[go: nahoru, domu]

igb_ethtool.c revision cd14ef54d25bcf0b8e9205e75369e33b1d188417
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37#include <linux/sched.h>
38#include <linux/slab.h>
39#include <linux/pm_runtime.h>
40#include <linux/highmem.h>
41#include <linux/mdio.h>
42
43#include "igb.h"
44
45struct igb_stats {
46	char stat_string[ETH_GSTRING_LEN];
47	int sizeof_stat;
48	int stat_offset;
49};
50
51#define IGB_STAT(_name, _stat) { \
52	.stat_string = _name, \
53	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
54	.stat_offset = offsetof(struct igb_adapter, _stat) \
55}
56static const struct igb_stats igb_gstrings_stats[] = {
57	IGB_STAT("rx_packets", stats.gprc),
58	IGB_STAT("tx_packets", stats.gptc),
59	IGB_STAT("rx_bytes", stats.gorc),
60	IGB_STAT("tx_bytes", stats.gotc),
61	IGB_STAT("rx_broadcast", stats.bprc),
62	IGB_STAT("tx_broadcast", stats.bptc),
63	IGB_STAT("rx_multicast", stats.mprc),
64	IGB_STAT("tx_multicast", stats.mptc),
65	IGB_STAT("multicast", stats.mprc),
66	IGB_STAT("collisions", stats.colc),
67	IGB_STAT("rx_crc_errors", stats.crcerrs),
68	IGB_STAT("rx_no_buffer_count", stats.rnbc),
69	IGB_STAT("rx_missed_errors", stats.mpc),
70	IGB_STAT("tx_aborted_errors", stats.ecol),
71	IGB_STAT("tx_carrier_errors", stats.tncrs),
72	IGB_STAT("tx_window_errors", stats.latecol),
73	IGB_STAT("tx_abort_late_coll", stats.latecol),
74	IGB_STAT("tx_deferred_ok", stats.dc),
75	IGB_STAT("tx_single_coll_ok", stats.scc),
76	IGB_STAT("tx_multi_coll_ok", stats.mcc),
77	IGB_STAT("tx_timeout_count", tx_timeout_count),
78	IGB_STAT("rx_long_length_errors", stats.roc),
79	IGB_STAT("rx_short_length_errors", stats.ruc),
80	IGB_STAT("rx_align_errors", stats.algnerrc),
81	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
82	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
83	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
84	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
85	IGB_STAT("tx_flow_control_xon", stats.xontxc),
86	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
87	IGB_STAT("rx_long_byte_count", stats.gorc),
88	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
89	IGB_STAT("tx_smbus", stats.mgptc),
90	IGB_STAT("rx_smbus", stats.mgprc),
91	IGB_STAT("dropped_smbus", stats.mgpdc),
92	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
93	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
94	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
95	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
96	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
98};
99
100#define IGB_NETDEV_STAT(_net_stat) { \
101	.stat_string = __stringify(_net_stat), \
102	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
103	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
104}
105static const struct igb_stats igb_gstrings_net_stats[] = {
106	IGB_NETDEV_STAT(rx_errors),
107	IGB_NETDEV_STAT(tx_errors),
108	IGB_NETDEV_STAT(tx_dropped),
109	IGB_NETDEV_STAT(rx_length_errors),
110	IGB_NETDEV_STAT(rx_over_errors),
111	IGB_NETDEV_STAT(rx_frame_errors),
112	IGB_NETDEV_STAT(rx_fifo_errors),
113	IGB_NETDEV_STAT(tx_fifo_errors),
114	IGB_NETDEV_STAT(tx_heartbeat_errors)
115};
116
117#define IGB_GLOBAL_STATS_LEN	\
118	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
119#define IGB_NETDEV_STATS_LEN	\
120	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
121#define IGB_RX_QUEUE_STATS_LEN \
122	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
123
124#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
125
126#define IGB_QUEUE_STATS_LEN \
127	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
128	  IGB_RX_QUEUE_STATS_LEN) + \
129	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
130	  IGB_TX_QUEUE_STATS_LEN))
131#define IGB_STATS_LEN \
132	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
133
134static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
135	"Register test  (offline)", "Eeprom test    (offline)",
136	"Interrupt test (offline)", "Loopback test  (offline)",
137	"Link test   (on/offline)"
138};
139#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
140
141static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
142{
143	struct igb_adapter *adapter = netdev_priv(netdev);
144	struct e1000_hw *hw = &adapter->hw;
145	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
146	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
147	u32 status;
148
149	status = rd32(E1000_STATUS);
150	if (hw->phy.media_type == e1000_media_type_copper) {
151
152		ecmd->supported = (SUPPORTED_10baseT_Half |
153				   SUPPORTED_10baseT_Full |
154				   SUPPORTED_100baseT_Half |
155				   SUPPORTED_100baseT_Full |
156				   SUPPORTED_1000baseT_Full|
157				   SUPPORTED_Autoneg |
158				   SUPPORTED_TP |
159				   SUPPORTED_Pause);
160		ecmd->advertising = ADVERTISED_TP;
161
162		if (hw->mac.autoneg == 1) {
163			ecmd->advertising |= ADVERTISED_Autoneg;
164			/* the e1000 autoneg seems to match ethtool nicely */
165			ecmd->advertising |= hw->phy.autoneg_advertised;
166		}
167
168		ecmd->port = PORT_TP;
169		ecmd->phy_address = hw->phy.addr;
170		ecmd->transceiver = XCVR_INTERNAL;
171	} else {
172		ecmd->supported = (SUPPORTED_FIBRE |
173				   SUPPORTED_1000baseKX_Full |
174				   SUPPORTED_Autoneg |
175				   SUPPORTED_Pause);
176		ecmd->advertising = (ADVERTISED_FIBRE |
177				     ADVERTISED_1000baseKX_Full);
178		if (hw->mac.type == e1000_i354) {
179			if ((hw->device_id ==
180			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
181			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
182				ecmd->supported |= SUPPORTED_2500baseX_Full;
183				ecmd->supported &=
184					~SUPPORTED_1000baseKX_Full;
185				ecmd->advertising |= ADVERTISED_2500baseX_Full;
186				ecmd->advertising &=
187					~ADVERTISED_1000baseKX_Full;
188			}
189		}
190		if (eth_flags->e100_base_fx) {
191			ecmd->supported |= SUPPORTED_100baseT_Full;
192			ecmd->advertising |= ADVERTISED_100baseT_Full;
193		}
194		if (hw->mac.autoneg == 1)
195			ecmd->advertising |= ADVERTISED_Autoneg;
196
197		ecmd->port = PORT_FIBRE;
198		ecmd->transceiver = XCVR_EXTERNAL;
199	}
200	if (hw->mac.autoneg != 1)
201		ecmd->advertising &= ~(ADVERTISED_Pause |
202				       ADVERTISED_Asym_Pause);
203
204	switch (hw->fc.requested_mode) {
205	case e1000_fc_full:
206		ecmd->advertising |= ADVERTISED_Pause;
207		break;
208	case e1000_fc_rx_pause:
209		ecmd->advertising |= (ADVERTISED_Pause |
210				      ADVERTISED_Asym_Pause);
211		break;
212	case e1000_fc_tx_pause:
213		ecmd->advertising |=  ADVERTISED_Asym_Pause;
214		break;
215	default:
216		ecmd->advertising &= ~(ADVERTISED_Pause |
217				       ADVERTISED_Asym_Pause);
218	}
219	if (status & E1000_STATUS_LU) {
220		if ((status & E1000_STATUS_2P5_SKU) &&
221		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
222			ecmd->speed = SPEED_2500;
223		} else if (status & E1000_STATUS_SPEED_1000) {
224			ecmd->speed = SPEED_1000;
225		} else if (status & E1000_STATUS_SPEED_100) {
226			ecmd->speed = SPEED_100;
227		} else {
228			ecmd->speed = SPEED_10;
229		}
230		if ((status & E1000_STATUS_FD) ||
231		    hw->phy.media_type != e1000_media_type_copper)
232			ecmd->duplex = DUPLEX_FULL;
233		else
234			ecmd->duplex = DUPLEX_HALF;
235	} else {
236		ecmd->speed = -1;
237		ecmd->duplex = -1;
238	}
239	if ((hw->phy.media_type == e1000_media_type_fiber) ||
240	    hw->mac.autoneg)
241		ecmd->autoneg = AUTONEG_ENABLE;
242	else
243		ecmd->autoneg = AUTONEG_DISABLE;
244
245	/* MDI-X => 2; MDI =>1; Invalid =>0 */
246	if (hw->phy.media_type == e1000_media_type_copper)
247		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
248						      ETH_TP_MDI;
249	else
250		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
251
252	if (hw->phy.mdix == AUTO_ALL_MODES)
253		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
254	else
255		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
256
257	return 0;
258}
259
260static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
261{
262	struct igb_adapter *adapter = netdev_priv(netdev);
263	struct e1000_hw *hw = &adapter->hw;
264
265	/* When SoL/IDER sessions are active, autoneg/speed/duplex
266	 * cannot be changed
267	 */
268	if (igb_check_reset_block(hw)) {
269		dev_err(&adapter->pdev->dev,
270			"Cannot change link characteristics when SoL/IDER is active.\n");
271		return -EINVAL;
272	}
273
274	/* MDI setting is only allowed when autoneg enabled because
275	 * some hardware doesn't allow MDI setting when speed or
276	 * duplex is forced.
277	 */
278	if (ecmd->eth_tp_mdix_ctrl) {
279		if (hw->phy.media_type != e1000_media_type_copper)
280			return -EOPNOTSUPP;
281
282		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
283		    (ecmd->autoneg != AUTONEG_ENABLE)) {
284			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
285			return -EINVAL;
286		}
287	}
288
289	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
290		msleep(1);
291
292	if (ecmd->autoneg == AUTONEG_ENABLE) {
293		hw->mac.autoneg = 1;
294		if (hw->phy.media_type == e1000_media_type_fiber) {
295			hw->phy.autoneg_advertised = ecmd->advertising |
296						     ADVERTISED_FIBRE |
297						     ADVERTISED_Autoneg;
298			switch (adapter->link_speed) {
299			case SPEED_2500:
300				hw->phy.autoneg_advertised =
301					ADVERTISED_2500baseX_Full;
302				break;
303			case SPEED_1000:
304				hw->phy.autoneg_advertised =
305					ADVERTISED_1000baseT_Full;
306				break;
307			case SPEED_100:
308				hw->phy.autoneg_advertised =
309					ADVERTISED_100baseT_Full;
310				break;
311			default:
312				break;
313			}
314		} else {
315			hw->phy.autoneg_advertised = ecmd->advertising |
316						     ADVERTISED_TP |
317						     ADVERTISED_Autoneg;
318		}
319		ecmd->advertising = hw->phy.autoneg_advertised;
320		if (adapter->fc_autoneg)
321			hw->fc.requested_mode = e1000_fc_default;
322	} else {
323		u32 speed = ethtool_cmd_speed(ecmd);
324		/* calling this overrides forced MDI setting */
325		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
326			clear_bit(__IGB_RESETTING, &adapter->state);
327			return -EINVAL;
328		}
329	}
330
331	/* MDI-X => 2; MDI => 1; Auto => 3 */
332	if (ecmd->eth_tp_mdix_ctrl) {
333		/* fix up the value for auto (3 => 0) as zero is mapped
334		 * internally to auto
335		 */
336		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
337			hw->phy.mdix = AUTO_ALL_MODES;
338		else
339			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
340	}
341
342	/* reset the link */
343	if (netif_running(adapter->netdev)) {
344		igb_down(adapter);
345		igb_up(adapter);
346	} else
347		igb_reset(adapter);
348
349	clear_bit(__IGB_RESETTING, &adapter->state);
350	return 0;
351}
352
353static u32 igb_get_link(struct net_device *netdev)
354{
355	struct igb_adapter *adapter = netdev_priv(netdev);
356	struct e1000_mac_info *mac = &adapter->hw.mac;
357
358	/* If the link is not reported up to netdev, interrupts are disabled,
359	 * and so the physical link state may have changed since we last
360	 * looked. Set get_link_status to make sure that the true link
361	 * state is interrogated, rather than pulling a cached and possibly
362	 * stale link state from the driver.
