[go: nahoru, domu]

igb_ethtool.c revision d34a15abfe370252de83e14e763cf7fcb8c84585
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2014 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, see <http://www.gnu.org/licenses/>.
17
18  The full GNU General Public License is included in this distribution in
19  the file called "COPYING".
20
21  Contact Information:
22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25*******************************************************************************/
26
27/* ethtool support for igb */
28
29#include <linux/vmalloc.h>
30#include <linux/netdevice.h>
31#include <linux/pci.h>
32#include <linux/delay.h>
33#include <linux/interrupt.h>
34#include <linux/if_ether.h>
35#include <linux/ethtool.h>
36#include <linux/sched.h>
37#include <linux/slab.h>
38#include <linux/pm_runtime.h>
39#include <linux/highmem.h>
40#include <linux/mdio.h>
41
42#include "igb.h"
43
44struct igb_stats {
45	char stat_string[ETH_GSTRING_LEN];
46	int sizeof_stat;
47	int stat_offset;
48};
49
50#define IGB_STAT(_name, _stat) { \
51	.stat_string = _name, \
52	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
53	.stat_offset = offsetof(struct igb_adapter, _stat) \
54}
55static const struct igb_stats igb_gstrings_stats[] = {
56	IGB_STAT("rx_packets", stats.gprc),
57	IGB_STAT("tx_packets", stats.gptc),
58	IGB_STAT("rx_bytes", stats.gorc),
59	IGB_STAT("tx_bytes", stats.gotc),
60	IGB_STAT("rx_broadcast", stats.bprc),
61	IGB_STAT("tx_broadcast", stats.bptc),
62	IGB_STAT("rx_multicast", stats.mprc),
63	IGB_STAT("tx_multicast", stats.mptc),
64	IGB_STAT("multicast", stats.mprc),
65	IGB_STAT("collisions", stats.colc),
66	IGB_STAT("rx_crc_errors", stats.crcerrs),
67	IGB_STAT("rx_no_buffer_count", stats.rnbc),
68	IGB_STAT("rx_missed_errors", stats.mpc),
69	IGB_STAT("tx_aborted_errors", stats.ecol),
70	IGB_STAT("tx_carrier_errors", stats.tncrs),
71	IGB_STAT("tx_window_errors", stats.latecol),
72	IGB_STAT("tx_abort_late_coll", stats.latecol),
73	IGB_STAT("tx_deferred_ok", stats.dc),
74	IGB_STAT("tx_single_coll_ok", stats.scc),
75	IGB_STAT("tx_multi_coll_ok", stats.mcc),
76	IGB_STAT("tx_timeout_count", tx_timeout_count),
77	IGB_STAT("rx_long_length_errors", stats.roc),
78	IGB_STAT("rx_short_length_errors", stats.ruc),
79	IGB_STAT("rx_align_errors", stats.algnerrc),
80	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
81	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
82	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
83	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
84	IGB_STAT("tx_flow_control_xon", stats.xontxc),
85	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
86	IGB_STAT("rx_long_byte_count", stats.gorc),
87	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
88	IGB_STAT("tx_smbus", stats.mgptc),
89	IGB_STAT("rx_smbus", stats.mgprc),
90	IGB_STAT("dropped_smbus", stats.mgpdc),
91	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
92	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
93	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
94	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
95	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
96	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
97};
98
99#define IGB_NETDEV_STAT(_net_stat) { \
100	.stat_string = __stringify(_net_stat), \
101	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
102	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
103}
104static const struct igb_stats igb_gstrings_net_stats[] = {
105	IGB_NETDEV_STAT(rx_errors),
106	IGB_NETDEV_STAT(tx_errors),
107	IGB_NETDEV_STAT(tx_dropped),
108	IGB_NETDEV_STAT(rx_length_errors),
109	IGB_NETDEV_STAT(rx_over_errors),
110	IGB_NETDEV_STAT(rx_frame_errors),
111	IGB_NETDEV_STAT(rx_fifo_errors),
112	IGB_NETDEV_STAT(tx_fifo_errors),
113	IGB_NETDEV_STAT(tx_heartbeat_errors)
114};
115
116#define IGB_GLOBAL_STATS_LEN	\
117	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
118#define IGB_NETDEV_STATS_LEN	\
119	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
120#define IGB_RX_QUEUE_STATS_LEN \
121	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
122
123#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
124
125#define IGB_QUEUE_STATS_LEN \
126	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
127	  IGB_RX_QUEUE_STATS_LEN) + \
128	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
129	  IGB_TX_QUEUE_STATS_LEN))
130#define IGB_STATS_LEN \
131	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
132
133static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
134	"Register test  (offline)", "Eeprom test    (offline)",
135	"Interrupt test (offline)", "Loopback test  (offline)",
136	"Link test   (on/offline)"
137};
138#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
139
140static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
141{
142	struct igb_adapter *adapter = netdev_priv(netdev);
143	struct e1000_hw *hw = &adapter->hw;
144	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
145	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
146	u32 status;
147
148	status = rd32(E1000_STATUS);
149	if (hw->phy.media_type == e1000_media_type_copper) {
150
151		ecmd->supported = (SUPPORTED_10baseT_Half |
152				   SUPPORTED_10baseT_Full |
153				   SUPPORTED_100baseT_Half |
154				   SUPPORTED_100baseT_Full |
155				   SUPPORTED_1000baseT_Full|
156				   SUPPORTED_Autoneg |
157				   SUPPORTED_TP |
158				   SUPPORTED_Pause);
159		ecmd->advertising = ADVERTISED_TP;
160
161		if (hw->mac.autoneg == 1) {
162			ecmd->advertising |= ADVERTISED_Autoneg;
163			/* the e1000 autoneg seems to match ethtool nicely */
164			ecmd->advertising |= hw->phy.autoneg_advertised;
165		}
166
167		ecmd->port = PORT_TP;
168		ecmd->phy_address = hw->phy.addr;
169		ecmd->transceiver = XCVR_INTERNAL;
170	} else {
171		ecmd->supported = (SUPPORTED_FIBRE |
172				   SUPPORTED_1000baseKX_Full |
173				   SUPPORTED_Autoneg |
174				   SUPPORTED_Pause);
175		ecmd->advertising = (ADVERTISED_FIBRE |
176				     ADVERTISED_1000baseKX_Full);
177		if (hw->mac.type == e1000_i354) {
178			if ((hw->device_id ==
179			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
180			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
181				ecmd->supported |= SUPPORTED_2500baseX_Full;
182				ecmd->supported &=
183					~SUPPORTED_1000baseKX_Full;
184				ecmd->advertising |= ADVERTISED_2500baseX_Full;
185				ecmd->advertising &=
186					~ADVERTISED_1000baseKX_Full;
187			}
188		}
189		if (eth_flags->e100_base_fx) {
190			ecmd->supported |= SUPPORTED_100baseT_Full;
191			ecmd->advertising |= ADVERTISED_100baseT_Full;
192		}
193		if (hw->mac.autoneg == 1)
194			ecmd->advertising |= ADVERTISED_Autoneg;
195
196		ecmd->port = PORT_FIBRE;
197		ecmd->transceiver = XCVR_EXTERNAL;
198	}
199	if (hw->mac.autoneg != 1)
200		ecmd->advertising &= ~(ADVERTISED_Pause |
201				       ADVERTISED_Asym_Pause);
202
203	switch (hw->fc.requested_mode) {
204	case e1000_fc_full:
205		ecmd->advertising |= ADVERTISED_Pause;
206		break;
207	case e1000_fc_rx_pause:
208		ecmd->advertising |= (ADVERTISED_Pause |
209				      ADVERTISED_Asym_Pause);
210		break;
211	case e1000_fc_tx_pause:
212		ecmd->advertising |=  ADVERTISED_Asym_Pause;
213		break;
214	default:
215		ecmd->advertising &= ~(ADVERTISED_Pause |
216				       ADVERTISED_Asym_Pause);
217	}
218	if (status & E1000_STATUS_LU) {
219		if ((status & E1000_STATUS_2P5_SKU) &&
220		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
221			ecmd->speed = SPEED_2500;
222		} else if (status & E1000_STATUS_SPEED_1000) {
223			ecmd->speed = SPEED_1000;
224		} else if (status & E1000_STATUS_SPEED_100) {
225			ecmd->speed = SPEED_100;
226		} else {
227			ecmd->speed = SPEED_10;
228		}
229		if ((status & E1000_STATUS_FD) ||
230		    hw->phy.media_type != e1000_media_type_copper)
231			ecmd->duplex = DUPLEX_FULL;
232		else
233			ecmd->duplex = DUPLEX_HALF;
234	} else {
235		ecmd->speed = -1;
236		ecmd->duplex = -1;
237	}
238	if ((hw->phy.media_type == e1000_media_type_fiber) ||
239	    hw->mac.autoneg)
240		ecmd->autoneg = AUTONEG_ENABLE;
241	else
242		ecmd->autoneg = AUTONEG_DISABLE;
243
244	/* MDI-X => 2; MDI =>1; Invalid =>0 */
245	if (hw->phy.media_type == e1000_media_type_copper)
246		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
247						      ETH_TP_MDI;
248	else
249		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
250
251	if (hw->phy.mdix == AUTO_ALL_MODES)
252		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
253	else
254		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
255
256	return 0;
257}
258
259static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
260{
261	struct igb_adapter *adapter = netdev_priv(netdev);
262	struct e1000_hw *hw = &adapter->hw;
263
264	/* When SoL/IDER sessions are active, autoneg/speed/duplex
265	 * cannot be changed
266	 */
267	if (igb_check_reset_block(hw)) {
268		dev_err(&adapter->pdev->dev,
269			"Cannot change link characteristics when SoL/IDER is active.\n");
270		return -EINVAL;
271	}
272
273	/* MDI setting is only allowed when autoneg enabled because
274	 * some hardware doesn't allow MDI setting when speed or
275	 * duplex is forced.
276	 */
277	if (ecmd->eth_tp_mdix_ctrl) {
278		if (hw->phy.media_type != e1000_media_type_copper)
279			return -EOPNOTSUPP;
280
281		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
282		    (ecmd->autoneg != AUTONEG_ENABLE)) {
283			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
284			return -EINVAL;
285		}
286	}
287
288	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
289		msleep(1);
290
291	if (ecmd->autoneg == AUTONEG_ENABLE) {
292		hw->mac.autoneg = 1;
293		if (hw->phy.media_type == e1000_media_type_fiber) {
294			hw->phy.autoneg_advertised = ecmd->advertising |
295						     ADVERTISED_FIBRE |
296						     ADVERTISED_Autoneg;
297			switch (adapter->link_speed) {
298			case SPEED_2500:
299				hw->phy.autoneg_advertised =
300					ADVERTISED_2500baseX_Full;
301				break;
302			case SPEED_1000:
303				hw->phy.autoneg_advertised =
304					ADVERTISED_1000baseT_Full;
305				break;
306			case SPEED_100:
307				hw->phy.autoneg_advertised =
308					ADVERTISED_100baseT_Full;
309				break;
310			default:
311				break;
312			}
313		} else {
314			hw->phy.autoneg_advertised = ecmd->advertising |
315						     ADVERTISED_TP |
316						     ADVERTISED_Autoneg;
317		}
318		ecmd->advertising = hw->phy.autoneg_advertised;
319		if (adapter->fc_autoneg)
320			hw->fc.requested_mode = e1000_fc_default;
321	} else {
322		u32 speed = ethtool_cmd_speed(ecmd);
323		/* calling this overrides forced MDI setting */
324		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
325			clear_bit(__IGB_RESETTING, &adapter->state);
326			return -EINVAL;
327		}
328	}
329
330	/* MDI-X => 2; MDI => 1; Auto => 3 */
331	if (ecmd->eth_tp_mdix_ctrl) {
332		/* fix up the value for auto (3 => 0) as zero is mapped
333		 * internally to auto
334		 */
335		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
336			hw->phy.mdix = AUTO_ALL_MODES;
337		else
338			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
339	}
340
341	/* reset the link */
342	if (netif_running(adapter->netdev)) {
343		igb_down(adapter);
344		igb_up(adapter);
345	} else
346		igb_reset(adapter);
347
348	clear_bit(__IGB_RESETTING, &adapter->state);
349	return 0;
350}
351
352static u32 igb_get_link(struct net_device *netdev)
353{
354	struct igb_adapter *adapter = netdev_priv(netdev);
355	struct e1000_mac_info *mac = &adapter->hw.mac;
356
357	/* If the link is not reported up to netdev, interrupts are disabled,
358	 * and so the physical link state may have changed since we last
359	 * looked. Set get_link_status to make sure that the true link
360	 * state is interrogated, rather than pulling a cached and possibly
361	 * stale link state from the driver.
