type != e1000_media_type_copper)
217			ecmd->duplex = DUPLEX_FULL;
218		else
219			ecmd->duplex = DUPLEX_HALF;
220	} else {
221		ethtool_cmd_speed_set(ecmd, -1);
222		ecmd->duplex = -1;
223	}
224
225	if ((hw->phy.media_type == e1000_media_type_fiber) ||
226	    hw->mac.autoneg)
227		ecmd->autoneg = AUTONEG_ENABLE;
228	else
229		ecmd->autoneg = AUTONEG_DISABLE;
230
231	/* MDI-X => 2; MDI =>1; Invalid =>0 */
232	if (hw->phy.media_type == e1000_media_type_copper)
233		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
234						      ETH_TP_MDI;
235	else
236		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
237
238	if (hw->phy.mdix == AUTO_ALL_MODES)
239		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
240	else
241		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
242
243	return 0;
244}
245
246static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
247{
248	struct igb_adapter *adapter = netdev_priv(netdev);
249	struct e1000_hw *hw = &adapter->hw;
250
251	/* When SoL/IDER sessions are active, autoneg/speed/duplex
252	 * cannot be changed
253	 */
254	if (igb_check_reset_block(hw)) {
255		dev_err(&adapter->pdev->dev,
256			"Cannot change link characteristics when SoL/IDER is active.\n");
257		return -EINVAL;
258	}
259
260	/* MDI setting is only allowed when autoneg enabled because
261	 * some hardware doesn't allow MDI setting when speed or
262	 * duplex is forced.
263	 */
264	if (ecmd->eth_tp_mdix_ctrl) {
265		if (hw->phy.media_type != e1000_media_type_copper)
266			return -EOPNOTSUPP;
267
268		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
269		    (ecmd->autoneg != AUTONEG_ENABLE)) {
270			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
271			return -EINVAL;
272		}
273	}
274
275	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
276		msleep(1);
277
278	if (ecmd->autoneg == AUTONEG_ENABLE) {
279		hw->mac.autoneg = 1;
280		if (hw->phy.media_type == e1000_media_type_fiber) {
281			hw->phy.autoneg_advertised = ecmd->advertising |
282						     ADVERTISED_FIBRE |
283						     ADVERTISED_Autoneg;
284			if (adapter->link_speed == SPEED_1000)
285				hw->phy.autoneg_advertised =
286					ADVERTISED_1000baseT_Full;
287			else if (adapter->link_speed == SPEED_100)
288				hw->phy.autoneg_advertised =
289					ADVERTISED_100baseT_Full;
290		} else {
291			hw->phy.autoneg_advertised = ecmd->advertising |
292						     ADVERTISED_TP |
293						     ADVERTISED_Autoneg;
294		}
295		ecmd->advertising = hw->phy.autoneg_advertised;
296		if (adapter->fc_autoneg)
297			hw->fc.requested_mode = e1000_fc_default;
298	} else {
299		u32 speed = ethtool_cmd_speed(ecmd);
300		/* calling this overrides forced MDI setting */
301		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
302			clear_bit(__IGB_RESETTING, &adapter->state);
303			return -EINVAL;
304		}
305	}
306
307	/* MDI-X => 2; MDI => 1; Auto => 3 */
308	if (ecmd->eth_tp_mdix_ctrl) {
309		/* fix up the value for auto (3 => 0) as zero is mapped
310		 * internally to auto
311		 */
312		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
313			hw->phy.mdix = AUTO_ALL_MODES;
314		else
315			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
316	}
317
318	/* reset the link */
319	if (netif_running(adapter->netdev)) {
320		igb_down(adapter);
321		igb_up(adapter);
322	} else
323		igb_reset(adapter);
324
325	clear_bit(__IGB_RESETTING, &adapter->state);
326	return 0;
327}
328
329static u32 igb_get_link(struct net_device *netdev)
330{
331	struct igb_adapter *adapter = netdev_priv(netdev);
332	struct e1000_mac_info *mac = &adapter->hw.mac;
333
334	/* If the link is not reported up to netdev, interrupts are disabled,
335	 * and so the physical link state may have changed since we last
336	 * looked. Set get_link_status to make sure that the true link
337	 * state is interrogated, rather than pulling a cached and possibly
338	 * stale link state from the driver.
339	 */
340	if (!netif_carrier_ok(netdev))
341		mac->get_link_status = 1;
342
343	return igb_has_link(adapter);
344}
345
346static void igb_get_pauseparam(struct net_device *netdev,
347			       struct ethtool_pauseparam *pause)
348{
349	struct igb_adapter *adapter = netdev_priv(netdev);
350	struct e1000_hw *hw = &adapter->hw;
351
352	pause->autoneg =
353		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
354
355	if (hw->fc.current_mode == e1000_fc_rx_pause)
356		pause->rx_pause = 1;
357	else if (hw->fc.current_mode == e1000_fc_tx_pause)
358		pause->tx_pause = 1;
359	else if (hw->fc.current_mode == e1000_fc_full) {
360		pause->rx_pause = 1;
361		pause->tx_pause = 1;
362	}
363}
364
365static int igb_set_pauseparam(struct net_device *netdev,
366			      struct ethtool_pauseparam *pause)
367{
368	struct igb_adapter *adapter = netdev_priv(netdev);
369	struct e1000_hw *hw = &adapter->hw;
370	int retval = 0;
371
372	adapter->fc_autoneg = pause->autoneg;
373
374	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
375		msleep(1);
376
377	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
378		hw->fc.requested_mode = e1000_fc_default;
379		if (netif_running(adapter->netdev)) {
380			igb_down(adapter);
381			igb_up(adapter);
382		} else {
383			igb_reset(adapter);
384		}
385	} else {
386		if (pause->rx_pause && pause->tx_pause)
387			hw->fc.requested_mode = e1000_fc_full;
388		else if (pause->rx_pause && !pause->tx_pause)
389			hw->fc.requested_mode = e1000_fc_rx_pause;
390		else if (!pause->rx_pause && pause->tx_pause)
391			hw->fc.requested_mode = e1000_fc_tx_pause;
392		else if (!pause->rx_pause && !pause->tx_pause)
393			hw->fc.requested_mode = e1000_fc_none;
394
395		hw->fc.current_mode = hw->fc.requested_mode;
396
397		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
398			  igb_force_mac_fc(hw) : igb_setup_link(hw));
399	}
400
401	clear_bit(__IGB_RESETTING, &adapter->state);
402	return retval;
403}
404
405static u32 igb_get_msglevel(struct net_device *netdev)
406{
407	struct igb_adapter *adapter = netdev_priv(netdev);
408	return adapter->msg_enable;
409}
410
411static void igb_set_msglevel(struct net_device *netdev, u32 data)
412{
413	struct igb_adapter *adapter = netdev_priv(netdev);
414	adapter->msg_enable = data;
415}
416
417static int igb_get_regs_len(struct net_device *netdev)
418{
419#define IGB_REGS_LEN 739
420	return IGB_REGS_LEN * sizeof(u32);
421}
422
423static void igb_get_regs(struct net_device *netdev,
424			 struct ethtool_regs *regs, void *p)
425{
426	struct igb_adapter *adapter = netdev_priv(netdev);
427	struct e1000_hw *hw = &adapter->hw;
428	u32 *regs_buff = p;
429	u8 i;
430
431	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
432
433	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
434
435	/* General Registers */
436	regs_buff[0] = rd32(E1000_CTRL);
437	regs_buff[1] = rd32(E1000_STATUS);
438	regs_buff[2] = rd32(E1000_CTRL_EXT);
439	regs_buff[3] = rd32(E1000_MDIC);
440	regs_buff[4] = rd32(E1000_SCTL);
441	regs_buff[5] = rd32(E1000_CONNSW);
442	regs_buff[6] = rd32(E1000_VET);
443	regs_buff[7] = rd32(E1000_LEDCTL);
444	regs_buff[8] = rd32(E1000_PBA);
445	regs_buff[9] = rd32(E1000_PBS);
446	regs_buff[10] = rd32(E1000_FRTIMER);
447	regs_buff[11] = rd32(E1000_TCPTIMER);
448
449	/* NVM Register */
450	regs_buff[12] = rd32(E1000_EECD);
451
452	/* Interrupt */
453	/* Reading EICS for EICR because they read the
454	 * same but EICS does not clear on read
455	 */
456	regs_buff[13] = rd32(E1000_EICS);
457	regs_buff[14] = rd32(E1000_EICS);
458	regs_buff[15] = rd32(E1000_EIMS);
459	regs_buff[16] = rd32(E1000_EIMC);
460	regs_buff[17] = rd32(E1000_EIAC);
461	regs_buff[18] = rd32(E1000_EIAM);
462	/* Reading ICS for ICR because they read the
463	 * same but ICS does not clear on read
464	 */
465	regs_buff[19] = rd32(E1000_ICS);
466	regs_buff[20] = rd32(E1000_ICS);
467	regs_buff[21] = rd32(E1000_IMS);
468	regs_buff[22] = rd32(E1000_IMC);
469	regs_buff[23] = rd32(E1000_IAC);
470	regs_buff[24] = rd32(E1000_IAM);
471	regs_buff[25] = rd32(E1000_IMIRVP);
472
473	/* Flow Control */
474	regs_buff[26] = rd32(E1000_FCAL);
475	regs_buff[27] = rd32(E1000_FCAH);
476	regs_buff[28] = rd32(E1000_FCTTV);
477	regs_buff[29] = rd32(E1000_FCRTL);
478	regs_buff[30] = rd32(E1000_FCRTH);
479	regs_buff[31] = rd32(E1000_FCRTV);
480
481	/* Receive */
482	regs_buff[32] = rd32(E1000_RCTL);
483	regs_buff[33] = rd32(E1000_RXCSUM);
484	regs_buff[34] = rd32(E1000_RLPML);
485	regs_buff[35] = rd32(E1000_RFCTL);
486	regs_buff[36] = rd32(E1000_MRQC);
487	regs_buff[37] = rd32(E1000_VT_CTL);
488
489	/* Transmit */
490	regs_buff[38] = rd32(E1000_TCTL);
491	regs_buff[39] = rd32(E1000_TCTL_EXT);
492	regs_buff[40] = rd32(E1000_TIPG);
493	regs_buff[41] = rd32(E1000_DTXCTL);
494
495	/* Wake Up */
496	regs_buff[42] = rd32(E1000_WUC);
497	regs_buff[43] = rd32(E1000_WUFC);
498	regs_buff[44] = rd32(E1000_WUS);
499	regs_buff[45] = rd32(E1000_IPAV);
500	regs_buff[46] = rd32(E1000_WUPL);
501
502	/* MAC */
503	regs_buff[47] = rd32(E1000_PCS_CFG0);
504	regs_buff[48] = rd32(E1000_PCS_LCTL);
505	regs_buff[49] = rd32(E1000_PCS_LSTAT);
506	regs_buff[50] = rd32(E1000_PCS_ANADV);
507	regs_buff[51] = rd32(E1000_PCS_LPAB);
508	regs_buff[52] = rd32(E1000_PCS_NPTX);
509	regs_buff[53] = rd32(E1000_PCS_LPABNP);
510
511	/* Statistics */
512	regs_buff[54] = adapter->stats.crcerrs;
513	regs_buff[55] = adapter->stats.algnerrc;
514	regs_buff[56] = adapter->stats.symerrs;
515	regs_buff[57] = adapter->stats.rxerrc;
516	regs_buff[58] = adapter->stats.mpc;
517	regs_buff[59] = adapter->stats.scc;
518	regs_buff[60] = adapter->stats.ecol;
519	regs_buff[61] = adapter->stats.mcc;
520	regs_buff[62] = adapter->stats.latecol;
521	regs_buff[63] = adapter->stats.colc;
522	regs_buff[64] = adapter->stats.dc;
523	regs_buff[65] = adapter->stats.tncrs;
524	regs_buff[66] = adapter->stats.sec;
525	regs_buff[67] = adapter->stats.htdpmc;
526	regs_buff[68] = adapter->stats.rlec;
527	regs_buff[69] = adapter->stats.xonrxc;
528	regs_buff[70] = adapter->stats.xontxc;
529	regs_buff[71] = adapter->stats.xoffrxc;
530	regs_buff[72] = adapter->stats.xofftxc;
531	regs_buff[73] = adapter->stats.fcruc;
532	regs_buff[74] = adapter->stats.prc64;
533	regs_buff[75] = adapter->stats.prc127;
534	regs_buff[76] = adapter->stats.prc255;
535	regs_buff[77] = adapter->stats.prc511;
536	regs_buff[78] = adapter->stats.prc1023;
537	regs_buff[79] = adapter->stats.prc1522;
538	regs_buff[80] = adapter->stats.gprc;
539	regs_buff[81] = adapter->stats.bprc;
540	regs_buff[82] = adapter->stats.mprc;
541	regs_buff[83] = adapter->stats.gptc;
542	regs_buff[84] = adapter->stats.gorc;
543	regs_buff[86] = adapter->stats.gotc;
544	regs_buff[88] = adapter->stats.rnbc;
545	regs_buff[89] = adapter->stats.ruc;
546	regs_buff[90] = adapter->stats.rfc;
547	regs_buff[91] = adapter->stats.roc;
548	regs_buff[92] = adapter->stats.rjc;
549	regs_buff[93] = adapter->stats.mgprc;
550	regs_buff[94] = adapter->stats.mgpdc;
551	regs_buff[95] = adapter->stats.mgptc;
552	regs_buff[96] = adapter->stats.tor;
553	regs_buff[98] = adapter->stats.tot;
554	regs_buff[100] = adapter->stats.tpr;
555	regs_buff[101] = adapter->stats.tpt;
556	regs_buff[102] = adapter->stats.ptc64;
557	regs_buff[103] = adapter->stats.ptc127;
558	regs_buff[104] = adapter->stats.ptc255;
559	regs_buff[105] = adapter->stats.ptc511;
560	regs_buff[106] = adapter->stats.ptc1023;
561	regs_buff[107] = adapter->stats.ptc1522;
562	regs_buff[108] = adapter->stats.mptc;
563	regs_buff[109] = adapter->stats.bptc;
564	regs_buff[110] = adapter->stats.tsctc;
565	regs_buff[111] = adapter->stats.iac;
566	regs_buff[112] = adapter->stats.rpthc;
567	regs_buff[113] = adapter->stats.hgptc;
568	regs_buff[114] = adapter->stats.hgorc;
569	regs_buff[116] = adapter->stats.hgotc;
570	regs_buff[118] = adapter->stats.lenerrs;
571	regs_buff[119] = adapter->stats.scvpc;
572	regs_buff[120] = adapter->stats.hrmpc;
573
574	for (i = 0; i < 4; i++)
575		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
576	for (i = 0; i < 4; i++)
577		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
578	for (i = 0; i < 4; i++)
579		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
580	for (i = 0; i < 4; i++)
581		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
582	for (i = 0; i < 4; i++)
583		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
584	for (i = 0; i < 4; i++)
585		regs_buff[141 + i] = rd32(E1000_RDH(i));