363	 */
364	if (!netif_carrier_ok(netdev))
365		mac->get_link_status = 1;
366
367	return igb_has_link(adapter);
368}
369
370static void igb_get_pauseparam(struct net_device *netdev,
371			       struct ethtool_pauseparam *pause)
372{
373	struct igb_adapter *adapter = netdev_priv(netdev);
374	struct e1000_hw *hw = &adapter->hw;
375
376	pause->autoneg =
377		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
378
379	if (hw->fc.current_mode == e1000_fc_rx_pause)
380		pause->rx_pause = 1;
381	else if (hw->fc.current_mode == e1000_fc_tx_pause)
382		pause->tx_pause = 1;
383	else if (hw->fc.current_mode == e1000_fc_full) {
384		pause->rx_pause = 1;
385		pause->tx_pause = 1;
386	}
387}
388
389static int igb_set_pauseparam(struct net_device *netdev,
390			      struct ethtool_pauseparam *pause)
391{
392	struct igb_adapter *adapter = netdev_priv(netdev);
393	struct e1000_hw *hw = &adapter->hw;
394	int retval = 0;
395
396	/* 100basefx does not support setting link flow control */
397	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
398		return -EINVAL;
399
400	adapter->fc_autoneg = pause->autoneg;
401
402	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
403		msleep(1);
404
405	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
406		hw->fc.requested_mode = e1000_fc_default;
407		if (netif_running(adapter->netdev)) {
408			igb_down(adapter);
409			igb_up(adapter);
410		} else {
411			igb_reset(adapter);
412		}
413	} else {
414		if (pause->rx_pause && pause->tx_pause)
415			hw->fc.requested_mode = e1000_fc_full;
416		else if (pause->rx_pause && !pause->tx_pause)
417			hw->fc.requested_mode = e1000_fc_rx_pause;
418		else if (!pause->rx_pause && pause->tx_pause)
419			hw->fc.requested_mode = e1000_fc_tx_pause;
420		else if (!pause->rx_pause && !pause->tx_pause)
421			hw->fc.requested_mode = e1000_fc_none;
422
423		hw->fc.current_mode = hw->fc.requested_mode;
424
425		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
426			  igb_force_mac_fc(hw) : igb_setup_link(hw));
427	}
428
429	clear_bit(__IGB_RESETTING, &adapter->state);
430	return retval;
431}
432
433static u32 igb_get_msglevel(struct net_device *netdev)
434{
435	struct igb_adapter *adapter = netdev_priv(netdev);
436	return adapter->msg_enable;
437}
438
439static void igb_set_msglevel(struct net_device *netdev, u32 data)
440{
441	struct igb_adapter *adapter = netdev_priv(netdev);
442	adapter->msg_enable = data;
443}
444
445static int igb_get_regs_len(struct net_device *netdev)
446{
447#define IGB_REGS_LEN 739
448	return IGB_REGS_LEN * sizeof(u32);
449}
450
451static void igb_get_regs(struct net_device *netdev,
452			 struct ethtool_regs *regs, void *p)
453{
454	struct igb_adapter *adapter = netdev_priv(netdev);
455	struct e1000_hw *hw = &adapter->hw;
456	u32 *regs_buff = p;
457	u8 i;
458
459	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
460
461	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
462
463	/* General Registers */
464	regs_buff[0] = rd32(E1000_CTRL);
465	regs_buff[1] = rd32(E1000_STATUS);
466	regs_buff[2] = rd32(E1000_CTRL_EXT);
467	regs_buff[3] = rd32(E1000_MDIC);
468	regs_buff[4] = rd32(E1000_SCTL);
469	regs_buff[5] = rd32(E1000_CONNSW);
470	regs_buff[6] = rd32(E1000_VET);
471	regs_buff[7] = rd32(E1000_LEDCTL);
472	regs_buff[8] = rd32(E1000_PBA);
473	regs_buff[9] = rd32(E1000_PBS);
474	regs_buff[10] = rd32(E1000_FRTIMER);
475	regs_buff[11] = rd32(E1000_TCPTIMER);
476
477	/* NVM Register */
478	regs_buff[12] = rd32(E1000_EECD);
479
480	/* Interrupt */
481	/* Reading EICS for EICR because they read the
482	 * same but EICS does not clear on read
483	 */
484	regs_buff[13] = rd32(E1000_EICS);
485	regs_buff[14] = rd32(E1000_EICS);
486	regs_buff[15] = rd32(E1000_EIMS);
487	regs_buff[16] = rd32(E1000_EIMC);
488	regs_buff[17] = rd32(E1000_EIAC);
489	regs_buff[18] = rd32(E1000_EIAM);
490	/* Reading ICS for ICR because they read the
491	 * same but ICS does not clear on read
492	 */
493	regs_buff[19] = rd32(E1000_ICS);
494	regs_buff[20] = rd32(E1000_ICS);
495	regs_buff[21] = rd32(E1000_IMS);
496	regs_buff[22] = rd32(E1000_IMC);
497	regs_buff[23] = rd32(E1000_IAC);
498	regs_buff[24] = rd32(E1000_IAM);
499	regs_buff[25] = rd32(E1000_IMIRVP);
500
501	/* Flow Control */
502	regs_buff[26] = rd32(E1000_FCAL);
503	regs_buff[27] = rd32(E1000_FCAH);
504	regs_buff[28] = rd32(E1000_FCTTV);
505	regs_buff[29] = rd32(E1000_FCRTL);
506	regs_buff[30] = rd32(E1000_FCRTH);
507	regs_buff[31] = rd32(E1000_FCRTV);
508
509	/* Receive */
510	regs_buff[32] = rd32(E1000_RCTL);
511	regs_buff[33] = rd32(E1000_RXCSUM);
512	regs_buff[34] = rd32(E1000_RLPML);
513	regs_buff[35] = rd32(E1000_RFCTL);
514	regs_buff[36] = rd32(E1000_MRQC);
515	regs_buff[37] = rd32(E1000_VT_CTL);
516
517	/* Transmit */
518	regs_buff[38] = rd32(E1000_TCTL);
519	regs_buff[39] = rd32(E1000_TCTL_EXT);
520	regs_buff[40] = rd32(E1000_TIPG);
521	regs_buff[41] = rd32(E1000_DTXCTL);
522
523	/* Wake Up */
524	regs_buff[42] = rd32(E1000_WUC);
525	regs_buff[43] = rd32(E1000_WUFC);
526	regs_buff[44] = rd32(E1000_WUS);
527	regs_buff[45] = rd32(E1000_IPAV);
528	regs_buff[46] = rd32(E1000_WUPL);
529
530	/* MAC */
531	regs_buff[47] = rd32(E1000_PCS_CFG0);
532	regs_buff[48] = rd32(E1000_PCS_LCTL);
533	regs_buff[49] = rd32(E1000_PCS_LSTAT);
534	regs_buff[50] = rd32(E1000_PCS_ANADV);
535	regs_buff[51] = rd32(E1000_PCS_LPAB);
536	regs_buff[52] = rd32(E1000_PCS_NPTX);
537	regs_buff[53] = rd32(E1000_PCS_LPABNP);
538
539	/* Statistics */
540	regs_buff[54] = adapter->stats.crcerrs;
541	regs_buff[55] = adapter->stats.algnerrc;
542	regs_buff[56] = adapter->stats.symerrs;
543	regs_buff[57] = adapter->stats.rxerrc;
544	regs_buff[58] = adapter->stats.mpc;
545	regs_buff[59] = adapter->stats.scc;
546	regs_buff[60] = adapter->stats.ecol;
547	regs_buff[61] = adapter->stats.mcc;
548	regs_buff[62] = adapter->stats.latecol;
549	regs_buff[63] = adapter->stats.colc;
550	regs_buff[64] = adapter->stats.dc;
551	regs_buff[65] = adapter->stats.tncrs;
552	regs_buff[66] = adapter->stats.sec;
553	regs_buff[67] = adapter->stats.htdpmc;
554	regs_buff[68] = adapter->stats.rlec;
555	regs_buff[69] = adapter->stats.xonrxc;
556	regs_buff[70] = adapter->stats.xontxc;
557	regs_buff[71] = adapter->stats.xoffrxc;
558	regs_buff[72] = adapter->stats.xofftxc;
559	regs_buff[73] = adapter->stats.fcruc;
560	regs_buff[74] = adapter->stats.prc64;
561	regs_buff[75] = adapter->stats.prc127;
562	regs_buff[76] = adapter->stats.prc255;
563	regs_buff[77] = adapter->stats.prc511;
564	regs_buff[78] = adapter->stats.prc1023;
565	regs_buff[79] = adapter->stats.prc1522;
566	regs_buff[80] = adapter->stats.gprc;
567	regs_buff[81] = adapter->stats.bprc;
568	regs_buff[82] = adapter->stats.mprc;
569	regs_buff[83] = adapter->stats.gptc;
570	regs_buff[84] = adapter->stats.gorc;
571	regs_buff[86] = adapter->stats.gotc;
572	regs_buff[88] = adapter->stats.rnbc;
573	regs_buff[89] = adapter->stats.ruc;
574	regs_buff[90] = adapter->stats.rfc;
575	regs_buff[91] = adapter->stats.roc;
576	regs_buff[92] = adapter->stats.rjc;
577	regs_buff[93] = adapter->stats.mgprc;
578	regs_buff[94] = adapter->stats.mgpdc;
579	regs_buff[95] = adapter->stats.mgptc;
580	regs_buff[96] = adapter->stats.tor;
581	regs_buff[98] = adapter->stats.tot;
582	regs_buff[100] = adapter->stats.tpr;
583	regs_buff[101] = adapter->stats.tpt;
584	regs_buff[102] = adapter->stats.ptc64;
585	regs_buff[103] = adapter->stats.ptc127;
586	regs_buff[104] = adapter->stats.ptc255;
587	regs_buff[105] = adapter->stats.ptc511;
588	regs_buff[106] = adapter->stats.ptc1023;
589	regs_buff[107] = adapter->stats.ptc1522;
590	regs_buff[108] = adapter->stats.mptc;
591	regs_buff[109] = adapter->stats.bptc;
592	regs_buff[110] = adapter->stats.tsctc;
593	regs_buff[111] = adapter->stats.iac;
594	regs_buff[112] = adapter->stats.rpthc;
595	regs_buff[113] = adapter->stats.hgptc;
596	regs_buff[114] = adapter->stats.hgorc;
597	regs_buff[116] = adapter->stats.hgotc;
598	regs_buff[118] = adapter->stats.lenerrs;
599	regs_buff[119] = adapter->stats.scvpc;
600	regs_buff[120] = adapter->stats.hrmpc;
601
602	for (i = 0; i < 4; i++)
603		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
604	for (i = 0; i < 4; i++)
605		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
606	for (i = 0; i < 4; i++)
607		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
608	for (i = 0; i < 4; i++)
609		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
610	for (i = 0; i < 4; i++)
611		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
612	for (i = 0; i < 4; i++)
613		regs_buff[141 + i] = rd32(E1000_RDH(i));
614	for (i = 0; i < 4; i++)
615		regs_buff[145 + i] = rd32(E1000_RDT(i));
616	for (i = 0; i < 4; i++)
617		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
618
619	for (i = 0; i < 10; i++)
620		regs_buff[153 + i] = rd32(E1000_EITR(i));
621	for (i = 0; i < 8; i++)
622		regs_buff[163 + i] = rd32(E1000_IMIR(i));
623	for (i = 0; i < 8; i++)
624		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
625	for (i = 0; i < 16; i++)
626		regs_buff[179 + i] = rd32(E1000_RAL(i));
627	for (i = 0; i < 16; i++)
628		regs_buff[195 + i] = rd32(E1000_RAH(i));
629
630	for (i = 0; i < 4; i++)
631		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
632	for (i = 0; i < 4; i++)
633		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
634	for (i = 0; i < 4; i++)
635		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
636	for (i = 0; i < 4; i++)
637		regs_buff[223 + i] = rd32(E1000_TDH(i));
638	for (i = 0; i < 4; i++)
639		regs_buff[227 + i] = rd32(E1000_TDT(i));
640	for (i = 0; i < 4; i++)
641		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
642	for (i = 0; i < 4; i++)
643		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
644	for (i = 0; i < 4; i++)
645		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
646	for (i = 0; i < 4; i++)
647		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
648
649	for (i = 0; i < 4; i++)
650		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
651	for (i = 0; i < 4; i++)
652		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
653	for (i = 0; i < 32; i++)
654		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
655	for (i = 0; i < 128; i++)
656		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
657	for (i = 0; i < 128; i++)
658		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
659	for (i = 0; i < 4; i++)
660		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
661