362	 */
363	if (!netif_carrier_ok(netdev))
364		mac->get_link_status = 1;
365
366	return igb_has_link(adapter);
367}
368
369static void igb_get_pauseparam(struct net_device *netdev,
370			       struct ethtool_pauseparam *pause)
371{
372	struct igb_adapter *adapter = netdev_priv(netdev);
373	struct e1000_hw *hw = &adapter->hw;
374
375	pause->autoneg =
376		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
377
378	if (hw->fc.current_mode == e1000_fc_rx_pause)
379		pause->rx_pause = 1;
380	else if (hw->fc.current_mode == e1000_fc_tx_pause)
381		pause->tx_pause = 1;
382	else if (hw->fc.current_mode == e1000_fc_full) {
383		pause->rx_pause = 1;
384		pause->tx_pause = 1;
385	}
386}
387
388static int igb_set_pauseparam(struct net_device *netdev,
389			      struct ethtool_pauseparam *pause)
390{
391	struct igb_adapter *adapter = netdev_priv(netdev);
392	struct e1000_hw *hw = &adapter->hw;
393	int retval = 0;
394
395	/* 100basefx does not support setting link flow control */
396	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
397		return -EINVAL;
398
399	adapter->fc_autoneg = pause->autoneg;
400
401	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
402		msleep(1);
403
404	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
405		hw->fc.requested_mode = e1000_fc_default;
406		if (netif_running(adapter->netdev)) {
407			igb_down(adapter);
408			igb_up(adapter);
409		} else {
410			igb_reset(adapter);
411		}
412	} else {
413		if (pause->rx_pause && pause->tx_pause)
414			hw->fc.requested_mode = e1000_fc_full;
415		else if (pause->rx_pause && !pause->tx_pause)
416			hw->fc.requested_mode = e1000_fc_rx_pause;
417		else if (!pause->rx_pause && pause->tx_pause)
418			hw->fc.requested_mode = e1000_fc_tx_pause;
419		else if (!pause->rx_pause && !pause->tx_pause)
420			hw->fc.requested_mode = e1000_fc_none;
421
422		hw->fc.current_mode = hw->fc.requested_mode;
423
424		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
425			  igb_force_mac_fc(hw) : igb_setup_link(hw));
426	}
427
428	clear_bit(__IGB_RESETTING, &adapter->state);
429	return retval;
430}
431
432static u32 igb_get_msglevel(struct net_device *netdev)
433{
434	struct igb_adapter *adapter = netdev_priv(netdev);
435	return adapter->msg_enable;
436}
437
438static void igb_set_msglevel(struct net_device *netdev, u32 data)
439{
440	struct igb_adapter *adapter = netdev_priv(netdev);
441	adapter->msg_enable = data;
442}
443
444static int igb_get_regs_len(struct net_device *netdev)
445{
446#define IGB_REGS_LEN 739
447	return IGB_REGS_LEN * sizeof(u32);
448}
449
450static void igb_get_regs(struct net_device *netdev,
451			 struct ethtool_regs *regs, void *p)
452{
453	struct igb_adapter *adapter = netdev_priv(netdev);
454	struct e1000_hw *hw = &adapter->hw;
455	u32 *regs_buff = p;
456	u8 i;
457
458	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
459
460	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
461
462	/* General Registers */
463	regs_buff[0] = rd32(E1000_CTRL);
464	regs_buff[1] = rd32(E1000_STATUS);
465	regs_buff[2] = rd32(E1000_CTRL_EXT);
466	regs_buff[3] = rd32(E1000_MDIC);
467	regs_buff[4] = rd32(E1000_SCTL);
468	regs_buff[5] = rd32(E1000_CONNSW);
469	regs_buff[6] = rd32(E1000_VET);
470	regs_buff[7] = rd32(E1000_LEDCTL);
471	regs_buff[8] = rd32(E1000_PBA);
472	regs_buff[9] = rd32(E1000_PBS);
473	regs_buff[10] = rd32(E1000_FRTIMER);
474	regs_buff[11] = rd32(E1000_TCPTIMER);
475
476	/* NVM Register */
477	regs_buff[12] = rd32(E1000_EECD);
478
479	/* Interrupt */
480	/* Reading EICS for EICR because they read the
481	 * same but EICS does not clear on read
482	 */
483	regs_buff[13] = rd32(E1000_EICS);
484	regs_buff[14] = rd32(E1000_EICS);
485	regs_buff[15] = rd32(E1000_EIMS);
486	regs_buff[16] = rd32(E1000_EIMC);
487	regs_buff[17] = rd32(E1000_EIAC);
488	regs_buff[18] = rd32(E1000_EIAM);
489	/* Reading ICS for ICR because they read the
490	 * same but ICS does not clear on read
491	 */
492	regs_buff[19] = rd32(E1000_ICS);
493	regs_buff[20] = rd32(E1000_ICS);
494	regs_buff[21] = rd32(E1000_IMS);
495	regs_buff[22] = rd32(E1000_IMC);
496	regs_buff[23] = rd32(E1000_IAC);
497	regs_buff[24] = rd32(E1000_IAM);
498	regs_buff[25] = rd32(E1000_IMIRVP);
499
500	/* Flow Control */
501	regs_buff[26] = rd32(E1000_FCAL);
502	regs_buff[27] = rd32(E1000_FCAH);
503	regs_buff[28] = rd32(E1000_FCTTV);
504	regs_buff[29] = rd32(E1000_FCRTL);
505	regs_buff[30] = rd32(E1000_FCRTH);
506	regs_buff[31] = rd32(E1000_FCRTV);
507
508	/* Receive */
509	regs_buff[32] = rd32(E1000_RCTL);
510	regs_buff[33] = rd32(E1000_RXCSUM);
511	regs_buff[34] = rd32(E1000_RLPML);
512	regs_buff[35] = rd32(E1000_RFCTL);
513	regs_buff[36] = rd32(E1000_MRQC);
514	regs_buff[37] = rd32(E1000_VT_CTL);
515
516	/* Transmit */
517	regs_buff[38] = rd32(E1000_TCTL);
518	regs_buff[39] = rd32(E1000_TCTL_EXT);
519	regs_buff[40] = rd32(E1000_TIPG);
520	regs_buff[41] = rd32(E1000_DTXCTL);
521
522	/* Wake Up */
523	regs_buff[42] = rd32(E1000_WUC);
524	regs_buff[43] = rd32(E1000_WUFC);
525	regs_buff[44] = rd32(E1000_WUS);
526	regs_buff[45] = rd32(E1000_IPAV);
527	regs_buff[46] = rd32(E1000_WUPL);
528
529	/* MAC */
530	regs_buff[47] = rd32(E1000_PCS_CFG0);
531	regs_buff[48] = rd32(E1000_PCS_LCTL);
532	regs_buff[49] = rd32(E1000_PCS_LSTAT);
533	regs_buff[50] = rd32(E1000_PCS_ANADV);
534	regs_buff[51] = rd32(E1000_PCS_LPAB);
535	regs_buff[52] = rd32(E1000_PCS_NPTX);
536	regs_buff[53] = rd32(E1000_PCS_LPABNP);
537
538	/* Statistics */
539	regs_buff[54] = adapter->stats.crcerrs;
540	regs_buff[55] = adapter->stats.algnerrc;
541	regs_buff[56] = adapter->stats.symerrs;
542	regs_buff[57] = adapter->stats.rxerrc;
543	regs_buff[58] = adapter->stats.mpc;
544	regs_buff[59] = adapter->stats.scc;
545	regs_buff[60] = adapter->stats.ecol;
546	regs_buff[61] = adapter->stats.mcc;
547	regs_buff[62] = adapter->stats.latecol;
548	regs_buff[63] = adapter->stats.colc;
549	regs_buff[64] = adapter->stats.dc;
550	regs_buff[65] = adapter->stats.tncrs;
551	regs_buff[66] = adapter->stats.sec;
552	regs_buff[67] = adapter->stats.htdpmc;
553	regs_buff[68] = adapter->stats.rlec;
554	regs_buff[69] = adapter->stats.xonrxc;
555	regs_buff[70] = adapter->stats.xontxc;
556	regs_buff[71] = adapter->stats.xoffrxc;
557	regs_buff[72] = adapter->stats.xofftxc;
558	regs_buff[73] = adapter->stats.fcruc;
559	regs_buff[74] = adapter->stats.prc64;
560	regs_buff[75] = adapter->stats.prc127;
561	regs_buff[76] = adapter->stats.prc255;
562	regs_buff[77] = adapter->stats.prc511;
563	regs_buff[78] = adapter->stats.prc1023;
564	regs_buff[79] = adapter->stats.prc1522;
565	regs_buff[80] = adapter->stats.gprc;
566	regs_buff[81] = adapter->stats.bprc;
567	regs_buff[82] = adapter->stats.mprc;
568	regs_buff[83] = adapter->stats.gptc;
569	regs_buff[84] = adapter->stats.gorc;
570	regs_buff[86] = adapter->stats.gotc;
571	regs_buff[88] = adapter->stats.rnbc;
572	regs_buff[89] = adapter->stats.ruc;
573	regs_buff[90] = adapter->stats.rfc;
574	regs_buff[91] = adapter->stats.roc;
575	regs_buff[92] = adapter->stats.rjc;
576	regs_buff[93] = adapter->stats.mgprc;
577	regs_buff[94] = adapter->stats.mgpdc;
578	regs_buff[95] = adapter->stats.mgptc;
579	regs_buff[96] = adapter->stats.tor;
580	regs_buff[98] = adapter->stats.tot;
581	regs_buff[100] = adapter->stats.tpr;
582	regs_buff[101] = adapter->stats.tpt;
583	regs_buff[102] = adapter->stats.ptc64;
584	regs_buff[103] = adapter->stats.ptc127;
585	regs_buff[104] = adapter->stats.ptc255;
586	regs_buff[105] = adapter->stats.ptc511;
587	regs_buff[106] = adapter->stats.ptc1023;
588	regs_buff[107] = adapter->stats.ptc1522;
589	regs_buff[108] = adapter->stats.mptc;
590	regs_buff[109] = adapter->stats.bptc;
591	regs_buff[110] = adapter->stats.tsctc;
592	regs_buff[111] = adapter->stats.iac;
593	regs_buff[112] = adapter->stats.rpthc;
594	regs_buff[113] = adapter->stats.hgptc;
595	regs_buff[114] = adapter->stats.hgorc;
596	regs_buff[116] = adapter->stats.hgotc;
597	regs_buff[118] = adapter->stats.lenerrs;
598	regs_buff[119] = adapter->stats.scvpc;
599	regs_buff[120] = adapter->stats.hrmpc;
600
601	for (i = 0; i < 4; i++)
602		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
603	for (i = 0; i < 4; i++)
604		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
605	for (i = 0; i < 4; i++)
606		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
607	for (i = 0; i < 4; i++)
608		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
609	for (i = 0; i < 4; i++)
610		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
611	for (i = 0; i < 4; i++)
612		regs_buff[141 + i] = rd32(E1000_RDH(i));
613	for (i = 0; i < 4; i++)
614		regs_buff[145 + i] = rd32(E1000_RDT(i));
615	for (i = 0; i < 4; i++)
616		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
617
618	for (i = 0; i < 10; i++)
619		regs_buff[153 + i] = rd32(E1000_EITR(i));
620	for (i = 0; i < 8; i++)
621		regs_buff[163 + i] = rd32(E1000_IMIR(i));
622	for (i = 0; i < 8; i++)
623		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
624	for (i = 0; i < 16; i++)
625		regs_buff[179 + i] = rd32(E1000_RAL(i));
626	for (i = 0; i < 16; i++)
627		regs_buff[195 + i] = rd32(E1000_RAH(i));
628
629	for (i = 0; i < 4; i++)
630		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
631	for (i = 0; i < 4; i++)
632		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
633	for (i = 0; i < 4; i++)
634		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
635	for (i = 0; i < 4; i++)
636		regs_buff[223 + i] = rd32(E1000_TDH(i));
637	for (i = 0; i < 4; i++)
638		regs_buff[227 + i] = rd32(E1000_TDT(i));
639	for (i = 0; i < 4; i++)
640		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
641	for (i = 0; i < 4; i++)
642		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
643	for (i = 0; i < 4; i++)
644		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
645	for (i = 0; i < 4; i++)
646		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
647
648	for (i = 0; i < 4; i++)
649		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
650	for (i = 0; i < 4; i++)
651		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
652	for (i = 0; i < 32; i++)
653		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
654	for (i = 0; i < 128; i++)
655		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
656	for (i = 0; i < 128; i++)
657		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
658	for (i = 0; i < 4; i++)
659		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
660
