[go: nahoru, domu]

igb_ethtool.c revision ceb5f13b70cd6e7afa87ba1b13eb900a766a28e4
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37#include <linux/sched.h>
38#include <linux/slab.h>
39#include <linux/pm_runtime.h>
40#include <linux/highmem.h>
41#include <linux/mdio.h>
42
43#include "igb.h"
44
45struct igb_stats {
46	char stat_string[ETH_GSTRING_LEN];
47	int sizeof_stat;
48	int stat_offset;
49};
50
51#define IGB_STAT(_name, _stat) { \
52	.stat_string = _name, \
53	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
54	.stat_offset = offsetof(struct igb_adapter, _stat) \
55}
56static const struct igb_stats igb_gstrings_stats[] = {
57	IGB_STAT("rx_packets", stats.gprc),
58	IGB_STAT("tx_packets", stats.gptc),
59	IGB_STAT("rx_bytes", stats.gorc),
60	IGB_STAT("tx_bytes", stats.gotc),
61	IGB_STAT("rx_broadcast", stats.bprc),
62	IGB_STAT("tx_broadcast", stats.bptc),
63	IGB_STAT("rx_multicast", stats.mprc),
64	IGB_STAT("tx_multicast", stats.mptc),
65	IGB_STAT("multicast", stats.mprc),
66	IGB_STAT("collisions", stats.colc),
67	IGB_STAT("rx_crc_errors", stats.crcerrs),
68	IGB_STAT("rx_no_buffer_count", stats.rnbc),
69	IGB_STAT("rx_missed_errors", stats.mpc),
70	IGB_STAT("tx_aborted_errors", stats.ecol),
71	IGB_STAT("tx_carrier_errors", stats.tncrs),
72	IGB_STAT("tx_window_errors", stats.latecol),
73	IGB_STAT("tx_abort_late_coll", stats.latecol),
74	IGB_STAT("tx_deferred_ok", stats.dc),
75	IGB_STAT("tx_single_coll_ok", stats.scc),
76	IGB_STAT("tx_multi_coll_ok", stats.mcc),
77	IGB_STAT("tx_timeout_count", tx_timeout_count),
78	IGB_STAT("rx_long_length_errors", stats.roc),
79	IGB_STAT("rx_short_length_errors", stats.ruc),
80	IGB_STAT("rx_align_errors", stats.algnerrc),
81	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
82	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
83	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
84	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
85	IGB_STAT("tx_flow_control_xon", stats.xontxc),
86	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
87	IGB_STAT("rx_long_byte_count", stats.gorc),
88	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
89	IGB_STAT("tx_smbus", stats.mgptc),
90	IGB_STAT("rx_smbus", stats.mgprc),
91	IGB_STAT("dropped_smbus", stats.mgpdc),
92	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
93	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
94	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
95	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
96	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
98};
99
100#define IGB_NETDEV_STAT(_net_stat) { \
101	.stat_string = __stringify(_net_stat), \
102	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
103	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
104}
105static const struct igb_stats igb_gstrings_net_stats[] = {
106	IGB_NETDEV_STAT(rx_errors),
107	IGB_NETDEV_STAT(tx_errors),
108	IGB_NETDEV_STAT(tx_dropped),
109	IGB_NETDEV_STAT(rx_length_errors),
110	IGB_NETDEV_STAT(rx_over_errors),
111	IGB_NETDEV_STAT(rx_frame_errors),
112	IGB_NETDEV_STAT(rx_fifo_errors),
113	IGB_NETDEV_STAT(tx_fifo_errors),
114	IGB_NETDEV_STAT(tx_heartbeat_errors)
115};
116
117#define IGB_GLOBAL_STATS_LEN	\
118	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
119#define IGB_NETDEV_STATS_LEN	\
120	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
121#define IGB_RX_QUEUE_STATS_LEN \
122	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
123
124#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
125
126#define IGB_QUEUE_STATS_LEN \
127	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
128	  IGB_RX_QUEUE_STATS_LEN) + \
129	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
130	  IGB_TX_QUEUE_STATS_LEN))
131#define IGB_STATS_LEN \
132	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
133
134static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
135	"Register test  (offline)", "Eeprom test    (offline)",
136	"Interrupt test (offline)", "Loopback test  (offline)",
137	"Link test   (on/offline)"
138};
139#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
140
141static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
142{
143	struct igb_adapter *adapter = netdev_priv(netdev);
144	struct e1000_hw *hw = &adapter->hw;
145	u32 status;
146
147	if (hw->phy.media_type == e1000_media_type_copper) {
148
149		ecmd->supported = (SUPPORTED_10baseT_Half |
150				   SUPPORTED_10baseT_Full |
151				   SUPPORTED_100baseT_Half |
152				   SUPPORTED_100baseT_Full |
153				   SUPPORTED_1000baseT_Full|
154				   SUPPORTED_Autoneg |
155				   SUPPORTED_TP |
156				   SUPPORTED_Pause);
157		ecmd->advertising = ADVERTISED_TP;
158
159		if (hw->mac.autoneg == 1) {
160			ecmd->advertising |= ADVERTISED_Autoneg;
161			/* the e1000 autoneg seems to match ethtool nicely */
162			ecmd->advertising |= hw->phy.autoneg_advertised;
163		}
164
165		if (hw->mac.autoneg != 1)
166			ecmd->advertising &= ~(ADVERTISED_Pause |
167					       ADVERTISED_Asym_Pause);
168
169		if (hw->fc.requested_mode == e1000_fc_full)
170			ecmd->advertising |= ADVERTISED_Pause;
171		else if (hw->fc.requested_mode == e1000_fc_rx_pause)
172			ecmd->advertising |= (ADVERTISED_Pause |
173					      ADVERTISED_Asym_Pause);
174		else if (hw->fc.requested_mode == e1000_fc_tx_pause)
175			ecmd->advertising |=  ADVERTISED_Asym_Pause;
176		else
177			ecmd->advertising &= ~(ADVERTISED_Pause |
178					       ADVERTISED_Asym_Pause);
179
180		ecmd->port = PORT_TP;
181		ecmd->phy_address = hw->phy.addr;
182		ecmd->transceiver = XCVR_INTERNAL;
183	} else {
184		ecmd->supported = (SUPPORTED_1000baseT_Full |
185				   SUPPORTED_100baseT_Full |
186				   SUPPORTED_FIBRE |
187				   SUPPORTED_Autoneg |
188				   SUPPORTED_Pause);
189		if (hw->mac.type == e1000_i354)
190				ecmd->supported |= SUPPORTED_2500baseX_Full;
191
192		ecmd->advertising = ADVERTISED_FIBRE;
193
194		switch (adapter->link_speed) {
195		case SPEED_2500:
196			ecmd->advertising = ADVERTISED_2500baseX_Full;
197			break;
198		case SPEED_1000:
199			ecmd->advertising = ADVERTISED_1000baseT_Full;
200			break;
201		case SPEED_100:
202			ecmd->advertising = ADVERTISED_100baseT_Full;
203			break;
204		default:
205			break;
206		}
207
208		if (hw->mac.autoneg == 1)
209			ecmd->advertising |= ADVERTISED_Autoneg;
210
211		ecmd->port = PORT_FIBRE;
212		ecmd->transceiver = XCVR_EXTERNAL;
213	}
214
215	status = rd32(E1000_STATUS);
216
217	if (status & E1000_STATUS_LU) {
218		if ((hw->mac.type == e1000_i354) &&
219		    (status & E1000_STATUS_2P5_SKU) &&
220		    !(status & E1000_STATUS_2P5_SKU_OVER))
221			ecmd->speed = SPEED_2500;
222		else if (status & E1000_STATUS_SPEED_1000)
223			ecmd->speed = SPEED_1000;
224		else if (status & E1000_STATUS_SPEED_100)
225			ecmd->speed = SPEED_100;
226		else
227			ecmd->speed = SPEED_10;
228		if ((status & E1000_STATUS_FD) ||
229		    hw->phy.media_type != e1000_media_type_copper)
230			ecmd->duplex = DUPLEX_FULL;
231		else
232			ecmd->duplex = DUPLEX_HALF;
233	} else {
234		ecmd->speed = -1;
235		ecmd->duplex = -1;
236	}
237
238	if ((hw->phy.media_type == e1000_media_type_fiber) ||
239	    hw->mac.autoneg)
240		ecmd->autoneg = AUTONEG_ENABLE;
241	else
242		ecmd->autoneg = AUTONEG_DISABLE;
243
244	/* MDI-X => 2; MDI =>1; Invalid =>0 */
245	if (hw->phy.media_type == e1000_media_type_copper)
246		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
247						      ETH_TP_MDI;
248	else
249		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
250
251	if (hw->phy.mdix == AUTO_ALL_MODES)
252		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
253	else
254		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
255
256	return 0;
257}
258
259static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
260{
261	struct igb_adapter *adapter = netdev_priv(netdev);
262	struct e1000_hw *hw = &adapter->hw;
263
264	/* When SoL/IDER sessions are active, autoneg/speed/duplex
265	 * cannot be changed
266	 */
267	if (igb_check_reset_block(hw)) {
268		dev_err(&adapter->pdev->dev,
269			"Cannot change link characteristics when SoL/IDER is active.\n");
270		return -EINVAL;
271	}
272
273	/* MDI setting is only allowed when autoneg enabled because
274	 * some hardware doesn't allow MDI setting when speed or
275	 * duplex is forced.
276	 */
277	if (ecmd->eth_tp_mdix_ctrl) {
278		if (hw->phy.media_type != e1000_media_type_copper)
279			return -EOPNOTSUPP;
280
281		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
282		    (ecmd->autoneg != AUTONEG_ENABLE)) {
283			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
284			return -EINVAL;
285		}
286	}
287
288	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
289		msleep(1);
290
291	if (ecmd->autoneg == AUTONEG_ENABLE) {
292		hw->mac.autoneg = 1;
293		if (hw->phy.media_type == e1000_media_type_fiber) {
294			hw->phy.autoneg_advertised = ecmd->advertising |
295						     ADVERTISED_FIBRE |
296						     ADVERTISED_Autoneg;
297			switch (adapter->link_speed) {
298			case SPEED_2500:
299				hw->phy.autoneg_advertised =
300					ADVERTISED_2500baseX_Full;
301				break;
302			case SPEED_1000:
303				hw->phy.autoneg_advertised =
304					ADVERTISED_1000baseT_Full;
305				break;
306			case SPEED_100:
307				hw->phy.autoneg_advertised =
308					ADVERTISED_100baseT_Full;
309				break;
310			default:
311				break;
312			}
313		} else {
314			hw->phy.autoneg_advertised = ecmd->advertising |
315						     ADVERTISED_TP |
316						     ADVERTISED_Autoneg;
317		}
318		ecmd->advertising = hw->phy.autoneg_advertised;
319		if (adapter->fc_autoneg)
320			hw->fc.requested_mode = e1000_fc_default;
321	} else {
322		u32 speed = ethtool_cmd_speed(ecmd);
323		/* calling this overrides forced MDI setting */
324		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
325			clear_bit(__IGB_RESETTING, &adapter->state);
326			return -EINVAL;
327		}
328	}
329
330	/* MDI-X => 2; MDI => 1; Auto => 3 */
331	if (ecmd->eth_tp_mdix_ctrl) {
332		/* fix up the value for auto (3 => 0) as zero is mapped
333		 * internally to auto
334		 */
335		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
336			hw->phy.mdix = AUTO_ALL_MODES;
337		else
338			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
339	}
340
341	/* reset the link */
342	if (netif_running(adapter->netdev)) {
343		igb_down(adapter);
344		igb_up(adapter);
345	} else
346		igb_reset(adapter);
347
348	clear_bit(__IGB_RESETTING, &adapter->state);
349	return 0;
350}
351
352static u32 igb_get_link(struct net_device *netdev)
353{
354	struct igb_adapter *adapter = netdev_priv(netdev);
355	struct e1000_mac_info *mac = &adapter->hw.mac;
356
357	/* If the link is not reported up to netdev, interrupts are disabled,
358	 * and so the physical link state may have changed since we last
359	 * looked. Set get_link_status to make sure that the true link
360	 * state is interrogated, rather than pulling a cached and possibly
361	 * stale link state from the driver.