662	regs_buff[547] = rd32(E1000_TDFH);
663	regs_buff[548] = rd32(E1000_TDFT);
664	regs_buff[549] = rd32(E1000_TDFHS);
665	regs_buff[550] = rd32(E1000_TDFPC);
666
667	if (hw->mac.type > e1000_82580) {
668		regs_buff[551] = adapter->stats.o2bgptc;
669		regs_buff[552] = adapter->stats.b2ospc;
670		regs_buff[553] = adapter->stats.o2bspc;
671		regs_buff[554] = adapter->stats.b2ogprc;
672	}
673
674	if (hw->mac.type != e1000_82576)
675		return;
676	for (i = 0; i < 12; i++)
677		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
678	for (i = 0; i < 4; i++)
679		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
680	for (i = 0; i < 12; i++)
681		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
682	for (i = 0; i < 12; i++)
683		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
684	for (i = 0; i < 12; i++)
685		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
686	for (i = 0; i < 12; i++)
687		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
688	for (i = 0; i < 12; i++)
689		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
690	for (i = 0; i < 12; i++)
691		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
692
693	for (i = 0; i < 12; i++)
694		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
695	for (i = 0; i < 12; i++)
696		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
697	for (i = 0; i < 12; i++)
698		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
699	for (i = 0; i < 12; i++)
700		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
701	for (i = 0; i < 12; i++)
702		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
703	for (i = 0; i < 12; i++)
704		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
705	for (i = 0; i < 12; i++)
706		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
707	for (i = 0; i < 12; i++)
708		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
709}
710
711static int igb_get_eeprom_len(struct net_device *netdev)
712{
713	struct igb_adapter *adapter = netdev_priv(netdev);
714	return adapter->hw.nvm.word_size * 2;
715}
716
717static int igb_get_eeprom(struct net_device *netdev,
718			  struct ethtool_eeprom *eeprom, u8 *bytes)
719{
720	struct igb_adapter *adapter = netdev_priv(netdev);
721	struct e1000_hw *hw = &adapter->hw;
722	u16 *eeprom_buff;
723	int first_word, last_word;
724	int ret_val = 0;
725	u16 i;
726
727	if (eeprom->len == 0)
728		return -EINVAL;
729
730	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
731
732	first_word = eeprom->offset >> 1;
733	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
734
735	eeprom_buff = kmalloc(sizeof(u16) *
736			(last_word - first_word + 1), GFP_KERNEL);
737	if (!eeprom_buff)
738		return -ENOMEM;
739
740	if (hw->nvm.type == e1000_nvm_eeprom_spi)
741		ret_val = hw->nvm.ops.read(hw, first_word,
742					   last_word - first_word + 1,
743					   eeprom_buff);
744	else {
745		for (i = 0; i < last_word - first_word + 1; i++) {
746			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
747						   &eeprom_buff[i]);
748			if (ret_val)
749				break;
750		}
751	}
752
753	/* Device's eeprom is always little-endian, word addressable */
754	for (i = 0; i < last_word - first_word + 1; i++)
755		le16_to_cpus(&eeprom_buff[i]);
756
757	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
758			eeprom->len);
759	kfree(eeprom_buff);
760
761	return ret_val;
762}
763
764static int igb_set_eeprom(struct net_device *netdev,
765			  struct ethtool_eeprom *eeprom, u8 *bytes)
766{
767	struct igb_adapter *adapter = netdev_priv(netdev);
768	struct e1000_hw *hw = &adapter->hw;
769	u16 *eeprom_buff;
770	void *ptr;
771	int max_len, first_word, last_word, ret_val = 0;
772	u16 i;
773
774	if (eeprom->len == 0)
775		return -EOPNOTSUPP;
776
777	if ((hw->mac.type >= e1000_i210) &&
778	    !igb_get_flash_presence_i210(hw)) {
779		return -EOPNOTSUPP;
780	}
781
782	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
783		return -EFAULT;
784
785	max_len = hw->nvm.word_size * 2;
786
787	first_word = eeprom->offset >> 1;
788	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
789	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
790	if (!eeprom_buff)
791		return -ENOMEM;
792
793	ptr = (void *)eeprom_buff;
794
795	if (eeprom->offset & 1) {
796		/* need read/modify/write of first changed EEPROM word
797		 * only the second byte of the word is being modified
798		 */
799		ret_val = hw->nvm.ops.read(hw, first_word, 1,
800					    &eeprom_buff[0]);
801		ptr++;
802	}
803	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
804		/* need read/modify/write of last changed EEPROM word
805		 * only the first byte of the word is being modified
806		 */
807		ret_val = hw->nvm.ops.read(hw, last_word, 1,
808				   &eeprom_buff[last_word - first_word]);
809	}
810
811	/* Device's eeprom is always little-endian, word addressable */
812	for (i = 0; i < last_word - first_word + 1; i++)
813		le16_to_cpus(&eeprom_buff[i]);
814
815	memcpy(ptr, bytes, eeprom->len);
816
817	for (i = 0; i < last_word - first_word + 1; i++)
818		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
819
820	ret_val = hw->nvm.ops.write(hw, first_word,
821				    last_word - first_word + 1, eeprom_buff);
822
823	/* Update the checksum if nvm write succeeded */
824	if (ret_val == 0)
825		hw->nvm.ops.update(hw);
826
827	igb_set_fw_version(adapter);
828	kfree(eeprom_buff);
829	return ret_val;
830}
831
832static void igb_get_drvinfo(struct net_device *netdev,
833			    struct ethtool_drvinfo *drvinfo)
834{
835	struct igb_adapter *adapter = netdev_priv(netdev);
836
837	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
838	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
839
840	/* EEPROM image version # is reported as firmware version # for
841	 * 82575 controllers
842	 */
843	strlcpy(drvinfo->fw_version, adapter->fw_version,
844		sizeof(drvinfo->fw_version));
845	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
846		sizeof(drvinfo->bus_info));
847	drvinfo->n_stats = IGB_STATS_LEN;
848	drvinfo->testinfo_len = IGB_TEST_LEN;
849	drvinfo->regdump_len = igb_get_regs_len(netdev);
850	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
851}
852
853static void igb_get_ringparam(struct net_device *netdev,
854			      struct ethtool_ringparam *ring)
855{
856	struct igb_adapter *adapter = netdev_priv(netdev);
857
858	ring->rx_max_pending = IGB_MAX_RXD;
859	ring->tx_max_pending = IGB_MAX_TXD;
860	ring->rx_pending = adapter->rx_ring_count;
861	ring->tx_pending = adapter->tx_ring_count;
862}
863
864static int igb_set_ringparam(struct net_device *netdev,
865			     struct ethtool_ringparam *ring)
866{
867	struct igb_adapter *adapter = netdev_priv(netdev);
868	struct igb_ring *temp_ring;
869	int i, err = 0;
870	u16 new_rx_count, new_tx_count;
871
872	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
873		return -EINVAL;
874
875	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
876	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
877	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
878
879	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
880	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
881	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
882
883	if ((new_tx_count == adapter->tx_ring_count) &&
884	    (new_rx_count == adapter->rx_ring_count)) {
885		/* nothing to do */
886		return 0;
887	}
888
889	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
890		msleep(1);
891
892	if (!netif_running(adapter->netdev)) {
893		for (i = 0; i < adapter->num_tx_queues; i++)
894			adapter->tx_ring[i]->count = new_tx_count;
895		for (i = 0; i < adapter->num_rx_queues; i++)
896			adapter->rx_ring[i]->count = new_rx_count;
897		adapter->tx_ring_count = new_tx_count;
898		adapter->rx_ring_count = new_rx_count;
899		goto clear_reset;
900	}
901
902	if (adapter->num_tx_queues > adapter->num_rx_queues)
903		temp_ring = vmalloc(adapter->num_tx_queues *
904				    sizeof(struct igb_ring));
905	else
906		temp_ring = vmalloc(adapter->num_rx_queues *
907				    sizeof(struct igb_ring));
908
909	if (!temp_ring) {
910		err = -ENOMEM;
911		goto clear_reset;
912	}
913
914	igb_down(adapter);
915
916	/* We can't just free everything and then setup again,
917	 * because the ISRs in MSI-X mode get passed pointers
918	 * to the Tx and Rx ring structs.
919	 */
920	if (new_tx_count != adapter->tx_ring_count) {
921		for (i = 0; i < adapter->num_tx_queues; i++) {
922			memcpy(&temp_ring[i], adapter->tx_ring[i],
923			       sizeof(struct igb_ring));
924
925			temp_ring[i].count = new_tx_count;
926			err = igb_setup_tx_resources(&temp_ring[i]);
927			if (err) {
928				while (i) {
929					i--;
930					igb_free_tx_resources(&temp_ring[i]);
931				}
932				goto err_setup;
933			}
934		}
935
936		for (i = 0; i < adapter->num_tx_queues; i++) {
937			igb_free_tx_resources(adapter->tx_ring[i]);
938
939			memcpy(adapter->tx_ring[i], &temp_ring[i],
940			       sizeof(struct igb_ring));
941		}
942
943		adapter->tx_ring_count = new_tx_count;
944	}
945
946	if (new_rx_count != adapter->rx_ring_count) {
947		for (i = 0; i < adapter->num_rx_queues; i++) {
948			memcpy(&temp_ring[i], adapter->rx_ring[i],
949			       sizeof(struct igb_ring));
950
951			temp_ring[i].count = new_rx_count;
952			err = igb_setup_rx_resources(&temp_ring[i]);
953			if (err) {
954				while (i) {
955					i--;
956					igb_free_rx_resources(&temp_ring[i]);
957				}
958				goto err_setup;
959			}
960
961		}
962
963		for (i = 0; i < adapter->num_rx_queues; i++) {
964			igb_free_rx_resources(adapter->rx_ring[i]);
965
966			memcpy(adapter->rx_ring[i], &temp_ring[i],
967			       sizeof(struct igb_ring));
968		}
969
970		adapter->rx_ring_count = new_rx_count;
971	}
972err_setup:
973	igb_up(adapter);
974	vfree(temp_ring);
975clear_reset:
976	clear_bit(__IGB_RESETTING, &adapter->state);
977	return err;
978}
979
980/* ethtool register test data */
981struct igb_reg_test {
982	u16 reg;
983	u16 reg_offset;
984	u16 array_len;
985	u16 test_type;
986	u32 mask;
987	u32 write;
988};
989
990/* In the hardware, registers are laid out either singly, in arrays
991 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
992 * most tests take place on arrays or single registers (handled
993 * as a single-element array) and special-case the tables.
994 * Table tests are always pattern tests.
995 *
996 * We also make provision for some required setup steps by specifying
997 * registers to be written without any read-back testing.