586	for (i = 0; i < 4; i++)
587		regs_buff[145 + i] = rd32(E1000_RDT(i));
588	for (i = 0; i < 4; i++)
589		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
590
591	for (i = 0; i < 10; i++)
592		regs_buff[153 + i] = rd32(E1000_EITR(i));
593	for (i = 0; i < 8; i++)
594		regs_buff[163 + i] = rd32(E1000_IMIR(i));
595	for (i = 0; i < 8; i++)
596		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
597	for (i = 0; i < 16; i++)
598		regs_buff[179 + i] = rd32(E1000_RAL(i));
599	for (i = 0; i < 16; i++)
600		regs_buff[195 + i] = rd32(E1000_RAH(i));
601
602	for (i = 0; i < 4; i++)
603		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
604	for (i = 0; i < 4; i++)
605		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
606	for (i = 0; i < 4; i++)
607		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
608	for (i = 0; i < 4; i++)
609		regs_buff[223 + i] = rd32(E1000_TDH(i));
610	for (i = 0; i < 4; i++)
611		regs_buff[227 + i] = rd32(E1000_TDT(i));
612	for (i = 0; i < 4; i++)
613		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
614	for (i = 0; i < 4; i++)
615		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
616	for (i = 0; i < 4; i++)
617		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
618	for (i = 0; i < 4; i++)
619		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
620
621	for (i = 0; i < 4; i++)
622		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
623	for (i = 0; i < 4; i++)
624		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
625	for (i = 0; i < 32; i++)
626		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
627	for (i = 0; i < 128; i++)
628		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
629	for (i = 0; i < 128; i++)
630		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
631	for (i = 0; i < 4; i++)
632		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
633
634	regs_buff[547] = rd32(E1000_TDFH);
635	regs_buff[548] = rd32(E1000_TDFT);
636	regs_buff[549] = rd32(E1000_TDFHS);
637	regs_buff[550] = rd32(E1000_TDFPC);
638
639	if (hw->mac.type > e1000_82580) {
640		regs_buff[551] = adapter->stats.o2bgptc;
641		regs_buff[552] = adapter->stats.b2ospc;
642		regs_buff[553] = adapter->stats.o2bspc;
643		regs_buff[554] = adapter->stats.b2ogprc;
644	}
645
646	if (hw->mac.type != e1000_82576)
647		return;
648	for (i = 0; i < 12; i++)
649		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
650	for (i = 0; i < 4; i++)
651		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
652	for (i = 0; i < 12; i++)
653		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
654	for (i = 0; i < 12; i++)
655		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
656	for (i = 0; i < 12; i++)
657		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
658	for (i = 0; i < 12; i++)
659		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
660	for (i = 0; i < 12; i++)
661		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
662	for (i = 0; i < 12; i++)
663		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
664
665	for (i = 0; i < 12; i++)
666		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
667	for (i = 0; i < 12; i++)
668		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
669	for (i = 0; i < 12; i++)
670		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
671	for (i = 0; i < 12; i++)
672		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
673	for (i = 0; i < 12; i++)
674		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
675	for (i = 0; i < 12; i++)
676		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
677	for (i = 0; i < 12; i++)
678		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
679	for (i = 0; i < 12; i++)
680		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
681}
682
683static int igb_get_eeprom_len(struct net_device *netdev)
684{
685	struct igb_adapter *adapter = netdev_priv(netdev);
686	return adapter->hw.nvm.word_size * 2;
687}
688
689static int igb_get_eeprom(struct net_device *netdev,
690			  struct ethtool_eeprom *eeprom, u8 *bytes)
691{
692	struct igb_adapter *adapter = netdev_priv(netdev);
693	struct e1000_hw *hw = &adapter->hw;
694	u16 *eeprom_buff;
695	int first_word, last_word;
696	int ret_val = 0;
697	u16 i;
698
699	if (eeprom->len == 0)
700		return -EINVAL;
701
702	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
703
704	first_word = eeprom->offset >> 1;
705	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
706
707	eeprom_buff = kmalloc(sizeof(u16) *
708			(last_word - first_word + 1), GFP_KERNEL);
709	if (!eeprom_buff)
710		return -ENOMEM;
711
712	if (hw->nvm.type == e1000_nvm_eeprom_spi)
713		ret_val = hw->nvm.ops.read(hw, first_word,
714					   last_word - first_word + 1,
715					   eeprom_buff);
716	else {
717		for (i = 0; i < last_word - first_word + 1; i++) {
718			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
719						   &eeprom_buff[i]);
720			if (ret_val)
721				break;
722		}
723	}
724
725	/* Device's eeprom is always little-endian, word addressable */
726	for (i = 0; i < last_word - first_word + 1; i++)
727		le16_to_cpus(&eeprom_buff[i]);
728
729	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
730			eeprom->len);
731	kfree(eeprom_buff);
732
733	return ret_val;
734}
735
736static int igb_set_eeprom(struct net_device *netdev,
737			  struct ethtool_eeprom *eeprom, u8 *bytes)
738{
739	struct igb_adapter *adapter = netdev_priv(netdev);
740	struct e1000_hw *hw = &adapter->hw;
741	u16 *eeprom_buff;
742	void *ptr;
743	int max_len, first_word, last_word, ret_val = 0;
744	u16 i;
745
746	if (eeprom->len == 0)
747		return -EOPNOTSUPP;
748
749	if (hw->mac.type == e1000_i211)
750		return -EOPNOTSUPP;
751
752	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
753		return -EFAULT;
754
755	max_len = hw->nvm.word_size * 2;
756
757	first_word = eeprom->offset >> 1;
758	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
759	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
760	if (!eeprom_buff)
761		return -ENOMEM;
762
763	ptr = (void *)eeprom_buff;
764
765	if (eeprom->offset & 1) {
766		/* need read/modify/write of first changed EEPROM word
767		 * only the second byte of the word is being modified
768		 */
769		ret_val = hw->nvm.ops.read(hw, first_word, 1,
770					    &eeprom_buff[0]);
771		ptr++;
772	}
773	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
774		/* need read/modify/write of last changed EEPROM word
775		 * only the first byte of the word is being modified
776		 */
777		ret_val = hw->nvm.ops.read(hw, last_word, 1,
778				   &eeprom_buff[last_word - first_word]);
779	}
780
781	/* Device's eeprom is always little-endian, word addressable */
782	for (i = 0; i < last_word - first_word + 1; i++)
783		le16_to_cpus(&eeprom_buff[i]);
784
785	memcpy(ptr, bytes, eeprom->len);
786
787	for (i = 0; i < last_word - first_word + 1; i++)
788		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
789
790	ret_val = hw->nvm.ops.write(hw, first_word,
791				    last_word - first_word + 1, eeprom_buff);
792
793	/* Update the checksum over the first part of the EEPROM if needed
794	 * and flush shadow RAM for 82573 controllers
795	 */
796	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
797		hw->nvm.ops.update(hw);
798
799	igb_set_fw_version(adapter);
800	kfree(eeprom_buff);
801	return ret_val;
802}
803
804static void igb_get_drvinfo(struct net_device *netdev,
805			    struct ethtool_drvinfo *drvinfo)
806{
807	struct igb_adapter *adapter = netdev_priv(netdev);
808
809	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
810	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
811
812	/* EEPROM image version # is reported as firmware version # for
813	 * 82575 controllers
814	 */
815	strlcpy(drvinfo->fw_version, adapter->fw_version,
816		sizeof(drvinfo->fw_version));
817	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
818		sizeof(drvinfo->bus_info));
819	drvinfo->n_stats = IGB_STATS_LEN;
820	drvinfo->testinfo_len = IGB_TEST_LEN;
821	drvinfo->regdump_len = igb_get_regs_len(netdev);
822	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
823}
824
825static void igb_get_ringparam(struct net_device *netdev,
826			      struct ethtool_ringparam *ring)
827{
828	struct igb_adapter *adapter = netdev_priv(netdev);
829
830	ring->rx_max_pending = IGB_MAX_RXD;
831	ring->tx_max_pending = IGB_MAX_TXD;
832	ring->rx_pending = adapter->rx_ring_count;
833	ring->tx_pending = adapter->tx_ring_count;
834}
835
836static int igb_set_ringparam(struct net_device *netdev,
837			     struct ethtool_ringparam *ring)
838{
839	struct igb_adapter *adapter = netdev_priv(netdev);
840	struct igb_ring *temp_ring;
841	int i, err = 0;
842	u16 new_rx_count, new_tx_count;
843
844	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
845		return -EINVAL;
846
847	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
848	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
849	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
850
851	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
852	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
853	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
854
855	if ((new_tx_count == adapter->tx_ring_count) &&
856	    (new_rx_count == adapter->rx_ring_count)) {
857		/* nothing to do */
858		return 0;
859	}
860
861	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
862		msleep(1);
863
864	if (!netif_running(adapter->netdev)) {
865		for (i = 0; i < adapter->num_tx_queues; i++)
866			adapter->tx_ring[i]->count = new_tx_count;
867		for (i = 0; i < adapter->num_rx_queues; i++)
868			adapter->rx_ring[i]->count = new_rx_count;
869		adapter->tx_ring_count = new_tx_count;
870		adapter->rx_ring_count = new_rx_count;
871		goto clear_reset;
872	}
873
874	if (adapter->num_tx_queues > adapter->num_rx_queues)
875		temp_ring = vmalloc(adapter->num_tx_queues *
876				    sizeof(struct igb_ring));
877	else
878		temp_ring = vmalloc(adapter->num_rx_queues *
879				    sizeof(struct igb_ring));
880
881	if (!temp_ring) {
882		err = -ENOMEM;
883		goto clear_reset;
884	}
885
886	igb_down(adapter);
887
888	/* We can't just free everything and then setup again,
889	 * because the ISRs in MSI-X mode get passed pointers
890	 * to the Tx and Rx ring structs.
891	 */
892	if (new_tx_count != adapter->tx_ring_count) {
893		for (i = 0; i < adapter->num_tx_queues; i++) {
894			memcpy(&temp_ring[i], adapter->tx_ring[i],
895			       sizeof(struct igb_ring));
896
897			temp_ring[i].count = new_tx_count;
898			err = igb_setup_tx_resources(&temp_ring[i]);
899			if (err) {
900				while (i) {
901					i--;
902					igb_free_tx_resources(&temp_ring[i]);
903				}
904				goto err_setup;
905			}
906		}
907
908		for (i = 0; i < adapter->num_tx_queues; i++) {
909			igb_free_tx_resources(adapter->tx_ring[i]);
910
911			memcpy(adapter->tx_ring[i], &temp_ring[i],
912			       sizeof(struct igb_ring));
913		}
914
915		adapter->tx_ring_count = new_tx_count;
916	}
917
918	if (new_rx_count != adapter->rx_ring_count) {
919		for (i = 0; i < adapter->num_rx_queues; i++) {
920			memcpy(&temp_ring[i], adapter->rx_ring[i],
921			       sizeof(struct igb_ring));
922
923			temp_ring[i].count = new_rx_count;
924			err = igb_setup_rx_resources(&temp_ring[i]);
925			if (err) {
926				while (i) {
927					i--;
928					igb_free_rx_resources(&temp_ring[i]);
929				}
930				goto err_setup;
931			}
932
933		}
934
935		for (i = 0; i < adapter->num_rx_queues; i++) {
936			igb_free_rx_resources(adapter->rx_ring[i]);
937
938			memcpy(adapter->rx_ring[i], &temp_ring[i],
939			       sizeof(struct igb_ring));
940		}
941
942		adapter->rx_ring_count = new_rx_count;
943	}
944err_setup:
945	igb_up(adapter);
946	vfree(temp_ring);
947clear_reset:
948	clear_bit(__IGB_RESETTING, &adapter->state);
949	return err;
950}
951
952/* ethtool register test data */
953struct igb_reg_test {
954	u16 reg;
955	u16 reg_offset;
956	u16 array_len;
957	u16 test_type;
958	u32 mask;
959	u32 write;
960};
961
962/* In the hardware, registers are laid out either singly, in arrays
963 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
964 * most tests take place on arrays or single registers (handled
965 * as a single-element array) and special-case the tables.
966 * Table tests are always pattern tests.
967 *
968 * We also make provision for some required setup steps by specifying
