[go: nahoru, domu]

igb_ethtool.c revision d4f3cd49d2800dc037724efa9b33c485a1cc23d3
1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24/* ethtool support for igb */
25
26#include <linux/vmalloc.h>
27#include <linux/netdevice.h>
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/interrupt.h>
31#include <linux/if_ether.h>
32#include <linux/ethtool.h>
33#include <linux/sched.h>
34#include <linux/slab.h>
35#include <linux/pm_runtime.h>
36#include <linux/highmem.h>
37#include <linux/mdio.h>
38
39#include "igb.h"
40
41struct igb_stats {
42	char stat_string[ETH_GSTRING_LEN];
43	int sizeof_stat;
44	int stat_offset;
45};
46
47#define IGB_STAT(_name, _stat) { \
48	.stat_string = _name, \
49	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
50	.stat_offset = offsetof(struct igb_adapter, _stat) \
51}
52static const struct igb_stats igb_gstrings_stats[] = {
53	IGB_STAT("rx_packets", stats.gprc),
54	IGB_STAT("tx_packets", stats.gptc),
55	IGB_STAT("rx_bytes", stats.gorc),
56	IGB_STAT("tx_bytes", stats.gotc),
57	IGB_STAT("rx_broadcast", stats.bprc),
58	IGB_STAT("tx_broadcast", stats.bptc),
59	IGB_STAT("rx_multicast", stats.mprc),
60	IGB_STAT("tx_multicast", stats.mptc),
61	IGB_STAT("multicast", stats.mprc),
62	IGB_STAT("collisions", stats.colc),
63	IGB_STAT("rx_crc_errors", stats.crcerrs),
64	IGB_STAT("rx_no_buffer_count", stats.rnbc),
65	IGB_STAT("rx_missed_errors", stats.mpc),
66	IGB_STAT("tx_aborted_errors", stats.ecol),
67	IGB_STAT("tx_carrier_errors", stats.tncrs),
68	IGB_STAT("tx_window_errors", stats.latecol),
69	IGB_STAT("tx_abort_late_coll", stats.latecol),
70	IGB_STAT("tx_deferred_ok", stats.dc),
71	IGB_STAT("tx_single_coll_ok", stats.scc),
72	IGB_STAT("tx_multi_coll_ok", stats.mcc),
73	IGB_STAT("tx_timeout_count", tx_timeout_count),
74	IGB_STAT("rx_long_length_errors", stats.roc),
75	IGB_STAT("rx_short_length_errors", stats.ruc),
76	IGB_STAT("rx_align_errors", stats.algnerrc),
77	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
78	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
79	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
80	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
81	IGB_STAT("tx_flow_control_xon", stats.xontxc),
82	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
83	IGB_STAT("rx_long_byte_count", stats.gorc),
84	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
85	IGB_STAT("tx_smbus", stats.mgptc),
86	IGB_STAT("rx_smbus", stats.mgprc),
87	IGB_STAT("dropped_smbus", stats.mgpdc),
88	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
89	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
90	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
91	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
92	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
93	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94};
95
96#define IGB_NETDEV_STAT(_net_stat) { \
97	.stat_string = __stringify(_net_stat), \
98	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100}
101static const struct igb_stats igb_gstrings_net_stats[] = {
102	IGB_NETDEV_STAT(rx_errors),
103	IGB_NETDEV_STAT(tx_errors),
104	IGB_NETDEV_STAT(tx_dropped),
105	IGB_NETDEV_STAT(rx_length_errors),
106	IGB_NETDEV_STAT(rx_over_errors),
107	IGB_NETDEV_STAT(rx_frame_errors),
108	IGB_NETDEV_STAT(rx_fifo_errors),
109	IGB_NETDEV_STAT(tx_fifo_errors),
110	IGB_NETDEV_STAT(tx_heartbeat_errors)
111};
112
113#define IGB_GLOBAL_STATS_LEN	\
114	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115#define IGB_NETDEV_STATS_LEN	\
116	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117#define IGB_RX_QUEUE_STATS_LEN \
118	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119
120#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121
122#define IGB_QUEUE_STATS_LEN \
123	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124	  IGB_RX_QUEUE_STATS_LEN) + \
125	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126	  IGB_TX_QUEUE_STATS_LEN))
127#define IGB_STATS_LEN \
128	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129
130static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131	"Register test  (offline)", "Eeprom test    (offline)",
132	"Interrupt test (offline)", "Loopback test  (offline)",
133	"Link test   (on/offline)"
134};
135#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136
137static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138{
139	struct igb_adapter *adapter = netdev_priv(netdev);
140	struct e1000_hw *hw = &adapter->hw;
141	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
142	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
143	u32 status;
144	u32 speed;