998 */
999
1000#define PATTERN_TEST	1
1001#define SET_READ_TEST	2
1002#define WRITE_NO_TEST	3
1003#define TABLE32_TEST	4
1004#define TABLE64_TEST_LO	5
1005#define TABLE64_TEST_HI	6
1006
1007/* i210 reg test */
1008static struct igb_reg_test reg_test_i210[] = {
1009	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1010	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1011	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1012	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1013	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1014	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1015	/* RDH is read-only for i210, only test RDT. */
1016	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1017	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1018	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1019	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1020	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1021	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1022	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1023	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1024	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1025	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1026	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1027	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1028	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1029						0xFFFFFFFF, 0xFFFFFFFF },
1030	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1031						0x900FFFFF, 0xFFFFFFFF },
1032	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1033						0xFFFFFFFF, 0xFFFFFFFF },
1034	{ 0, 0, 0, 0, 0 }
1035};
1036
1037/* i350 reg test */
1038static struct igb_reg_test reg_test_i350[] = {
1039	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1041	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1042	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1043	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1044	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1045	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1046	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1047	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1048	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1049	/* RDH is read-only for i350, only test RDT. */
1050	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1051	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1052	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1053	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1054	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1055	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1056	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1057	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1058	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1059	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1060	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1061	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1062	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1063	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1064	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1065	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1066	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1067	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1068						0xFFFFFFFF, 0xFFFFFFFF },
1069	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1070						0xC3FFFFFF, 0xFFFFFFFF },
1071	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1072						0xFFFFFFFF, 0xFFFFFFFF },
1073	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1074						0xC3FFFFFF, 0xFFFFFFFF },
1075	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1076						0xFFFFFFFF, 0xFFFFFFFF },
1077	{ 0, 0, 0, 0 }
1078};
1079
1080/* 82580 reg test */
1081static struct igb_reg_test reg_test_82580[] = {
1082	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1083	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1084	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1085	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1086	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1087	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1088	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1089	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1090	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1091	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1092	/* RDH is read-only for 82580, only test RDT. */
1093	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1094	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1095	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1096	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1097	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1098	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1099	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1100	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1101	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1102	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1103	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1104	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1105	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1106	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1107	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1108	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1109	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1110	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1111						0xFFFFFFFF, 0xFFFFFFFF },
1112	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1113						0x83FFFFFF, 0xFFFFFFFF },
1114	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1115						0xFFFFFFFF, 0xFFFFFFFF },
1116	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1117						0x83FFFFFF, 0xFFFFFFFF },
1118	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1119						0xFFFFFFFF, 0xFFFFFFFF },
1120	{ 0, 0, 0, 0 }
1121};
1122
1123/* 82576 reg test */
1124static struct igb_reg_test reg_test_82576[] = {
1125	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1126	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1127	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1128	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1129	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1130	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1131	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1132	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1133	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1134	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1135	/* Enable all RX queues before testing. */
1136	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1137	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1138	/* RDH is read-only for 82576, only test RDT. */
1139	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1140	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1141	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1142	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1143	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1144	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1145	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1146	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1147	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1148	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1149	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1150	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1151	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1152	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1153	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1154	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1155	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1156	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1157	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1158	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1159	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1160	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1161	{ 0, 0, 0, 0 }
1162};
1163
1164/* 82575 register test */
1165static struct igb_reg_test reg_test_82575[] = {
1166	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1168	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1169	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1170	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1171	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1172	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1173	/* Enable all four RX queues before testing. */
1174	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1175	/* RDH is read-only for 82575, only test RDT. */
1176	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1177	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1178	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1179	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1180	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1181	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1182	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1183	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1184	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1185	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1186	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1187	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1188	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1189	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1190	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1191	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1192	{ 0, 0, 0, 0 }
1193};
1194
1195static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1196			     int reg, u32 mask, u32 write)
1197{
1198	struct e1000_hw *hw = &adapter->hw;
1199	u32 pat, val;
1200	static const u32 _test[] =
1201		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1202	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1203		wr32(reg, (_test[pat] & write));
1204		val = rd32(reg) & mask;
1205		if (val != (_test[pat] & write & mask)) {
1206			dev_err(&adapter->pdev->dev,
1207				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1208				reg, val, (_test[pat] & write & mask));
1209			*data = reg;
1210			return 1;
1211		}
1212	}
1213
1214	return 0;
1215}
1216
1217static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1218			      int reg, u32 mask, u32 write)
1219{
1220	struct e1000_hw *hw = &adapter->hw;
1221	u32 val;
1222	wr32(reg, write & mask);
1223	val = rd32(reg);
1224	if ((write & mask) != (val & mask)) {
1225		dev_err(&adapter->pdev->dev,
1226			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1227			(val & mask), (write & mask));
1228		*data = reg;
1229		return 1;
1230	}
1231
1232	return 0;
1233}
1234
1235#define REG_PATTERN_TEST(reg, mask, write) \
1236	do { \
1237		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1238			return 1; \
1239	} while (0)
1240
1241#define REG_SET_AND_CHECK(reg, mask, write) \
1242	do { \
1243		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1244			return 1; \
1245	} while (0)
1246
1247static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1248{
1249	struct e1000_hw *hw = &adapter->hw;
1250	struct igb_reg_test *test;
1251	u32 value, before, after;
1252	u32 i, toggle;
1253
1254	switch (adapter->hw.mac.type) {
1255	case e1000_i350:
1256	case e1000_i354:
1257		test = reg_test_i350;
1258		toggle = 0x7FEFF3FF;
1259		break;
1260	case e1000_i210:
1261	case e1000_i211:
1262		test = reg_test_i210;
1263		toggle = 0x7FEFF3FF;
1264		break;
1265	case e1000_82580:
1266		test = reg_test_82580;
1267		toggle = 0x7FEFF3FF;
1268		break;
1269	case e1000_82576:
1270		test = reg_test_82576;
1271		toggle = 0x7FFFF3FF;
1272		break;
1273	default:
1274		test = reg_test_82575;
1275		toggle = 0x7FFFF3FF;
1276		break;
1277	}
1278
1279	/* Because the status register is such a special case,
1280	 * we handle it separately from the rest of the register
1281	 * tests.  Some bits are read-only, some toggle, and some
1282	 * are writable on newer MACs.
1283	 */
1284	before = rd32(E1000_STATUS);
1285	value = (rd32(E1000_STATUS) & toggle);
1286	wr32(E1000_STATUS, toggle);
1287	after = rd32(E1000_STATUS) & toggle;
1288	if (value != after) {
1289		dev_err(&adapter->pdev->dev,
1290			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1291			after, value);
1292		*data = 1;
1293		return 1;
1294	}
1295	/* restore previous status */
1296	wr32(E1000_STATUS, before);
1297
1298	/* Perform the remainder of the register test, looping through
1299	 * the test table until we either fail or reach the null entry.
1300	 */
1301	while (test->reg) {
1302		for (i = 0; i < test->array_len; i++) {
1303			switch (test->test_type) {
1304			case PATTERN_TEST:
1305				REG_PATTERN_TEST(test->reg +
1306						(i * test->reg_offset),
1307						test->mask,
1308						test->write);
1309				break;
1310			case SET_READ_TEST:
1311				REG_SET_AND_CHECK(test->reg +
1312						(i * test->reg_offset),
1313						test->mask,
1314						test->write);
1315				break;
1316			case WRITE_NO_TEST:
1317				writel(test->write,
1318				    (adapter->hw.hw_addr + test->reg)
1319					+ (i * test->reg_offset));
1320				break;
1321			case TABLE32_TEST:
1322				REG_PATTERN_TEST(test->reg + (i * 4),
1323						test->mask,
1324						test->write);
1325				break;
1326			case TABLE64_TEST_LO:
1327				REG_PATTERN_TEST(test->reg + (i * 8),
1328						test->mask,
1329						test->write);
1330				break;
1331			case TABLE64_TEST_HI:
1332				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1333						test->mask,
1334						test->write);
1335				break;
1336			}
1337		}
1338		test++;
1339	}
1340
1341	*data = 0;
1342	return 0;
1343}
1344
1345static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1346{
1347	struct e1000_hw *hw = &adapter->hw;
1348
1349	*data = 0;
1350
1351	/* Validate eeprom on all parts but flashless */
1352	switch (hw->mac.type) {
1353	case e1000_i210:
1354	case e1000_i211:
1355		if (igb_get_flash_presence_i210(hw)) {
1356			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1357				*data = 2;
1358		}
1359		break;
1360	default:
1361		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1362			*data = 2;
1363		break;
1364	}
1365
1366	return *data;
1367}
1368
1369static irqreturn_t igb_test_intr(int irq, void *data)
1370{
1371	struct igb_adapter *adapter = (struct igb_adapter *) data;
1372	struct e1000_hw *hw = &adapter->hw;
1373
1374	adapter->test_icr |= rd32(E1000_ICR);
1375
1376	return IRQ_HANDLED;
1377}
1378
1379static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1380{
1381	struct e1000_hw *hw = &adapter->hw;
1382	struct net_device *netdev = adapter->netdev;
1383	u32 mask, ics_mask, i = 0, shared_int = true;
1384	u32 irq = adapter->pdev->irq;
1385
1386	*data = 0;
1387
1388	/* Hook up test interrupt handler just for this test */
1389	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1390		if (request_irq(adapter->msix_entries[0].vector,
1391		                igb_test_intr, 0, netdev->name, adapter)) {
1392			*data = 1;
1393			return -1;
1394		}
1395	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1396		shared_int = false;
1397		if (request_irq(irq,
1398		                igb_test_intr, 0, netdev->name, adapter)) {
1399			*data = 1;
1400			return -1;
1401		}
1402	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1403				netdev->name, adapter)) {
1404		shared_int = false;
1405	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1406		 netdev->name, adapter)) {
1407		*data = 1;
1408		return -1;
1409	}
1410	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1411		(shared_int ? "shared" : "unshared"));
1412
1413	/* Disable all the interrupts */
1414	wr32(E1000_IMC, ~0);
1415	wrfl();
1416	msleep(10);
1417
1418	/* Define all writable bits for ICS */
1419	switch (hw->mac.type) {
1420	case e1000_82575:
1421		ics_mask = 0x37F47EDD;
1422		break;
1423	case e1000_82576:
1424		ics_mask = 0x77D4FBFD;
1425		break;
1426	case e1000_82580:
1427		ics_mask = 0x77DCFED5;
1428		break;
1429	case e1000_i350:
1430	case e1000_i354:
1431	case e1000_i210:
1432	case e1000_i211:
1433		ics_mask = 0x77DCFED5;
1434		break;
1435	default:
1436		ics_mask = 0x7FFFFFFF;
1437		break;
1438	}
1439
1440	/* Test each interrupt */
1441	for (; i < 31; i++) {
1442		/* Interrupt to test */
1443		mask = 1 << i;
1444
1445		if (!(mask & ics_mask))
1446			continue;
1447
1448		if (!shared_int) {
1449			/* Disable the interrupt to be reported in
1450			 * the cause register and then force the same
1451			 * interrupt and see if one gets posted.  If
1452			 * an interrupt was posted to the bus, the
1453			 * test failed.
1454			 */
1455			adapter->test_icr = 0;
1456
1457			/* Flush any pending interrupts */
1458			wr32(E1000_ICR, ~0);
1459
1460			wr32(E1000_IMC, mask);
1461			wr32(E1000_ICS, mask);
1462			wrfl();
1463			msleep(10);
1464
1465			if (adapter->test_icr & mask) {
1466				*data = 3;
1467				break;
1468			}
1469		}
1470
1471		/* Enable the interrupt to be reported in
1472		 * the cause register and then force the same
1473		 * interrupt and see if one gets posted.  If
1474		 * an interrupt was not posted to the bus, the
1475		 * test failed.
1476		 */
1477		adapter->test_icr = 0;
1478
1479		/* Flush any pending interrupts */
1480		wr32(E1000_ICR, ~0);
1481
1482		wr32(E1000_IMS, mask);
1483		wr32(E1000_ICS, mask);
1484		wrfl();
1485		msleep(10);
1486
1487		if (!(adapter->test_icr & mask)) {
1488			*data = 4;
1489			break;
1490		}
1491
1492		if (!shared_int) {
1493			/* Disable the other interrupts to be reported in
1494			 * the cause register and then force the other
1495			 * interrupts and see if any get posted.  If
1496			 * an interrupt was posted to the bus, the
1497			 * test failed.