362	 */
363	if (!netif_carrier_ok(netdev))
364		mac->get_link_status = 1;
365
366	return igb_has_link(adapter);
367}
368
369static void igb_get_pauseparam(struct net_device *netdev,
370			       struct ethtool_pauseparam *pause)
371{
372	struct igb_adapter *adapter = netdev_priv(netdev);
373	struct e1000_hw *hw = &adapter->hw;
374
375	pause->autoneg =
376		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
377
378	if (hw->fc.current_mode == e1000_fc_rx_pause)
379		pause->rx_pause = 1;
380	else if (hw->fc.current_mode == e1000_fc_tx_pause)
381		pause->tx_pause = 1;
382	else if (hw->fc.current_mode == e1000_fc_full) {
383		pause->rx_pause = 1;
384		pause->tx_pause = 1;
385	}
386}
387
388static int igb_set_pauseparam(struct net_device *netdev,
389			      struct ethtool_pauseparam *pause)
390{
391	struct igb_adapter *adapter = netdev_priv(netdev);
392	struct e1000_hw *hw = &adapter->hw;
393	int retval = 0;
394
395	adapter->fc_autoneg = pause->autoneg;
396
397	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
398		msleep(1);
399
400	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
401		hw->fc.requested_mode = e1000_fc_default;
402		if (netif_running(adapter->netdev)) {
403			igb_down(adapter);
404			igb_up(adapter);
405		} else {
406			igb_reset(adapter);
407		}
408	} else {
409		if (pause->rx_pause && pause->tx_pause)
410			hw->fc.requested_mode = e1000_fc_full;
411		else if (pause->rx_pause && !pause->tx_pause)
412			hw->fc.requested_mode = e1000_fc_rx_pause;
413		else if (!pause->rx_pause && pause->tx_pause)
414			hw->fc.requested_mode = e1000_fc_tx_pause;
415		else if (!pause->rx_pause && !pause->tx_pause)
416			hw->fc.requested_mode = e1000_fc_none;
417
418		hw->fc.current_mode = hw->fc.requested_mode;
419
420		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
421			  igb_force_mac_fc(hw) : igb_setup_link(hw));
422	}
423
424	clear_bit(__IGB_RESETTING, &adapter->state);
425	return retval;
426}
427
428static u32 igb_get_msglevel(struct net_device *netdev)
429{
430	struct igb_adapter *adapter = netdev_priv(netdev);
431	return adapter->msg_enable;
432}
433
434static void igb_set_msglevel(struct net_device *netdev, u32 data)
435{
436	struct igb_adapter *adapter = netdev_priv(netdev);
437	adapter->msg_enable = data;
438}
439
440static int igb_get_regs_len(struct net_device *netdev)
441{
442#define IGB_REGS_LEN 739
443	return IGB_REGS_LEN * sizeof(u32);
444}
445
446static void igb_get_regs(struct net_device *netdev,
447			 struct ethtool_regs *regs, void *p)
448{
449	struct igb_adapter *adapter = netdev_priv(netdev);
450	struct e1000_hw *hw = &adapter->hw;
451	u32 *regs_buff = p;
452	u8 i;
453
454	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
455
456	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
457
458	/* General Registers */
459	regs_buff[0] = rd32(E1000_CTRL);
460	regs_buff[1] = rd32(E1000_STATUS);
461	regs_buff[2] = rd32(E1000_CTRL_EXT);
462	regs_buff[3] = rd32(E1000_MDIC);
463	regs_buff[4] = rd32(E1000_SCTL);
464	regs_buff[5] = rd32(E1000_CONNSW);
465	regs_buff[6] = rd32(E1000_VET);
466	regs_buff[7] = rd32(E1000_LEDCTL);
467	regs_buff[8] = rd32(E1000_PBA);
468	regs_buff[9] = rd32(E1000_PBS);
469	regs_buff[10] = rd32(E1000_FRTIMER);
470	regs_buff[11] = rd32(E1000_TCPTIMER);
471
472	/* NVM Register */
473	regs_buff[12] = rd32(E1000_EECD);
474
475	/* Interrupt */
476	/* Reading EICS for EICR because they read the
477	 * same but EICS does not clear on read
478	 */
479	regs_buff[13] = rd32(E1000_EICS);
480	regs_buff[14] = rd32(E1000_EICS);
481	regs_buff[15] = rd32(E1000_EIMS);
482	regs_buff[16] = rd32(E1000_EIMC);
483	regs_buff[17] = rd32(E1000_EIAC);
484	regs_buff[18] = rd32(E1000_EIAM);
485	/* Reading ICS for ICR because they read the
486	 * same but ICS does not clear on read
487	 */
488	regs_buff[19] = rd32(E1000_ICS);
489	regs_buff[20] = rd32(E1000_ICS);
490	regs_buff[21] = rd32(E1000_IMS);
491	regs_buff[22] = rd32(E1000_IMC);
492	regs_buff[23] = rd32(E1000_IAC);
493	regs_buff[24] = rd32(E1000_IAM);
494	regs_buff[25] = rd32(E1000_IMIRVP);
495
496	/* Flow Control */
497	regs_buff[26] = rd32(E1000_FCAL);
498	regs_buff[27] = rd32(E1000_FCAH);
499	regs_buff[28] = rd32(E1000_FCTTV);
500	regs_buff[29] = rd32(E1000_FCRTL);
501	regs_buff[30] = rd32(E1000_FCRTH);
502	regs_buff[31] = rd32(E1000_FCRTV);
503
504	/* Receive */
505	regs_buff[32] = rd32(E1000_RCTL);
506	regs_buff[33] = rd32(E1000_RXCSUM);
507	regs_buff[34] = rd32(E1000_RLPML);
508	regs_buff[35] = rd32(E1000_RFCTL);
509	regs_buff[36] = rd32(E1000_MRQC);
510	regs_buff[37] = rd32(E1000_VT_CTL);
511
512	/* Transmit */
513	regs_buff[38] = rd32(E1000_TCTL);
514	regs_buff[39] = rd32(E1000_TCTL_EXT);
515	regs_buff[40] = rd32(E1000_TIPG);
516	regs_buff[41] = rd32(E1000_DTXCTL);
517
518	/* Wake Up */
519	regs_buff[42] = rd32(E1000_WUC);
520	regs_buff[43] = rd32(E1000_WUFC);
521	regs_buff[44] = rd32(E1000_WUS);
522	regs_buff[45] = rd32(E1000_IPAV);
523	regs_buff[46] = rd32(E1000_WUPL);
524
525	/* MAC */
526	regs_buff[47] = rd32(E1000_PCS_CFG0);
527	regs_buff[48] = rd32(E1000_PCS_LCTL);
528	regs_buff[49] = rd32(E1000_PCS_LSTAT);
529	regs_buff[50] = rd32(E1000_PCS_ANADV);
530	regs_buff[51] = rd32(E1000_PCS_LPAB);
531	regs_buff[52] = rd32(E1000_PCS_NPTX);
532	regs_buff[53] = rd32(E1000_PCS_LPABNP);
533
534	/* Statistics */
535	regs_buff[54] = adapter->stats.crcerrs;
536	regs_buff[55] = adapter->stats.algnerrc;
537	regs_buff[56] = adapter->stats.symerrs;
538	regs_buff[57] = adapter->stats.rxerrc;
539	regs_buff[58] = adapter->stats.mpc;
540	regs_buff[59] = adapter->stats.scc;
541	regs_buff[60] = adapter->stats.ecol;
542	regs_buff[61] = adapter->stats.mcc;
543	regs_buff[62] = adapter->stats.latecol;
544	regs_buff[63] = adapter->stats.colc;
545	regs_buff[64] = adapter->stats.dc;
546	regs_buff[65] = adapter->stats.tncrs;
547	regs_buff[66] = adapter->stats.sec;
548	regs_buff[67] = adapter->stats.htdpmc;
549	regs_buff[68] = adapter->stats.rlec;
550	regs_buff[69] = adapter->stats.xonrxc;
551	regs_buff[70] = adapter->stats.xontxc;
552	regs_buff[71] = adapter->stats.xoffrxc;
553	regs_buff[72] = adapter->stats.xofftxc;
554	regs_buff[73] = adapter->stats.fcruc;
555	regs_buff[74] = adapter->stats.prc64;
556	regs_buff[75] = adapter->stats.prc127;
557	regs_buff[76] = adapter->stats.prc255;
558	regs_buff[77] = adapter->stats.prc511;
559	regs_buff[78] = adapter->stats.prc1023;
560	regs_buff[79] = adapter->stats.prc1522;
561	regs_buff[80] = adapter->stats.gprc;
562	regs_buff[81] = adapter->stats.bprc;
563	regs_buff[82] = adapter->stats.mprc;
564	regs_buff[83] = adapter->stats.gptc;
565	regs_buff[84] = adapter->stats.gorc;
566	regs_buff[86] = adapter->stats.gotc;
567	regs_buff[88] = adapter->stats.rnbc;
568	regs_buff[89] = adapter->stats.ruc;
569	regs_buff[90] = adapter->stats.rfc;
570	regs_buff[91] = adapter->stats.roc;
571	regs_buff[92] = adapter->stats.rjc;
572	regs_buff[93] = adapter->stats.mgprc;
573	regs_buff[94] = adapter->stats.mgpdc;
574	regs_buff[95] = adapter->stats.mgptc;
575	regs_buff[96] = adapter->stats.tor;
576	regs_buff[98] = adapter->stats.tot;
577	regs_buff[100] = adapter->stats.tpr;
578	regs_buff[101] = adapter->stats.tpt;
579	regs_buff[102] = adapter->stats.ptc64;
580	regs_buff[103] = adapter->stats.ptc127;
581	regs_buff[104] = adapter->stats.ptc255;
582	regs_buff[105] = adapter->stats.ptc511;
583	regs_buff[106] = adapter->stats.ptc1023;
584	regs_buff[107] = adapter->stats.ptc1522;
585	regs_buff[108] = adapter->stats.mptc;
586	regs_buff[109] = adapter->stats.bptc;
587	regs_buff[110] = adapter->stats.tsctc;
588	regs_buff[111] = adapter->stats.iac;
589	regs_buff[112] = adapter->stats.rpthc;
590	regs_buff[113] = adapter->stats.hgptc;
591	regs_buff[114] = adapter->stats.hgorc;
592	regs_buff[116] = adapter->stats.hgotc;
593	regs_buff[118] = adapter->stats.lenerrs;
594	regs_buff[119] = adapter->stats.scvpc;
595	regs_buff[120] = adapter->stats.hrmpc;
596
597	for (i = 0; i < 4; i++)
598		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
599	for (i = 0; i < 4; i++)
600		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
601	for (i = 0; i < 4; i++)
602		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
603	for (i = 0; i < 4; i++)
604		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
605	for (i = 0; i < 4; i++)
606		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
607	for (i = 0; i < 4; i++)
608		regs_buff[141 + i] = rd32(E1000_RDH(i));
609	for (i = 0; i < 4; i++)
610		regs_buff[145 + i] = rd32(E1000_RDT(i));
611	for (i = 0; i < 4; i++)
612		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
613
614	for (i = 0; i < 10; i++)
615		regs_buff[153 + i] = rd32(E1000_EITR(i));
616	for (i = 0; i < 8; i++)
617		regs_buff[163 + i] = rd32(E1000_IMIR(i));
618	for (i = 0; i < 8; i++)
619		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
620	for (i = 0; i < 16; i++)
621		regs_buff[179 + i] = rd32(E1000_RAL(i));
622	for (i = 0; i < 16; i++)
623		regs_buff[195 + i] = rd32(E1000_RAH(i));
624
625	for (i = 0; i < 4; i++)
626		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
627	for (i = 0; i < 4; i++)
628		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
629	for (i = 0; i < 4; i++)
630		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
631	for (i = 0; i < 4; i++)
632		regs_buff[223 + i] = rd32(E1000_TDH(i));