969 * registers to be written without any read-back testing.
970 */
971
972#define PATTERN_TEST	1
973#define SET_READ_TEST	2
974#define WRITE_NO_TEST	3
975#define TABLE32_TEST	4
976#define TABLE64_TEST_LO	5
977#define TABLE64_TEST_HI	6
978
979/* i210 reg test */
980static struct igb_reg_test reg_test_i210[] = {
981	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
982	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
983	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
984	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
985	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
986	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
987	/* RDH is read-only for i210, only test RDT. */
988	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
989	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
990	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
991	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
992	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
993	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
994	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
995	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
996	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
997	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
998	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
999	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1000	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1001						0xFFFFFFFF, 0xFFFFFFFF },
1002	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1003						0x900FFFFF, 0xFFFFFFFF },
1004	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1005						0xFFFFFFFF, 0xFFFFFFFF },
1006	{ 0, 0, 0, 0, 0 }
1007};
1008
1009/* i350 reg test */
1010static struct igb_reg_test reg_test_i350[] = {
1011	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1012	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1013	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1014	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1015	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1016	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1017	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1018	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1019	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1020	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1021	/* RDH is read-only for i350, only test RDT. */
1022	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1023	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1024	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1025	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1026	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1027	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1028	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1029	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1030	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1031	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1032	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1033	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1034	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1035	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1036	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1037	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1038	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1039	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1040						0xFFFFFFFF, 0xFFFFFFFF },
1041	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1042						0xC3FFFFFF, 0xFFFFFFFF },
1043	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1044						0xFFFFFFFF, 0xFFFFFFFF },
1045	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1046						0xC3FFFFFF, 0xFFFFFFFF },
1047	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1048						0xFFFFFFFF, 0xFFFFFFFF },
1049	{ 0, 0, 0, 0 }
1050};
1051
1052/* 82580 reg test */
1053static struct igb_reg_test reg_test_82580[] = {
1054	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1055	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1056	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1057	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1058	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1059	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1060	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1061	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1062	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1063	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1064	/* RDH is read-only for 82580, only test RDT. */
1065	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1066	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1067	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1068	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1069	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1070	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1071	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1072	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1073	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1074	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1075	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1076	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1077	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1078	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1079	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1080	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1081	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1082	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1083						0xFFFFFFFF, 0xFFFFFFFF },
1084	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1085						0x83FFFFFF, 0xFFFFFFFF },
1086	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1087						0xFFFFFFFF, 0xFFFFFFFF },
1088	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1089						0x83FFFFFF, 0xFFFFFFFF },
1090	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1091						0xFFFFFFFF, 0xFFFFFFFF },
1092	{ 0, 0, 0, 0 }
1093};
1094
1095/* 82576 reg test */
1096static struct igb_reg_test reg_test_82576[] = {
1097	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1098	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1099	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1100	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1101	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1102	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1103	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1104	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1105	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1106	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1107	/* Enable all RX queues before testing. */
1108	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1109	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1110	/* RDH is read-only for 82576, only test RDT. */
1111	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1112	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1113	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1114	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1115	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1116	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1117	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1118	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1119	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1121	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1122	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1123	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1124	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1125	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1126	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1127	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1128	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1129	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1130	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1131	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1132	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1133	{ 0, 0, 0, 0 }
1134};
1135
1136/* 82575 register test */
1137static struct igb_reg_test reg_test_82575[] = {
1138	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1139	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1140	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1141	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1142	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1143	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1144	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1145	/* Enable all four RX queues before testing. */
1146	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1147	/* RDH is read-only for 82575, only test RDT. */
1148	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1149	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1150	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1151	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1152	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1153	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1154	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1155	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1156	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1157	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1158	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1159	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1160	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1161	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1162	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1163	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1164	{ 0, 0, 0, 0 }
1165};
1166
1167static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1168			     int reg, u32 mask, u32 write)
1169{
1170	struct e1000_hw *hw = &adapter->hw;
1171	u32 pat, val;
1172	static const u32 _test[] =
1173		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1174	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1175		wr32(reg, (_test[pat] & write));
1176		val = rd32(reg) & mask;
1177		if (val != (_test[pat] & write & mask)) {
1178			dev_err(&adapter->pdev->dev,
1179				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1180				reg, val, (_test[pat] & write & mask));
1181			*data = reg;
1182			return 1;
1183		}
1184	}
1185
1186	return 0;
1187}
1188
1189static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1190			      int reg, u32 mask, u32 write)
1191{
1192	struct e1000_hw *hw = &adapter->hw;
1193	u32 val;
1194	wr32(reg, write & mask);
1195	val = rd32(reg);
1196	if ((write & mask) != (val & mask)) {
1197		dev_err(&adapter->pdev->dev,
1198			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1199			(val & mask), (write & mask));
1200		*data = reg;
1201		return 1;
1202	}
1203
1204	return 0;
1205}
1206
1207#define REG_PATTERN_TEST(reg, mask, write) \
1208	do { \
1209		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1210			return 1; \
1211	} while (0)
1212
1213#define REG_SET_AND_CHECK(reg, mask, write) \
1214	do { \
1215		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1216			return 1; \
1217	} while (0)
1218
1219static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1220{
1221	struct e1000_hw *hw = &adapter->hw;
1222	struct igb_reg_test *test;
1223	u32 value, before, after;
1224	u32 i, toggle;
1225
1226	switch (adapter->hw.mac.type) {
1227	case e1000_i350:
1228		test = reg_test_i350;
1229		toggle = 0x7FEFF3FF;
1230		break;
1231	case e1000_i210:
1232	case e1000_i211:
1233		test = reg_test_i210;
1234		toggle = 0x7FEFF3FF;
1235		break;
1236	case e1000_82580:
1237		test = reg_test_82580;
1238		toggle = 0x7FEFF3FF;
1239		break;
1240	case e1000_82576:
1241		test = reg_test_82576;
1242		toggle = 0x7FFFF3FF;
1243		break;
1244	default:
1245		test = reg_test_82575;
1246		toggle = 0x7FFFF3FF;
1247		break;
1248	}
1249
1250	/* Because the status register is such a special case,
1251	 * we handle it separately from the rest of the register
1252	 * tests.  Some bits are read-only, some toggle, and some
1253	 * are writable on newer MACs.