1498			 */
1499			adapter->test_icr = 0;
1500
1501			/* Flush any pending interrupts */
1502			wr32(E1000_ICR, ~0);
1503
1504			wr32(E1000_IMC, ~mask);
1505			wr32(E1000_ICS, ~mask);
1506			wrfl();
1507			msleep(10);
1508
1509			if (adapter->test_icr & mask) {
1510				*data = 5;
1511				break;
1512			}
1513		}
1514	}
1515
1516	/* Disable all the interrupts */
1517	wr32(E1000_IMC, ~0);
1518	wrfl();
1519	msleep(10);
1520
1521	/* Unhook test interrupt handler */
1522	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1523		free_irq(adapter->msix_entries[0].vector, adapter);
1524	else
1525		free_irq(irq, adapter);
1526
1527	return *data;
1528}
1529
1530static void igb_free_desc_rings(struct igb_adapter *adapter)
1531{
1532	igb_free_tx_resources(&adapter->test_tx_ring);
1533	igb_free_rx_resources(&adapter->test_rx_ring);
1534}
1535
1536static int igb_setup_desc_rings(struct igb_adapter *adapter)
1537{
1538	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1539	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1540	struct e1000_hw *hw = &adapter->hw;
1541	int ret_val;
1542
1543	/* Setup Tx descriptor ring and Tx buffers */
1544	tx_ring->count = IGB_DEFAULT_TXD;
1545	tx_ring->dev = &adapter->pdev->dev;
1546	tx_ring->netdev = adapter->netdev;
1547	tx_ring->reg_idx = adapter->vfs_allocated_count;
1548
1549	if (igb_setup_tx_resources(tx_ring)) {
1550		ret_val = 1;
1551		goto err_nomem;
1552	}
1553
1554	igb_setup_tctl(adapter);
1555	igb_configure_tx_ring(adapter, tx_ring);
1556
1557	/* Setup Rx descriptor ring and Rx buffers */
1558	rx_ring->count = IGB_DEFAULT_RXD;
1559	rx_ring->dev = &adapter->pdev->dev;
1560	rx_ring->netdev = adapter->netdev;
1561	rx_ring->reg_idx = adapter->vfs_allocated_count;
1562
1563	if (igb_setup_rx_resources(rx_ring)) {
1564		ret_val = 3;
1565		goto err_nomem;
1566	}
1567
1568	/* set the default queue to queue 0 of PF */
1569	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1570
1571	/* enable receive ring */
1572	igb_setup_rctl(adapter);
1573	igb_configure_rx_ring(adapter, rx_ring);
1574
1575	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1576
1577	return 0;
1578
1579err_nomem:
1580	igb_free_desc_rings(adapter);
1581	return ret_val;
1582}
1583
1584static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1585{
1586	struct e1000_hw *hw = &adapter->hw;
1587
1588	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1589	igb_write_phy_reg(hw, 29, 0x001F);
1590	igb_write_phy_reg(hw, 30, 0x8FFC);
1591	igb_write_phy_reg(hw, 29, 0x001A);
1592	igb_write_phy_reg(hw, 30, 0x8FF0);
1593}
1594
1595static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1596{
1597	struct e1000_hw *hw = &adapter->hw;
1598	u32 ctrl_reg = 0;
1599
1600	hw->mac.autoneg = false;
1601
1602	if (hw->phy.type == e1000_phy_m88) {
1603		if (hw->phy.id != I210_I_PHY_ID) {
1604			/* Auto-MDI/MDIX Off */
1605			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1606			/* reset to update Auto-MDI/MDIX */
1607			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1608			/* autoneg off */
1609			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1610		} else {
1611			/* force 1000, set loopback  */
1612			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1613			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1614		}
1615	} else if (hw->phy.type == e1000_phy_82580) {
1616		/* enable MII loopback */
1617		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1618	}
1619
1620	/* add small delay to avoid loopback test failure */
1621	msleep(50);
1622
1623	/* force 1000, set loopback */
1624	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1625
1626	/* Now set up the MAC to the same speed/duplex as the PHY. */
1627	ctrl_reg = rd32(E1000_CTRL);
1628	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1629	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1630		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1631		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1632		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1633		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1634
1635	if (hw->phy.type == e1000_phy_m88)
1636		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1637
1638	wr32(E1000_CTRL, ctrl_reg);
1639
1640	/* Disable the receiver on the PHY so when a cable is plugged in, the
1641	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1642	 */
1643	if (hw->phy.type == e1000_phy_m88)
1644		igb_phy_disable_receiver(adapter);
1645
1646	mdelay(500);
1647	return 0;
1648}
1649
1650static int igb_set_phy_loopback(struct igb_adapter *adapter)
1651{
1652	return igb_integrated_phy_loopback(adapter);
1653}
1654
1655static int igb_setup_loopback_test(struct igb_adapter *adapter)
1656{
1657	struct e1000_hw *hw = &adapter->hw;
1658	u32 reg;
1659
1660	reg = rd32(E1000_CTRL_EXT);
1661
1662	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1663	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1664		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1665		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1666		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1667		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1668		(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1669
1670			/* Enable DH89xxCC MPHY for near end loopback */
1671			reg = rd32(E1000_MPHY_ADDR_CTL);
1672			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1673			E1000_MPHY_PCS_CLK_REG_OFFSET;
1674			wr32(E1000_MPHY_ADDR_CTL, reg);
1675
1676			reg = rd32(E1000_MPHY_DATA);
1677			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1678			wr32(E1000_MPHY_DATA, reg);
1679		}
1680
1681		reg = rd32(E1000_RCTL);
1682		reg |= E1000_RCTL_LBM_TCVR;
1683		wr32(E1000_RCTL, reg);
1684
1685		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1686
1687		reg = rd32(E1000_CTRL);
1688		reg &= ~(E1000_CTRL_RFCE |
1689			 E1000_CTRL_TFCE |
1690			 E1000_CTRL_LRST);
1691		reg |= E1000_CTRL_SLU |
1692		       E1000_CTRL_FD;
1693		wr32(E1000_CTRL, reg);
1694
1695		/* Unset switch control to serdes energy detect */
1696		reg = rd32(E1000_CONNSW);
1697		reg &= ~E1000_CONNSW_ENRGSRC;
1698		wr32(E1000_CONNSW, reg);
1699
1700		/* Unset sigdetect for SERDES loopback on
1701		 * 82580 and newer devices.
1702		 */
1703		if (hw->mac.type >= e1000_82580) {
1704			reg = rd32(E1000_PCS_CFG0);
1705			reg |= E1000_PCS_CFG_IGN_SD;
1706			wr32(E1000_PCS_CFG0, reg);
1707		}
1708
1709		/* Set PCS register for forced speed */
1710		reg = rd32(E1000_PCS_LCTL);
1711		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1712		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1713		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1714		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1715		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1716		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1717		wr32(E1000_PCS_LCTL, reg);
1718
1719		return 0;
1720	}
1721
1722	return igb_set_phy_loopback(adapter);
1723}
1724
1725static void igb_loopback_cleanup(struct igb_adapter *adapter)
1726{
1727	struct e1000_hw *hw = &adapter->hw;
1728	u32 rctl;
1729	u16 phy_reg;
1730
1731	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1732	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1733	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1734	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1735	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1736		u32 reg;
1737
1738		/* Disable near end loopback on DH89xxCC */
1739		reg = rd32(E1000_MPHY_ADDR_CTL);
1740		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1741		E1000_MPHY_PCS_CLK_REG_OFFSET;
1742		wr32(E1000_MPHY_ADDR_CTL, reg);
1743
1744		reg = rd32(E1000_MPHY_DATA);
1745		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1746		wr32(E1000_MPHY_DATA, reg);
1747	}
1748
1749	rctl = rd32(E1000_RCTL);
1750	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1751	wr32(E1000_RCTL, rctl);
1752
1753	hw->mac.autoneg = true;
1754	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1755	if (phy_reg & MII_CR_LOOPBACK) {
1756		phy_reg &= ~MII_CR_LOOPBACK;
1757		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1758		igb_phy_sw_reset(hw);
1759	}
1760}
1761
1762static void igb_create_lbtest_frame(struct sk_buff *skb,
1763				    unsigned int frame_size)
1764{
1765	memset(skb->data, 0xFF, frame_size);
1766	frame_size /= 2;
1767	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1768	memset(&skb->data[frame_size + 10], 0xBE, 1);
1769	memset(&skb->data[frame_size + 12], 0xAF, 1);
1770}
1771
1772static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1773				  unsigned int frame_size)
1774{
1775	unsigned char *data;
1776	bool match = true;
1777
1778	frame_size >>= 1;
1779
1780	data = kmap(rx_buffer->page);
1781
1782	if (data[3] != 0xFF ||
1783	    data[frame_size + 10] != 0xBE ||
1784	    data[frame_size + 12] != 0xAF)
1785		match = false;
1786
1787	kunmap(rx_buffer->page);
1788
1789	return match;
1790}
1791
1792static int igb_clean_test_rings(struct igb_ring *rx_ring,
1793				struct igb_ring *tx_ring,
1794				unsigned int size)
1795{
1796	union e1000_adv_rx_desc *rx_desc;
1797	struct igb_rx_buffer *rx_buffer_info;
1798	struct igb_tx_buffer *tx_buffer_info;
1799	u16 rx_ntc, tx_ntc, count = 0;
1800
1801	/* initialize next to clean and descriptor values */
1802	rx_ntc = rx_ring->next_to_clean;
1803	tx_ntc = tx_ring->next_to_clean;
1804	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1805
1806	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1807		/* check Rx buffer */
1808		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1809
1810		/* sync Rx buffer for CPU read */
1811		dma_sync_single_for_cpu(rx_ring->dev,
1812					rx_buffer_info->dma,
1813					IGB_RX_BUFSZ,
1814					DMA_FROM_DEVICE);
1815
1816		/* verify contents of skb */
1817		if (igb_check_lbtest_frame(rx_buffer_info, size))
1818			count++;
1819
1820		/* sync Rx buffer for device write */
1821		dma_sync_single_for_device(rx_ring->dev,
1822					   rx_buffer_info->dma,
1823					   IGB_RX_BUFSZ,
1824					   DMA_FROM_DEVICE);
1825
1826		/* unmap buffer on Tx side */
1827		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1828		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1829
1830		/* increment Rx/Tx next to clean counters */
1831		rx_ntc++;
1832		if (rx_ntc == rx_ring->count)
1833			rx_ntc = 0;
1834		tx_ntc++;
1835		if (tx_ntc == tx_ring->count)
1836			tx_ntc = 0;
1837
1838		/* fetch next descriptor */
1839		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1840	}
1841
1842	netdev_tx_reset_queue(txring_txq(tx_ring));
1843
1844	/* re-map buffers to ring, store next to clean values */
1845	igb_alloc_rx_buffers(rx_ring, count);
1846	rx_ring->next_to_clean = rx_ntc;
1847	tx_ring->next_to_clean = tx_ntc;
1848
1849	return count;
1850}
1851
1852static int igb_run_loopback_test(struct igb_adapter *adapter)
1853{
1854	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1855	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1856	u16 i, j, lc, good_cnt;
1857	int ret_val = 0;
1858	unsigned int size = IGB_RX_HDR_LEN;
1859	netdev_tx_t tx_ret_val;
1860	struct sk_buff *skb;
1861
1862	/* allocate test skb */
1863	skb = alloc_skb(size, GFP_KERNEL);
1864	if (!skb)
1865		return 11;
1866
1867	/* place data into test skb */
1868	igb_create_lbtest_frame(skb, size);