633	for (i = 0; i < 4; i++)
634		regs_buff[227 + i] = rd32(E1000_TDT(i));
635	for (i = 0; i < 4; i++)
636		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
637	for (i = 0; i < 4; i++)
638		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
639	for (i = 0; i < 4; i++)
640		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
641	for (i = 0; i < 4; i++)
642		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
643
644	for (i = 0; i < 4; i++)
645		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
646	for (i = 0; i < 4; i++)
647		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
648	for (i = 0; i < 32; i++)
649		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
650	for (i = 0; i < 128; i++)
651		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
652	for (i = 0; i < 128; i++)
653		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
654	for (i = 0; i < 4; i++)
655		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
656
657	regs_buff[547] = rd32(E1000_TDFH);
658	regs_buff[548] = rd32(E1000_TDFT);
659	regs_buff[549] = rd32(E1000_TDFHS);
660	regs_buff[550] = rd32(E1000_TDFPC);
661
662	if (hw->mac.type > e1000_82580) {
663		regs_buff[551] = adapter->stats.o2bgptc;
664		regs_buff[552] = adapter->stats.b2ospc;
665		regs_buff[553] = adapter->stats.o2bspc;
666		regs_buff[554] = adapter->stats.b2ogprc;
667	}
668
669	if (hw->mac.type != e1000_82576)
670		return;
671	for (i = 0; i < 12; i++)
672		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
673	for (i = 0; i < 4; i++)
674		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
675	for (i = 0; i < 12; i++)
676		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
677	for (i = 0; i < 12; i++)
678		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
679	for (i = 0; i < 12; i++)
680		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
681	for (i = 0; i < 12; i++)
682		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
683	for (i = 0; i < 12; i++)
684		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
685	for (i = 0; i < 12; i++)
686		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
687
688	for (i = 0; i < 12; i++)
689		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
690	for (i = 0; i < 12; i++)
691		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
692	for (i = 0; i < 12; i++)
693		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
694	for (i = 0; i < 12; i++)
695		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
696	for (i = 0; i < 12; i++)
697		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
698	for (i = 0; i < 12; i++)
699		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
700	for (i = 0; i < 12; i++)
701		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
702	for (i = 0; i < 12; i++)
703		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
704}
705
706static int igb_get_eeprom_len(struct net_device *netdev)
707{
708	struct igb_adapter *adapter = netdev_priv(netdev);
709	return adapter->hw.nvm.word_size * 2;
710}
711
712static int igb_get_eeprom(struct net_device *netdev,
713			  struct ethtool_eeprom *eeprom, u8 *bytes)
714{
715	struct igb_adapter *adapter = netdev_priv(netdev);
716	struct e1000_hw *hw = &adapter->hw;
717	u16 *eeprom_buff;
718	int first_word, last_word;
719	int ret_val = 0;
720	u16 i;
721
722	if (eeprom->len == 0)
723		return -EINVAL;
724
725	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
726
727	first_word = eeprom->offset >> 1;
728	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
729
730	eeprom_buff = kmalloc(sizeof(u16) *
731			(last_word - first_word + 1), GFP_KERNEL);
732	if (!eeprom_buff)
733		return -ENOMEM;
734
735	if (hw->nvm.type == e1000_nvm_eeprom_spi)
736		ret_val = hw->nvm.ops.read(hw, first_word,
737					   last_word - first_word + 1,
738					   eeprom_buff);
739	else {
740		for (i = 0; i < last_word - first_word + 1; i++) {
741			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
742						   &eeprom_buff[i]);
743			if (ret_val)
744				break;
745		}
746	}
747
748	/* Device's eeprom is always little-endian, word addressable */
749	for (i = 0; i < last_word - first_word + 1; i++)
750		le16_to_cpus(&eeprom_buff[i]);
751
752	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
753			eeprom->len);
754	kfree(eeprom_buff);
755
756	return ret_val;
757}
758
759static int igb_set_eeprom(struct net_device *netdev,
760			  struct ethtool_eeprom *eeprom, u8 *bytes)
761{
762	struct igb_adapter *adapter = netdev_priv(netdev);
763	struct e1000_hw *hw = &adapter->hw;
764	u16 *eeprom_buff;
765	void *ptr;
766	int max_len, first_word, last_word, ret_val = 0;
767	u16 i;
768
769	if (eeprom->len == 0)
770		return -EOPNOTSUPP;
771
772	if (hw->mac.type == e1000_i211)
773		return -EOPNOTSUPP;
774
775	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
776		return -EFAULT;
777
778	max_len = hw->nvm.word_size * 2;
779
780	first_word = eeprom->offset >> 1;
781	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
782	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
783	if (!eeprom_buff)
784		return -ENOMEM;
785
786	ptr = (void *)eeprom_buff;
787
788	if (eeprom->offset & 1) {
789		/* need read/modify/write of first changed EEPROM word
790		 * only the second byte of the word is being modified
791		 */
792		ret_val = hw->nvm.ops.read(hw, first_word, 1,
793					    &eeprom_buff[0]);
794		ptr++;
795	}
796	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
797		/* need read/modify/write of last changed EEPROM word
798		 * only the first byte of the word is being modified
799		 */
800		ret_val = hw->nvm.ops.read(hw, last_word, 1,
801				   &eeprom_buff[last_word - first_word]);
802	}
803
804	/* Device's eeprom is always little-endian, word addressable */
805	for (i = 0; i < last_word - first_word + 1; i++)
806		le16_to_cpus(&eeprom_buff[i]);
807
808	memcpy(ptr, bytes, eeprom->len);
809
810	for (i = 0; i < last_word - first_word + 1; i++)
811		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
812
813	ret_val = hw->nvm.ops.write(hw, first_word,
814				    last_word - first_word + 1, eeprom_buff);
815
816	/* Update the checksum over the first part of the EEPROM if needed
817	 * and flush shadow RAM for 82573 controllers
818	 */
819	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
820		hw->nvm.ops.update(hw);
821
822	igb_set_fw_version(adapter);
823	kfree(eeprom_buff);
824	return ret_val;
825}
826
827static void igb_get_drvinfo(struct net_device *netdev,
828			    struct ethtool_drvinfo *drvinfo)
829{
830	struct igb_adapter *adapter = netdev_priv(netdev);
831
832	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
833	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
834
835	/* EEPROM image version # is reported as firmware version # for
836	 * 82575 controllers
837	 */
838	strlcpy(drvinfo->fw_version, adapter->fw_version,
839		sizeof(drvinfo->fw_version));
840	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
841		sizeof(drvinfo->bus_info));
842	drvinfo->n_stats = IGB_STATS_LEN;
843	drvinfo->testinfo_len = IGB_TEST_LEN;
844	drvinfo->regdump_len = igb_get_regs_len(netdev);
845	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
846}
847
848static void igb_get_ringparam(struct net_device *netdev,
849			      struct ethtool_ringparam *ring)
850{
851	struct igb_adapter *adapter = netdev_priv(netdev);
852
853	ring->rx_max_pending = IGB_MAX_RXD;
854	ring->tx_max_pending = IGB_MAX_TXD;
855	ring->rx_pending = adapter->rx_ring_count;
856	ring->tx_pending = adapter->tx_ring_count;
857}
858
859static int igb_set_ringparam(struct net_device *netdev,
860			     struct ethtool_ringparam *ring)
861{
862	struct igb_adapter *adapter = netdev_priv(netdev);
863	struct igb_ring *temp_ring;
864	int i, err = 0;
865	u16 new_rx_count, new_tx_count;
866
867	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
868		return -EINVAL;
869
870	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
871	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
872	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
873
874	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
875	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
876	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
877
878	if ((new_tx_count == adapter->tx_ring_count) &&
879	    (new_rx_count == adapter->rx_ring_count)) {
880		/* nothing to do */
881		return 0;
882	}
883
884	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
885		msleep(1);
886
887	if (!netif_running(adapter->netdev)) {
888		for (i = 0; i < adapter->num_tx_queues; i++)
889			adapter->tx_ring[i]->count = new_tx_count;
890		for (i = 0; i < adapter->num_rx_queues; i++)
891			adapter->rx_ring[i]->count = new_rx_count;
892		adapter->tx_ring_count = new_tx_count;
893		adapter->rx_ring_count = new_rx_count;
894		goto clear_reset;
895	}
896
897	if (adapter->num_tx_queues > adapter->num_rx_queues)
898		temp_ring = vmalloc(adapter->num_tx_queues *
899				    sizeof(struct igb_ring));
900	else
901		temp_ring = vmalloc(adapter->num_rx_queues *
902				    sizeof(struct igb_ring));
903
904	if (!temp_ring) {
905		err = -ENOMEM;
906		goto clear_reset;
907	}
908
909	igb_down(adapter);
910
911	/* We can't just free everything and then setup again,
912	 * because the ISRs in MSI-X mode get passed pointers
913	 * to the Tx and Rx ring structs.