661	regs_buff[547] = rd32(E1000_TDFH);
662	regs_buff[548] = rd32(E1000_TDFT);
663	regs_buff[549] = rd32(E1000_TDFHS);
664	regs_buff[550] = rd32(E1000_TDFPC);
665
666	if (hw->mac.type > e1000_82580) {
667		regs_buff[551] = adapter->stats.o2bgptc;
668		regs_buff[552] = adapter->stats.b2ospc;
669		regs_buff[553] = adapter->stats.o2bspc;
670		regs_buff[554] = adapter->stats.b2ogprc;
671	}
672
673	if (hw->mac.type != e1000_82576)
674		return;
675	for (i = 0; i < 12; i++)
676		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
677	for (i = 0; i < 4; i++)
678		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
679	for (i = 0; i < 12; i++)
680		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
681	for (i = 0; i < 12; i++)
682		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
683	for (i = 0; i < 12; i++)
684		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
685	for (i = 0; i < 12; i++)
686		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
687	for (i = 0; i < 12; i++)
688		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
689	for (i = 0; i < 12; i++)
690		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
691
692	for (i = 0; i < 12; i++)
693		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
694	for (i = 0; i < 12; i++)
695		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
696	for (i = 0; i < 12; i++)
697		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
698	for (i = 0; i < 12; i++)
699		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
700	for (i = 0; i < 12; i++)
701		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
702	for (i = 0; i < 12; i++)
703		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
704	for (i = 0; i < 12; i++)
705		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
706	for (i = 0; i < 12; i++)
707		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
708}
709
710static int igb_get_eeprom_len(struct net_device *netdev)
711{
712	struct igb_adapter *adapter = netdev_priv(netdev);
713	return adapter->hw.nvm.word_size * 2;
714}
715
716static int igb_get_eeprom(struct net_device *netdev,
717			  struct ethtool_eeprom *eeprom, u8 *bytes)
718{
719	struct igb_adapter *adapter = netdev_priv(netdev);
720	struct e1000_hw *hw = &adapter->hw;
721	u16 *eeprom_buff;
722	int first_word, last_word;
723	int ret_val = 0;
724	u16 i;
725
726	if (eeprom->len == 0)
727		return -EINVAL;
728
729	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
730
731	first_word = eeprom->offset >> 1;
732	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
733
734	eeprom_buff = kmalloc(sizeof(u16) *
735			(last_word - first_word + 1), GFP_KERNEL);
736	if (!eeprom_buff)
737		return -ENOMEM;
738
739	if (hw->nvm.type == e1000_nvm_eeprom_spi)
740		ret_val = hw->nvm.ops.read(hw, first_word,
741					   last_word - first_word + 1,
742					   eeprom_buff);
743	else {
744		for (i = 0; i < last_word - first_word + 1; i++) {
745			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
746						   &eeprom_buff[i]);
747			if (ret_val)
748				break;
749		}
750	}
751
752	/* Device's eeprom is always little-endian, word addressable */
753	for (i = 0; i < last_word - first_word + 1; i++)
754		le16_to_cpus(&eeprom_buff[i]);
755
756	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
757			eeprom->len);
758	kfree(eeprom_buff);
759
760	return ret_val;
761}
762
763static int igb_set_eeprom(struct net_device *netdev,
764			  struct ethtool_eeprom *eeprom, u8 *bytes)
765{
766	struct igb_adapter *adapter = netdev_priv(netdev);
767	struct e1000_hw *hw = &adapter->hw;
768	u16 *eeprom_buff;
769	void *ptr;
770	int max_len, first_word, last_word, ret_val = 0;
771	u16 i;
772
773	if (eeprom->len == 0)
774		return -EOPNOTSUPP;
775
776	if ((hw->mac.type >= e1000_i210) &&
777	    !igb_get_flash_presence_i210(hw)) {
778		return -EOPNOTSUPP;
779	}
780
781	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
782		return -EFAULT;
783
784	max_len = hw->nvm.word_size * 2;
785
786	first_word = eeprom->offset >> 1;
787	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
788	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
789	if (!eeprom_buff)
790		return -ENOMEM;
791
792	ptr = (void *)eeprom_buff;
793
794	if (eeprom->offset & 1) {
795		/* need read/modify/write of first changed EEPROM word
796		 * only the second byte of the word is being modified
797		 */
798		ret_val = hw->nvm.ops.read(hw, first_word, 1,
799					    &eeprom_buff[0]);
800		ptr++;
801	}
802	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
803		/* need read/modify/write of last changed EEPROM word
804		 * only the first byte of the word is being modified
805		 */
806		ret_val = hw->nvm.ops.read(hw, last_word, 1,
807				   &eeprom_buff[last_word - first_word]);
808	}
809
810	/* Device's eeprom is always little-endian, word addressable */
811	for (i = 0; i < last_word - first_word + 1; i++)
812		le16_to_cpus(&eeprom_buff[i]);
813
814	memcpy(ptr, bytes, eeprom->len);
815
816	for (i = 0; i < last_word - first_word + 1; i++)
817		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
818
819	ret_val = hw->nvm.ops.write(hw, first_word,
820				    last_word - first_word + 1, eeprom_buff);
821
822	/* Update the checksum if nvm write succeeded */
823	if (ret_val == 0)
824		hw->nvm.ops.update(hw);
825
826	igb_set_fw_version(adapter);
827	kfree(eeprom_buff);
828	return ret_val;
829}
830
831static void igb_get_drvinfo(struct net_device *netdev,
832			    struct ethtool_drvinfo *drvinfo)
833{
834	struct igb_adapter *adapter = netdev_priv(netdev);
835
836	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
837	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
838
839	/* EEPROM image version # is reported as firmware version # for
840	 * 82575 controllers
841	 */
842	strlcpy(drvinfo->fw_version, adapter->fw_version,
843		sizeof(drvinfo->fw_version));
844	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
845		sizeof(drvinfo->bus_info));
846	drvinfo->n_stats = IGB_STATS_LEN;
847	drvinfo->testinfo_len = IGB_TEST_LEN;
848	drvinfo->regdump_len = igb_get_regs_len(netdev);
849	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
850}
851
852static void igb_get_ringparam(struct net_device *netdev,
853			      struct ethtool_ringparam *ring)
854{
855	struct igb_adapter *adapter = netdev_priv(netdev);
856
857	ring->rx_max_pending = IGB_MAX_RXD;
858	ring->tx_max_pending = IGB_MAX_TXD;
859	ring->rx_pending = adapter->rx_ring_count;
860	ring->tx_pending = adapter->tx_ring_count;
861}
862
863static int igb_set_ringparam(struct net_device *netdev,
864			     struct ethtool_ringparam *ring)
865{
866	struct igb_adapter *adapter = netdev_priv(netdev);
867	struct igb_ring *temp_ring;
868	int i, err = 0;
869	u16 new_rx_count, new_tx_count;
870
871	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
872		return -EINVAL;
873
874	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
875	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
876	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
877
878	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
879	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
880	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
881
882	if ((new_tx_count == adapter->tx_ring_count) &&
883	    (new_rx_count == adapter->rx_ring_count)) {
884		/* nothing to do */
885		return 0;
886	}
887
888	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
889		msleep(1);
890
891	if (!netif_running(adapter->netdev)) {
892		for (i = 0; i < adapter->num_tx_queues; i++)
893			adapter->tx_ring[i]->count = new_tx_count;
894		for (i = 0; i < adapter->num_rx_queues; i++)
895			adapter->rx_ring[i]->count = new_rx_count;
896		adapter->tx_ring_count = new_tx_count;
897		adapter->rx_ring_count = new_rx_count;
898		goto clear_reset;
899	}
900
901	if (adapter->num_tx_queues > adapter->num_rx_queues)
902		temp_ring = vmalloc(adapter->num_tx_queues *
903				    sizeof(struct igb_ring));
904	else
905		temp_ring = vmalloc(adapter->num_rx_queues *
906				    sizeof(struct igb_ring));
907
908	if (!temp_ring) {
909		err = -ENOMEM;
910		goto clear_reset;
911	}
912
913	igb_down(adapter);
914
915	/* We can't just free everything and then setup again,
916	 * because the ISRs in MSI-X mode get passed pointers
917	 * to the Tx and Rx ring structs.
918	 */
919	if (new_tx_count != adapter->tx_ring_count) {
920		for (i = 0; i < adapter->num_tx_queues; i++) {
921			memcpy(&temp_ring[i], adapter->tx_ring[i],
922			       sizeof(struct igb_ring));
923
924			temp_ring[i].count = new_tx_count;
925			err = igb_setup_tx_resources(&temp_ring[i]);
926			if (err) {
927				while (i) {
928					i--;
929					igb_free_tx_resources(&temp_ring[i]);
930				}
931				goto err_setup;
932			}
933		}
934
935		for (i = 0; i < adapter->num_tx_queues; i++) {
936			igb_free_tx_resources(adapter->tx_ring[i]);
937
938			memcpy(adapter->tx_ring[i], &temp_ring[i],
939			       sizeof(struct igb_ring));
940		}
941
942		adapter->tx_ring_count = new_tx_count;
943	}
944
945	if (new_rx_count != adapter->rx_ring_count) {
946		for (i = 0; i < adapter->num_rx_queues; i++) {
947			memcpy(&temp_ring[i], adapter->rx_ring[i],
948			       sizeof(struct igb_ring));
949
950			temp_ring[i].count = new_rx_count;
951			err = igb_setup_rx_resources(&temp_ring[i]);
952			if (err) {
953				while (i) {
954					i--;
955					igb_free_rx_resources(&temp_ring[i]);
956				}
957				goto err_setup;
958			}
959
960		}
961
962		for (i = 0; i < adapter->num_rx_queues; i++) {
963			igb_free_rx_resources(adapter->rx_ring[i]);
964
965			memcpy(adapter->rx_ring[i], &temp_ring[i],
966			       sizeof(struct igb_ring));
967		}
968
969		adapter->rx_ring_count = new_rx_count;
970	}
971err_setup:
972	igb_up(adapter);
973	vfree(temp_ring);
974clear_reset:
975	clear_bit(__IGB_RESETTING, &adapter->state);
976	return err;
977}
978
979/* ethtool register test data */
980struct igb_reg_test {
981	u16 reg;
982	u16 reg_offset;
983	u16 array_len;
984	u16 test_type;
985	u32 mask;
986	u32 write;
987};
988
989/* In the hardware, registers are laid out either singly, in arrays
990 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
991 * most tests take place on arrays or single registers (handled
992 * as a single-element array) and special-case the tables.
993 * Table tests are always pattern tests.
994 *
995 * We also make provision for some required setup steps by specifying
996 * registers to be written without any read-back testing.