1254	 */
1255	before = rd32(E1000_STATUS);
1256	value = (rd32(E1000_STATUS) & toggle);
1257	wr32(E1000_STATUS, toggle);
1258	after = rd32(E1000_STATUS) & toggle;
1259	if (value != after) {
1260		dev_err(&adapter->pdev->dev,
1261			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1262			after, value);
1263		*data = 1;
1264		return 1;
1265	}
1266	/* restore previous status */
1267	wr32(E1000_STATUS, before);
1268
1269	/* Perform the remainder of the register test, looping through
1270	 * the test table until we either fail or reach the null entry.
1271	 */
1272	while (test->reg) {
1273		for (i = 0; i < test->array_len; i++) {
1274			switch (test->test_type) {
1275			case PATTERN_TEST:
1276				REG_PATTERN_TEST(test->reg +
1277						(i * test->reg_offset),
1278						test->mask,
1279						test->write);
1280				break;
1281			case SET_READ_TEST:
1282				REG_SET_AND_CHECK(test->reg +
1283						(i * test->reg_offset),
1284						test->mask,
1285						test->write);
1286				break;
1287			case WRITE_NO_TEST:
1288				writel(test->write,
1289				    (adapter->hw.hw_addr + test->reg)
1290					+ (i * test->reg_offset));
1291				break;
1292			case TABLE32_TEST:
1293				REG_PATTERN_TEST(test->reg + (i * 4),
1294						test->mask,
1295						test->write);
1296				break;
1297			case TABLE64_TEST_LO:
1298				REG_PATTERN_TEST(test->reg + (i * 8),
1299						test->mask,
1300						test->write);
1301				break;
1302			case TABLE64_TEST_HI:
1303				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1304						test->mask,
1305						test->write);
1306				break;
1307			}
1308		}
1309		test++;
1310	}
1311
1312	*data = 0;
1313	return 0;
1314}
1315
1316static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1317{
1318	*data = 0;
1319
1320	/* Validate eeprom on all parts but i211 */
1321	if (adapter->hw.mac.type != e1000_i211) {
1322		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1323			*data = 2;
1324	}
1325
1326	return *data;
1327}
1328
1329static irqreturn_t igb_test_intr(int irq, void *data)
1330{
1331	struct igb_adapter *adapter = (struct igb_adapter *) data;
1332	struct e1000_hw *hw = &adapter->hw;
1333
1334	adapter->test_icr |= rd32(E1000_ICR);
1335
1336	return IRQ_HANDLED;
1337}
1338
1339static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1340{
1341	struct e1000_hw *hw = &adapter->hw;
1342	struct net_device *netdev = adapter->netdev;
1343	u32 mask, ics_mask, i = 0, shared_int = true;
1344	u32 irq = adapter->pdev->irq;
1345
1346	*data = 0;
1347
1348	/* Hook up test interrupt handler just for this test */
1349	if (adapter->msix_entries) {
1350		if (request_irq(adapter->msix_entries[0].vector,
1351		                igb_test_intr, 0, netdev->name, adapter)) {
1352			*data = 1;
1353			return -1;
1354		}
1355	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1356		shared_int = false;
1357		if (request_irq(irq,
1358		                igb_test_intr, 0, netdev->name, adapter)) {
1359			*data = 1;
1360			return -1;
1361		}
1362	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1363				netdev->name, adapter)) {
1364		shared_int = false;
1365	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1366		 netdev->name, adapter)) {
1367		*data = 1;
1368		return -1;
1369	}
1370	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1371		(shared_int ? "shared" : "unshared"));
1372
1373	/* Disable all the interrupts */
1374	wr32(E1000_IMC, ~0);
1375	wrfl();
1376	msleep(10);
1377
1378	/* Define all writable bits for ICS */
1379	switch (hw->mac.type) {
1380	case e1000_82575:
1381		ics_mask = 0x37F47EDD;
1382		break;
1383	case e1000_82576:
1384		ics_mask = 0x77D4FBFD;
1385		break;
1386	case e1000_82580:
1387		ics_mask = 0x77DCFED5;
1388		break;
1389	case e1000_i350:
1390	case e1000_i210:
1391	case e1000_i211:
1392		ics_mask = 0x77DCFED5;
1393		break;
1394	default:
1395		ics_mask = 0x7FFFFFFF;
1396		break;
1397	}
1398
1399	/* Test each interrupt */
1400	for (; i < 31; i++) {
1401		/* Interrupt to test */
1402		mask = 1 << i;
1403
1404		if (!(mask & ics_mask))
1405			continue;
1406
1407		if (!shared_int) {
1408			/* Disable the interrupt to be reported in
1409			 * the cause register and then force the same
1410			 * interrupt and see if one gets posted.  If
1411			 * an interrupt was posted to the bus, the
1412			 * test failed.
1413			 */
1414			adapter->test_icr = 0;
1415
1416			/* Flush any pending interrupts */
1417			wr32(E1000_ICR, ~0);
1418
1419			wr32(E1000_IMC, mask);
1420			wr32(E1000_ICS, mask);
1421			wrfl();
1422			msleep(10);
1423
1424			if (adapter->test_icr & mask) {
1425				*data = 3;
1426				break;
1427			}
1428		}
1429
1430		/* Enable the interrupt to be reported in
1431		 * the cause register and then force the same
1432		 * interrupt and see if one gets posted.  If
1433		 * an interrupt was not posted to the bus, the
1434		 * test failed.
1435		 */
1436		adapter->test_icr = 0;
1437
1438		/* Flush any pending interrupts */
1439		wr32(E1000_ICR, ~0);
1440
1441		wr32(E1000_IMS, mask);
1442		wr32(E1000_ICS, mask);
1443		wrfl();
1444		msleep(10);
1445
1446		if (!(adapter->test_icr & mask)) {
1447			*data = 4;
1448			break;
1449		}
1450
1451		if (!shared_int) {
1452			/* Disable the other interrupts to be reported in
1453			 * the cause register and then force the other
1454			 * interrupts and see if any get posted.  If
1455			 * an interrupt was posted to the bus, the
1456			 * test failed.