914	 */
915	if (new_tx_count != adapter->tx_ring_count) {
916		for (i = 0; i < adapter->num_tx_queues; i++) {
917			memcpy(&temp_ring[i], adapter->tx_ring[i],
918			       sizeof(struct igb_ring));
919
920			temp_ring[i].count = new_tx_count;
921			err = igb_setup_tx_resources(&temp_ring[i]);
922			if (err) {
923				while (i) {
924					i--;
925					igb_free_tx_resources(&temp_ring[i]);
926				}
927				goto err_setup;
928			}
929		}
930
931		for (i = 0; i < adapter->num_tx_queues; i++) {
932			igb_free_tx_resources(adapter->tx_ring[i]);
933
934			memcpy(adapter->tx_ring[i], &temp_ring[i],
935			       sizeof(struct igb_ring));
936		}
937
938		adapter->tx_ring_count = new_tx_count;
939	}
940
941	if (new_rx_count != adapter->rx_ring_count) {
942		for (i = 0; i < adapter->num_rx_queues; i++) {
943			memcpy(&temp_ring[i], adapter->rx_ring[i],
944			       sizeof(struct igb_ring));
945
946			temp_ring[i].count = new_rx_count;
947			err = igb_setup_rx_resources(&temp_ring[i]);
948			if (err) {
949				while (i) {
950					i--;
951					igb_free_rx_resources(&temp_ring[i]);
952				}
953				goto err_setup;
954			}
955
956		}
957
958		for (i = 0; i < adapter->num_rx_queues; i++) {
959			igb_free_rx_resources(adapter->rx_ring[i]);
960
961			memcpy(adapter->rx_ring[i], &temp_ring[i],
962			       sizeof(struct igb_ring));
963		}
964
965		adapter->rx_ring_count = new_rx_count;
966	}
967err_setup:
968	igb_up(adapter);
969	vfree(temp_ring);
970clear_reset:
971	clear_bit(__IGB_RESETTING, &adapter->state);
972	return err;
973}
974
975/* ethtool register test data */
976struct igb_reg_test {
977	u16 reg;
978	u16 reg_offset;
979	u16 array_len;
980	u16 test_type;
981	u32 mask;
982	u32 write;
983};
984
985/* In the hardware, registers are laid out either singly, in arrays
986 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
987 * most tests take place on arrays or single registers (handled
988 * as a single-element array) and special-case the tables.
989 * Table tests are always pattern tests.
990 *
991 * We also make provision for some required setup steps by specifying
992 * registers to be written without any read-back testing.
993 */
994
995#define PATTERN_TEST	1
996#define SET_READ_TEST	2
997#define WRITE_NO_TEST	3
998#define TABLE32_TEST	4
999#define TABLE64_TEST_LO	5
1000#define TABLE64_TEST_HI	6
1001
1002/* i210 reg test */
1003static struct igb_reg_test reg_test_i210[] = {
1004	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1005	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1006	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1007	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1008	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1009	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1010	/* RDH is read-only for i210, only test RDT. */
1011	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1012	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1013	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1014	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1015	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1016	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1017	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1018	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1019	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1020	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1021	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1022	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1023	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1024						0xFFFFFFFF, 0xFFFFFFFF },
1025	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1026						0x900FFFFF, 0xFFFFFFFF },
1027	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1028						0xFFFFFFFF, 0xFFFFFFFF },
1029	{ 0, 0, 0, 0, 0 }
1030};
1031
1032/* i350 reg test */
1033static struct igb_reg_test reg_test_i350[] = {
1034	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1035	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1036	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1037	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1038	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1039	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1041	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1042	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1043	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1044	/* RDH is read-only for i350, only test RDT. */
1045	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1046	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1047	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1048	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1049	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1050	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1051	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1052	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1053	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1054	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1055	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1056	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1057	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1058	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1059	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1060	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1061	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1062	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1063						0xFFFFFFFF, 0xFFFFFFFF },
1064	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1065						0xC3FFFFFF, 0xFFFFFFFF },
1066	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1067						0xFFFFFFFF, 0xFFFFFFFF },
1068	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1069						0xC3FFFFFF, 0xFFFFFFFF },
1070	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1071						0xFFFFFFFF, 0xFFFFFFFF },
1072	{ 0, 0, 0, 0 }
1073};
1074
1075/* 82580 reg test */
1076static struct igb_reg_test reg_test_82580[] = {
1077	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1078	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1079	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1080	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1081	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1082	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1083	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1084	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1085	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1086	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1087	/* RDH is read-only for 82580, only test RDT. */
1088	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1089	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1090	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1091	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1092	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1093	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1094	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1095	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1096	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1097	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1098	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1099	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1100	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1101	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1102	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1103	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1104	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1105	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1106						0xFFFFFFFF, 0xFFFFFFFF },
1107	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1108						0x83FFFFFF, 0xFFFFFFFF },
1109	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1110						0xFFFFFFFF, 0xFFFFFFFF },
1111	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1112						0x83FFFFFF, 0xFFFFFFFF },
1113	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1114						0xFFFFFFFF, 0xFFFFFFFF },
1115	{ 0, 0, 0, 0 }
1116};
1117
1118/* 82576 reg test */
1119static struct igb_reg_test reg_test_82576[] = {
1120	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1121	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1122	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1123	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1124	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1125	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1126	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1127	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1128	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1129	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1130	/* Enable all RX queues before testing. */
1131	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1132	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1133	/* RDH is read-only for 82576, only test RDT. */
1134	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1135	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1136	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1137	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1138	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1139	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1140	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1141	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1142	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1143	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1144	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1145	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1146	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1147	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1148	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1149	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1150	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1151	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1152	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1153	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1154	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1155	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1156	{ 0, 0, 0, 0 }
1157};
1158
1159/* 82575 register test */
1160static struct igb_reg_test reg_test_82575[] = {
1161	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1162	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1163	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1164	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1165	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1166	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1168	/* Enable all four RX queues before testing. */
1169	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1170	/* RDH is read-only for 82575, only test RDT. */
1171	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1172	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1173	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1174	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1175	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1176	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1177	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1178	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1179	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1180	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1181	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1182	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1183	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1184	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1185	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1186	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1187	{ 0, 0, 0, 0 }
1188};
1189
1190static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1191			     int reg, u32 mask, u32 write)
1192{
1193	struct e1000_hw *hw = &adapter->hw;
1194	u32 pat, val;
1195	static const u32 _test[] =
1196		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1197	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1198		wr32(reg, (_test[pat] & write));
1199		val = rd32(reg) & mask;
1200		if (val != (_test[pat] & write & mask)) {
1201			dev_err(&adapter->pdev->dev,
1202				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1203				reg, val, (_test[pat] & write & mask));
1204			*data = reg;
1205			return 1;
1206		}
1207	}
1208
1209	return 0;
1210}
1211
1212static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1213			      int reg, u32 mask, u32 write)
1214{
1215	struct e1000_hw *hw = &adapter->hw;
1216	u32 val;
1217	wr32(reg, write & mask);
1218	val = rd32(reg);
1219	if ((write & mask) != (val & mask)) {
1220		dev_err(&adapter->pdev->dev,
1221			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1222			(val & mask), (write & mask));
1223		*data = reg;
1224		return 1;
1225	}
1226
1227	return 0;
1228}
1229
1230#define REG_PATTERN_TEST(reg, mask, write) \
1231	do { \
1232		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1233			return 1; \
1234	} while (0)
1235
1236#define REG_SET_AND_CHECK(reg, mask, write) \
1237	do { \
1238		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1239			return 1; \
1240	} while (0)
1241
1242static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1243{
1244	struct e1000_hw *hw = &adapter->hw;
1245	struct igb_reg_test *test;
1246	u32 value, before, after;
1247	u32 i, toggle;
1248
1249	switch (adapter->hw.mac.type) {
1250	case e1000_i350:
1251	case e1000_i354:
1252		test = reg_test_i350;
1253		toggle = 0x7FEFF3FF;
1254		break;
1255	case e1000_i210:
1256	case e1000_i211:
1257		test = reg_test_i210;
1258		toggle = 0x7FEFF3FF;
1259		break;
1260	case e1000_82580:
1261		test = reg_test_82580;
1262		toggle = 0x7FEFF3FF;
1263		break;
1264	case e1000_82576:
1265		test = reg_test_82576;
1266		toggle = 0x7FFFF3FF;
1267		break;
1268	default:
1269		test = reg_test_82575;
1270		toggle = 0x7FFFF3FF;
1271		break;
1272	}
1273
1274	/* Because the status register is such a special case,
1275	 * we handle it separately from the rest of the register
1276	 * tests.  Some bits are read-only, some toggle, and some
1277	 * are writable on newer MACs.
1278	 */
1279	before = rd32(E1000_STATUS);
1280	value = (rd32(E1000_STATUS) & toggle);
1281	wr32(E1000_STATUS, toggle);
1282	after = rd32(E1000_STATUS) & toggle;
1283	if (value != after) {
1284		dev_err(&adapter->pdev->dev,
1285			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1286			after, value);
1287		*data = 1;
1288		return 1;
1289	}
1290	/* restore previous status */
1291	wr32(E1000_STATUS, before);
1292
1293	/* Perform the remainder of the register test, looping through
1294	 * the test table until we either fail or reach the null entry.
1295	 */
1296	while (test->reg) {
1297		for (i = 0; i < test->array_len; i++) {
1298			switch (test->test_type) {
1299			case PATTERN_TEST:
1300				REG_PATTERN_TEST(test->reg +
1301						(i * test->reg_offset),
1302						test->mask,
1303						test->write);
1304				break;
1305			case SET_READ_TEST:
1306				REG_SET_AND_CHECK(test->reg +
1307						(i * test->reg_offset),
1308						test->mask,
1309						test->write);
1310				break;
1311			case WRITE_NO_TEST:
1312				writel(test->write,
1313				    (adapter->hw.hw_addr + test->reg)
1314					+ (i * test->reg_offset));
1315				break;
1316			case TABLE32_TEST:
1317				REG_PATTERN_TEST(test->reg + (i * 4),
1318						test->mask,
1319						test->write);
1320				break;
1321			case TABLE64_TEST_LO:
1322				REG_PATTERN_TEST(test->reg + (i * 8),
1323						test->mask,
1324						test->write);
1325				break;
1326			case TABLE64_TEST_HI:
1327				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1328						test->mask,
1329						test->write);
1330				break;
1331			}
1332		}
1333		test++;
1334	}
1335
1336	*data = 0;
1337	return 0;
1338}
1339
1340static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1341{
1342	*data = 0;
1343
1344	/* Validate eeprom on all parts but i211 */
1345	if (adapter->hw.mac.type != e1000_i211) {
1346		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1347			*data = 2;
1348	}
1349
1350	return *data;
1351}
1352
1353static irqreturn_t igb_test_intr(int irq, void *data)
1354{
1355	struct igb_adapter *adapter = (struct igb_adapter *) data;
1356	struct e1000_hw *hw = &adapter->hw;
1357
1358	adapter->test_icr |= rd32(E1000_ICR);
1359
1360	return IRQ_HANDLED;
1361}
1362
1363static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1364{
1365	struct e1000_hw *hw = &adapter->hw;
1366	struct net_device *netdev = adapter->netdev;
1367	u32 mask, ics_mask, i = 0, shared_int = true;
1368	u32 irq = adapter->pdev->irq;
1369
1370	*data = 0;
1371
1372	/* Hook up test interrupt handler just for this test */
1373	if (adapter->msix_entries) {
1374		if (request_irq(adapter->msix_entries[0].vector,
1375		                igb_test_intr, 0, netdev->name, adapter)) {
1376			*data = 1;
1377			return -1;
1378		}
1379	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1380		shared_int = false;
1381		if (request_irq(irq,
1382		                igb_test_intr, 0, netdev->name, adapter)) {
1383			*data = 1;
1384			return -1;
1385		}
1386	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1387				netdev->name, adapter)) {
1388		shared_int = false;
1389	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1390		 netdev->name, adapter)) {
1391		*data = 1;
1392		return -1;
1393	}
1394	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1395		(shared_int ? "shared" : "unshared"));
1396
1397	/* Disable all the interrupts */
1398	wr32(E1000_IMC, ~0);
1399	wrfl();
1400	msleep(10);
1401
1402	/* Define all writable bits for ICS */
1403	switch (hw->mac.type) {
1404	case e1000_82575:
1405		ics_mask = 0x37F47EDD;
1406		break;
1407	case e1000_82576:
1408		ics_mask = 0x77D4FBFD;
1409		break;
1410	case e1000_82580:
1411		ics_mask = 0x77DCFED5;
1412		break;
1413	case e1000_i350:
1414	case e1000_i354:
1415	case e1000_i210:
1416	case e1000_i211:
1417		ics_mask = 0x77DCFED5;
1418		break;
1419	default:
1420		ics_mask = 0x7FFFFFFF;
1421		break;
1422	}
1423
1424	/* Test each interrupt */
1425	for (; i < 31; i++) {
1426		/* Interrupt to test */
1427		mask = 1 << i;
1428
1429		if (!(mask & ics_mask))
1430			continue;
1431
1432		if (!shared_int) {
1433			/* Disable the interrupt to be reported in
1434			 * the cause register and then force the same
1435			 * interrupt and see if one gets posted.  If
1436			 * an interrupt was posted to the bus, the
1437			 * test failed.