1869	skb_put(skb, size);
1870
1871	/* Calculate the loop count based on the largest descriptor ring
1872	 * The idea is to wrap the largest ring a number of times using 64
1873	 * send/receive pairs during each loop
1874	 */
1875
1876	if (rx_ring->count <= tx_ring->count)
1877		lc = ((tx_ring->count / 64) * 2) + 1;
1878	else
1879		lc = ((rx_ring->count / 64) * 2) + 1;
1880
1881	for (j = 0; j <= lc; j++) { /* loop count loop */
1882		/* reset count of good packets */
1883		good_cnt = 0;
1884
1885		/* place 64 packets on the transmit queue*/
1886		for (i = 0; i < 64; i++) {
1887			skb_get(skb);
1888			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1889			if (tx_ret_val == NETDEV_TX_OK)
1890				good_cnt++;
1891		}
1892
1893		if (good_cnt != 64) {
1894			ret_val = 12;
1895			break;
1896		}
1897
1898		/* allow 200 milliseconds for packets to go from Tx to Rx */
1899		msleep(200);
1900
1901		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1902		if (good_cnt != 64) {
1903			ret_val = 13;
1904			break;
1905		}
1906	} /* end loop count loop */
1907
1908	/* free the original skb */
1909	kfree_skb(skb);
1910
1911	return ret_val;
1912}
1913
1914static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1915{
1916	/* PHY loopback cannot be performed if SoL/IDER
1917	 * sessions are active
1918	 */
1919	if (igb_check_reset_block(&adapter->hw)) {
1920		dev_err(&adapter->pdev->dev,
1921			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1922		*data = 0;
1923		goto out;
1924	}
1925
1926	if (adapter->hw.mac.type == e1000_i354) {
1927		dev_info(&adapter->pdev->dev,
1928			"Loopback test not supported on i354.\n");
1929		*data = 0;
1930		goto out;
1931	}
1932	*data = igb_setup_desc_rings(adapter);
1933	if (*data)
1934		goto out;
1935	*data = igb_setup_loopback_test(adapter);
1936	if (*data)
1937		goto err_loopback;
1938	*data = igb_run_loopback_test(adapter);
1939	igb_loopback_cleanup(adapter);
1940
1941err_loopback:
1942	igb_free_desc_rings(adapter);
1943out:
1944	return *data;
1945}
1946
1947static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1948{
1949	struct e1000_hw *hw = &adapter->hw;
1950	*data = 0;
1951	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1952		int i = 0;
1953		hw->mac.serdes_has_link = false;
1954
1955		/* On some blade server designs, link establishment
1956		 * could take as long as 2-3 minutes
1957		 */
1958		do {
1959			hw->mac.ops.check_for_link(&adapter->hw);
1960			if (hw->mac.serdes_has_link)
1961				return *data;
1962			msleep(20);
1963		} while (i++ < 3750);
1964
1965		*data = 1;
1966	} else {
1967		hw->mac.ops.check_for_link(&adapter->hw);
1968		if (hw->mac.autoneg)
1969			msleep(5000);
1970
1971		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1972			*data = 1;
1973	}
1974	return *data;
1975}
1976
1977static void igb_diag_test(struct net_device *netdev,
1978			  struct ethtool_test *eth_test, u64 *data)
1979{
1980	struct igb_adapter *adapter = netdev_priv(netdev);
1981	u16 autoneg_advertised;
1982	u8 forced_speed_duplex, autoneg;
1983	bool if_running = netif_running(netdev);
1984
1985	set_bit(__IGB_TESTING, &adapter->state);
1986
1987	/* can't do offline tests on media switching devices */
1988	if (adapter->hw.dev_spec._82575.mas_capable)
1989		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
1990	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1991		/* Offline tests */
1992
1993		/* save speed, duplex, autoneg settings */
1994		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1995		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1996		autoneg = adapter->hw.mac.autoneg;
1997
1998		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1999
2000		/* power up link for link test */
2001		igb_power_up_link(adapter);
2002
2003		/* Link test performed before hardware reset so autoneg doesn't
2004		 * interfere with test result
2005		 */
2006		if (igb_link_test(adapter, &data[4]))
2007			eth_test->flags |= ETH_TEST_FL_FAILED;
2008
2009		if (if_running)
2010			/* indicate we're in test mode */
2011			dev_close(netdev);
2012		else
2013			igb_reset(adapter);
2014
2015		if (igb_reg_test(adapter, &data[0]))
2016			eth_test->flags |= ETH_TEST_FL_FAILED;
2017
2018		igb_reset(adapter);
2019		if (igb_eeprom_test(adapter, &data[1]))
2020			eth_test->flags |= ETH_TEST_FL_FAILED;
2021
2022		igb_reset(adapter);
2023		if (igb_intr_test(adapter, &data[2]))
2024			eth_test->flags |= ETH_TEST_FL_FAILED;
2025
2026		igb_reset(adapter);
2027		/* power up link for loopback test */
2028		igb_power_up_link(adapter);
2029		if (igb_loopback_test(adapter, &data[3]))
2030			eth_test->flags |= ETH_TEST_FL_FAILED;
2031
2032		/* restore speed, duplex, autoneg settings */
2033		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2034		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2035		adapter->hw.mac.autoneg = autoneg;
2036
2037		/* force this routine to wait until autoneg complete/timeout */
2038		adapter->hw.phy.autoneg_wait_to_complete = true;
2039		igb_reset(adapter);
2040		adapter->hw.phy.autoneg_wait_to_complete = false;
2041
2042		clear_bit(__IGB_TESTING, &adapter->state);
2043		if (if_running)
2044			dev_open(netdev);
2045	} else {
2046		dev_info(&adapter->pdev->dev, "online testing starting\n");
2047
2048		/* PHY is powered down when interface is down */
2049		if (if_running && igb_link_test(adapter, &data[4]))
2050			eth_test->flags |= ETH_TEST_FL_FAILED;
2051		else
2052			data[4] = 0;
2053
2054		/* Online tests aren't run; pass by default */
2055		data[0] = 0;
2056		data[1] = 0;
2057		data[2] = 0;
2058		data[3] = 0;
2059
2060		clear_bit(__IGB_TESTING, &adapter->state);
2061	}
2062	msleep_interruptible(4 * 1000);
2063}
2064
2065static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2066{
2067	struct igb_adapter *adapter = netdev_priv(netdev);
2068
2069	wol->wolopts = 0;
2070
2071	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2072		return;
2073
2074	wol->supported = WAKE_UCAST | WAKE_MCAST |
2075			 WAKE_BCAST | WAKE_MAGIC |
2076			 WAKE_PHY;
2077
2078	/* apply any specific unsupported masks here */
2079	switch (adapter->hw.device_id) {
2080	default:
2081		break;
2082	}
2083
2084	if (adapter->wol & E1000_WUFC_EX)
2085		wol->wolopts |= WAKE_UCAST;
2086	if (adapter->wol & E1000_WUFC_MC)
2087		wol->wolopts |= WAKE_MCAST;
2088	if (adapter->wol & E1000_WUFC_BC)
2089		wol->wolopts |= WAKE_BCAST;
2090	if (adapter->wol & E1000_WUFC_MAG)
2091		wol->wolopts |= WAKE_MAGIC;
2092	if (adapter->wol & E1000_WUFC_LNKC)
2093		wol->wolopts |= WAKE_PHY;
2094}
2095
2096static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2097{
2098	struct igb_adapter *adapter = netdev_priv(netdev);
2099
2100	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2101		return -EOPNOTSUPP;
2102
2103	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2104		return wol->wolopts ? -EOPNOTSUPP : 0;
2105
2106	/* these settings will always override what we currently have */
2107	adapter->wol = 0;
2108
2109	if (wol->wolopts & WAKE_UCAST)
2110		adapter->wol |= E1000_WUFC_EX;
2111	if (wol->wolopts & WAKE_MCAST)
2112		adapter->wol |= E1000_WUFC_MC;
2113	if (wol->wolopts & WAKE_BCAST)
2114		adapter->wol |= E1000_WUFC_BC;
2115	if (wol->wolopts & WAKE_MAGIC)
2116		adapter->wol |= E1000_WUFC_MAG;
2117	if (wol->wolopts & WAKE_PHY)
2118		adapter->wol |= E1000_WUFC_LNKC;
2119	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2120
2121	return 0;
2122}
2123
2124/* bit defines for adapter->led_status */
2125#define IGB_LED_ON		0
2126
2127static int igb_set_phys_id(struct net_device *netdev,
2128			   enum ethtool_phys_id_state state)
2129{
2130	struct igb_adapter *adapter = netdev_priv(netdev);
2131	struct e1000_hw *hw = &adapter->hw;
2132
2133	switch (state) {
2134	case ETHTOOL_ID_ACTIVE:
2135		igb_blink_led(hw);
2136		return 2;
2137	case ETHTOOL_ID_ON:
2138		igb_blink_led(hw);
2139		break;
2140	case ETHTOOL_ID_OFF:
2141		igb_led_off(hw);
2142		break;
2143	case ETHTOOL_ID_INACTIVE:
2144		igb_led_off(hw);
2145		clear_bit(IGB_LED_ON, &adapter->led_status);
2146		igb_cleanup_led(hw);
2147		break;
2148	}
2149
2150	return 0;
2151}
2152
2153static int igb_set_coalesce(struct net_device *netdev,
2154			    struct ethtool_coalesce *ec)
2155{
2156	struct igb_adapter *adapter = netdev_priv(netdev);
2157	int i;
2158
2159	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2160	    ((ec->rx_coalesce_usecs > 3) &&
2161	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2162	    (ec->rx_coalesce_usecs == 2))
2163		return -EINVAL;
2164
2165	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2166	    ((ec->tx_coalesce_usecs > 3) &&
2167	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2168	    (ec->tx_coalesce_usecs == 2))
2169		return -EINVAL;
2170
2171	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2172		return -EINVAL;
2173
2174	/* If ITR is disabled, disable DMAC */
2175	if (ec->rx_coalesce_usecs == 0) {
2176		if (adapter->flags & IGB_FLAG_DMAC)
2177			adapter->flags &= ~IGB_FLAG_DMAC;
2178	}
2179
2180	/* convert to rate of irq's per second */
2181	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2182		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2183	else
2184		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2185
2186	/* convert to rate of irq's per second */
2187	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2188		adapter->tx_itr_setting = adapter->rx_itr_setting;
2189	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2190		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2191	else
2192		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2193
2194	for (i = 0; i < adapter->num_q_vectors; i++) {
2195		struct igb_q_vector *q_vector = adapter->q_vector[i];
2196		q_vector->tx.work_limit = adapter->tx_work_limit;
2197		if (q_vector->rx.ring)
2198			q_vector->itr_val = adapter->rx_itr_setting;
2199		else
2200			q_vector->itr_val = adapter->tx_itr_setting;
2201		if (q_vector->itr_val && q_vector->itr_val <= 3)
2202			q_vector->itr_val = IGB_START_ITR;
2203		q_vector->set_itr = 1;
2204	}
2205
2206	return 0;
2207}
2208
2209static int igb_get_coalesce(struct net_device *netdev,
2210			    struct ethtool_coalesce *ec)
2211{
2212	struct igb_adapter *adapter = netdev_priv(netdev);
2213
2214	if (adapter->rx_itr_setting <= 3)
2215		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2216	else
2217		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2218
2219	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2220		if (adapter->tx_itr_setting <= 3)
2221			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2222		else
2223			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2224	}
2225
2226	return 0;
2227}
2228
2229static int igb_nway_reset(struct net_device *netdev)
2230{
2231	struct igb_adapter *adapter = netdev_priv(netdev);
2232	if (netif_running(netdev))
2233		igb_reinit_locked(adapter);
2234	return 0;
2235}
2236
2237static int igb_get_sset_count(struct net_device *netdev, int sset)
2238{
2239	switch (sset) {
2240	case ETH_SS_STATS:
2241		return IGB_STATS_LEN;
2242	case ETH_SS_TEST:
2243		return IGB_TEST_LEN;
2244	default:
2245		return -ENOTSUPP;
2246	}
2247}
2248
2249static void igb_get_ethtool_stats(struct net_device *netdev,
2250				  struct ethtool_stats *stats, u64 *data)
2251{
2252	struct igb_adapter *adapter = netdev_priv(netdev);