1457			 */
1458			adapter->test_icr = 0;
1459
1460			/* Flush any pending interrupts */
1461			wr32(E1000_ICR, ~0);
1462
1463			wr32(E1000_IMC, ~mask);
1464			wr32(E1000_ICS, ~mask);
1465			wrfl();
1466			msleep(10);
1467
1468			if (adapter->test_icr & mask) {
1469				*data = 5;
1470				break;
1471			}
1472		}
1473	}
1474
1475	/* Disable all the interrupts */
1476	wr32(E1000_IMC, ~0);
1477	wrfl();
1478	msleep(10);
1479
1480	/* Unhook test interrupt handler */
1481	if (adapter->msix_entries)
1482		free_irq(adapter->msix_entries[0].vector, adapter);
1483	else
1484		free_irq(irq, adapter);
1485
1486	return *data;
1487}
1488
1489static void igb_free_desc_rings(struct igb_adapter *adapter)
1490{
1491	igb_free_tx_resources(&adapter->test_tx_ring);
1492	igb_free_rx_resources(&adapter->test_rx_ring);
1493}
1494
1495static int igb_setup_desc_rings(struct igb_adapter *adapter)
1496{
1497	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1498	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1499	struct e1000_hw *hw = &adapter->hw;
1500	int ret_val;
1501
1502	/* Setup Tx descriptor ring and Tx buffers */
1503	tx_ring->count = IGB_DEFAULT_TXD;
1504	tx_ring->dev = &adapter->pdev->dev;
1505	tx_ring->netdev = adapter->netdev;
1506	tx_ring->reg_idx = adapter->vfs_allocated_count;
1507
1508	if (igb_setup_tx_resources(tx_ring)) {
1509		ret_val = 1;
1510		goto err_nomem;
1511	}
1512
1513	igb_setup_tctl(adapter);
1514	igb_configure_tx_ring(adapter, tx_ring);
1515
1516	/* Setup Rx descriptor ring and Rx buffers */
1517	rx_ring->count = IGB_DEFAULT_RXD;
1518	rx_ring->dev = &adapter->pdev->dev;
1519	rx_ring->netdev = adapter->netdev;
1520	rx_ring->reg_idx = adapter->vfs_allocated_count;
1521
1522	if (igb_setup_rx_resources(rx_ring)) {
1523		ret_val = 3;
1524		goto err_nomem;
1525	}
1526
1527	/* set the default queue to queue 0 of PF */
1528	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1529
1530	/* enable receive ring */
1531	igb_setup_rctl(adapter);
1532	igb_configure_rx_ring(adapter, rx_ring);
1533
1534	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1535
1536	return 0;
1537
1538err_nomem:
1539	igb_free_desc_rings(adapter);
1540	return ret_val;
1541}
1542
1543static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1544{
1545	struct e1000_hw *hw = &adapter->hw;
1546
1547	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1548	igb_write_phy_reg(hw, 29, 0x001F);
1549	igb_write_phy_reg(hw, 30, 0x8FFC);
1550	igb_write_phy_reg(hw, 29, 0x001A);
1551	igb_write_phy_reg(hw, 30, 0x8FF0);
1552}
1553
1554static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1555{
1556	struct e1000_hw *hw = &adapter->hw;
1557	u32 ctrl_reg = 0;
1558
1559	hw->mac.autoneg = false;
1560
1561	if (hw->phy.type == e1000_phy_m88) {
1562		if (hw->phy.id != I210_I_PHY_ID) {
1563			/* Auto-MDI/MDIX Off */
1564			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1565			/* reset to update Auto-MDI/MDIX */
1566			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1567			/* autoneg off */
1568			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1569		} else {
1570			/* force 1000, set loopback  */
1571			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1572			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1573		}
1574	}
1575
1576	/* add small delay to avoid loopback test failure */
1577	msleep(50);
1578
1579	/* force 1000, set loopback */
1580	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1581
1582	/* Now set up the MAC to the same speed/duplex as the PHY. */
1583	ctrl_reg = rd32(E1000_CTRL);
1584	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1585	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1586		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1587		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1588		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1589		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1590
1591	if (hw->phy.type == e1000_phy_m88)
1592		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1593
1594	wr32(E1000_CTRL, ctrl_reg);
1595
1596	/* Disable the receiver on the PHY so when a cable is plugged in, the
1597	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1598	 */
1599	if (hw->phy.type == e1000_phy_m88)
1600		igb_phy_disable_receiver(adapter);
1601
1602	mdelay(500);
1603	return 0;
1604}
1605
1606static int igb_set_phy_loopback(struct igb_adapter *adapter)
1607{
1608	return igb_integrated_phy_loopback(adapter);
1609}
1610
1611static int igb_setup_loopback_test(struct igb_adapter *adapter)
1612{
1613	struct e1000_hw *hw = &adapter->hw;
1614	u32 reg;
1615
1616	reg = rd32(E1000_CTRL_EXT);
1617
1618	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1619	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1620		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1621		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1622		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1623		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1624
1625			/* Enable DH89xxCC MPHY for near end loopback */
1626			reg = rd32(E1000_MPHY_ADDR_CTL);
1627			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1628			E1000_MPHY_PCS_CLK_REG_OFFSET;
1629			wr32(E1000_MPHY_ADDR_CTL, reg);
1630
1631			reg = rd32(E1000_MPHY_DATA);
1632			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1633			wr32(E1000_MPHY_DATA, reg);
1634		}
1635
1636		reg = rd32(E1000_RCTL);
1637		reg |= E1000_RCTL_LBM_TCVR;
1638		wr32(E1000_RCTL, reg);
1639
1640		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1641
1642		reg = rd32(E1000_CTRL);
1643		reg &= ~(E1000_CTRL_RFCE |
1644			 E1000_CTRL_TFCE |
1645			 E1000_CTRL_LRST);
1646		reg |= E1000_CTRL_SLU |
1647		       E1000_CTRL_FD;
1648		wr32(E1000_CTRL, reg);
1649
1650		/* Unset switch control to serdes energy detect */
1651		reg = rd32(E1000_CONNSW);
1652		reg &= ~E1000_CONNSW_ENRGSRC;
1653		wr32(E1000_CONNSW, reg);
1654
1655		/* Unset sigdetect for SERDES loopback on
1656		 * 82580 and i350 devices.
1657		 */
1658		switch (hw->mac.type) {
1659		case e1000_82580:
1660		case e1000_i350:
1661			reg = rd32(E1000_PCS_CFG0);
1662			reg |= E1000_PCS_CFG_IGN_SD;
1663			wr32(E1000_PCS_CFG0, reg);
1664			break;
1665		default:
1666			break;
1667		}
1668
1669		/* Set PCS register for forced speed */
1670		reg = rd32(E1000_PCS_LCTL);
1671		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1672		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1673		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1674		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1675		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1676		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1677		wr32(E1000_PCS_LCTL, reg);
1678
1679		return 0;
1680	}
1681
1682	return igb_set_phy_loopback(adapter);
1683}
1684
1685static void igb_loopback_cleanup(struct igb_adapter *adapter)
1686{
1687	struct e1000_hw *hw = &adapter->hw;
1688	u32 rctl;
1689	u16 phy_reg;
1690
1691	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1692	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1693	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1694	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1695		u32 reg;
1696
1697		/* Disable near end loopback on DH89xxCC */
1698		reg = rd32(E1000_MPHY_ADDR_CTL);
1699		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1700		E1000_MPHY_PCS_CLK_REG_OFFSET;
1701		wr32(E1000_MPHY_ADDR_CTL, reg);
1702
1703		reg = rd32(E1000_MPHY_DATA);
1704		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1705		wr32(E1000_MPHY_DATA, reg);
1706	}
1707
1708	rctl = rd32(E1000_RCTL);
1709	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1710	wr32(E1000_RCTL, rctl);
1711
1712	hw->mac.autoneg = true;
1713	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1714	if (phy_reg & MII_CR_LOOPBACK) {
1715		phy_reg &= ~MII_CR_LOOPBACK;
1716		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1717		igb_phy_sw_reset(hw);
1718	}
1719}
1720
1721static void igb_create_lbtest_frame(struct sk_buff *skb,
1722				    unsigned int frame_size)
1723{
1724	memset(skb->data, 0xFF, frame_size);
1725	frame_size /= 2;
1726	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1727	memset(&skb->data[frame_size + 10], 0xBE, 1);
1728	memset(&skb->data[frame_size + 12], 0xAF, 1);
1729}
1730
1731static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1732				  unsigned int frame_size)
1733{
1734	unsigned char *data;
1735	bool match = true;
1736
1737	frame_size >>= 1;
1738
1739	data = kmap(rx_buffer->page);
1740
1741	if (data[3] != 0xFF ||
1742	    data[frame_size + 10] != 0xBE ||
1743	    data[frame_size + 12] != 0xAF)
1744		match = false;
1745
1746	kunmap(rx_buffer->page);
1747
1748	return match;
1749}
1750
1751static int igb_clean_test_rings(struct igb_ring *rx_ring,
1752				struct igb_ring *tx_ring,
1753				unsigned int size)
1754{
1755	union e1000_adv_rx_desc *rx_desc;
1756	struct igb_rx_buffer *rx_buffer_info;
1757	struct igb_tx_buffer *tx_buffer_info;
1758	u16 rx_ntc, tx_ntc, count = 0;
1759
1760	/* initialize next to clean and descriptor values */
1761	rx_ntc = rx_ring->next_to_clean;
1762	tx_ntc = tx_ring->next_to_clean;
1763	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1764
1765	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1766		/* check Rx buffer */
1767		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1768
1769		/* sync Rx buffer for CPU read */
1770		dma_sync_single_for_cpu(rx_ring->dev,
1771					rx_buffer_info->dma,
1772					IGB_RX_BUFSZ,
1773					DMA_FROM_DEVICE);
1774
1775		/* verify contents of skb */
1776		if (igb_check_lbtest_frame(rx_buffer_info, size))
1777			count++;
1778
1779		/* sync Rx buffer for device write */
1780		dma_sync_single_for_device(rx_ring->dev,
1781					   rx_buffer_info->dma,
1782					   IGB_RX_BUFSZ,
1783					   DMA_FROM_DEVICE);
1784
1785		/* unmap buffer on Tx side */
1786		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1787		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1788
1789		/* increment Rx/Tx next to clean counters */
1790		rx_ntc++;