1438			 */
1439			adapter->test_icr = 0;
1440
1441			/* Flush any pending interrupts */
1442			wr32(E1000_ICR, ~0);
1443
1444			wr32(E1000_IMC, mask);
1445			wr32(E1000_ICS, mask);
1446			wrfl();
1447			msleep(10);
1448
1449			if (adapter->test_icr & mask) {
1450				*data = 3;
1451				break;
1452			}
1453		}
1454
1455		/* Enable the interrupt to be reported in
1456		 * the cause register and then force the same
1457		 * interrupt and see if one gets posted.  If
1458		 * an interrupt was not posted to the bus, the
1459		 * test failed.
1460		 */
1461		adapter->test_icr = 0;
1462
1463		/* Flush any pending interrupts */
1464		wr32(E1000_ICR, ~0);
1465
1466		wr32(E1000_IMS, mask);
1467		wr32(E1000_ICS, mask);
1468		wrfl();
1469		msleep(10);
1470
1471		if (!(adapter->test_icr & mask)) {
1472			*data = 4;
1473			break;
1474		}
1475
1476		if (!shared_int) {
1477			/* Disable the other interrupts to be reported in
1478			 * the cause register and then force the other
1479			 * interrupts and see if any get posted.  If
1480			 * an interrupt was posted to the bus, the
1481			 * test failed.
1482			 */
1483			adapter->test_icr = 0;
1484
1485			/* Flush any pending interrupts */
1486			wr32(E1000_ICR, ~0);
1487
1488			wr32(E1000_IMC, ~mask);
1489			wr32(E1000_ICS, ~mask);
1490			wrfl();
1491			msleep(10);
1492
1493			if (adapter->test_icr & mask) {
1494				*data = 5;
1495				break;
1496			}
1497		}
1498	}
1499
1500	/* Disable all the interrupts */
1501	wr32(E1000_IMC, ~0);
1502	wrfl();
1503	msleep(10);
1504
1505	/* Unhook test interrupt handler */
1506	if (adapter->msix_entries)
1507		free_irq(adapter->msix_entries[0].vector, adapter);
1508	else
1509		free_irq(irq, adapter);
1510
1511	return *data;
1512}
1513
1514static void igb_free_desc_rings(struct igb_adapter *adapter)
1515{
1516	igb_free_tx_resources(&adapter->test_tx_ring);
1517	igb_free_rx_resources(&adapter->test_rx_ring);
1518}
1519
1520static int igb_setup_desc_rings(struct igb_adapter *adapter)
1521{
1522	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1523	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1524	struct e1000_hw *hw = &adapter->hw;
1525	int ret_val;
1526
1527	/* Setup Tx descriptor ring and Tx buffers */
1528	tx_ring->count = IGB_DEFAULT_TXD;
1529	tx_ring->dev = &adapter->pdev->dev;
1530	tx_ring->netdev = adapter->netdev;
1531	tx_ring->reg_idx = adapter->vfs_allocated_count;
1532
1533	if (igb_setup_tx_resources(tx_ring)) {
1534		ret_val = 1;
1535		goto err_nomem;
1536	}
1537
1538	igb_setup_tctl(adapter);
1539	igb_configure_tx_ring(adapter, tx_ring);
1540
1541	/* Setup Rx descriptor ring and Rx buffers */
1542	rx_ring->count = IGB_DEFAULT_RXD;
1543	rx_ring->dev = &adapter->pdev->dev;
1544	rx_ring->netdev = adapter->netdev;
1545	rx_ring->reg_idx = adapter->vfs_allocated_count;
1546
1547	if (igb_setup_rx_resources(rx_ring)) {
1548		ret_val = 3;
1549		goto err_nomem;
1550	}
1551
1552	/* set the default queue to queue 0 of PF */
1553	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1554
1555	/* enable receive ring */
1556	igb_setup_rctl(adapter);
1557	igb_configure_rx_ring(adapter, rx_ring);
1558
1559	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1560
1561	return 0;
1562
1563err_nomem:
1564	igb_free_desc_rings(adapter);
1565	return ret_val;
1566}
1567
1568static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1569{
1570	struct e1000_hw *hw = &adapter->hw;
1571
1572	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1573	igb_write_phy_reg(hw, 29, 0x001F);
1574	igb_write_phy_reg(hw, 30, 0x8FFC);
1575	igb_write_phy_reg(hw, 29, 0x001A);
1576	igb_write_phy_reg(hw, 30, 0x8FF0);
1577}
1578
1579static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1580{
1581	struct e1000_hw *hw = &adapter->hw;
1582	u32 ctrl_reg = 0;
1583
1584	hw->mac.autoneg = false;
1585
1586	if (hw->phy.type == e1000_phy_m88) {
1587		if (hw->phy.id != I210_I_PHY_ID) {
1588			/* Auto-MDI/MDIX Off */
1589			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1590			/* reset to update Auto-MDI/MDIX */
1591			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1592			/* autoneg off */
1593			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1594		} else {
1595			/* force 1000, set loopback  */
1596			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1597			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1598		}
1599	}
1600
1601	/* add small delay to avoid loopback test failure */
1602	msleep(50);
1603
1604	/* force 1000, set loopback */
1605	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1606
1607	/* Now set up the MAC to the same speed/duplex as the PHY. */
1608	ctrl_reg = rd32(E1000_CTRL);
1609	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1610	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1611		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1612		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1613		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1614		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1615
1616	if (hw->phy.type == e1000_phy_m88)
1617		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1618
1619	wr32(E1000_CTRL, ctrl_reg);
1620
1621	/* Disable the receiver on the PHY so when a cable is plugged in, the
1622	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1623	 */
1624	if (hw->phy.type == e1000_phy_m88)
1625		igb_phy_disable_receiver(adapter);
1626
1627	mdelay(500);
1628	return 0;
1629}
1630
1631static int igb_set_phy_loopback(struct igb_adapter *adapter)
1632{
1633	return igb_integrated_phy_loopback(adapter);
1634}
1635
1636static int igb_setup_loopback_test(struct igb_adapter *adapter)
1637{
1638	struct e1000_hw *hw = &adapter->hw;
1639	u32 reg;
1640
1641	reg = rd32(E1000_CTRL_EXT);
1642
1643	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1644	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1645		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1646		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1647		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1648		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1649
1650			/* Enable DH89xxCC MPHY for near end loopback */
1651			reg = rd32(E1000_MPHY_ADDR_CTL);
1652			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1653			E1000_MPHY_PCS_CLK_REG_OFFSET;
1654			wr32(E1000_MPHY_ADDR_CTL, reg);
1655
1656			reg = rd32(E1000_MPHY_DATA);
1657			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1658			wr32(E1000_MPHY_DATA, reg);
1659		}
1660
1661		reg = rd32(E1000_RCTL);
1662		reg |= E1000_RCTL_LBM_TCVR;
1663		wr32(E1000_RCTL, reg);
1664
1665		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1666
1667		reg = rd32(E1000_CTRL);
1668		reg &= ~(E1000_CTRL_RFCE |
1669			 E1000_CTRL_TFCE |
1670			 E1000_CTRL_LRST);
1671		reg |= E1000_CTRL_SLU |
1672		       E1000_CTRL_FD;
1673		wr32(E1000_CTRL, reg);
1674
1675		/* Unset switch control to serdes energy detect */
1676		reg = rd32(E1000_CONNSW);
1677		reg &= ~E1000_CONNSW_ENRGSRC;
1678		wr32(E1000_CONNSW, reg);
1679
1680		/* Unset sigdetect for SERDES loopback on
1681		 * 82580 and i350 devices.