2253	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2254	unsigned int start;
2255	struct igb_ring *ring;
2256	int i, j;
2257	char *p;
2258
2259	spin_lock(&adapter->stats64_lock);
2260	igb_update_stats(adapter, net_stats);
2261
2262	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2263		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2264		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2265			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2266	}
2267	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2268		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2269		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2270			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2271	}
2272	for (j = 0; j < adapter->num_tx_queues; j++) {
2273		u64	restart2;
2274
2275		ring = adapter->tx_ring[j];
2276		do {
2277			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2278			data[i]   = ring->tx_stats.packets;
2279			data[i+1] = ring->tx_stats.bytes;
2280			data[i+2] = ring->tx_stats.restart_queue;
2281		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2282		do {
2283			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2284			restart2  = ring->tx_stats.restart_queue2;
2285		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2286		data[i+2] += restart2;
2287
2288		i += IGB_TX_QUEUE_STATS_LEN;
2289	}
2290	for (j = 0; j < adapter->num_rx_queues; j++) {
2291		ring = adapter->rx_ring[j];
2292		do {
2293			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2294			data[i]   = ring->rx_stats.packets;
2295			data[i+1] = ring->rx_stats.bytes;
2296			data[i+2] = ring->rx_stats.drops;
2297			data[i+3] = ring->rx_stats.csum_err;
2298			data[i+4] = ring->rx_stats.alloc_failed;
2299		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2300		i += IGB_RX_QUEUE_STATS_LEN;
2301	}
2302	spin_unlock(&adapter->stats64_lock);
2303}
2304
2305static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2306{
2307	struct igb_adapter *adapter = netdev_priv(netdev);
2308	u8 *p = data;
2309	int i;
2310
2311	switch (stringset) {
2312	case ETH_SS_TEST:
2313		memcpy(data, *igb_gstrings_test,
2314			IGB_TEST_LEN*ETH_GSTRING_LEN);
2315		break;
2316	case ETH_SS_STATS:
2317		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2318			memcpy(p, igb_gstrings_stats[i].stat_string,
2319			       ETH_GSTRING_LEN);
2320			p += ETH_GSTRING_LEN;
2321		}
2322		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2323			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2324			       ETH_GSTRING_LEN);
2325			p += ETH_GSTRING_LEN;
2326		}
2327		for (i = 0; i < adapter->num_tx_queues; i++) {
2328			sprintf(p, "tx_queue_%u_packets", i);
2329			p += ETH_GSTRING_LEN;
2330			sprintf(p, "tx_queue_%u_bytes", i);
2331			p += ETH_GSTRING_LEN;
2332			sprintf(p, "tx_queue_%u_restart", i);
2333			p += ETH_GSTRING_LEN;
2334		}
2335		for (i = 0; i < adapter->num_rx_queues; i++) {
2336			sprintf(p, "rx_queue_%u_packets", i);
2337			p += ETH_GSTRING_LEN;
2338			sprintf(p, "rx_queue_%u_bytes", i);
2339			p += ETH_GSTRING_LEN;
2340			sprintf(p, "rx_queue_%u_drops", i);
2341			p += ETH_GSTRING_LEN;
2342			sprintf(p, "rx_queue_%u_csum_err", i);
2343			p += ETH_GSTRING_LEN;
2344			sprintf(p, "rx_queue_%u_alloc_failed", i);
2345			p += ETH_GSTRING_LEN;
2346		}
2347		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2348		break;
2349	}
2350}
2351
2352static int igb_get_ts_info(struct net_device *dev,
2353			   struct ethtool_ts_info *info)
2354{
2355	struct igb_adapter *adapter = netdev_priv(dev);
2356
2357	switch (adapter->hw.mac.type) {
2358	case e1000_82575:
2359		info->so_timestamping =
2360			SOF_TIMESTAMPING_TX_SOFTWARE |
2361			SOF_TIMESTAMPING_RX_SOFTWARE |
2362			SOF_TIMESTAMPING_SOFTWARE;
2363		return 0;
2364	case e1000_82576:
2365	case e1000_82580:
2366	case e1000_i350:
2367	case e1000_i354:
2368	case e1000_i210:
2369	case e1000_i211:
2370		info->so_timestamping =
2371			SOF_TIMESTAMPING_TX_SOFTWARE |
2372			SOF_TIMESTAMPING_RX_SOFTWARE |
2373			SOF_TIMESTAMPING_SOFTWARE |
2374			SOF_TIMESTAMPING_TX_HARDWARE |
2375			SOF_TIMESTAMPING_RX_HARDWARE |
2376			SOF_TIMESTAMPING_RAW_HARDWARE;
2377
2378		if (adapter->ptp_clock)
2379			info->phc_index = ptp_clock_index(adapter->ptp_clock);
2380		else
2381			info->phc_index = -1;
2382
2383		info->tx_types =
2384			(1 << HWTSTAMP_TX_OFF) |
2385			(1 << HWTSTAMP_TX_ON);
2386
2387		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2388
2389		/* 82576 does not support timestamping all packets. */
2390		if (adapter->hw.mac.type >= e1000_82580)
2391			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2392		else
2393			info->rx_filters |=
2394				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2395				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2396				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2397				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2398				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2399				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2400				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2401
2402		return 0;
2403	default:
2404		return -EOPNOTSUPP;
2405	}
2406}
2407
2408static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2409				 struct ethtool_rxnfc *cmd)
2410{
2411	cmd->data = 0;
2412
2413	/* Report default options for RSS on igb */
2414	switch (cmd->flow_type) {
2415	case TCP_V4_FLOW:
2416		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2417	case UDP_V4_FLOW:
2418		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2419			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2420	case SCTP_V4_FLOW:
2421	case AH_ESP_V4_FLOW:
2422	case AH_V4_FLOW:
2423	case ESP_V4_FLOW:
2424	case IPV4_FLOW:
2425		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2426		break;
2427	case TCP_V6_FLOW:
2428		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2429	case UDP_V6_FLOW:
2430		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2431			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2432	case SCTP_V6_FLOW:
2433	case AH_ESP_V6_FLOW:
2434	case AH_V6_FLOW:
2435	case ESP_V6_FLOW:
2436	case IPV6_FLOW:
2437		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2438		break;
2439	default:
2440		return -EINVAL;
2441	}
2442
2443	return 0;
2444}
2445
2446static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2447			 u32 *rule_locs)
2448{
2449	struct igb_adapter *adapter = netdev_priv(dev);
2450	int ret = -EOPNOTSUPP;
2451
2452	switch (cmd->cmd) {
2453	case ETHTOOL_GRXRINGS:
2454		cmd->data = adapter->num_rx_queues;
2455		ret = 0;
2456		break;
2457	case ETHTOOL_GRXFH:
2458		ret = igb_get_rss_hash_opts(adapter, cmd);
2459		break;
2460	default:
2461		break;
2462	}
2463
2464	return ret;
2465}
2466
2467#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2468		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2469static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2470				struct ethtool_rxnfc *nfc)
2471{
2472	u32 flags = adapter->flags;
2473
2474	/* RSS does not support anything other than hashing
2475	 * to queues on src and dst IPs and ports
2476	 */
2477	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2478			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2479		return -EINVAL;
2480
2481	switch (nfc->flow_type) {
2482	case TCP_V4_FLOW:
2483	case TCP_V6_FLOW:
2484		if (!(nfc->data & RXH_IP_SRC) ||
2485		    !(nfc->data & RXH_IP_DST) ||
2486		    !(nfc->data & RXH_L4_B_0_1) ||
2487		    !(nfc->data & RXH_L4_B_2_3))
2488			return -EINVAL;
2489		break;
2490	case UDP_V4_FLOW:
2491		if (!(nfc->data & RXH_IP_SRC) ||
2492		    !(nfc->data & RXH_IP_DST))
2493			return -EINVAL;
2494		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2495		case 0:
2496			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2497			break;
2498		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2499			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2500			break;
2501		default:
2502			return -EINVAL;
2503		}
2504		break;
2505	case UDP_V6_FLOW:
2506		if (!(nfc->data & RXH_IP_SRC) ||
2507		    !(nfc->data & RXH_IP_DST))
2508			return -EINVAL;
2509		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2510		case 0:
2511			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2512			break;
2513		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2514			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2515			break;
2516		default:
2517			return -EINVAL;
2518		}
2519		break;
2520	case AH_ESP_V4_FLOW:
2521	case AH_V4_FLOW:
2522	case ESP_V4_FLOW:
2523	case SCTP_V4_FLOW:
2524	case AH_ESP_V6_FLOW:
2525	case AH_V6_FLOW:
2526	case ESP_V6_FLOW:
2527	case SCTP_V6_FLOW:
2528		if (!(nfc->data & RXH_IP_SRC) ||
2529		    !(nfc->data & RXH_IP_DST) ||
2530		    (nfc->data & RXH_L4_B_0_1) ||
2531		    (nfc->data & RXH_L4_B_2_3))
2532			return -EINVAL;
2533		break;
2534	default:
2535		return -EINVAL;
2536	}
2537
2538	/* if we changed something we need to update flags */
2539	if (flags != adapter->flags) {
2540		struct e1000_hw *hw = &adapter->hw;
2541		u32 mrqc = rd32(E1000_MRQC);
2542
2543		if ((flags & UDP_RSS_FLAGS) &&
2544		    !(adapter->flags & UDP_RSS_FLAGS))
2545			dev_err(&adapter->pdev->dev,
2546				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2547
2548		adapter->flags = flags;
2549
2550		/* Perform hash on these packet types */
2551		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2552			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2553			E1000_MRQC_RSS_FIELD_IPV6 |
2554			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2555
2556		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2557			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2558
2559		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2560			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2561
2562		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2563			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2564
2565		wr32(E1000_MRQC, mrqc);
2566	}
2567
2568	return 0;
2569}
2570
2571static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2572{
2573	struct igb_adapter *adapter = netdev_priv(dev);
2574	int ret = -EOPNOTSUPP;
2575
2576	switch (cmd->cmd) {
2577	case ETHTOOL_SRXFH:
2578		ret = igb_set_rss_hash_opt(adapter, cmd);
2579		break;
2580	default:
2581		break;
2582	}
2583
2584	return ret;
2585}
2586
2587static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2588{
2589	struct igb_adapter *adapter = netdev_priv(netdev);
2590	struct e1000_hw *hw = &adapter->hw;
2591	u32 ipcnfg, eeer, ret_val;
2592	u16 phy_data;
2593
2594	if ((hw->mac.type < e1000_i350) ||
2595	    (hw->phy.media_type != e1000_media_type_copper))
2596		return -EOPNOTSUPP;
2597
2598	edata->supported = (SUPPORTED_1000baseT_Full |
2599			    SUPPORTED_100baseT_Full);
2600
2601	ipcnfg = rd32(E1000_IPCNFG);
2602	eeer = rd32(E1000_EEER);
2603
2604	/* EEE status on negotiated link */
2605	if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2606		edata->advertised = ADVERTISED_1000baseT_Full;
2607
2608	if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2609		edata->advertised |= ADVERTISED_100baseT_Full;
2610
2611	/* EEE Link Partner Advertised */
2612	switch (hw->mac.type) {
2613	case e1000_i350:
2614		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2615					   &phy_data);
2616		if (ret_val)