1791		if (rx_ntc == rx_ring->count)
1792			rx_ntc = 0;
1793		tx_ntc++;
1794		if (tx_ntc == tx_ring->count)
1795			tx_ntc = 0;
1796
1797		/* fetch next descriptor */
1798		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1799	}
1800
1801	netdev_tx_reset_queue(txring_txq(tx_ring));
1802
1803	/* re-map buffers to ring, store next to clean values */
1804	igb_alloc_rx_buffers(rx_ring, count);
1805	rx_ring->next_to_clean = rx_ntc;
1806	tx_ring->next_to_clean = tx_ntc;
1807
1808	return count;
1809}
1810
1811static int igb_run_loopback_test(struct igb_adapter *adapter)
1812{
1813	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1814	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1815	u16 i, j, lc, good_cnt;
1816	int ret_val = 0;
1817	unsigned int size = IGB_RX_HDR_LEN;
1818	netdev_tx_t tx_ret_val;
1819	struct sk_buff *skb;
1820
1821	/* allocate test skb */
1822	skb = alloc_skb(size, GFP_KERNEL);
1823	if (!skb)
1824		return 11;
1825
1826	/* place data into test skb */
1827	igb_create_lbtest_frame(skb, size);
1828	skb_put(skb, size);
1829
1830	/* Calculate the loop count based on the largest descriptor ring
1831	 * The idea is to wrap the largest ring a number of times using 64
1832	 * send/receive pairs during each loop
1833	 */
1834
1835	if (rx_ring->count <= tx_ring->count)
1836		lc = ((tx_ring->count / 64) * 2) + 1;
1837	else
1838		lc = ((rx_ring->count / 64) * 2) + 1;
1839
1840	for (j = 0; j <= lc; j++) { /* loop count loop */
1841		/* reset count of good packets */
1842		good_cnt = 0;
1843
1844		/* place 64 packets on the transmit queue*/
1845		for (i = 0; i < 64; i++) {
1846			skb_get(skb);
1847			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1848			if (tx_ret_val == NETDEV_TX_OK)
1849				good_cnt++;
1850		}
1851
1852		if (good_cnt != 64) {
1853			ret_val = 12;
1854			break;
1855		}
1856
1857		/* allow 200 milliseconds for packets to go from Tx to Rx */
1858		msleep(200);
1859
1860		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1861		if (good_cnt != 64) {
1862			ret_val = 13;
1863			break;
1864		}
1865	} /* end loop count loop */
1866
1867	/* free the original skb */
1868	kfree_skb(skb);
1869
1870	return ret_val;
1871}
1872
1873static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1874{
1875	/* PHY loopback cannot be performed if SoL/IDER
1876	 * sessions are active
1877	 */
1878	if (igb_check_reset_block(&adapter->hw)) {
1879		dev_err(&adapter->pdev->dev,
1880			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1881		*data = 0;
1882		goto out;
1883	}
1884	*data = igb_setup_desc_rings(adapter);
1885	if (*data)
1886		goto out;
1887	*data = igb_setup_loopback_test(adapter);
1888	if (*data)
1889		goto err_loopback;
1890	*data = igb_run_loopback_test(adapter);
1891	igb_loopback_cleanup(adapter);
1892
1893err_loopback:
1894	igb_free_desc_rings(adapter);
1895out:
1896	return *data;
1897}
1898
1899static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1900{
1901	struct e1000_hw *hw = &adapter->hw;
1902	*data = 0;
1903	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1904		int i = 0;
1905		hw->mac.serdes_has_link = false;
1906
1907		/* On some blade server designs, link establishment
1908		 * could take as long as 2-3 minutes
1909		 */
1910		do {
1911			hw->mac.ops.check_for_link(&adapter->hw);
1912			if (hw->mac.serdes_has_link)
1913				return *data;
1914			msleep(20);
1915		} while (i++ < 3750);
1916
1917		*data = 1;
1918	} else {
1919		hw->mac.ops.check_for_link(&adapter->hw);
1920		if (hw->mac.autoneg)
1921			msleep(5000);
1922
1923		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1924			*data = 1;
1925	}
1926	return *data;
1927}
1928
1929static void igb_diag_test(struct net_device *netdev,
1930			  struct ethtool_test *eth_test, u64 *data)
1931{
1932	struct igb_adapter *adapter = netdev_priv(netdev);
1933	u16 autoneg_advertised;
1934	u8 forced_speed_duplex, autoneg;
1935	bool if_running = netif_running(netdev);
1936
1937	set_bit(__IGB_TESTING, &adapter->state);
1938	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1939		/* Offline tests */
1940
1941		/* save speed, duplex, autoneg settings */
1942		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1943		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1944		autoneg = adapter->hw.mac.autoneg;
1945
1946		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1947
1948		/* power up link for link test */
1949		igb_power_up_link(adapter);
1950
1951		/* Link test performed before hardware reset so autoneg doesn't
1952		 * interfere with test result
1953		 */
1954		if (igb_link_test(adapter, &data[4]))
1955			eth_test->flags |= ETH_TEST_FL_FAILED;
1956
1957		if (if_running)
1958			/* indicate we're in test mode */
1959			dev_close(netdev);
1960		else
1961			igb_reset(adapter);
1962
1963		if (igb_reg_test(adapter, &data[0]))
1964			eth_test->flags |= ETH_TEST_FL_FAILED;
1965
1966		igb_reset(adapter);
1967		if (igb_eeprom_test(adapter, &data[1]))
1968			eth_test->flags |= ETH_TEST_FL_FAILED;
1969
1970		igb_reset(adapter);
1971		if (igb_intr_test(adapter, &data[2]))
1972			eth_test->flags |= ETH_TEST_FL_FAILED;
1973
1974		igb_reset(adapter);
1975		/* power up link for loopback test */
1976		igb_power_up_link(adapter);
1977		if (igb_loopback_test(adapter, &data[3]))
1978			eth_test->flags |= ETH_TEST_FL_FAILED;
1979
1980		/* restore speed, duplex, autoneg settings */
1981		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1982		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1983		adapter->hw.mac.autoneg = autoneg;
1984
1985		/* force this routine to wait until autoneg complete/timeout */
1986		adapter->hw.phy.autoneg_wait_to_complete = true;
1987		igb_reset(adapter);
1988		adapter->hw.phy.autoneg_wait_to_complete = false;
1989
1990		clear_bit(__IGB_TESTING, &adapter->state);
1991		if (if_running)
1992			dev_open(netdev);
1993	} else {
1994		dev_info(&adapter->pdev->dev, "online testing starting\n");
1995
1996		/* PHY is powered down when interface is down */
1997		if (if_running && igb_link_test(adapter, &data[4]))
1998			eth_test->flags |= ETH_TEST_FL_FAILED;
1999		else
2000			data[4] = 0;
2001
2002		/* Online tests aren't run; pass by default */
2003		data[0] = 0;
2004		data[1] = 0;
2005		data[2] = 0;
2006		data[3] = 0;
2007
2008		clear_bit(__IGB_TESTING, &adapter->state);
2009	}
2010	msleep_interruptible(4 * 1000);
2011}
2012
2013static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2014{
2015	struct igb_adapter *adapter = netdev_priv(netdev);
2016
2017	wol->supported = WAKE_UCAST | WAKE_MCAST |
2018			 WAKE_BCAST | WAKE_MAGIC |
2019			 WAKE_PHY;
2020	wol->wolopts = 0;
2021
2022	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2023		return;
2024
2025	/* apply any specific unsupported masks here */
2026	switch (adapter->hw.device_id) {
2027	default:
2028		break;
2029	}
2030
2031	if (adapter->wol & E1000_WUFC_EX)
2032		wol->wolopts |= WAKE_UCAST;
2033	if (adapter->wol & E1000_WUFC_MC)
2034		wol->wolopts |= WAKE_MCAST;
2035	if (adapter->wol & E1000_WUFC_BC)
2036		wol->wolopts |= WAKE_BCAST;
2037	if (adapter->wol & E1000_WUFC_MAG)
2038		wol->wolopts |= WAKE_MAGIC;
2039	if (adapter->wol & E1000_WUFC_LNKC)
2040		wol->wolopts |= WAKE_PHY;
2041}
2042
2043static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2044{
2045	struct igb_adapter *adapter = netdev_priv(netdev);
2046
2047	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2048		return -EOPNOTSUPP;
2049
2050	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2051		return wol->wolopts ? -EOPNOTSUPP : 0;
2052
2053	/* these settings will always override what we currently have */
2054	adapter->wol = 0;
2055
2056	if (wol->wolopts & WAKE_UCAST)
2057		adapter->wol |= E1000_WUFC_EX;
2058	if (wol->wolopts & WAKE_MCAST)
2059		adapter->wol |= E1000_WUFC_MC;
2060	if (wol->wolopts & WAKE_BCAST)
2061		adapter->wol |= E1000_WUFC_BC;
2062	if (wol->wolopts & WAKE_MAGIC)
2063		adapter->wol |= E1000_WUFC_MAG;
2064	if (wol->wolopts & WAKE_PHY)
2065		adapter->wol |= E1000_WUFC_LNKC;
2066	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2067
2068	return 0;
2069}
2070
2071/* bit defines for adapter->led_status */
2072#define IGB_LED_ON		0
2073
2074static int igb_set_phys_id(struct net_device *netdev,
2075			   enum ethtool_phys_id_state state)
2076{
2077	struct igb_adapter *adapter = netdev_priv(netdev);
2078	struct e1000_hw *hw = &adapter->hw;
2079
2080	switch (state) {
2081	case ETHTOOL_ID_ACTIVE:
2082		igb_blink_led(hw);
2083		return 2;
2084	case ETHTOOL_ID_ON:
2085		igb_blink_led(hw);
2086		break;
2087	case ETHTOOL_ID_OFF:
2088		igb_led_off(hw);
2089		break;
2090	case ETHTOOL_ID_INACTIVE:
2091		igb_led_off(hw);
2092		clear_bit(IGB_LED_ON, &adapter->led_status);
2093		igb_cleanup_led(hw);
2094		break;
2095	}
2096
2097	return 0;
2098}
2099
2100static int igb_set_coalesce(struct net_device *netdev,
2101			    struct ethtool_coalesce *ec)
2102{
2103	struct igb_adapter *adapter = netdev_priv(netdev);
2104	int i;
2105
2106	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2107	    ((ec->rx_coalesce_usecs > 3) &&
2108	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2109	    (ec->rx_coalesce_usecs == 2))
2110		return -EINVAL;
2111
2112	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2113	    ((ec->tx_coalesce_usecs > 3) &&
2114	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2115	    (ec->tx_coalesce_usecs == 2))
2116		return -EINVAL;
2117
2118	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2119		return -EINVAL;
2120
2121	/* If ITR is disabled, disable DMAC */
2122	if (ec->rx_coalesce_usecs == 0) {
2123		if (adapter->flags & IGB_FLAG_DMAC)
2124			adapter->flags &= ~IGB_FLAG_DMAC;
2125	}
2126
2127	/* convert to rate of irq's per second */
2128	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2129		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2130	else
2131		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2132
2133	/* convert to rate of irq's per second */
2134	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2135		adapter->tx_itr_setting = adapter->rx_itr_setting;