997 */
998
999#define PATTERN_TEST	1
1000#define SET_READ_TEST	2
1001#define WRITE_NO_TEST	3
1002#define TABLE32_TEST	4
1003#define TABLE64_TEST_LO	5
1004#define TABLE64_TEST_HI	6
1005
1006/* i210 reg test */
1007static struct igb_reg_test reg_test_i210[] = {
1008	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1009	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1010	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1011	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1012	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1014	/* RDH is read-only for i210, only test RDT. */
1015	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1016	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1017	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1018	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1019	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1020	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1021	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1022	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1023	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1024	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1025	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1026	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1027	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1028						0xFFFFFFFF, 0xFFFFFFFF },
1029	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1030						0x900FFFFF, 0xFFFFFFFF },
1031	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1032						0xFFFFFFFF, 0xFFFFFFFF },
1033	{ 0, 0, 0, 0, 0 }
1034};
1035
1036/* i350 reg test */
1037static struct igb_reg_test reg_test_i350[] = {
1038	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1039	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1040	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1041	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1042	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1043	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1044	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1045	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1046	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1047	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1048	/* RDH is read-only for i350, only test RDT. */
1049	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1050	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1051	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1052	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1053	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1054	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1055	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1056	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1057	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1058	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1059	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1060	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1061	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1062	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1063	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1064	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1065	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1066	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1067						0xFFFFFFFF, 0xFFFFFFFF },
1068	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1069						0xC3FFFFFF, 0xFFFFFFFF },
1070	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1071						0xFFFFFFFF, 0xFFFFFFFF },
1072	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1073						0xC3FFFFFF, 0xFFFFFFFF },
1074	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1075						0xFFFFFFFF, 0xFFFFFFFF },
1076	{ 0, 0, 0, 0 }
1077};
1078
1079/* 82580 reg test */
1080static struct igb_reg_test reg_test_82580[] = {
1081	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1082	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1083	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1084	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1085	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1086	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1087	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1088	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1089	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1090	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1091	/* RDH is read-only for 82580, only test RDT. */
1092	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1093	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1094	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1095	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1096	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1097	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1098	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1099	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1100	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1101	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1102	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1103	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1104	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1105	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1106	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1107	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1108	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1109	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1110						0xFFFFFFFF, 0xFFFFFFFF },
1111	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1112						0x83FFFFFF, 0xFFFFFFFF },
1113	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1114						0xFFFFFFFF, 0xFFFFFFFF },
1115	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1116						0x83FFFFFF, 0xFFFFFFFF },
1117	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1118						0xFFFFFFFF, 0xFFFFFFFF },
1119	{ 0, 0, 0, 0 }
1120};
1121
1122/* 82576 reg test */
1123static struct igb_reg_test reg_test_82576[] = {
1124	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1125	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1126	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1127	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1128	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1129	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1130	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1131	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1132	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1133	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1134	/* Enable all RX queues before testing. */
1135	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1136	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1137	/* RDH is read-only for 82576, only test RDT. */
1138	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1139	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1140	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1141	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1142	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1143	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1144	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1145	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1146	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1147	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1148	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1149	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1150	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1151	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1152	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1153	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1154	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1155	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1156	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1157	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1158	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1159	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1160	{ 0, 0, 0, 0 }
1161};
1162
1163/* 82575 register test */
1164static struct igb_reg_test reg_test_82575[] = {
1165	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1166	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1167	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1168	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1169	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1170	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1171	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1172	/* Enable all four RX queues before testing. */
1173	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1174	/* RDH is read-only for 82575, only test RDT. */
1175	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1176	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1177	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1178	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1179	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1180	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1181	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1182	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1183	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1184	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1185	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1186	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1187	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1188	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1189	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1190	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1191	{ 0, 0, 0, 0 }
1192};
1193
1194static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1195			     int reg, u32 mask, u32 write)
1196{
1197	struct e1000_hw *hw = &adapter->hw;
1198	u32 pat, val;
1199	static const u32 _test[] = {
1200		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1201	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1202		wr32(reg, (_test[pat] & write));
1203		val = rd32(reg) & mask;
1204		if (val != (_test[pat] & write & mask)) {
1205			dev_err(&adapter->pdev->dev,
1206				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1207				reg, val, (_test[pat] & write & mask));
1208			*data = reg;
1209			return 1;
1210		}
1211	}
1212
1213	return 0;
1214}
1215
1216static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1217			      int reg, u32 mask, u32 write)
1218{
1219	struct e1000_hw *hw = &adapter->hw;
1220	u32 val;
1221	wr32(reg, write & mask);
1222	val = rd32(reg);
1223	if ((write & mask) != (val & mask)) {
1224		dev_err(&adapter->pdev->dev,
1225			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1226			(val & mask), (write & mask));
1227		*data = reg;
1228		return 1;
1229	}
1230
1231	return 0;
1232}
1233
1234#define REG_PATTERN_TEST(reg, mask, write) \
1235	do { \
1236		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1237			return 1; \
1238	} while (0)
1239
1240#define REG_SET_AND_CHECK(reg, mask, write) \
1241	do { \
1242		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1243			return 1; \
1244	} while (0)
1245
1246static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1247{
1248	struct e1000_hw *hw = &adapter->hw;
1249	struct igb_reg_test *test;
1250	u32 value, before, after;
1251	u32 i, toggle;
1252
1253	switch (adapter->hw.mac.type) {
1254	case e1000_i350:
1255	case e1000_i354:
1256		test = reg_test_i350;
1257		toggle = 0x7FEFF3FF;
1258		break;
1259	case e1000_i210:
1260	case e1000_i211:
1261		test = reg_test_i210;
1262		toggle = 0x7FEFF3FF;
1263		break;
1264	case e1000_82580:
1265		test = reg_test_82580;
1266		toggle = 0x7FEFF3FF;
1267		break;
1268	case e1000_82576:
1269		test = reg_test_82576;
1270		toggle = 0x7FFFF3FF;
1271		break;
1272	default:
1273		test = reg_test_82575;
1274		toggle = 0x7FFFF3FF;
1275		break;
1276	}
1277
1278	/* Because the status register is such a special case,
1279	 * we handle it separately from the rest of the register
1280	 * tests.  Some bits are read-only, some toggle, and some
1281	 * are writable on newer MACs.
1282	 */
1283	before = rd32(E1000_STATUS);
1284	value = (rd32(E1000_STATUS) & toggle);
1285	wr32(E1000_STATUS, toggle);
1286	after = rd32(E1000_STATUS) & toggle;
1287	if (value != after) {
1288		dev_err(&adapter->pdev->dev,
1289			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1290			after, value);
1291		*data = 1;
1292		return 1;
1293	}
1294	/* restore previous status */
1295	wr32(E1000_STATUS, before);
1296
1297	/* Perform the remainder of the register test, looping through
1298	 * the test table until we either fail or reach the null entry.
1299	 */
1300	while (test->reg) {
1301		for (i = 0; i < test->array_len; i++) {
1302			switch (test->test_type) {
1303			case PATTERN_TEST:
1304				REG_PATTERN_TEST(test->reg +
1305						(i * test->reg_offset),
1306						test->mask,
1307						test->write);
1308				break;
1309			case SET_READ_TEST:
1310				REG_SET_AND_CHECK(test->reg +
1311						(i * test->reg_offset),
1312						test->mask,
1313						test->write);
1314				break;
1315			case WRITE_NO_TEST:
1316				writel(test->write,
1317				    (adapter->hw.hw_addr + test->reg)
1318					+ (i * test->reg_offset));
1319				break;
1320			case TABLE32_TEST:
1321				REG_PATTERN_TEST(test->reg + (i * 4),
1322						test->mask,
1323						test->write);
1324				break;
1325			case TABLE64_TEST_LO:
1326				REG_PATTERN_TEST(test->reg + (i * 8),
1327						test->mask,
1328						test->write);
1329				break;
1330			case TABLE64_TEST_HI:
1331				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1332						test->mask,
1333						test->write);
1334				break;
1335			}
1336		}
1337		test++;
1338	}
1339
1340	*data = 0;
1341	return 0;
1342}
1343
1344static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1345{
1346	struct e1000_hw *hw = &adapter->hw;
1347
1348	*data = 0;
1349
1350	/* Validate eeprom on all parts but flashless */
1351	switch (hw->mac.type) {
1352	case e1000_i210:
1353	case e1000_i211:
1354		if (igb_get_flash_presence_i210(hw)) {
1355			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1356				*data = 2;
1357		}
1358		break;
1359	default:
1360		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1361			*data = 2;
1362		break;
1363	}
1364
1365	return *data;
1366}
1367
1368static irqreturn_t igb_test_intr(int irq, void *data)
1369{
1370	struct igb_adapter *adapter = (struct igb_adapter *) data;
1371	struct e1000_hw *hw = &adapter->hw;
1372
1373	adapter->test_icr |= rd32(E1000_ICR);
1374
1375	return IRQ_HANDLED;
1376}
1377
1378static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1379{
1380	struct e1000_hw *hw = &adapter->hw;
1381	struct net_device *netdev = adapter->netdev;
1382	u32 mask, ics_mask, i = 0, shared_int = true;
1383	u32 irq = adapter->pdev->irq;
1384
1385	*data = 0;
1386
1387	/* Hook up test interrupt handler just for this test */
1388	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1389		if (request_irq(adapter->msix_entries[0].vector,
1390		                igb_test_intr, 0, netdev->name, adapter)) {
1391			*data = 1;
1392			return -1;
1393		}
1394	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1395		shared_int = false;
1396		if (request_irq(irq,
1397		                igb_test_intr, 0, netdev->name, adapter)) {
1398			*data = 1;
1399			return -1;
1400		}
1401	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1402				netdev->name, adapter)) {
1403		shared_int = false;
1404	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1405		 netdev->name, adapter)) {
1406		*data = 1;
1407		return -1;
1408	}
1409	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1410		(shared_int ? "shared" : "unshared"));
1411
1412	/* Disable all the interrupts */
1413	wr32(E1000_IMC, ~0);
1414	wrfl();
1415	msleep(10);
1416
1417	/* Define all writable bits for ICS */
1418	switch (hw->mac.type) {
1419	case e1000_82575:
1420		ics_mask = 0x37F47EDD;
1421		break;
1422	case e1000_82576:
1423		ics_mask = 0x77D4FBFD;
1424		break;
1425	case e1000_82580:
1426		ics_mask = 0x77DCFED5;
1427		break;
1428	case e1000_i350:
1429	case e1000_i354:
1430	case e1000_i210:
1431	case e1000_i211:
1432		ics_mask = 0x77DCFED5;
1433		break;
1434	default:
1435		ics_mask = 0x7FFFFFFF;
1436		break;
1437	}
1438
1439	/* Test each interrupt */
1440	for (; i < 31; i++) {
1441		/* Interrupt to test */
1442		mask = 1 << i;
1443
1444		if (!(mask & ics_mask))
1445			continue;
1446
1447		if (!shared_int) {
1448			/* Disable the interrupt to be reported in
1449			 * the cause register and then force the same
1450			 * interrupt and see if one gets posted.  If
1451			 * an interrupt was posted to the bus, the
1452			 * test failed.
1453			 */
1454			adapter->test_icr = 0;
1455
1456			/* Flush any pending interrupts */
1457			wr32(E1000_ICR, ~0);
1458
1459			wr32(E1000_IMC, mask);
1460			wr32(E1000_ICS, mask);
1461			wrfl();
1462			msleep(10);
1463
1464			if (adapter->test_icr & mask) {
1465				*data = 3;
1466				break;
1467			}
1468		}
1469
1470		/* Enable the interrupt to be reported in
1471		 * the cause register and then force the same
1472		 * interrupt and see if one gets posted.  If
1473		 * an interrupt was not posted to the bus, the
1474		 * test failed.
1475		 */
1476		adapter->test_icr = 0;
1477
1478		/* Flush any pending interrupts */
1479		wr32(E1000_ICR, ~0);
1480
1481		wr32(E1000_IMS, mask);
1482		wr32(E1000_ICS, mask);
1483		wrfl();
1484		msleep(10);
1485
1486		if (!(adapter->test_icr & mask)) {
1487			*data = 4;
1488			break;
1489		}
1490
1491		if (!shared_int) {
1492			/* Disable the other interrupts to be reported in
1493			 * the cause register and then force the other
1494			 * interrupts and see if any get posted.  If
1495			 * an interrupt was posted to the bus, the
1496			 * test failed.