1682		 */
1683		switch (hw->mac.type) {
1684		case e1000_82580:
1685		case e1000_i350:
1686			reg = rd32(E1000_PCS_CFG0);
1687			reg |= E1000_PCS_CFG_IGN_SD;
1688			wr32(E1000_PCS_CFG0, reg);
1689			break;
1690		default:
1691			break;
1692		}
1693
1694		/* Set PCS register for forced speed */
1695		reg = rd32(E1000_PCS_LCTL);
1696		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1697		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1698		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1699		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1700		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1701		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1702		wr32(E1000_PCS_LCTL, reg);
1703
1704		return 0;
1705	}
1706
1707	return igb_set_phy_loopback(adapter);
1708}
1709
1710static void igb_loopback_cleanup(struct igb_adapter *adapter)
1711{
1712	struct e1000_hw *hw = &adapter->hw;
1713	u32 rctl;
1714	u16 phy_reg;
1715
1716	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1717	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1718	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1719	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1720		u32 reg;
1721
1722		/* Disable near end loopback on DH89xxCC */
1723		reg = rd32(E1000_MPHY_ADDR_CTL);
1724		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1725		E1000_MPHY_PCS_CLK_REG_OFFSET;
1726		wr32(E1000_MPHY_ADDR_CTL, reg);
1727
1728		reg = rd32(E1000_MPHY_DATA);
1729		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1730		wr32(E1000_MPHY_DATA, reg);
1731	}
1732
1733	rctl = rd32(E1000_RCTL);
1734	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1735	wr32(E1000_RCTL, rctl);
1736
1737	hw->mac.autoneg = true;
1738	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1739	if (phy_reg & MII_CR_LOOPBACK) {
1740		phy_reg &= ~MII_CR_LOOPBACK;
1741		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1742		igb_phy_sw_reset(hw);
1743	}
1744}
1745
1746static void igb_create_lbtest_frame(struct sk_buff *skb,
1747				    unsigned int frame_size)
1748{
1749	memset(skb->data, 0xFF, frame_size);
1750	frame_size /= 2;
1751	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1752	memset(&skb->data[frame_size + 10], 0xBE, 1);
1753	memset(&skb->data[frame_size + 12], 0xAF, 1);
1754}
1755
1756static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1757				  unsigned int frame_size)
1758{
1759	unsigned char *data;
1760	bool match = true;
1761
1762	frame_size >>= 1;
1763
1764	data = kmap(rx_buffer->page);
1765
1766	if (data[3] != 0xFF ||
1767	    data[frame_size + 10] != 0xBE ||
1768	    data[frame_size + 12] != 0xAF)
1769		match = false;
1770
1771	kunmap(rx_buffer->page);
1772
1773	return match;
1774}
1775
1776static int igb_clean_test_rings(struct igb_ring *rx_ring,
1777				struct igb_ring *tx_ring,
1778				unsigned int size)
1779{
1780	union e1000_adv_rx_desc *rx_desc;
1781	struct igb_rx_buffer *rx_buffer_info;
1782	struct igb_tx_buffer *tx_buffer_info;
1783	u16 rx_ntc, tx_ntc, count = 0;
1784
1785	/* initialize next to clean and descriptor values */
1786	rx_ntc = rx_ring->next_to_clean;
1787	tx_ntc = tx_ring->next_to_clean;
1788	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1789
1790	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1791		/* check Rx buffer */
1792		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1793
1794		/* sync Rx buffer for CPU read */
1795		dma_sync_single_for_cpu(rx_ring->dev,
1796					rx_buffer_info->dma,
1797					IGB_RX_BUFSZ,
1798					DMA_FROM_DEVICE);
1799
1800		/* verify contents of skb */
1801		if (igb_check_lbtest_frame(rx_buffer_info, size))
1802			count++;
1803
1804		/* sync Rx buffer for device write */
1805		dma_sync_single_for_device(rx_ring->dev,
1806					   rx_buffer_info->dma,
1807					   IGB_RX_BUFSZ,
1808					   DMA_FROM_DEVICE);
1809
1810		/* unmap buffer on Tx side */
1811		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1812		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1813
1814		/* increment Rx/Tx next to clean counters */
1815		rx_ntc++;
1816		if (rx_ntc == rx_ring->count)
1817			rx_ntc = 0;
1818		tx_ntc++;
1819		if (tx_ntc == tx_ring->count)
1820			tx_ntc = 0;
1821
1822		/* fetch next descriptor */
1823		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1824	}
1825
1826	netdev_tx_reset_queue(txring_txq(tx_ring));
1827
1828	/* re-map buffers to ring, store next to clean values */
1829	igb_alloc_rx_buffers(rx_ring, count);
1830	rx_ring->next_to_clean = rx_ntc;
1831	tx_ring->next_to_clean = tx_ntc;
1832
1833	return count;
1834}
1835
1836static int igb_run_loopback_test(struct igb_adapter *adapter)
1837{
1838	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1839	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1840	u16 i, j, lc, good_cnt;
1841	int ret_val = 0;
1842	unsigned int size = IGB_RX_HDR_LEN;
1843	netdev_tx_t tx_ret_val;
1844	struct sk_buff *skb;
1845
1846	/* allocate test skb */
1847	skb = alloc_skb(size, GFP_KERNEL);
1848	if (!skb)
1849		return 11;
1850
1851	/* place data into test skb */
1852	igb_create_lbtest_frame(skb, size);
1853	skb_put(skb, size);
1854
1855	/* Calculate the loop count based on the largest descriptor ring
1856	 * The idea is to wrap the largest ring a number of times using 64
1857	 * send/receive pairs during each loop
1858	 */
1859
1860	if (rx_ring->count <= tx_ring->count)
1861		lc = ((tx_ring->count / 64) * 2) + 1;
1862	else
1863		lc = ((rx_ring->count / 64) * 2) + 1;
1864
1865	for (j = 0; j <= lc; j++) { /* loop count loop */
1866		/* reset count of good packets */
1867		good_cnt = 0;
1868
1869		/* place 64 packets on the transmit queue*/
1870		for (i = 0; i < 64; i++) {
1871			skb_get(skb);
1872			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1873			if (tx_ret_val == NETDEV_TX_OK)
1874				good_cnt++;
1875		}
1876
1877		if (good_cnt != 64) {
1878			ret_val = 12;
1879			break;
1880		}
1881
1882		/* allow 200 milliseconds for packets to go from Tx to Rx */
1883		msleep(200);
1884
1885		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1886		if (good_cnt != 64) {
1887			ret_val = 13;
1888			break;
1889		}
1890	} /* end loop count loop */
1891
1892	/* free the original skb */
1893	kfree_skb(skb);
1894
1895	return ret_val;
1896}
1897
1898static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1899{
1900	/* PHY loopback cannot be performed if SoL/IDER
1901	 * sessions are active
1902	 */
1903	if (igb_check_reset_block(&adapter->hw)) {
1904		dev_err(&adapter->pdev->dev,
1905			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1906		*data = 0;
1907		goto out;
1908	}
1909
1910	if (adapter->hw.mac.type == e1000_i354) {
1911		dev_info(&adapter->pdev->dev,
1912			"Loopback test not supported on i354.\n");
1913		*data = 0;
1914		goto out;
1915	}
1916	*data = igb_setup_desc_rings(adapter);
1917	if (*data)
1918		goto out;
1919	*data = igb_setup_loopback_test(adapter);
1920	if (*data)
1921		goto err_loopback;
1922	*data = igb_run_loopback_test(adapter);
1923	igb_loopback_cleanup(adapter);
1924
1925err_loopback:
1926	igb_free_desc_rings(adapter);
1927out:
1928	return *data;
1929}
1930
1931static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1932{
1933	struct e1000_hw *hw = &adapter->hw;
1934	*data = 0;
1935	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1936		int i = 0;
1937		hw->mac.serdes_has_link = false;
1938
1939		/* On some blade server designs, link establishment
1940		 * could take as long as 2-3 minutes
1941		 */
1942		do {
1943			hw->mac.ops.check_for_link(&adapter->hw);
1944			if (hw->mac.serdes_has_link)
1945				return *data;
1946			msleep(20);
1947		} while (i++ < 3750);
1948
1949		*data = 1;
1950	} else {
1951		hw->mac.ops.check_for_link(&adapter->hw);
1952		if (hw->mac.autoneg)
1953			msleep(5000);
1954
1955		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1956			*data = 1;
1957	}
1958	return *data;
1959}
1960
1961static void igb_diag_test(struct net_device *netdev,
1962			  struct ethtool_test *eth_test, u64 *data)
1963{
1964	struct igb_adapter *adapter = netdev_priv(netdev);
1965	u16 autoneg_advertised;
1966	u8 forced_speed_duplex, autoneg;
1967	bool if_running = netif_running(netdev);
1968
1969	set_bit(__IGB_TESTING, &adapter->state);
1970	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1971		/* Offline tests */
1972
1973		/* save speed, duplex, autoneg settings */
1974		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1975		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1976		autoneg = adapter->hw.mac.autoneg;
1977
1978		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1979
1980		/* power up link for link test */
1981		igb_power_up_link(adapter);
1982
1983		/* Link test performed before hardware reset so autoneg doesn't
1984		 * interfere with test result
1985		 */
1986		if (igb_link_test(adapter, &data[4]))
1987			eth_test->flags |= ETH_TEST_FL_FAILED;
1988
1989		if (if_running)
1990			/* indicate we're in test mode */
1991			dev_close(netdev);
1992		else
1993			igb_reset(adapter);
1994
1995		if (igb_reg_test(adapter, &data[0]))
1996			eth_test->flags |= ETH_TEST_FL_FAILED;
1997
1998		igb_reset(adapter);
1999		if (igb_eeprom_test(adapter, &data[1]))
2000			eth_test->flags |= ETH_TEST_FL_FAILED;
2001
2002		igb_reset(adapter);
2003		if (igb_intr_test(adapter, &data[2]))
2004			eth_test->flags |= ETH_TEST_FL_FAILED;
2005
2006		igb_reset(adapter);
2007		/* power up link for loopback test */
2008		igb_power_up_link(adapter);
2009		if (igb_loopback_test(adapter, &data[3]))
2010			eth_test->flags |= ETH_TEST_FL_FAILED;
2011
2012		/* restore speed, duplex, autoneg settings */
2013		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2014		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2015		adapter->hw.mac.autoneg = autoneg;
2016
2017		/* force this routine to wait until autoneg complete/timeout */
2018		adapter->hw.phy.autoneg_wait_to_complete = true;
2019		igb_reset(adapter);
2020		adapter->hw.phy.autoneg_wait_to_complete = false;
2021
2022		clear_bit(__IGB_TESTING, &adapter->state);
2023		if (if_running)
2024			dev_open(netdev);
2025	} else {
2026		dev_info(&adapter->pdev->dev, "online testing starting\n");
2027
2028		/* PHY is powered down when interface is down */
2029		if (if_running && igb_link_test(adapter, &data[4]))
2030			eth_test->flags |= ETH_TEST_FL_FAILED;
2031		else
2032			data[4] = 0;
2033
2034		/* Online tests aren't run; pass by default */
2035		data[0] = 0;
2036		data[1] = 0;
2037		data[2] = 0;
2038		data[3] = 0;
2039
2040		clear_bit(__IGB_TESTING, &adapter->state);
2041	}
2042	msleep_interruptible(4 * 1000);
2043}
2044
2045static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2046{
2047	struct igb_adapter *adapter = netdev_priv(netdev);
2048
2049	wol->supported = WAKE_UCAST | WAKE_MCAST |
2050			 WAKE_BCAST | WAKE_MAGIC |
2051			 WAKE_PHY;
2052	wol->wolopts = 0;
2053
2054	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2055		return;
2056
2057	/* apply any specific unsupported masks here */
2058	switch (adapter->hw.device_id) {
2059	default:
2060		break;
2061	}
2062
2063	if (adapter->wol & E1000_WUFC_EX)
2064		wol->wolopts |= WAKE_UCAST;
2065	if (adapter->wol & E1000_WUFC_MC)
2066		wol->wolopts |= WAKE_MCAST;
2067	if (adapter->wol & E1000_WUFC_BC)
2068		wol->wolopts |= WAKE_BCAST;
2069	if (adapter->wol & E1000_WUFC_MAG)
2070		wol->wolopts |= WAKE_MAGIC;
2071	if (adapter->wol & E1000_WUFC_LNKC)
2072		wol->wolopts |= WAKE_PHY;
2073}
2074