2136	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2137		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2138	else
2139		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2140
2141	for (i = 0; i < adapter->num_q_vectors; i++) {
2142		struct igb_q_vector *q_vector = adapter->q_vector[i];
2143		q_vector->tx.work_limit = adapter->tx_work_limit;
2144		if (q_vector->rx.ring)
2145			q_vector->itr_val = adapter->rx_itr_setting;
2146		else
2147			q_vector->itr_val = adapter->tx_itr_setting;
2148		if (q_vector->itr_val && q_vector->itr_val <= 3)
2149			q_vector->itr_val = IGB_START_ITR;
2150		q_vector->set_itr = 1;
2151	}
2152
2153	return 0;
2154}
2155
2156static int igb_get_coalesce(struct net_device *netdev,
2157			    struct ethtool_coalesce *ec)
2158{
2159	struct igb_adapter *adapter = netdev_priv(netdev);
2160
2161	if (adapter->rx_itr_setting <= 3)
2162		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2163	else
2164		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2165
2166	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2167		if (adapter->tx_itr_setting <= 3)
2168			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2169		else
2170			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2171	}
2172
2173	return 0;
2174}
2175
2176static int igb_nway_reset(struct net_device *netdev)
2177{
2178	struct igb_adapter *adapter = netdev_priv(netdev);
2179	if (netif_running(netdev))
2180		igb_reinit_locked(adapter);
2181	return 0;
2182}
2183
2184static int igb_get_sset_count(struct net_device *netdev, int sset)
2185{
2186	switch (sset) {
2187	case ETH_SS_STATS:
2188		return IGB_STATS_LEN;
2189	case ETH_SS_TEST:
2190		return IGB_TEST_LEN;
2191	default:
2192		return -ENOTSUPP;
2193	}
2194}
2195
2196static void igb_get_ethtool_stats(struct net_device *netdev,
2197				  struct ethtool_stats *stats, u64 *data)
2198{
2199	struct igb_adapter *adapter = netdev_priv(netdev);
2200	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2201	unsigned int start;
2202	struct igb_ring *ring;
2203	int i, j;
2204	char *p;
2205
2206	spin_lock(&adapter->stats64_lock);
2207	igb_update_stats(adapter, net_stats);
2208
2209	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2210		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2211		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2212			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2213	}
2214	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2215		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2216		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2217			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2218	}
2219	for (j = 0; j < adapter->num_tx_queues; j++) {
2220		u64	restart2;
2221
2222		ring = adapter->tx_ring[j];
2223		do {
2224			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2225			data[i]   = ring->tx_stats.packets;
2226			data[i+1] = ring->tx_stats.bytes;
2227			data[i+2] = ring->tx_stats.restart_queue;
2228		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2229		do {
2230			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2231			restart2  = ring->tx_stats.restart_queue2;
2232		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2233		data[i+2] += restart2;
2234
2235		i += IGB_TX_QUEUE_STATS_LEN;
2236	}
2237	for (j = 0; j < adapter->num_rx_queues; j++) {
2238		ring = adapter->rx_ring[j];
2239		do {
2240			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2241			data[i]   = ring->rx_stats.packets;
2242			data[i+1] = ring->rx_stats.bytes;
2243			data[i+2] = ring->rx_stats.drops;
2244			data[i+3] = ring->rx_stats.csum_err;
2245			data[i+4] = ring->rx_stats.alloc_failed;
2246		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2247		i += IGB_RX_QUEUE_STATS_LEN;
2248	}
2249	spin_unlock(&adapter->stats64_lock);
2250}
2251
2252static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2253{
2254	struct igb_adapter *adapter = netdev_priv(netdev);
2255	u8 *p = data;
2256	int i;
2257
2258	switch (stringset) {
2259	case ETH_SS_TEST:
2260		memcpy(data, *igb_gstrings_test,
2261			IGB_TEST_LEN*ETH_GSTRING_LEN);
2262		break;
2263	case ETH_SS_STATS:
2264		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2265			memcpy(p, igb_gstrings_stats[i].stat_string,
2266			       ETH_GSTRING_LEN);
2267			p += ETH_GSTRING_LEN;
2268		}
2269		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2270			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2271			       ETH_GSTRING_LEN);
2272			p += ETH_GSTRING_LEN;
2273		}
2274		for (i = 0; i < adapter->num_tx_queues; i++) {
2275			sprintf(p, "tx_queue_%u_packets", i);
2276			p += ETH_GSTRING_LEN;
2277			sprintf(p, "tx_queue_%u_bytes", i);
2278			p += ETH_GSTRING_LEN;
2279			sprintf(p, "tx_queue_%u_restart", i);
2280			p += ETH_GSTRING_LEN;
2281		}
2282		for (i = 0; i < adapter->num_rx_queues; i++) {
2283			sprintf(p, "rx_queue_%u_packets", i);
2284			p += ETH_GSTRING_LEN;
2285			sprintf(p, "rx_queue_%u_bytes", i);
2286			p += ETH_GSTRING_LEN;
2287			sprintf(p, "rx_queue_%u_drops", i);
2288			p += ETH_GSTRING_LEN;
2289			sprintf(p, "rx_queue_%u_csum_err", i);
2290			p += ETH_GSTRING_LEN;
2291			sprintf(p, "rx_queue_%u_alloc_failed", i);
2292			p += ETH_GSTRING_LEN;
2293		}
2294		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2295		break;
2296	}
2297}
2298
2299static int igb_get_ts_info(struct net_device *dev,
2300			   struct ethtool_ts_info *info)
2301{
2302	struct igb_adapter *adapter = netdev_priv(dev);
2303
2304	switch (adapter->hw.mac.type) {
2305	case e1000_82575:
2306		info->so_timestamping =
2307			SOF_TIMESTAMPING_TX_SOFTWARE |
2308			SOF_TIMESTAMPING_RX_SOFTWARE |
2309			SOF_TIMESTAMPING_SOFTWARE;
2310		return 0;
2311	case e1000_82576:
2312	case e1000_82580:
2313	case e1000_i350:
2314	case e1000_i210:
2315	case e1000_i211:
2316		info->so_timestamping =
2317			SOF_TIMESTAMPING_TX_SOFTWARE |
2318			SOF_TIMESTAMPING_RX_SOFTWARE |
2319			SOF_TIMESTAMPING_SOFTWARE |
2320			SOF_TIMESTAMPING_TX_HARDWARE |
2321			SOF_TIMESTAMPING_RX_HARDWARE |
2322			SOF_TIMESTAMPING_RAW_HARDWARE;
2323
2324		if (adapter->ptp_clock)
2325			info->phc_index = ptp_clock_index(adapter->ptp_clock);
2326		else
2327			info->phc_index = -1;
2328
2329		info->tx_types =
2330			(1 << HWTSTAMP_TX_OFF) |
2331			(1 << HWTSTAMP_TX_ON);
2332
2333		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2334
2335		/* 82576 does not support timestamping all packets. */
2336		if (adapter->hw.mac.type >= e1000_82580)
2337			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2338		else
2339			info->rx_filters |=
2340				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2341				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2342				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2343				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2344				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2345				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2346				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2347
2348		return 0;
2349	default:
2350		return -EOPNOTSUPP;
2351	}
2352}
2353
2354static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2355				 struct ethtool_rxnfc *cmd)
2356{
2357	cmd->data = 0;
2358
2359	/* Report default options for RSS on igb */
2360	switch (cmd->flow_type) {
2361	case TCP_V4_FLOW:
2362		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2363	case UDP_V4_FLOW:
2364		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2365			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2366	case SCTP_V4_FLOW:
2367	case AH_ESP_V4_FLOW:
2368	case AH_V4_FLOW:
2369	case ESP_V4_FLOW:
2370	case IPV4_FLOW:
2371		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2372		break;
2373	case TCP_V6_FLOW:
2374		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2375	case UDP_V6_FLOW:
2376		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2377			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2378	case SCTP_V6_FLOW:
2379	case AH_ESP_V6_FLOW:
2380	case AH_V6_FLOW:
2381	case ESP_V6_FLOW:
2382	case IPV6_FLOW:
2383		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2384		break;
2385	default:
2386		return -EINVAL;
2387	}
2388
2389	return 0;
2390}
2391
2392static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2393			 u32 *rule_locs)
2394{
2395	struct igb_adapter *adapter = netdev_priv(dev);
2396	int ret = -EOPNOTSUPP;
2397
2398	switch (cmd->cmd) {
2399	case ETHTOOL_GRXRINGS:
2400		cmd->data = adapter->num_rx_queues;
2401		ret = 0;
2402		break;
2403	case ETHTOOL_GRXFH:
2404		ret = igb_get_rss_hash_opts(adapter, cmd);
2405		break;
2406	default:
2407		break;
2408	}
2409
2410	return ret;
2411}
2412
2413#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2414		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2415static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2416				struct ethtool_rxnfc *nfc)
2417{
2418	u32 flags = adapter->flags;
2419
2420	/* RSS does not support anything other than hashing
2421	 * to queues on src and dst IPs and ports
2422	 */
2423	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2424			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2425		return -EINVAL;
2426
2427	switch (nfc->flow_type) {
2428	case TCP_V4_FLOW:
2429	case TCP_V6_FLOW:
2430		if (!(nfc->data & RXH_IP_SRC) ||
2431		    !(nfc->data & RXH_IP_DST) ||
2432		    !(nfc->data & RXH_L4_B_0_1) ||
2433		    !(nfc->data & RXH_L4_B_2_3))
2434			return -EINVAL;
2435		break;
2436	case UDP_V4_FLOW:
2437		if (!(nfc->data & RXH_IP_SRC) ||
2438		    !(nfc->data & RXH_IP_DST))
2439			return -EINVAL;
2440		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2441		case 0:
2442			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2443			break;
2444		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2445			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2446			break;
2447		default:
2448			return -EINVAL;
2449		}
2450		break;
2451	case UDP_V6_FLOW:
2452		if (!(nfc->data & RXH_IP_SRC) ||
2453		    !(nfc->data & RXH_IP_DST))
2454			return -EINVAL;