1497			 */
1498			adapter->test_icr = 0;
1499
1500			/* Flush any pending interrupts */
1501			wr32(E1000_ICR, ~0);
1502
1503			wr32(E1000_IMC, ~mask);
1504			wr32(E1000_ICS, ~mask);
1505			wrfl();
1506			msleep(10);
1507
1508			if (adapter->test_icr & mask) {
1509				*data = 5;
1510				break;
1511			}
1512		}
1513	}
1514
1515	/* Disable all the interrupts */
1516	wr32(E1000_IMC, ~0);
1517	wrfl();
1518	msleep(10);
1519
1520	/* Unhook test interrupt handler */
1521	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1522		free_irq(adapter->msix_entries[0].vector, adapter);
1523	else
1524		free_irq(irq, adapter);
1525
1526	return *data;
1527}
1528
1529static void igb_free_desc_rings(struct igb_adapter *adapter)
1530{
1531	igb_free_tx_resources(&adapter->test_tx_ring);
1532	igb_free_rx_resources(&adapter->test_rx_ring);
1533}
1534
1535static int igb_setup_desc_rings(struct igb_adapter *adapter)
1536{
1537	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1538	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1539	struct e1000_hw *hw = &adapter->hw;
1540	int ret_val;
1541
1542	/* Setup Tx descriptor ring and Tx buffers */
1543	tx_ring->count = IGB_DEFAULT_TXD;
1544	tx_ring->dev = &adapter->pdev->dev;
1545	tx_ring->netdev = adapter->netdev;
1546	tx_ring->reg_idx = adapter->vfs_allocated_count;
1547
1548	if (igb_setup_tx_resources(tx_ring)) {
1549		ret_val = 1;
1550		goto err_nomem;
1551	}
1552
1553	igb_setup_tctl(adapter);
1554	igb_configure_tx_ring(adapter, tx_ring);
1555
1556	/* Setup Rx descriptor ring and Rx buffers */
1557	rx_ring->count = IGB_DEFAULT_RXD;
1558	rx_ring->dev = &adapter->pdev->dev;
1559	rx_ring->netdev = adapter->netdev;
1560	rx_ring->reg_idx = adapter->vfs_allocated_count;
1561
1562	if (igb_setup_rx_resources(rx_ring)) {
1563		ret_val = 3;
1564		goto err_nomem;
1565	}
1566
1567	/* set the default queue to queue 0 of PF */
1568	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1569
1570	/* enable receive ring */
1571	igb_setup_rctl(adapter);
1572	igb_configure_rx_ring(adapter, rx_ring);
1573
1574	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1575
1576	return 0;
1577
1578err_nomem:
1579	igb_free_desc_rings(adapter);
1580	return ret_val;
1581}
1582
1583static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1584{
1585	struct e1000_hw *hw = &adapter->hw;
1586
1587	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1588	igb_write_phy_reg(hw, 29, 0x001F);
1589	igb_write_phy_reg(hw, 30, 0x8FFC);
1590	igb_write_phy_reg(hw, 29, 0x001A);
1591	igb_write_phy_reg(hw, 30, 0x8FF0);
1592}
1593
1594static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1595{
1596	struct e1000_hw *hw = &adapter->hw;
1597	u32 ctrl_reg = 0;
1598
1599	hw->mac.autoneg = false;
1600
1601	if (hw->phy.type == e1000_phy_m88) {
1602		if (hw->phy.id != I210_I_PHY_ID) {
1603			/* Auto-MDI/MDIX Off */
1604			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1605			/* reset to update Auto-MDI/MDIX */
1606			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1607			/* autoneg off */
1608			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1609		} else {
1610			/* force 1000, set loopback  */
1611			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1612			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1613		}
1614	} else if (hw->phy.type == e1000_phy_82580) {
1615		/* enable MII loopback */
1616		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1617	}
1618
1619	/* add small delay to avoid loopback test failure */
1620	msleep(50);
1621
1622	/* force 1000, set loopback */
1623	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1624
1625	/* Now set up the MAC to the same speed/duplex as the PHY. */
1626	ctrl_reg = rd32(E1000_CTRL);
1627	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1628	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1629		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1630		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1631		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1632		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1633
1634	if (hw->phy.type == e1000_phy_m88)
1635		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1636
1637	wr32(E1000_CTRL, ctrl_reg);
1638
1639	/* Disable the receiver on the PHY so when a cable is plugged in, the
1640	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1641	 */
1642	if (hw->phy.type == e1000_phy_m88)
1643		igb_phy_disable_receiver(adapter);
1644
1645	mdelay(500);
1646	return 0;
1647}
1648
1649static int igb_set_phy_loopback(struct igb_adapter *adapter)
1650{
1651	return igb_integrated_phy_loopback(adapter);
1652}
1653
1654static int igb_setup_loopback_test(struct igb_adapter *adapter)
1655{
1656	struct e1000_hw *hw = &adapter->hw;
1657	u32 reg;
1658
1659	reg = rd32(E1000_CTRL_EXT);
1660
1661	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1662	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1663		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1664		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1665		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1666		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1667		(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1668
1669			/* Enable DH89xxCC MPHY for near end loopback */
1670			reg = rd32(E1000_MPHY_ADDR_CTL);
1671			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1672			E1000_MPHY_PCS_CLK_REG_OFFSET;
1673			wr32(E1000_MPHY_ADDR_CTL, reg);
1674
1675			reg = rd32(E1000_MPHY_DATA);
1676			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1677			wr32(E1000_MPHY_DATA, reg);
1678		}
1679
1680		reg = rd32(E1000_RCTL);
1681		reg |= E1000_RCTL_LBM_TCVR;
1682		wr32(E1000_RCTL, reg);
1683
1684		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1685
1686		reg = rd32(E1000_CTRL);
1687		reg &= ~(E1000_CTRL_RFCE |
1688			 E1000_CTRL_TFCE |
1689			 E1000_CTRL_LRST);
1690		reg |= E1000_CTRL_SLU |
1691		       E1000_CTRL_FD;
1692		wr32(E1000_CTRL, reg);
1693
1694		/* Unset switch control to serdes energy detect */
1695		reg = rd32(E1000_CONNSW);
1696		reg &= ~E1000_CONNSW_ENRGSRC;
1697		wr32(E1000_CONNSW, reg);
1698
1699		/* Unset sigdetect for SERDES loopback on
1700		 * 82580 and newer devices.
1701		 */
1702		if (hw->mac.type >= e1000_82580) {
1703			reg = rd32(E1000_PCS_CFG0);
1704			reg |= E1000_PCS_CFG_IGN_SD;
1705			wr32(E1000_PCS_CFG0, reg);
1706		}
1707
1708		/* Set PCS register for forced speed */
1709		reg = rd32(E1000_PCS_LCTL);
1710		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1711		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1712		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1713		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1714		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1715		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1716		wr32(E1000_PCS_LCTL, reg);
1717
1718		return 0;
1719	}
1720
1721	return igb_set_phy_loopback(adapter);
1722}
1723
1724static void igb_loopback_cleanup(struct igb_adapter *adapter)
1725{
1726	struct e1000_hw *hw = &adapter->hw;
1727	u32 rctl;
1728	u16 phy_reg;
1729
1730	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1731	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1732	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1733	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1734	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1735		u32 reg;
1736
1737		/* Disable near end loopback on DH89xxCC */
1738		reg = rd32(E1000_MPHY_ADDR_CTL);
1739		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1740		E1000_MPHY_PCS_CLK_REG_OFFSET;
1741		wr32(E1000_MPHY_ADDR_CTL, reg);
1742
1743		reg = rd32(E1000_MPHY_DATA);
1744		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1745		wr32(E1000_MPHY_DATA, reg);
1746	}
1747
1748	rctl = rd32(E1000_RCTL);
1749	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1750	wr32(E1000_RCTL, rctl);
1751
1752	hw->mac.autoneg = true;
1753	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1754	if (phy_reg & MII_CR_LOOPBACK) {
1755		phy_reg &= ~MII_CR_LOOPBACK;
1756		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1757		igb_phy_sw_reset(hw);
1758	}
1759}
1760
1761static void igb_create_lbtest_frame(struct sk_buff *skb,
1762				    unsigned int frame_size)
1763{
1764	memset(skb->data, 0xFF, frame_size);
1765	frame_size /= 2;
1766	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1767	memset(&skb->data[frame_size + 10], 0xBE, 1);
1768	memset(&skb->data[frame_size + 12], 0xAF, 1);
1769}
1770
1771static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1772				  unsigned int frame_size)
1773{
1774	unsigned char *data;
1775	bool match = true;
1776
1777	frame_size >>= 1;
1778
1779	data = kmap(rx_buffer->page);
1780
1781	if (data[3] != 0xFF ||
1782	    data[frame_size + 10] != 0xBE ||
1783	    data[frame_size + 12] != 0xAF)
1784		match = false;
1785
1786	kunmap(rx_buffer->page);
1787
1788	return match;
1789}
1790
1791static int igb_clean_test_rings(struct igb_ring *rx_ring,
1792				struct igb_ring *tx_ring,
1793				unsigned int size)
1794{
1795	union e1000_adv_rx_desc *rx_desc;
1796	struct igb_rx_buffer *rx_buffer_info;
1797	struct igb_tx_buffer *tx_buffer_info;
1798	u16 rx_ntc, tx_ntc, count = 0;
1799
1800	/* initialize next to clean and descriptor values */
1801	rx_ntc = rx_ring->next_to_clean;
1802	tx_ntc = tx_ring->next_to_clean;
1803	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1804
1805	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1806		/* check Rx buffer */
1807		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1808
1809		/* sync Rx buffer for CPU read */
1810		dma_sync_single_for_cpu(rx_ring->dev,
1811					rx_buffer_info->dma,
1812					IGB_RX_BUFSZ,
1813					DMA_FROM_DEVICE);
1814
1815		/* verify contents of skb */
1816		if (igb_check_lbtest_frame(rx_buffer_info, size))
1817			count++;
1818
1819		/* sync Rx buffer for device write */
1820		dma_sync_single_for_device(rx_ring->dev,
1821					   rx_buffer_info->dma,
1822					   IGB_RX_BUFSZ,
1823					   DMA_FROM_DEVICE);
1824
1825		/* unmap buffer on Tx side */
1826		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1827		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1828
1829		/* increment Rx/Tx next to clean counters */
1830		rx_ntc++;
1831		if (rx_ntc == rx_ring->count)
1832			rx_ntc = 0;
1833		tx_ntc++;
1834		if (tx_ntc == tx_ring->count)
1835			tx_ntc = 0;
1836
1837		/* fetch next descriptor */
1838		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1839	}
1840
1841	netdev_tx_reset_queue(txring_txq(tx_ring));
1842
1843	/* re-map buffers to ring, store next to clean values */
1844	igb_alloc_rx_buffers(rx_ring, count);
1845	rx_ring->next_to_clean = rx_ntc;
1846	tx_ring->next_to_clean = tx_ntc;
1847
1848	return count;
1849}
1850
1851static int igb_run_loopback_test(struct igb_adapter *adapter)
1852{
1853	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1854	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1855	u16 i, j, lc, good_cnt;
1856	int ret_val = 0;
1857	unsigned int size = IGB_RX_HDR_LEN;
1858	netdev_tx_t tx_ret_val;
1859	struct sk_buff *skb;
1860
1861	/* allocate test skb */
1862	skb = alloc_skb(size, GFP_KERNEL);
1863	if (!skb)
1864		return 11;
1865
1866	/* place data into test skb */
1867	igb_create_lbtest_frame(skb, size);
1868	skb_put(skb, size);
1869
1870	/* Calculate the loop count based on the largest descriptor ring