2075static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2076{
2077	struct igb_adapter *adapter = netdev_priv(netdev);
2078
2079	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2080		return -EOPNOTSUPP;
2081
2082	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2083		return wol->wolopts ? -EOPNOTSUPP : 0;
2084
2085	/* these settings will always override what we currently have */
2086	adapter->wol = 0;
2087
2088	if (wol->wolopts & WAKE_UCAST)
2089		adapter->wol |= E1000_WUFC_EX;
2090	if (wol->wolopts & WAKE_MCAST)
2091		adapter->wol |= E1000_WUFC_MC;
2092	if (wol->wolopts & WAKE_BCAST)
2093		adapter->wol |= E1000_WUFC_BC;
2094	if (wol->wolopts & WAKE_MAGIC)
2095		adapter->wol |= E1000_WUFC_MAG;
2096	if (wol->wolopts & WAKE_PHY)
2097		adapter->wol |= E1000_WUFC_LNKC;
2098	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2099
2100	return 0;
2101}
2102
2103/* bit defines for adapter->led_status */
2104#define IGB_LED_ON		0
2105
2106static int igb_set_phys_id(struct net_device *netdev,
2107			   enum ethtool_phys_id_state state)
2108{
2109	struct igb_adapter *adapter = netdev_priv(netdev);
2110	struct e1000_hw *hw = &adapter->hw;
2111
2112	switch (state) {
2113	case ETHTOOL_ID_ACTIVE:
2114		igb_blink_led(hw);
2115		return 2;
2116	case ETHTOOL_ID_ON:
2117		igb_blink_led(hw);
2118		break;
2119	case ETHTOOL_ID_OFF:
2120		igb_led_off(hw);
2121		break;
2122	case ETHTOOL_ID_INACTIVE:
2123		igb_led_off(hw);
2124		clear_bit(IGB_LED_ON, &adapter->led_status);
2125		igb_cleanup_led(hw);
2126		break;
2127	}
2128
2129	return 0;
2130}
2131
2132static int igb_set_coalesce(struct net_device *netdev,
2133			    struct ethtool_coalesce *ec)
2134{
2135	struct igb_adapter *adapter = netdev_priv(netdev);
2136	int i;
2137
2138	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2139	    ((ec->rx_coalesce_usecs > 3) &&
2140	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2141	    (ec->rx_coalesce_usecs == 2))
2142		return -EINVAL;
2143
2144	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2145	    ((ec->tx_coalesce_usecs > 3) &&
2146	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2147	    (ec->tx_coalesce_usecs == 2))
2148		return -EINVAL;
2149
2150	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2151		return -EINVAL;
2152
2153	/* If ITR is disabled, disable DMAC */
2154	if (ec->rx_coalesce_usecs == 0) {
2155		if (adapter->flags & IGB_FLAG_DMAC)
2156			adapter->flags &= ~IGB_FLAG_DMAC;
2157	}
2158
2159	/* convert to rate of irq's per second */
2160	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2161		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2162	else
2163		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2164
2165	/* convert to rate of irq's per second */
2166	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2167		adapter->tx_itr_setting = adapter->rx_itr_setting;
2168	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2169		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2170	else
2171		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2172
2173	for (i = 0; i < adapter->num_q_vectors; i++) {
2174		struct igb_q_vector *q_vector = adapter->q_vector[i];
2175		q_vector->tx.work_limit = adapter->tx_work_limit;
2176		if (q_vector->rx.ring)
2177			q_vector->itr_val = adapter->rx_itr_setting;
2178		else
2179			q_vector->itr_val = adapter->tx_itr_setting;
2180		if (q_vector->itr_val && q_vector->itr_val <= 3)
2181			q_vector->itr_val = IGB_START_ITR;
2182		q_vector->set_itr = 1;
2183	}
2184
2185	return 0;
2186}
2187
2188static int igb_get_coalesce(struct net_device *netdev,
2189			    struct ethtool_coalesce *ec)
2190{
2191	struct igb_adapter *adapter = netdev_priv(netdev);
2192
2193	if (adapter->rx_itr_setting <= 3)
2194		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2195	else
2196		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2197
2198	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2199		if (adapter->tx_itr_setting <= 3)
2200			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2201		else
2202			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2203	}
2204
2205	return 0;
2206}
2207
2208static int igb_nway_reset(struct net_device *netdev)
2209{
2210	struct igb_adapter *adapter = netdev_priv(netdev);
2211	if (netif_running(netdev))
2212		igb_reinit_locked(adapter);
2213	return 0;
2214}
2215
2216static int igb_get_sset_count(struct net_device *netdev, int sset)
2217{
2218	switch (sset) {
2219	case ETH_SS_STATS:
2220		return IGB_STATS_LEN;
2221	case ETH_SS_TEST:
2222		return IGB_TEST_LEN;
2223	default:
2224		return -ENOTSUPP;
2225	}
2226}
2227
2228static void igb_get_ethtool_stats(struct net_device *netdev,
2229				  struct ethtool_stats *stats, u64 *data)
2230{
2231	struct igb_adapter *adapter = netdev_priv(netdev);
2232	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2233	unsigned int start;
2234	struct igb_ring *ring;
2235	int i, j;
2236	char *p;
2237
2238	spin_lock(&adapter->stats64_lock);
2239	igb_update_stats(adapter, net_stats);
2240
2241	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2242		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2243		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2244			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2245	}
2246	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2247		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2248		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2249			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2250	}
2251	for (j = 0; j < adapter->num_tx_queues; j++) {
2252		u64	restart2;
2253
2254		ring = adapter->tx_ring[j];
2255		do {
2256			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2257			data[i]   = ring->tx_stats.packets;
2258			data[i+1] = ring->tx_stats.bytes;
2259			data[i+2] = ring->tx_stats.restart_queue;
2260		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2261		do {
2262			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2263			restart2  = ring->tx_stats.restart_queue2;
2264		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2265		data[i+2] += restart2;
2266
2267		i += IGB_TX_QUEUE_STATS_LEN;
2268	}
2269	for (j = 0; j < adapter->num_rx_queues; j++) {
2270		ring = adapter->rx_ring[j];
2271		do {
2272			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2273			data[i]   = ring->rx_stats.packets;
2274			data[i+1] = ring->rx_stats.bytes;
2275			data[i+2] = ring->rx_stats.drops;
2276			data[i+3] = ring->rx_stats.csum_err;
2277			data[i+4] = ring->rx_stats.alloc_failed;
2278		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2279		i += IGB_RX_QUEUE_STATS_LEN;
2280	}
2281	spin_unlock(&adapter->stats64_lock);
2282}
2283
2284static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2285{
2286	struct igb_adapter *adapter = netdev_priv(netdev);
2287	u8 *p = data;
2288	int i;
2289
2290	switch (stringset) {
2291	case ETH_SS_TEST:
2292		memcpy(data, *igb_gstrings_test,
2293			IGB_TEST_LEN*ETH_GSTRING_LEN);
2294		break;
2295	case ETH_SS_STATS:
2296		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2297			memcpy(p, igb_gstrings_stats[i].stat_string,
2298			       ETH_GSTRING_LEN);
2299			p += ETH_GSTRING_LEN;
2300		}
2301		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2302			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2303			       ETH_GSTRING_LEN);
2304			p += ETH_GSTRING_LEN;
2305		}
2306		for (i = 0; i < adapter->num_tx_queues; i++) {
2307			sprintf(p, "tx_queue_%u_packets", i);
2308			p += ETH_GSTRING_LEN;
2309			sprintf(p, "tx_queue_%u_bytes", i);
2310			p += ETH_GSTRING_LEN;
2311			sprintf(p, "tx_queue_%u_restart", i);
2312			p += ETH_GSTRING_LEN;
2313		}
2314		for (i = 0; i < adapter->num_rx_queues; i++) {
2315			sprintf(p, "rx_queue_%u_packets", i);
2316			p += ETH_GSTRING_LEN;
2317			sprintf(p, "rx_queue_%u_bytes", i);
2318			p += ETH_GSTRING_LEN;
2319			sprintf(p, "rx_queue_%u_drops", i);
2320			p += ETH_GSTRING_LEN;
2321			sprintf(p, "rx_queue_%u_csum_err", i);
2322			p += ETH_GSTRING_LEN;
2323			sprintf(p, "rx_queue_%u_alloc_failed", i);
2324			p += ETH_GSTRING_LEN;
2325		}
2326		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2327		break;
2328	}
2329}
2330
2331static int igb_get_ts_info(struct net_device *dev,
2332			   struct ethtool_ts_info *info)
2333{
2334	struct igb_adapter *adapter = netdev_priv(dev);
2335
2336	switch (adapter->hw.mac.type) {
2337	case e1000_82575:
2338		info->so_timestamping =
2339			SOF_TIMESTAMPING_TX_SOFTWARE |
2340			SOF_TIMESTAMPING_RX_SOFTWARE |
2341			SOF_TIMESTAMPING_SOFTWARE;
2342		return 0;
2343	case e1000_82576:
2344	case e1000_82580:
2345	case e1000_i350:
2346	case e1000_i354:
2347	case e1000_i210:
2348	case e1000_i211:
2349		info->so_timestamping =
2350			SOF_TIMESTAMPING_TX_SOFTWARE |
2351			SOF_TIMESTAMPING_RX_SOFTWARE |
2352			SOF_TIMESTAMPING_SOFTWARE |
2353			SOF_TIMESTAMPING_TX_HARDWARE |
2354			SOF_TIMESTAMPING_RX_HARDWARE |
2355			SOF_TIMESTAMPING_RAW_HARDWARE;
2356
2357		if (adapter->ptp_clock)
2358			info->phc_index = ptp_clock_index(adapter->ptp_clock);
2359		else
2360			info->phc_index = -1;
2361
2362		info->tx_types =
2363			(1 << HWTSTAMP_TX_OFF) |
2364			(1 << HWTSTAMP_TX_ON);
2365
2366		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2367
2368		/* 82576 does not support timestamping all packets. */
2369		if (adapter->hw.mac.type >= e1000_82580)
2370			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2371		else
2372			info->rx_filters |=
2373				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2374				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2375				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2376				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2377				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2378				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2379				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2380
2381		return 0;
2382	default:
2383		return -EOPNOTSUPP;
2384	}
2385}
2386
2387static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2388				 struct ethtool_rxnfc *cmd)
2389{
2390	cmd->data = 0;
2391
2392	/* Report default options for RSS on igb */
2393	switch (cmd->flow_type) {
2394	case TCP_V4_FLOW:
2395		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2396	case UDP_V4_FLOW:
2397		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2398			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2399	case SCTP_V4_FLOW:
2400	case AH_ESP_V4_FLOW:
2401	case AH_V4_FLOW:
2402	case ESP_V4_FLOW:
2403	case IPV4_FLOW:
2404		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2405		break;
2406	case TCP_V6_FLOW:
2407		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2408	case UDP_V6_FLOW:
2409		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2410			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2411	case SCTP_V6_FLOW:
2412	case AH_ESP_V6_FLOW:
2413	case AH_V6_FLOW:
2414	case ESP_V6_FLOW:
2415	case IPV6_FLOW:
2416		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2417		break;
2418	default:
2419		return -EINVAL;
2420	}
2421
2422	return 0;
2423}
2424
2425static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2426			 u32 *rule_locs)
2427{
2428	struct igb_adapter *adapter = netdev_priv(dev);
2429	int ret = -EOPNOTSUPP;
2430
2431	switch (cmd->cmd) {
2432	case ETHTOOL_GRXRINGS:
2433		cmd->data = adapter->num_rx_queues;
2434		ret = 0;
2435		break;
2436	case ETHTOOL_GRXFH:
2437		ret = igb_get_rss_hash_opts(adapter, cmd);
2438		break;
2439	default:
2440		break;
2441	}
2442
2443	return ret;