2617			return -ENODATA;
2618
2619		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2620
2621		break;
2622	case e1000_i210:
2623	case e1000_i211:
2624		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2625					     E1000_EEE_LP_ADV_DEV_I210,
2626					     &phy_data);
2627		if (ret_val)
2628			return -ENODATA;
2629
2630		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2631
2632		break;
2633	default:
2634		break;
2635	}
2636
2637	if (eeer & E1000_EEER_EEE_NEG)
2638		edata->eee_active = true;
2639
2640	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2641
2642	if (eeer & E1000_EEER_TX_LPI_EN)
2643		edata->tx_lpi_enabled = true;
2644
2645	/* Report correct negotiated EEE status for devices that
2646	 * wrongly report EEE at half-duplex
2647	 */
2648	if (adapter->link_duplex == HALF_DUPLEX) {
2649		edata->eee_enabled = false;
2650		edata->eee_active = false;
2651		edata->tx_lpi_enabled = false;
2652		edata->advertised &= ~edata->advertised;
2653	}
2654
2655	return 0;
2656}
2657
2658static int igb_set_eee(struct net_device *netdev,
2659		       struct ethtool_eee *edata)
2660{
2661	struct igb_adapter *adapter = netdev_priv(netdev);
2662	struct e1000_hw *hw = &adapter->hw;
2663	struct ethtool_eee eee_curr;
2664	s32 ret_val;
2665
2666	if ((hw->mac.type < e1000_i350) ||
2667	    (hw->phy.media_type != e1000_media_type_copper))
2668		return -EOPNOTSUPP;
2669
2670	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2671
2672	ret_val = igb_get_eee(netdev, &eee_curr);
2673	if (ret_val)
2674		return ret_val;
2675
2676	if (eee_curr.eee_enabled) {
2677		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2678			dev_err(&adapter->pdev->dev,
2679				"Setting EEE tx-lpi is not supported\n");
2680			return -EINVAL;
2681		}
2682
2683		/* Tx LPI timer is not implemented currently */
2684		if (edata->tx_lpi_timer) {
2685			dev_err(&adapter->pdev->dev,
2686				"Setting EEE Tx LPI timer is not supported\n");
2687			return -EINVAL;
2688		}
2689
2690		if (eee_curr.advertised != edata->advertised) {
2691			dev_err(&adapter->pdev->dev,
2692				"Setting EEE Advertisement is not supported\n");
2693			return -EINVAL;
2694		}
2695
2696	} else if (!edata->eee_enabled) {
2697		dev_err(&adapter->pdev->dev,
2698			"Setting EEE options are not supported with EEE disabled\n");
2699			return -EINVAL;
2700		}
2701
2702	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2703		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2704		igb_set_eee_i350(hw);
2705
2706		/* reset link */
2707		if (netif_running(netdev))
2708			igb_reinit_locked(adapter);
2709		else
2710			igb_reset(adapter);
2711	}
2712
2713	return 0;
2714}
2715
2716static int igb_get_module_info(struct net_device *netdev,
2717			       struct ethtool_modinfo *modinfo)
2718{
2719	struct igb_adapter *adapter = netdev_priv(netdev);
2720	struct e1000_hw *hw = &adapter->hw;
2721	u32 status = E1000_SUCCESS;
2722	u16 sff8472_rev, addr_mode;
2723	bool page_swap = false;
2724
2725	if ((hw->phy.media_type == e1000_media_type_copper) ||
2726	    (hw->phy.media_type == e1000_media_type_unknown))
2727		return -EOPNOTSUPP;
2728
2729	/* Check whether we support SFF-8472 or not */
2730	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2731	if (status != E1000_SUCCESS)
2732		return -EIO;
2733
2734	/* addressing mode is not supported */
2735	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2736	if (status != E1000_SUCCESS)
2737		return -EIO;
2738
2739	/* addressing mode is not supported */
2740	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2741		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2742		page_swap = true;
2743	}
2744
2745	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2746		/* We have an SFP, but it does not support SFF-8472 */
2747		modinfo->type = ETH_MODULE_SFF_8079;
2748		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2749	} else {
2750		/* We have an SFP which supports a revision of SFF-8472 */
2751		modinfo->type = ETH_MODULE_SFF_8472;
2752		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2753	}
2754
2755	return 0;
2756}
2757
2758static int igb_get_module_eeprom(struct net_device *netdev,
2759				 struct ethtool_eeprom *ee, u8 *data)
2760{
2761	struct igb_adapter *adapter = netdev_priv(netdev);
2762	struct e1000_hw *hw = &adapter->hw;
2763	u32 status = E1000_SUCCESS;
2764	u16 *dataword;
2765	u16 first_word, last_word;
2766	int i = 0;
2767
2768	if (ee->len == 0)
2769		return -EINVAL;
2770
2771	first_word = ee->offset >> 1;
2772	last_word = (ee->offset + ee->len - 1) >> 1;
2773
2774	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2775			   GFP_KERNEL);
2776	if (!dataword)
2777		return -ENOMEM;
2778
2779	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2780	for (i = 0; i < last_word - first_word + 1; i++) {
2781		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2782		if (status != E1000_SUCCESS)
2783			/* Error occurred while reading module */
2784			return -EIO;
2785
2786		be16_to_cpus(&dataword[i]);
2787	}
2788
2789	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2790	kfree(dataword);
2791
2792	return 0;
2793}
2794
2795static int igb_ethtool_begin(struct net_device *netdev)
2796{
2797	struct igb_adapter *adapter = netdev_priv(netdev);
2798	pm_runtime_get_sync(&adapter->pdev->dev);
2799	return 0;
2800}
2801
2802static void igb_ethtool_complete(struct net_device *netdev)
2803{
2804	struct igb_adapter *adapter = netdev_priv(netdev);
2805	pm_runtime_put(&adapter->pdev->dev);
2806}
2807
2808static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2809{
2810	return IGB_RETA_SIZE;
2811}
2812
2813static int igb_get_rxfh_indir(struct net_device *netdev, u32 *indir)
2814{
2815	struct igb_adapter *adapter = netdev_priv(netdev);
2816	int i;
2817
2818	for (i = 0; i < IGB_RETA_SIZE; i++)
2819		indir[i] = adapter->rss_indir_tbl[i];
2820
2821	return 0;
2822}
2823
2824void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2825{
2826	struct e1000_hw *hw = &adapter->hw;
2827	u32 reg = E1000_RETA(0);
2828	u32 shift = 0;
2829	int i = 0;
2830
2831	switch (hw->mac.type) {
2832	case e1000_82575:
2833		shift = 6;
2834		break;
2835	case e1000_82576:
2836		/* 82576 supports 2 RSS queues for SR-IOV */
2837		if (adapter->vfs_allocated_count)
2838			shift = 3;
2839		break;
2840	default:
2841		break;
2842	}
2843
2844	while (i < IGB_RETA_SIZE) {
2845		u32 val = 0;
2846		int j;
2847
2848		for (j = 3; j >= 0; j--) {
2849			val <<= 8;
2850			val |= adapter->rss_indir_tbl[i + j];
2851		}
2852
2853		wr32(reg, val << shift);
2854		reg += 4;
2855		i += 4;
2856	}
2857}
2858
2859static int igb_set_rxfh_indir(struct net_device *netdev, const u32 *indir)
2860{
2861	struct igb_adapter *adapter = netdev_priv(netdev);
2862	struct e1000_hw *hw = &adapter->hw;
2863	int i;
2864	u32 num_queues;
2865
2866	num_queues = adapter->rss_queues;
2867
2868	switch (hw->mac.type) {
2869	case e1000_82576:
2870		/* 82576 supports 2 RSS queues for SR-IOV */
2871		if (adapter->vfs_allocated_count)
2872			num_queues = 2;
2873		break;
2874	default:
2875		break;
2876	}
2877
2878	/* Verify user input. */
2879	for (i = 0; i < IGB_RETA_SIZE; i++)
2880		if (indir[i] >= num_queues)
2881			return -EINVAL;
2882
2883
2884	for (i = 0; i < IGB_RETA_SIZE; i++)
2885		adapter->rss_indir_tbl[i] = indir[i];
2886
2887	igb_write_rss_indir_tbl(adapter);
2888
2889	return 0;
2890}
2891
2892static unsigned int igb_max_channels(struct igb_adapter *adapter)
2893{
2894	struct e1000_hw *hw = &adapter->hw;
2895	unsigned int max_combined = 0;
2896
2897	switch (hw->mac.type) {
2898	case e1000_i211:
2899		max_combined = IGB_MAX_RX_QUEUES_I211;
2900		break;
2901	case e1000_82575:
2902	case e1000_i210:
2903		max_combined = IGB_MAX_RX_QUEUES_82575;
2904		break;
2905	case e1000_i350:
2906		if (!!adapter->vfs_allocated_count) {
2907			max_combined = 1;
2908			break;
2909		}
2910		/* fall through */
2911	case e1000_82576:
2912		if (!!adapter->vfs_allocated_count) {
2913			max_combined = 2;
2914			break;
2915		}
2916		/* fall through */
2917	case e1000_82580:
2918	case e1000_i354:
2919	default:
2920		max_combined = IGB_MAX_RX_QUEUES;
2921		break;
2922	}
2923
2924	return max_combined;
2925}
2926
2927static void igb_get_channels(struct net_device *netdev,
2928			     struct ethtool_channels *ch)
2929{
2930	struct igb_adapter *adapter = netdev_priv(netdev);
2931
2932	/* Report maximum channels */
2933	ch->max_combined = igb_max_channels(adapter);
2934
2935	/* Report info for other vector */
2936	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2937		ch->max_other = NON_Q_VECTORS;
2938		ch->other_count = NON_Q_VECTORS;
2939	}
2940
2941	ch->combined_count = adapter->rss_queues;
2942}
2943
2944static int igb_set_channels(struct net_device *netdev,
2945			    struct ethtool_channels *ch)
2946{
2947	struct igb_adapter *adapter = netdev_priv(netdev);
2948	unsigned int count = ch->combined_count;
2949
2950	/* Verify they are not requesting separate vectors */
2951	if (!count || ch->rx_count || ch->tx_count)
2952		return -EINVAL;
2953
2954	/* Verify other_count is valid and has not been changed */
2955	if (ch->other_count != NON_Q_VECTORS)
2956		return -EINVAL;
2957
2958	/* Verify the number of channels doesn't exceed hw limits */
2959	if (count > igb_max_channels(adapter))
2960		return -EINVAL;
2961
2962	if (count != adapter->rss_queues) {
2963		adapter->rss_queues = count;
2964
2965		/* Hardware has to reinitialize queues and interrupts to
2966		 * match the new configuration.
2967		 */
2968		return igb_reinit_queues(adapter);
2969	}
2970
2971	return 0;
2972}
2973
2974static const struct ethtool_ops igb_ethtool_ops = {
2975	.get_settings		= igb_get_settings,
2976	.set_settings		= igb_set_settings,
2977	.get_drvinfo		= igb_get_drvinfo,
2978	.get_regs_len		= igb_get_regs_len,
2979	.get_regs		= igb_get_regs,
2980	.get_wol		= igb_get_wol,
2981	.set_wol		= igb_set_wol,
2982	.get_msglevel		= igb_get_msglevel,
2983	.set_msglevel		= igb_set_msglevel,
2984	.nway_reset		= igb_nway_reset,
2985	.get_link		= igb_get_link,
2986	.get_eeprom_len		= igb_get_eeprom_len,
2987	.get_eeprom		= igb_get_eeprom,
2988	.set_eeprom		= igb_set_eeprom,
2989	.get_ringparam		= igb_get_ringparam,
2990	.set_ringparam		= igb_set_ringparam,
2991	.get_pauseparam		= igb_get_pauseparam,
2992	.set_pauseparam		= igb_set_pauseparam,
2993	.self_test		= igb_diag_test,
2994	.get_strings		= igb_get_strings,
2995	.set_phys_id		= igb_set_phys_id,
2996	.get_sset_count		= igb_get_sset_count,
2997	.get_ethtool_stats	= igb_get_ethtool_stats,
2998	.get_coalesce		= igb_get_coalesce,
2999	.set_coalesce		= igb_set_coalesce,
3000	.get_ts_info		= igb_get_ts_info,
3001	.get_rxnfc		= igb_get_rxnfc,
3002	.set_rxnfc		= igb_set_rxnfc,
3003	.get_eee		= igb_get_eee,
3004	.set_eee		= igb_set_eee,
3005	.get_module_info	= igb_get_module_info,
3006	.get_module_eeprom	= igb_get_module_eeprom,
3007	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3008	.get_rxfh_indir		= igb_get_rxfh_indir,
3009	.set_rxfh_indir		= igb_set_rxfh_indir,
3010	.get_channels		= igb_get_channels,
3011	.set_channels		= igb_set_channels,
3012	.begin			= igb_ethtool_begin,
3013	.complete		= igb_ethtool_complete,
3014};
3015
3016void igb_set_ethtool_ops(struct net_device *netdev)
3017{
3018	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
3019}
3020