1871	 * The idea is to wrap the largest ring a number of times using 64
1872	 * send/receive pairs during each loop
1873	 */
1874
1875	if (rx_ring->count <= tx_ring->count)
1876		lc = ((tx_ring->count / 64) * 2) + 1;
1877	else
1878		lc = ((rx_ring->count / 64) * 2) + 1;
1879
1880	for (j = 0; j <= lc; j++) { /* loop count loop */
1881		/* reset count of good packets */
1882		good_cnt = 0;
1883
1884		/* place 64 packets on the transmit queue*/
1885		for (i = 0; i < 64; i++) {
1886			skb_get(skb);
1887			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1888			if (tx_ret_val == NETDEV_TX_OK)
1889				good_cnt++;
1890		}
1891
1892		if (good_cnt != 64) {
1893			ret_val = 12;
1894			break;
1895		}
1896
1897		/* allow 200 milliseconds for packets to go from Tx to Rx */
1898		msleep(200);
1899
1900		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1901		if (good_cnt != 64) {
1902			ret_val = 13;
1903			break;
1904		}
1905	} /* end loop count loop */
1906
1907	/* free the original skb */
1908	kfree_skb(skb);
1909
1910	return ret_val;
1911}
1912
1913static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1914{
1915	/* PHY loopback cannot be performed if SoL/IDER
1916	 * sessions are active
1917	 */
1918	if (igb_check_reset_block(&adapter->hw)) {
1919		dev_err(&adapter->pdev->dev,
1920			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1921		*data = 0;
1922		goto out;
1923	}
1924
1925	if (adapter->hw.mac.type == e1000_i354) {
1926		dev_info(&adapter->pdev->dev,
1927			"Loopback test not supported on i354.\n");
1928		*data = 0;
1929		goto out;
1930	}
1931	*data = igb_setup_desc_rings(adapter);
1932	if (*data)
1933		goto out;
1934	*data = igb_setup_loopback_test(adapter);
1935	if (*data)
1936		goto err_loopback;
1937	*data = igb_run_loopback_test(adapter);
1938	igb_loopback_cleanup(adapter);
1939
1940err_loopback:
1941	igb_free_desc_rings(adapter);
1942out:
1943	return *data;
1944}
1945
1946static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1947{
1948	struct e1000_hw *hw = &adapter->hw;
1949	*data = 0;
1950	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1951		int i = 0;
1952		hw->mac.serdes_has_link = false;
1953
1954		/* On some blade server designs, link establishment
1955		 * could take as long as 2-3 minutes
1956		 */
1957		do {
1958			hw->mac.ops.check_for_link(&adapter->hw);
1959			if (hw->mac.serdes_has_link)
1960				return *data;
1961			msleep(20);
1962		} while (i++ < 3750);
1963
1964		*data = 1;
1965	} else {
1966		hw->mac.ops.check_for_link(&adapter->hw);
1967		if (hw->mac.autoneg)
1968			msleep(5000);
1969
1970		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1971			*data = 1;
1972	}
1973	return *data;
1974}
1975
1976static void igb_diag_test(struct net_device *netdev,
1977			  struct ethtool_test *eth_test, u64 *data)
1978{
1979	struct igb_adapter *adapter = netdev_priv(netdev);
1980	u16 autoneg_advertised;
1981	u8 forced_speed_duplex, autoneg;
1982	bool if_running = netif_running(netdev);
1983
1984	set_bit(__IGB_TESTING, &adapter->state);
1985
1986	/* can't do offline tests on media switching devices */
1987	if (adapter->hw.dev_spec._82575.mas_capable)
1988		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
1989	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1990		/* Offline tests */
1991
1992		/* save speed, duplex, autoneg settings */
1993		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1994		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1995		autoneg = adapter->hw.mac.autoneg;
1996
1997		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1998
1999		/* power up link for link test */
2000		igb_power_up_link(adapter);
2001
2002		/* Link test performed before hardware reset so autoneg doesn't
2003		 * interfere with test result
2004		 */
2005		if (igb_link_test(adapter, &data[4]))
2006			eth_test->flags |= ETH_TEST_FL_FAILED;
2007
2008		if (if_running)
2009			/* indicate we're in test mode */
2010			dev_close(netdev);
2011		else
2012			igb_reset(adapter);
2013
2014		if (igb_reg_test(adapter, &data[0]))
2015			eth_test->flags |= ETH_TEST_FL_FAILED;
2016
2017		igb_reset(adapter);
2018		if (igb_eeprom_test(adapter, &data[1]))
2019			eth_test->flags |= ETH_TEST_FL_FAILED;
2020
2021		igb_reset(adapter);
2022		if (igb_intr_test(adapter, &data[2]))
2023			eth_test->flags |= ETH_TEST_FL_FAILED;
2024
2025		igb_reset(adapter);
2026		/* power up link for loopback test */
2027		igb_power_up_link(adapter);
2028		if (igb_loopback_test(adapter, &data[3]))
2029			eth_test->flags |= ETH_TEST_FL_FAILED;
2030
2031		/* restore speed, duplex, autoneg settings */
2032		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2033		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2034		adapter->hw.mac.autoneg = autoneg;
2035
2036		/* force this routine to wait until autoneg complete/timeout */
2037		adapter->hw.phy.autoneg_wait_to_complete = true;
2038		igb_reset(adapter);
2039		adapter->hw.phy.autoneg_wait_to_complete = false;
2040
2041		clear_bit(__IGB_TESTING, &adapter->state);
2042		if (if_running)
2043			dev_open(netdev);
2044	} else {
2045		dev_info(&adapter->pdev->dev, "online testing starting\n");
2046
2047		/* PHY is powered down when interface is down */
2048		if (if_running && igb_link_test(adapter, &data[4]))
2049			eth_test->flags |= ETH_TEST_FL_FAILED;
2050		else
2051			data[4] = 0;
2052
2053		/* Online tests aren't run; pass by default */
2054		data[0] = 0;
2055		data[1] = 0;
2056		data[2] = 0;
2057		data[3] = 0;
2058
2059		clear_bit(__IGB_TESTING, &adapter->state);
2060	}
2061	msleep_interruptible(4 * 1000);
2062}
2063
2064static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2065{
2066	struct igb_adapter *adapter = netdev_priv(netdev);
2067
2068	wol->wolopts = 0;
2069
2070	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2071		return;
2072
2073	wol->supported = WAKE_UCAST | WAKE_MCAST |
2074			 WAKE_BCAST | WAKE_MAGIC |
2075			 WAKE_PHY;
2076
2077	/* apply any specific unsupported masks here */
2078	switch (adapter->hw.device_id) {
2079	default:
2080		break;
2081	}
2082
2083	if (adapter->wol & E1000_WUFC_EX)
2084		wol->wolopts |= WAKE_UCAST;
2085	if (adapter->wol & E1000_WUFC_MC)
2086		wol->wolopts |= WAKE_MCAST;
2087	if (adapter->wol & E1000_WUFC_BC)
2088		wol->wolopts |= WAKE_BCAST;
2089	if (adapter->wol & E1000_WUFC_MAG)
2090		wol->wolopts |= WAKE_MAGIC;
2091	if (adapter->wol & E1000_WUFC_LNKC)
2092		wol->wolopts |= WAKE_PHY;
2093}
2094
2095static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2096{
2097	struct igb_adapter *adapter = netdev_priv(netdev);
2098
2099	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2100		return -EOPNOTSUPP;
2101
2102	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2103		return wol->wolopts ? -EOPNOTSUPP : 0;
2104
2105	/* these settings will always override what we currently have */
2106	adapter->wol = 0;
2107
2108	if (wol->wolopts & WAKE_UCAST)
2109		adapter->wol |= E1000_WUFC_EX;
2110	if (wol->wolopts & WAKE_MCAST)
2111		adapter->wol |= E1000_WUFC_MC;
2112	if (wol->wolopts & WAKE_BCAST)
2113		adapter->wol |= E1000_WUFC_BC;
2114	if (wol->wolopts & WAKE_MAGIC)
2115		adapter->wol |= E1000_WUFC_MAG;
2116	if (wol->wolopts & WAKE_PHY)
2117		adapter->wol |= E1000_WUFC_LNKC;
2118	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2119
2120	return 0;
2121}
2122
2123/* bit defines for adapter->led_status */
2124#define IGB_LED_ON		0
2125
2126static int igb_set_phys_id(struct net_device *netdev,
2127			   enum ethtool_phys_id_state state)
2128{
2129	struct igb_adapter *adapter = netdev_priv(netdev);
2130	struct e1000_hw *hw = &adapter->hw;
2131
2132	switch (state) {
2133	case ETHTOOL_ID_ACTIVE:
2134		igb_blink_led(hw);
2135		return 2;
2136	case ETHTOOL_ID_ON:
2137		igb_blink_led(hw);
2138		break;
2139	case ETHTOOL_ID_OFF:
2140		igb_led_off(hw);
2141		break;
2142	case ETHTOOL_ID_INACTIVE:
2143		igb_led_off(hw);
2144		clear_bit(IGB_LED_ON, &adapter->led_status);
2145		igb_cleanup_led(hw);
2146		break;
2147	}
2148
2149	return 0;
2150}
2151
2152static int igb_set_coalesce(struct net_device *netdev,
2153			    struct ethtool_coalesce *ec)
2154{
2155	struct igb_adapter *adapter = netdev_priv(netdev);
2156	int i;
2157
2158	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2159	    ((ec->rx_coalesce_usecs > 3) &&
2160	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2161	    (ec->rx_coalesce_usecs == 2))
2162		return -EINVAL;
2163
2164	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2165	    ((ec->tx_coalesce_usecs > 3) &&
2166	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2167	    (ec->tx_coalesce_usecs == 2))
2168		return -EINVAL;
2169
2170	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2171		return -EINVAL;
2172
2173	/* If ITR is disabled, disable DMAC */
2174	if (ec->rx_coalesce_usecs == 0) {
2175		if (adapter->flags & IGB_FLAG_DMAC)
2176			adapter->flags &= ~IGB_FLAG_DMAC;
2177	}
2178
2179	/* convert to rate of irq's per second */
2180	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2181		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2182	else
2183		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2184
2185	/* convert to rate of irq's per second */
2186	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2187		adapter->tx_itr_setting = adapter->rx_itr_setting;
2188	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2189		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2190	else
2191		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2192
2193	for (i = 0; i < adapter->num_q_vectors; i++) {
2194		struct igb_q_vector *q_vector = adapter->q_vector[i];
2195		q_vector->tx.work_limit = adapter->tx_work_limit;
2196		if (q_vector->rx.ring)
2197			q_vector->itr_val = adapter->rx_itr_setting;
2198		else
2199			q_vector->itr_val = adapter->tx_itr_setting;
2200		if (q_vector->itr_val && q_vector->itr_val <= 3)
2201			q_vector->itr_val = IGB_START_ITR;
2202		q_vector->set_itr = 1;
2203	}
2204
2205	return 0;
2206}
2207
2208static int igb_get_coalesce(struct net_device *netdev,
2209			    struct ethtool_coalesce *ec)
2210{
2211	struct igb_adapter *adapter = netdev_priv(netdev);
2212
2213	if (adapter->rx_itr_setting <= 3)
2214		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2215	else
2216		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2217
2218	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2219		if (adapter->tx_itr_setting <= 3)
2220			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2221		else
2222			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2223	}
2224
2225	return 0;
2226}
2227
2228static int igb_nway_reset(struct net_device *netdev)
2229{
2230	struct igb_adapter *adapter = netdev_priv(netdev);
2231	if (netif_running(netdev))
2232		igb_reinit_locked(adapter);
2233	return 0;
2234}
2235
2236static int igb_get_sset_count(struct net_device *netdev, int sset)
2237{
2238	switch (sset) {
2239	case ETH_SS_STATS:
2240		return IGB_STATS_LEN;
2241	case ETH_SS_TEST:
2242		return IGB_TEST_LEN;
2243	default:
2244		return -ENOTSUPP;
2245	}
2246}
2247
2248static void igb_get_ethtool_stats(struct net_device *netdev,
2249				  struct ethtool_stats *stats, u64 *data)
2250{
2251	struct igb_adapter *adapter = netdev_priv(netdev);
2252	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2253	unsigned int start;
2254	struct igb_ring *ring;
2255	int i, j;
2256	char *p;
2257
2258	spin_lock(&adapter->stats64_lock);
2259	igb_update_stats(adapter, net_stats);