2444}
2445
2446#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2447		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2448static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2449				struct ethtool_rxnfc *nfc)
2450{
2451	u32 flags = adapter->flags;
2452
2453	/* RSS does not support anything other than hashing
2454	 * to queues on src and dst IPs and ports
2455	 */
2456	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2457			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2458		return -EINVAL;
2459
2460	switch (nfc->flow_type) {
2461	case TCP_V4_FLOW:
2462	case TCP_V6_FLOW:
2463		if (!(nfc->data & RXH_IP_SRC) ||
2464		    !(nfc->data & RXH_IP_DST) ||
2465		    !(nfc->data & RXH_L4_B_0_1) ||
2466		    !(nfc->data & RXH_L4_B_2_3))
2467			return -EINVAL;
2468		break;
2469	case UDP_V4_FLOW:
2470		if (!(nfc->data & RXH_IP_SRC) ||
2471		    !(nfc->data & RXH_IP_DST))
2472			return -EINVAL;
2473		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2474		case 0:
2475			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2476			break;
2477		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2478			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2479			break;
2480		default:
2481			return -EINVAL;
2482		}
2483		break;
2484	case UDP_V6_FLOW:
2485		if (!(nfc->data & RXH_IP_SRC) ||
2486		    !(nfc->data & RXH_IP_DST))
2487			return -EINVAL;
2488		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2489		case 0:
2490			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2491			break;
2492		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2493			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2494			break;
2495		default:
2496			return -EINVAL;
2497		}
2498		break;
2499	case AH_ESP_V4_FLOW:
2500	case AH_V4_FLOW:
2501	case ESP_V4_FLOW:
2502	case SCTP_V4_FLOW:
2503	case AH_ESP_V6_FLOW:
2504	case AH_V6_FLOW:
2505	case ESP_V6_FLOW:
2506	case SCTP_V6_FLOW:
2507		if (!(nfc->data & RXH_IP_SRC) ||
2508		    !(nfc->data & RXH_IP_DST) ||
2509		    (nfc->data & RXH_L4_B_0_1) ||
2510		    (nfc->data & RXH_L4_B_2_3))
2511			return -EINVAL;
2512		break;
2513	default:
2514		return -EINVAL;
2515	}
2516
2517	/* if we changed something we need to update flags */
2518	if (flags != adapter->flags) {
2519		struct e1000_hw *hw = &adapter->hw;
2520		u32 mrqc = rd32(E1000_MRQC);
2521
2522		if ((flags & UDP_RSS_FLAGS) &&
2523		    !(adapter->flags & UDP_RSS_FLAGS))
2524			dev_err(&adapter->pdev->dev,
2525				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2526
2527		adapter->flags = flags;
2528
2529		/* Perform hash on these packet types */
2530		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2531			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2532			E1000_MRQC_RSS_FIELD_IPV6 |
2533			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2534
2535		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2536			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2537
2538		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2539			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2540
2541		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2542			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2543
2544		wr32(E1000_MRQC, mrqc);
2545	}
2546
2547	return 0;
2548}
2549
2550static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2551{
2552	struct igb_adapter *adapter = netdev_priv(dev);
2553	int ret = -EOPNOTSUPP;
2554
2555	switch (cmd->cmd) {
2556	case ETHTOOL_SRXFH:
2557		ret = igb_set_rss_hash_opt(adapter, cmd);
2558		break;
2559	default:
2560		break;
2561	}
2562
2563	return ret;
2564}
2565
2566static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2567{
2568	struct igb_adapter *adapter = netdev_priv(netdev);
2569	struct e1000_hw *hw = &adapter->hw;
2570	u32 ipcnfg, eeer, ret_val;
2571	u16 phy_data;
2572
2573	if ((hw->mac.type < e1000_i350) ||
2574	    (hw->phy.media_type != e1000_media_type_copper))
2575		return -EOPNOTSUPP;
2576
2577	edata->supported = (SUPPORTED_1000baseT_Full |
2578			    SUPPORTED_100baseT_Full);
2579
2580	ipcnfg = rd32(E1000_IPCNFG);
2581	eeer = rd32(E1000_EEER);
2582
2583	/* EEE status on negotiated link */
2584	if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2585		edata->advertised = ADVERTISED_1000baseT_Full;
2586
2587	if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2588		edata->advertised |= ADVERTISED_100baseT_Full;
2589
2590	/* EEE Link Partner Advertised */
2591	switch (hw->mac.type) {
2592	case e1000_i350:
2593		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2594					   &phy_data);
2595		if (ret_val)
2596			return -ENODATA;
2597
2598		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2599
2600		break;
2601	case e1000_i210:
2602	case e1000_i211:
2603		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2604					     E1000_EEE_LP_ADV_DEV_I210,
2605					     &phy_data);
2606		if (ret_val)
2607			return -ENODATA;
2608
2609		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2610
2611		break;
2612	default:
2613		break;
2614	}
2615
2616	if (eeer & E1000_EEER_EEE_NEG)
2617		edata->eee_active = true;
2618
2619	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2620
2621	if (eeer & E1000_EEER_TX_LPI_EN)
2622		edata->tx_lpi_enabled = true;
2623
2624	/* Report correct negotiated EEE status for devices that
2625	 * wrongly report EEE at half-duplex
2626	 */
2627	if (adapter->link_duplex == HALF_DUPLEX) {
2628		edata->eee_enabled = false;
2629		edata->eee_active = false;
2630		edata->tx_lpi_enabled = false;
2631		edata->advertised &= ~edata->advertised;
2632	}
2633
2634	return 0;
2635}
2636
2637static int igb_set_eee(struct net_device *netdev,
2638		       struct ethtool_eee *edata)
2639{
2640	struct igb_adapter *adapter = netdev_priv(netdev);
2641	struct e1000_hw *hw = &adapter->hw;
2642	struct ethtool_eee eee_curr;
2643	s32 ret_val;
2644
2645	if ((hw->mac.type < e1000_i350) ||
2646	    (hw->phy.media_type != e1000_media_type_copper))
2647		return -EOPNOTSUPP;
2648
2649	ret_val = igb_get_eee(netdev, &eee_curr);
2650	if (ret_val)
2651		return ret_val;
2652
2653	if (eee_curr.eee_enabled) {
2654		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2655			dev_err(&adapter->pdev->dev,
2656				"Setting EEE tx-lpi is not supported\n");
2657			return -EINVAL;
2658		}
2659
2660		/* Tx LPI timer is not implemented currently */
2661		if (edata->tx_lpi_timer) {
2662			dev_err(&adapter->pdev->dev,
2663				"Setting EEE Tx LPI timer is not supported\n");
2664			return -EINVAL;
2665		}
2666
2667		if (eee_curr.advertised != edata->advertised) {
2668			dev_err(&adapter->pdev->dev,
2669				"Setting EEE Advertisement is not supported\n");
2670			return -EINVAL;
2671		}
2672
2673	} else if (!edata->eee_enabled) {
2674		dev_err(&adapter->pdev->dev,
2675			"Setting EEE options are not supported with EEE disabled\n");
2676			return -EINVAL;
2677		}
2678
2679	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2680		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2681		igb_set_eee_i350(hw);
2682
2683		/* reset link */
2684		if (!netif_running(netdev))
2685			igb_reset(adapter);
2686	}
2687
2688	return 0;
2689}
2690
2691static int igb_get_module_info(struct net_device *netdev,
2692			       struct ethtool_modinfo *modinfo)
2693{
2694	struct igb_adapter *adapter = netdev_priv(netdev);
2695	struct e1000_hw *hw = &adapter->hw;
2696	u32 status = E1000_SUCCESS;
2697	u16 sff8472_rev, addr_mode;
2698	bool page_swap = false;
2699
2700	if ((hw->phy.media_type == e1000_media_type_copper) ||
2701	    (hw->phy.media_type == e1000_media_type_unknown))
2702		return -EOPNOTSUPP;
2703
2704	/* Check whether we support SFF-8472 or not */
2705	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2706	if (status != E1000_SUCCESS)
2707		return -EIO;
2708
2709	/* addressing mode is not supported */
2710	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2711	if (status != E1000_SUCCESS)
2712		return -EIO;
2713
2714	/* addressing mode is not supported */
2715	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2716		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2717		page_swap = true;
2718	}
2719
2720	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2721		/* We have an SFP, but it does not support SFF-8472 */
2722		modinfo->type = ETH_MODULE_SFF_8079;
2723		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2724	} else {
2725		/* We have an SFP which supports a revision of SFF-8472 */
2726		modinfo->type = ETH_MODULE_SFF_8472;
2727		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2728	}
2729
2730	return 0;
2731}
2732
2733static int igb_get_module_eeprom(struct net_device *netdev,
2734				 struct ethtool_eeprom *ee, u8 *data)
2735{
2736	struct igb_adapter *adapter = netdev_priv(netdev);
2737	struct e1000_hw *hw = &adapter->hw;
2738	u32 status = E1000_SUCCESS;
2739	u16 *dataword;
2740	u16 first_word, last_word;
2741	int i = 0;
2742
2743	if (ee->len == 0)
2744		return -EINVAL;
2745
2746	first_word = ee->offset >> 1;
2747	last_word = (ee->offset + ee->len - 1) >> 1;
2748
2749	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2750			   GFP_KERNEL);
2751	if (!dataword)
2752		return -ENOMEM;
2753
2754	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2755	for (i = 0; i < last_word - first_word + 1; i++) {
2756		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2757		if (status != E1000_SUCCESS)
2758			/* Error occurred while reading module */
2759			return -EIO;
2760
2761		be16_to_cpus(&dataword[i]);
2762	}
2763
2764	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2765	kfree(dataword);
2766
2767	return 0;
2768}
2769
2770static int igb_ethtool_begin(struct net_device *netdev)
2771{
2772	struct igb_adapter *adapter = netdev_priv(netdev);
2773	pm_runtime_get_sync(&adapter->pdev->dev);
2774	return 0;
2775}
2776
2777static void igb_ethtool_complete(struct net_device *netdev)
2778{
2779	struct igb_adapter *adapter = netdev_priv(netdev);
2780	pm_runtime_put(&adapter->pdev->dev);
2781}
2782
2783static const struct ethtool_ops igb_ethtool_ops = {
2784	.get_settings		= igb_get_settings,
2785	.set_settings		= igb_set_settings,
2786	.get_drvinfo		= igb_get_drvinfo,
2787	.get_regs_len		= igb_get_regs_len,
2788	.get_regs		= igb_get_regs,
2789	.get_wol		= igb_get_wol,
2790	.set_wol		= igb_set_wol,
2791	.get_msglevel		= igb_get_msglevel,
2792	.set_msglevel		= igb_set_msglevel,
2793	.nway_reset		= igb_nway_reset,
2794	.get_link		= igb_get_link,
2795	.get_eeprom_len		= igb_get_eeprom_len,
2796	.get_eeprom		= igb_get_eeprom,
2797	.set_eeprom		= igb_set_eeprom,
2798	.get_ringparam		= igb_get_ringparam,
2799	.set_ringparam		= igb_set_ringparam,
2800	.get_pauseparam		= igb_get_pauseparam,
2801	.set_pauseparam		= igb_set_pauseparam,
2802	.self_test		= igb_diag_test,
2803	.get_strings		= igb_get_strings,
2804	.set_phys_id		= igb_set_phys_id,
2805	.get_sset_count		= igb_get_sset_count,
2806	.get_ethtool_stats	= igb_get_ethtool_stats,
2807	.get_coalesce		= igb_get_coalesce,
2808	.set_coalesce		= igb_set_coalesce,
2809	.get_ts_info		= igb_get_ts_info,
2810	.get_rxnfc		= igb_get_rxnfc,
2811	.set_rxnfc		= igb_set_rxnfc,
2812	.get_eee		= igb_get_eee,
2813	.set_eee		= igb_set_eee,
2814	.get_module_info	= igb_get_module_info,
2815	.get_module_eeprom	= igb_get_module_eeprom,
2816	.begin			= igb_ethtool_begin,
2817	.complete		= igb_ethtool_complete,
2818};
2819
2820void igb_set_ethtool_ops(struct net_device *netdev)
2821{
2822	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2823}
2824