2455		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2456		case 0:
2457			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2458			break;
2459		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2460			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2461			break;
2462		default:
2463			return -EINVAL;
2464		}
2465		break;
2466	case AH_ESP_V4_FLOW:
2467	case AH_V4_FLOW:
2468	case ESP_V4_FLOW:
2469	case SCTP_V4_FLOW:
2470	case AH_ESP_V6_FLOW:
2471	case AH_V6_FLOW:
2472	case ESP_V6_FLOW:
2473	case SCTP_V6_FLOW:
2474		if (!(nfc->data & RXH_IP_SRC) ||
2475		    !(nfc->data & RXH_IP_DST) ||
2476		    (nfc->data & RXH_L4_B_0_1) ||
2477		    (nfc->data & RXH_L4_B_2_3))
2478			return -EINVAL;
2479		break;
2480	default:
2481		return -EINVAL;
2482	}
2483
2484	/* if we changed something we need to update flags */
2485	if (flags != adapter->flags) {
2486		struct e1000_hw *hw = &adapter->hw;
2487		u32 mrqc = rd32(E1000_MRQC);
2488
2489		if ((flags & UDP_RSS_FLAGS) &&
2490		    !(adapter->flags & UDP_RSS_FLAGS))
2491			dev_err(&adapter->pdev->dev,
2492				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2493
2494		adapter->flags = flags;
2495
2496		/* Perform hash on these packet types */
2497		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2498			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2499			E1000_MRQC_RSS_FIELD_IPV6 |
2500			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2501
2502		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2503			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2504
2505		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2506			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2507
2508		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2509			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2510
2511		wr32(E1000_MRQC, mrqc);
2512	}
2513
2514	return 0;
2515}
2516
2517static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2518{
2519	struct igb_adapter *adapter = netdev_priv(dev);
2520	int ret = -EOPNOTSUPP;
2521
2522	switch (cmd->cmd) {
2523	case ETHTOOL_SRXFH:
2524		ret = igb_set_rss_hash_opt(adapter, cmd);
2525		break;
2526	default:
2527		break;
2528	}
2529
2530	return ret;
2531}
2532
2533static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2534{
2535	struct igb_adapter *adapter = netdev_priv(netdev);
2536	struct e1000_hw *hw = &adapter->hw;
2537	u32 ipcnfg, eeer, ret_val;
2538	u16 phy_data;
2539
2540	if ((hw->mac.type < e1000_i350) ||
2541	    (hw->phy.media_type != e1000_media_type_copper))
2542		return -EOPNOTSUPP;
2543
2544	edata->supported = (SUPPORTED_1000baseT_Full |
2545			    SUPPORTED_100baseT_Full);
2546
2547	ipcnfg = rd32(E1000_IPCNFG);
2548	eeer = rd32(E1000_EEER);
2549
2550	/* EEE status on negotiated link */
2551	if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2552		edata->advertised = ADVERTISED_1000baseT_Full;
2553
2554	if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2555		edata->advertised |= ADVERTISED_100baseT_Full;
2556
2557	/* EEE Link Partner Advertised */
2558	switch (hw->mac.type) {
2559	case e1000_i350:
2560		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2561					   &phy_data);
2562		if (ret_val)
2563			return -ENODATA;
2564
2565		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2566
2567		break;
2568	case e1000_i210:
2569	case e1000_i211:
2570		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2571					     E1000_EEE_LP_ADV_DEV_I210,
2572					     &phy_data);
2573		if (ret_val)
2574			return -ENODATA;
2575
2576		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2577
2578		break;
2579	default:
2580		break;
2581	}
2582
2583	if (eeer & E1000_EEER_EEE_NEG)
2584		edata->eee_active = true;
2585
2586	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2587
2588	if (eeer & E1000_EEER_TX_LPI_EN)
2589		edata->tx_lpi_enabled = true;
2590
2591	/* Report correct negotiated EEE status for devices that
2592	 * wrongly report EEE at half-duplex
2593	 */
2594	if (adapter->link_duplex == HALF_DUPLEX) {
2595		edata->eee_enabled = false;
2596		edata->eee_active = false;
2597		edata->tx_lpi_enabled = false;
2598		edata->advertised &= ~edata->advertised;
2599	}
2600
2601	return 0;
2602}
2603
2604static int igb_set_eee(struct net_device *netdev,
2605		       struct ethtool_eee *edata)
2606{
2607	struct igb_adapter *adapter = netdev_priv(netdev);
2608	struct e1000_hw *hw = &adapter->hw;
2609	struct ethtool_eee eee_curr;
2610	s32 ret_val;
2611
2612	if ((hw->mac.type < e1000_i350) ||
2613	    (hw->phy.media_type != e1000_media_type_copper))
2614		return -EOPNOTSUPP;
2615
2616	ret_val = igb_get_eee(netdev, &eee_curr);
2617	if (ret_val)
2618		return ret_val;
2619
2620	if (eee_curr.eee_enabled) {
2621		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2622			dev_err(&adapter->pdev->dev,
2623				"Setting EEE tx-lpi is not supported\n");
2624			return -EINVAL;
2625		}
2626
2627		/* Tx LPI timer is not implemented currently */
2628		if (edata->tx_lpi_timer) {
2629			dev_err(&adapter->pdev->dev,
2630				"Setting EEE Tx LPI timer is not supported\n");
2631			return -EINVAL;
2632		}
2633
2634		if (eee_curr.advertised != edata->advertised) {
2635			dev_err(&adapter->pdev->dev,
2636				"Setting EEE Advertisement is not supported\n");
2637			return -EINVAL;
2638		}
2639
2640	} else if (!edata->eee_enabled) {
2641		dev_err(&adapter->pdev->dev,
2642			"Setting EEE options are not supported with EEE disabled\n");
2643			return -EINVAL;
2644		}
2645
2646	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2647		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2648		igb_set_eee_i350(hw);
2649
2650		/* reset link */
2651		if (!netif_running(netdev))
2652			igb_reset(adapter);
2653	}
2654
2655	return 0;
2656}
2657
2658static int igb_get_module_info(struct net_device *netdev,
2659			       struct ethtool_modinfo *modinfo)
2660{
2661	struct igb_adapter *adapter = netdev_priv(netdev);
2662	struct e1000_hw *hw = &adapter->hw;
2663	u32 status = E1000_SUCCESS;
2664	u16 sff8472_rev, addr_mode;
2665	bool page_swap = false;
2666
2667	if ((hw->phy.media_type == e1000_media_type_copper) ||
2668	    (hw->phy.media_type == e1000_media_type_unknown))
2669		return -EOPNOTSUPP;
2670
2671	/* Check whether we support SFF-8472 or not */
2672	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2673	if (status != E1000_SUCCESS)
2674		return -EIO;
2675
2676	/* addressing mode is not supported */
2677	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2678	if (status != E1000_SUCCESS)
2679		return -EIO;
2680
2681	/* addressing mode is not supported */
2682	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2683		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2684		page_swap = true;
2685	}
2686
2687	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2688		/* We have an SFP, but it does not support SFF-8472 */
2689		modinfo->type = ETH_MODULE_SFF_8079;
2690		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2691	} else {
2692		/* We have an SFP which supports a revision of SFF-8472 */
2693		modinfo->type = ETH_MODULE_SFF_8472;
2694		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2695	}
2696
2697	return 0;
2698}
2699
2700static int igb_get_module_eeprom(struct net_device *netdev,
2701				 struct ethtool_eeprom *ee, u8 *data)
2702{
2703	struct igb_adapter *adapter = netdev_priv(netdev);
2704	struct e1000_hw *hw = &adapter->hw;
2705	u32 status = E1000_SUCCESS;
2706	u16 *dataword;
2707	u16 first_word, last_word;
2708	int i = 0;
2709
2710	if (ee->len == 0)
2711		return -EINVAL;
2712
2713	first_word = ee->offset >> 1;
2714	last_word = (ee->offset + ee->len - 1) >> 1;
2715
2716	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2717			   GFP_KERNEL);
2718	if (!dataword)
2719		return -ENOMEM;
2720
2721	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2722	for (i = 0; i < last_word - first_word + 1; i++) {
2723		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2724		if (status != E1000_SUCCESS)
2725			/* Error occurred while reading module */
2726			return -EIO;
2727
2728		be16_to_cpus(&dataword[i]);
2729	}
2730
2731	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2732	kfree(dataword);
2733
2734	return 0;
2735}
2736
2737static int igb_ethtool_begin(struct net_device *netdev)
2738{
2739	struct igb_adapter *adapter = netdev_priv(netdev);
2740	pm_runtime_get_sync(&adapter->pdev->dev);
2741	return 0;
2742}
2743
2744static void igb_ethtool_complete(struct net_device *netdev)
2745{
2746	struct igb_adapter *adapter = netdev_priv(netdev);
2747	pm_runtime_put(&adapter->pdev->dev);
2748}
2749
2750static const struct ethtool_ops igb_ethtool_ops = {
2751	.get_settings		= igb_get_settings,
2752	.set_settings		= igb_set_settings,
2753	.get_drvinfo		= igb_get_drvinfo,
2754	.get_regs_len		= igb_get_regs_len,
2755	.get_regs		= igb_get_regs,
2756	.get_wol		= igb_get_wol,
2757	.set_wol		= igb_set_wol,
2758	.get_msglevel		= igb_get_msglevel,
2759	.set_msglevel		= igb_set_msglevel,
2760	.nway_reset		= igb_nway_reset,
2761	.get_link		= igb_get_link,
2762	.get_eeprom_len		= igb_get_eeprom_len,
2763	.get_eeprom		= igb_get_eeprom,
2764	.set_eeprom		= igb_set_eeprom,
2765	.get_ringparam		= igb_get_ringparam,
2766	.set_ringparam		= igb_set_ringparam,
2767	.get_pauseparam		= igb_get_pauseparam,
2768	.set_pauseparam		= igb_set_pauseparam,
2769	.self_test		= igb_diag_test,
2770	.get_strings		= igb_get_strings,
2771	.set_phys_id		= igb_set_phys_id,
2772	.get_sset_count		= igb_get_sset_count,
2773	.get_ethtool_stats	= igb_get_ethtool_stats,
2774	.get_coalesce		= igb_get_coalesce,
2775	.set_coalesce		= igb_set_coalesce,
2776	.get_ts_info		= igb_get_ts_info,
2777	.get_rxnfc		= igb_get_rxnfc,
2778	.set_rxnfc		= igb_set_rxnfc,
2779	.get_eee		= igb_get_eee,
2780	.set_eee		= igb_set_eee,
2781	.get_module_info	= igb_get_module_info,
2782	.get_module_eeprom	= igb_get_module_eeprom,
2783	.begin			= igb_ethtool_begin,
2784	.complete		= igb_ethtool_complete,
2785};
2786
2787void igb_set_ethtool_ops(struct net_device *netdev)
2788{
2789	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2790}
2791