2260
2261	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2262		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2263		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2264			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2265	}
2266	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2267		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2268		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2269			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2270	}
2271	for (j = 0; j < adapter->num_tx_queues; j++) {
2272		u64	restart2;
2273
2274		ring = adapter->tx_ring[j];
2275		do {
2276			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2277			data[i]   = ring->tx_stats.packets;
2278			data[i+1] = ring->tx_stats.bytes;
2279			data[i+2] = ring->tx_stats.restart_queue;
2280		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2281		do {
2282			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2283			restart2  = ring->tx_stats.restart_queue2;
2284		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2285		data[i+2] += restart2;
2286
2287		i += IGB_TX_QUEUE_STATS_LEN;
2288	}
2289	for (j = 0; j < adapter->num_rx_queues; j++) {
2290		ring = adapter->rx_ring[j];
2291		do {
2292			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2293			data[i]   = ring->rx_stats.packets;
2294			data[i+1] = ring->rx_stats.bytes;
2295			data[i+2] = ring->rx_stats.drops;
2296			data[i+3] = ring->rx_stats.csum_err;
2297			data[i+4] = ring->rx_stats.alloc_failed;
2298		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2299		i += IGB_RX_QUEUE_STATS_LEN;
2300	}
2301	spin_unlock(&adapter->stats64_lock);
2302}
2303
2304static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2305{
2306	struct igb_adapter *adapter = netdev_priv(netdev);
2307	u8 *p = data;
2308	int i;
2309
2310	switch (stringset) {
2311	case ETH_SS_TEST:
2312		memcpy(data, *igb_gstrings_test,
2313			IGB_TEST_LEN*ETH_GSTRING_LEN);
2314		break;
2315	case ETH_SS_STATS:
2316		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2317			memcpy(p, igb_gstrings_stats[i].stat_string,
2318			       ETH_GSTRING_LEN);
2319			p += ETH_GSTRING_LEN;
2320		}
2321		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2322			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2323			       ETH_GSTRING_LEN);
2324			p += ETH_GSTRING_LEN;
2325		}
2326		for (i = 0; i < adapter->num_tx_queues; i++) {
2327			sprintf(p, "tx_queue_%u_packets", i);
2328			p += ETH_GSTRING_LEN;
2329			sprintf(p, "tx_queue_%u_bytes", i);
2330			p += ETH_GSTRING_LEN;
2331			sprintf(p, "tx_queue_%u_restart", i);
2332			p += ETH_GSTRING_LEN;
2333		}
2334		for (i = 0; i < adapter->num_rx_queues; i++) {
2335			sprintf(p, "rx_queue_%u_packets", i);
2336			p += ETH_GSTRING_LEN;
2337			sprintf(p, "rx_queue_%u_bytes", i);
2338			p += ETH_GSTRING_LEN;
2339			sprintf(p, "rx_queue_%u_drops", i);
2340			p += ETH_GSTRING_LEN;
2341			sprintf(p, "rx_queue_%u_csum_err", i);
2342			p += ETH_GSTRING_LEN;
2343			sprintf(p, "rx_queue_%u_alloc_failed", i);
2344			p += ETH_GSTRING_LEN;
2345		}
2346		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2347		break;
2348	}
2349}
2350
2351static int igb_get_ts_info(struct net_device *dev,
2352			   struct ethtool_ts_info *info)
2353{
2354	struct igb_adapter *adapter = netdev_priv(dev);
2355
2356	if (adapter->ptp_clock)
2357		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2358	else
2359		info->phc_index = -1;
2360
2361	switch (adapter->hw.mac.type) {
2362	case e1000_82575:
2363		info->so_timestamping =
2364			SOF_TIMESTAMPING_TX_SOFTWARE |
2365			SOF_TIMESTAMPING_RX_SOFTWARE |
2366			SOF_TIMESTAMPING_SOFTWARE;
2367		return 0;
2368	case e1000_82576:
2369	case e1000_82580:
2370	case e1000_i350:
2371	case e1000_i354:
2372	case e1000_i210:
2373	case e1000_i211:
2374		info->so_timestamping =
2375			SOF_TIMESTAMPING_TX_SOFTWARE |
2376			SOF_TIMESTAMPING_RX_SOFTWARE |
2377			SOF_TIMESTAMPING_SOFTWARE |
2378			SOF_TIMESTAMPING_TX_HARDWARE |
2379			SOF_TIMESTAMPING_RX_HARDWARE |
2380			SOF_TIMESTAMPING_RAW_HARDWARE;
2381
2382		info->tx_types =
2383			(1 << HWTSTAMP_TX_OFF) |
2384			(1 << HWTSTAMP_TX_ON);
2385
2386		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2387
2388		/* 82576 does not support timestamping all packets. */
2389		if (adapter->hw.mac.type >= e1000_82580)
2390			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2391		else
2392			info->rx_filters |=
2393				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2394				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2395				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2396				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2397				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2398				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2399				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2400
2401		return 0;
2402	default:
2403		return -EOPNOTSUPP;
2404	}
2405}
2406
2407static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2408				 struct ethtool_rxnfc *cmd)
2409{
2410	cmd->data = 0;
2411
2412	/* Report default options for RSS on igb */
2413	switch (cmd->flow_type) {
2414	case TCP_V4_FLOW:
2415		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2416	case UDP_V4_FLOW:
2417		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2418			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2419	case SCTP_V4_FLOW:
2420	case AH_ESP_V4_FLOW:
2421	case AH_V4_FLOW:
2422	case ESP_V4_FLOW:
2423	case IPV4_FLOW:
2424		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2425		break;
2426	case TCP_V6_FLOW:
2427		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2428	case UDP_V6_FLOW:
2429		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2430			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2431	case SCTP_V6_FLOW:
2432	case AH_ESP_V6_FLOW:
2433	case AH_V6_FLOW:
2434	case ESP_V6_FLOW:
2435	case IPV6_FLOW:
2436		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2437		break;
2438	default:
2439		return -EINVAL;
2440	}
2441
2442	return 0;
2443}
2444
2445static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2446			 u32 *rule_locs)
2447{
2448	struct igb_adapter *adapter = netdev_priv(dev);
2449	int ret = -EOPNOTSUPP;
2450
2451	switch (cmd->cmd) {
2452	case ETHTOOL_GRXRINGS:
2453		cmd->data = adapter->num_rx_queues;
2454		ret = 0;
2455		break;
2456	case ETHTOOL_GRXFH:
2457		ret = igb_get_rss_hash_opts(adapter, cmd);
2458		break;
2459	default:
2460		break;
2461	}
2462
2463	return ret;
2464}
2465
2466#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2467		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2468static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2469				struct ethtool_rxnfc *nfc)
2470{
2471	u32 flags = adapter->flags;
2472
2473	/* RSS does not support anything other than hashing
2474	 * to queues on src and dst IPs and ports
2475	 */
2476	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2477			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2478		return -EINVAL;
2479
2480	switch (nfc->flow_type) {
2481	case TCP_V4_FLOW:
2482	case TCP_V6_FLOW:
2483		if (!(nfc->data & RXH_IP_SRC) ||
2484		    !(nfc->data & RXH_IP_DST) ||
2485		    !(nfc->data & RXH_L4_B_0_1) ||
2486		    !(nfc->data & RXH_L4_B_2_3))
2487			return -EINVAL;
2488		break;
2489	case UDP_V4_FLOW:
2490		if (!(nfc->data & RXH_IP_SRC) ||
2491		    !(nfc->data & RXH_IP_DST))
2492			return -EINVAL;
2493		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2494		case 0:
2495			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2496			break;
2497		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2498			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2499			break;
2500		default:
2501			return -EINVAL;
2502		}
2503		break;
2504	case UDP_V6_FLOW:
2505		if (!(nfc->data & RXH_IP_SRC) ||
2506		    !(nfc->data & RXH_IP_DST))
2507			return -EINVAL;
2508		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2509		case 0:
2510			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2511			break;
2512		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2513			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2514			break;
2515		default:
2516			return -EINVAL;
2517		}
2518		break;
2519	case AH_ESP_V4_FLOW:
2520	case AH_V4_FLOW:
2521	case ESP_V4_FLOW:
2522	case SCTP_V4_FLOW:
2523	case AH_ESP_V6_FLOW:
2524	case AH_V6_FLOW:
2525	case ESP_V6_FLOW:
2526	case SCTP_V6_FLOW:
2527		if (!(nfc->data & RXH_IP_SRC) ||
2528		    !(nfc->data & RXH_IP_DST) ||
2529		    (nfc->data & RXH_L4_B_0_1) ||
2530		    (nfc->data & RXH_L4_B_2_3))
2531			return -EINVAL;
2532		break;
2533	default:
2534		return -EINVAL;
2535	}
2536
2537	/* if we changed something we need to update flags */
2538	if (flags != adapter->flags) {
2539		struct e1000_hw *hw = &adapter->hw;
2540		u32 mrqc = rd32(E1000_MRQC);
2541
2542		if ((flags & UDP_RSS_FLAGS) &&
2543		    !(adapter->flags & UDP_RSS_FLAGS))
2544			dev_err(&adapter->pdev->dev,
2545				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2546
2547		adapter->flags = flags;
2548
2549		/* Perform hash on these packet types */
2550		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2551			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2552			E1000_MRQC_RSS_FIELD_IPV6 |
2553			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2554
2555		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2556			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2557
2558		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2559			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2560
2561		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2562			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2563
2564		wr32(E1000_MRQC, mrqc);
2565	}
2566
2567	return 0;
2568}
2569
2570static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2571{
2572	struct igb_adapter *adapter = netdev_priv(dev);
2573	int ret = -EOPNOTSUPP;
2574
2575	switch (cmd->cmd) {
2576	case ETHTOOL_SRXFH:
2577		ret = igb_set_rss_hash_opt(adapter, cmd);
2578		break;
2579	default:
2580		break;
2581	}
2582
2583	return ret;
2584}
2585
2586static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2587{
2588	struct igb_adapter *adapter = netdev_priv(netdev);
2589	struct e1000_hw *hw = &adapter->hw;
2590	u32 ret_val;
2591	u16 phy_data;
2592
2593	if ((hw->mac.type < e1000_i350) ||
2594	    (hw->phy.media_type != e1000_media_type_copper))
2595		return -EOPNOTSUPP;
2596
2597	edata->supported = (SUPPORTED_1000baseT_Full |
2598			    SUPPORTED_100baseT_Full);
2599	if (!hw->dev_spec._82575.eee_disable)
2600		edata->advertised =
2601			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2602
2603	/* The IPCNFG and EEER registers are not supported on I354. */
2604	if (hw->mac.type == e1000_i354) {
2605		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
2606	} else {
2607		u32 eeer;
2608
2609		eeer = rd32(E1000_EEER);
2610
2611		/* EEE status on negotiated link */
2612		if (eeer & E1000_EEER_EEE_NEG)
2613			edata->eee_active = true;
2614
2615		if (eeer & E1000_EEER_TX_LPI_EN)
2616			edata->tx_lpi_enabled = true;
2617	}
2618
2619	/* EEE Link Partner Advertised */
2620	switch (hw->mac.type) {
2621	case e1000_i350:
2622		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2623					   &phy_data);
2624		if (ret_val)
2625			return -ENODATA;
2626
2627		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2628		break;
2629	case e1000_i354:
2630	case e1000_i210:
2631	case e1000_i211:
2632		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2633					     E1000_EEE_LP_ADV_DEV_I210,
2634					     &phy_data);
2635		if (ret_val)
2636			return -ENODATA;
2637
2638		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2639
2640		break;
2641	default:
2642		break;
2643	}
2644
2645	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2646
2647	if ((hw->mac.type == e1000_i354) &&
2648	    (edata->eee_enabled))
2649		edata->tx_lpi_enabled = true;
2650
2651	/* Report correct negotiated EEE status for devices that
2652	 * wrongly report EEE at half-duplex
2653	 */
2654	if (adapter->link_duplex == HALF_DUPLEX) {
2655		edata->eee_enabled = false;
2656		edata->eee_active = false;
2657		edata->tx_lpi_enabled = false;
2658		edata->advertised &= ~edata->advertised;
2659	}
2660
2661	return 0;
2662}
2663
2664static int igb_set_eee(struct net_device *netdev,
2665		       struct ethtool_eee *edata)
2666{
2667	struct igb_adapter *adapter = netdev_priv(netdev);
2668	struct e1000_hw *hw = &adapter->hw;
2669	struct ethtool_eee eee_curr;
2670	s32 ret_val;
2671
2672	if ((hw->mac.type < e1000_i350) ||
2673	    (hw->phy.media_type != e1000_media_type_copper))
2674		return -EOPNOTSUPP;
2675
2676	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2677
2678	ret_val = igb_get_eee(netdev, &eee_curr);
2679	if (ret_val)
2680		return ret_val;
2681
2682	if (eee_curr.eee_enabled) {
2683		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2684			dev_err(&adapter->pdev->dev,
2685				"Setting EEE tx-lpi is not supported\n");
2686			return -EINVAL;
2687		}
2688
2689		/* Tx LPI timer is not implemented currently */
2690		if (edata->tx_lpi_timer) {
2691			dev_err(&adapter->pdev->dev,
2692				"Setting EEE Tx LPI timer is not supported\n");
2693			return -EINVAL;
2694		}
2695
2696		if (edata->advertised &
2697		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2698			dev_err(&adapter->pdev->dev,
2699				"EEE Advertisement supports only 100Tx and or 100T full duplex\n");
2700			return -EINVAL;
2701		}
2702
2703	} else if (!edata->eee_enabled) {
2704		dev_err(&adapter->pdev->dev,
2705			"Setting EEE options are not supported with EEE disabled\n");
2706			return -EINVAL;
2707		}
2708
2709	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2710	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2711		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2712		adapter->flags |= IGB_FLAG_EEE;
2713		if (hw->mac.type == e1000_i350)
2714			igb_set_eee_i350(hw);
2715		else
2716			igb_set_eee_i354(hw);
2717
2718		/* reset link */
2719		if (netif_running(netdev))
2720			igb_reinit_locked(adapter);
2721		else
2722			igb_reset(adapter);
2723	}
2724
2725	return 0;
2726}
2727
2728static int igb_get_module_info(struct net_device *netdev,
2729			       struct ethtool_modinfo *modinfo)
2730{
2731	struct igb_adapter *adapter = netdev_priv(netdev);
2732	struct e1000_hw *hw = &adapter->hw;
2733	u32 status = E1000_SUCCESS;
2734	u16 sff8472_rev, addr_mode;
2735	bool page_swap = false;
2736
2737	if ((hw->phy.media_type == e1000_media_type_copper) ||
2738	    (hw->phy.media_type == e1000_media_type_unknown))
2739		return -EOPNOTSUPP;
2740
2741	/* Check whether we support SFF-8472 or not */
2742	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2743	if (status != E1000_SUCCESS)
2744		return -EIO;
2745
2746	/* addressing mode is not supported */
2747	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2748	if (status != E1000_SUCCESS)
2749		return -EIO;
2750
2751	/* addressing mode is not supported */
2752	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2753		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2754		page_swap = true;
2755	}
2756
2757	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2758		/* We have an SFP, but it does not support SFF-8472 */
2759		modinfo->type = ETH_MODULE_SFF_8079;
2760		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2761	} else {
2762		/* We have an SFP which supports a revision of SFF-8472 */
2763		modinfo->type = ETH_MODULE_SFF_8472;
2764		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2765	}
2766
2767	return 0;
2768}
2769
2770static int igb_get_module_eeprom(struct net_device *netdev,
2771				 struct ethtool_eeprom *ee, u8 *data)
2772{
2773	struct igb_adapter *adapter = netdev_priv(netdev);
2774	struct e1000_hw *hw = &adapter->hw;
2775	u32 status = E1000_SUCCESS;
2776	u16 *dataword;
2777	u16 first_word, last_word;
2778	int i = 0;
2779
2780	if (ee->len == 0)
2781		return -EINVAL;
2782
2783	first_word = ee->offset >> 1;
2784	last_word = (ee->offset + ee->len - 1) >> 1;
2785
2786	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2787			   GFP_KERNEL);
2788	if (!dataword)
2789		return -ENOMEM;
2790
2791	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2792	for (i = 0; i < last_word - first_word + 1; i++) {
2793		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2794		if (status != E1000_SUCCESS) {
2795			/* Error occurred while reading module */
2796			kfree(dataword);
2797			return -EIO;
2798		}
2799
2800		be16_to_cpus(&dataword[i]);
2801	}
2802
2803	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2804	kfree(dataword);
2805
2806	return 0;
2807}
2808
2809static int igb_ethtool_begin(struct net_device *netdev)
2810{
2811	struct igb_adapter *adapter = netdev_priv(netdev);
2812	pm_runtime_get_sync(&adapter->pdev->dev);
2813	return 0;
2814}
2815
2816static void igb_ethtool_complete(struct net_device *netdev)
2817{
2818	struct igb_adapter *adapter = netdev_priv(netdev);
2819	pm_runtime_put(&adapter->pdev->dev);
2820}
2821
2822static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2823{
2824	return IGB_RETA_SIZE;
2825}
2826
2827static int igb_get_rxfh_indir(struct net_device *netdev, u32 *indir)
2828{
2829	struct igb_adapter *adapter = netdev_priv(netdev);
2830	int i;
2831
2832	for (i = 0; i < IGB_RETA_SIZE; i++)
2833		indir[i] = adapter->rss_indir_tbl[i];
2834
2835	return 0;
2836}
2837
2838void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2839{
2840	struct e1000_hw *hw = &adapter->hw;
2841	u32 reg = E1000_RETA(0);
2842	u32 shift = 0;
2843	int i = 0;
2844
2845	switch (hw->mac.type) {
2846	case e1000_82575:
2847		shift = 6;
2848		break;
2849	case e1000_82576:
2850		/* 82576 supports 2 RSS queues for SR-IOV */
2851		if (adapter->vfs_allocated_count)
2852			shift = 3;
2853		break;
2854	default:
2855		break;
2856	}
2857
2858	while (i < IGB_RETA_SIZE) {
2859		u32 val = 0;
2860		int j;
2861
2862		for (j = 3; j >= 0; j--) {
2863			val <<= 8;
2864			val |= adapter->rss_indir_tbl[i + j];
2865		}
2866
2867		wr32(reg, val << shift);
2868		reg += 4;
2869		i += 4;
2870	}
2871}
2872
2873static int igb_set_rxfh_indir(struct net_device *netdev, const u32 *indir)
2874{
2875	struct igb_adapter *adapter = netdev_priv(netdev);
2876	struct e1000_hw *hw = &adapter->hw;
2877	int i;
2878	u32 num_queues;
2879
2880	num_queues = adapter->rss_queues;
2881
2882	switch (hw->mac.type) {
2883	case e1000_82576:
2884		/* 82576 supports 2 RSS queues for SR-IOV */
2885		if (adapter->vfs_allocated_count)
2886			num_queues = 2;
2887		break;
2888	default:
2889		break;
2890	}
2891
2892	/* Verify user input. */
2893	for (i = 0; i < IGB_RETA_SIZE; i++)
2894		if (indir[i] >= num_queues)
2895			return -EINVAL;
2896
2897
2898	for (i = 0; i < IGB_RETA_SIZE; i++)
2899		adapter->rss_indir_tbl[i] = indir[i];
2900
2901	igb_write_rss_indir_tbl(adapter);
2902
2903	return 0;
2904}
2905
2906static unsigned int igb_max_channels(struct igb_adapter *adapter)
2907{
2908	struct e1000_hw *hw = &adapter->hw;
2909	unsigned int max_combined = 0;
2910
2911	switch (hw->mac.type) {
2912	case e1000_i211:
2913		max_combined = IGB_MAX_RX_QUEUES_I211;
2914		break;
2915	case e1000_82575:
2916	case e1000_i210:
2917		max_combined = IGB_MAX_RX_QUEUES_82575;
2918		break;
2919	case e1000_i350:
2920		if (!!adapter->vfs_allocated_count) {
2921			max_combined = 1;
2922			break;
2923		}
2924		/* fall through */
2925	case e1000_82576:
2926		if (!!adapter->vfs_allocated_count) {
2927			max_combined = 2;
2928			break;
2929		}
2930		/* fall through */
2931	case e1000_82580:
2932	case e1000_i354:
2933	default:
2934		max_combined = IGB_MAX_RX_QUEUES;
2935		break;
2936	}
2937
2938	return max_combined;
2939}
2940
2941static void igb_get_channels(struct net_device *netdev,
2942			     struct ethtool_channels *ch)
2943{
2944	struct igb_adapter *adapter = netdev_priv(netdev);
2945
2946	/* Report maximum channels */
2947	ch->max_combined = igb_max_channels(adapter);
2948
2949	/* Report info for other vector */
2950	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2951		ch->max_other = NON_Q_VECTORS;
2952		ch->other_count = NON_Q_VECTORS;
2953	}
2954
2955	ch->combined_count = adapter->rss_queues;
2956}
2957
2958static int igb_set_channels(struct net_device *netdev,
2959			    struct ethtool_channels *ch)
2960{
2961	struct igb_adapter *adapter = netdev_priv(netdev);
2962	unsigned int count = ch->combined_count;
2963
2964	/* Verify they are not requesting separate vectors */
2965	if (!count || ch->rx_count || ch->tx_count)
2966		return -EINVAL;
2967
2968	/* Verify other_count is valid and has not been changed */
2969	if (ch->other_count != NON_Q_VECTORS)
2970		return -EINVAL;
2971
2972	/* Verify the number of channels doesn't exceed hw limits */
2973	if (count > igb_max_channels(adapter))
2974		return -EINVAL;
2975
2976	if (count != adapter->rss_queues) {
2977		adapter->rss_queues = count;
2978
2979		/* Hardware has to reinitialize queues and interrupts to
2980		 * match the new configuration.
2981		 */
2982		return igb_reinit_queues(adapter);
2983	}
2984
2985	return 0;
2986}
2987
2988static const struct ethtool_ops igb_ethtool_ops = {
2989	.get_settings		= igb_get_settings,
2990	.set_settings		= igb_set_settings,
2991	.get_drvinfo		= igb_get_drvinfo,
2992	.get_regs_len		= igb_get_regs_len,
2993	.get_regs		= igb_get_regs,
2994	.get_wol		= igb_get_wol,
2995	.set_wol		= igb_set_wol,
2996	.get_msglevel		= igb_get_msglevel,
2997	.set_msglevel		= igb_set_msglevel,
2998	.nway_reset		= igb_nway_reset,
2999	.get_link		= igb_get_link,
3000	.get_eeprom_len		= igb_get_eeprom_len,
3001	.get_eeprom		= igb_get_eeprom,
3002	.set_eeprom		= igb_set_eeprom,
3003	.get_ringparam		= igb_get_ringparam,
3004	.set_ringparam		= igb_set_ringparam,
3005	.get_pauseparam		= igb_get_pauseparam,
3006	.set_pauseparam		= igb_set_pauseparam,
3007	.self_test		= igb_diag_test,
3008	.get_strings		= igb_get_strings,
3009	.set_phys_id		= igb_set_phys_id,
3010	.get_sset_count		= igb_get_sset_count,
3011	.get_ethtool_stats	= igb_get_ethtool_stats,
3012	.get_coalesce		= igb_get_coalesce,
3013	.set_coalesce		= igb_set_coalesce,
3014	.get_ts_info		= igb_get_ts_info,
3015	.get_rxnfc		= igb_get_rxnfc,
3016	.set_rxnfc		= igb_set_rxnfc,
3017	.get_eee		= igb_get_eee,
3018	.set_eee		= igb_set_eee,
3019	.get_module_info	= igb_get_module_info,
3020	.get_module_eeprom	= igb_get_module_eeprom,
3021	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3022	.get_rxfh_indir		= igb_get_rxfh_indir,
3023	.set_rxfh_indir		= igb_set_rxfh_indir,
3024	.get_channels		= igb_get_channels,
3025	.set_channels		= igb_set_channels,
3026	.begin			= igb_ethtool_begin,
3027	.complete		= igb_ethtool_complete,
3028};
3029
3030void igb_set_ethtool_ops(struct net_device *netdev)
3031{
3032	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
3033}
3034