145
146	status = rd32(E1000_STATUS);
147	if (hw->phy.media_type == e1000_media_type_copper) {
148
149		ecmd->supported = (SUPPORTED_10baseT_Half |
150				   SUPPORTED_10baseT_Full |
151				   SUPPORTED_100baseT_Half |
152				   SUPPORTED_100baseT_Full |
153				   SUPPORTED_1000baseT_Full|
154				   SUPPORTED_Autoneg |
155				   SUPPORTED_TP |
156				   SUPPORTED_Pause);
157		ecmd->advertising = ADVERTISED_TP;
158
159		if (hw->mac.autoneg == 1) {
160			ecmd->advertising |= ADVERTISED_Autoneg;
161			/* the e1000 autoneg seems to match ethtool nicely */
162			ecmd->advertising |= hw->phy.autoneg_advertised;
163		}
164
165		ecmd->port = PORT_TP;
166		ecmd->phy_address = hw->phy.addr;
167		ecmd->transceiver = XCVR_INTERNAL;
168	} else {
169		ecmd->supported = (SUPPORTED_FIBRE |
170				   SUPPORTED_1000baseKX_Full |
171				   SUPPORTED_Autoneg |
172				   SUPPORTED_Pause);
173		ecmd->advertising = (ADVERTISED_FIBRE |
174				     ADVERTISED_1000baseKX_Full);
175		if (hw->mac.type == e1000_i354) {
176			if ((hw->device_id ==
177			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
178			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
179				ecmd->supported |= SUPPORTED_2500baseX_Full;
180				ecmd->supported &=
181					~SUPPORTED_1000baseKX_Full;
182				ecmd->advertising |= ADVERTISED_2500baseX_Full;
183				ecmd->advertising &=
184					~ADVERTISED_1000baseKX_Full;
185			}
186		}
187		if (eth_flags->e100_base_fx) {
188			ecmd->supported |= SUPPORTED_100baseT_Full;
189			ecmd->advertising |= ADVERTISED_100baseT_Full;
190		}
191		if (hw->mac.autoneg == 1)
192			ecmd->advertising |= ADVERTISED_Autoneg;
193
194		ecmd->port = PORT_FIBRE;
195		ecmd->transceiver = XCVR_EXTERNAL;
196	}
197	if (hw->mac.autoneg != 1)
198		ecmd->advertising &= ~(ADVERTISED_Pause |
199				       ADVERTISED_Asym_Pause);
200
201	switch (hw->fc.requested_mode) {
202	case e1000_fc_full:
203		ecmd->advertising |= ADVERTISED_Pause;
204		break;
205	case e1000_fc_rx_pause:
206		ecmd->advertising |= (ADVERTISED_Pause |
207				      ADVERTISED_Asym_Pause);
208		break;
209	case e1000_fc_tx_pause:
210		ecmd->advertising |=  ADVERTISED_Asym_Pause;
211		break;
212	default:
213		ecmd->advertising &= ~(ADVERTISED_Pause |
214				       ADVERTISED_Asym_Pause);
215	}
216	if (status & E1000_STATUS_LU) {
217		if ((status & E1000_STATUS_2P5_SKU) &&
218		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
219			speed = SPEED_2500;
220		} else if (status & E1000_STATUS_SPEED_1000) {
221			speed = SPEED_1000;
222		} else if (status & E1000_STATUS_SPEED_100) {
223			speed = SPEED_100;
224		} else {
225			speed = SPEED_10;
226		}
227		if ((status & E1000_STATUS_FD) ||
228		    hw->phy.media_type != e1000_media_type_copper)
229			ecmd->duplex = DUPLEX_FULL;
230		else
231			ecmd->duplex = DUPLEX_HALF;
232	} else {
233		speed = SPEED_UNKNOWN;
234		ecmd->duplex = DUPLEX_UNKNOWN;
235	}
236	ethtool_cmd_speed_set(ecmd, speed);
237	if ((hw->phy.media_type == e1000_media_type_fiber) ||
238	    hw->mac.autoneg)
239		ecmd->autoneg = AUTONEG_ENABLE;
240	else
241		ecmd->autoneg = AUTONEG_DISABLE;
242
243	/* MDI-X => 2; MDI =>1; Invalid =>0 */
244	if (hw->phy.media_type == e1000_media_type_copper)
245		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
246						      ETH_TP_MDI;
247	else
248		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
249
250	if (hw->phy.mdix == AUTO_ALL_MODES)
251		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
252	else
253		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
254
255	return 0;
256}
257
258static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
259{
260	struct igb_adapter *adapter = netdev_priv(netdev);
261	struct e1000_hw *hw = &adapter->hw;
262
263	/* When SoL/IDER sessions are active, autoneg/speed/duplex
264	 * cannot be changed
265	 */
266	if (igb_check_reset_block(hw)) {
267		dev_err(&adapter->pdev->dev,
268			"Cannot change link characteristics when SoL/IDER is active.\n");
269		return -EINVAL;
270	}
271
272	/* MDI setting is only allowed when autoneg enabled because
273	 * some hardware doesn't allow MDI setting when speed or
274	 * duplex is forced.
275	 */
276	if (ecmd->eth_tp_mdix_ctrl) {
277		if (hw->phy.media_type != e1000_media_type_copper)
278			return -EOPNOTSUPP;
279
280		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
281		    (ecmd->autoneg != AUTONEG_ENABLE)) {
282			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
283			return -EINVAL;
284		}
285	}
286
287	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
288		usleep_range(1000, 2000);
289
290	if (ecmd->autoneg == AUTONEG_ENABLE) {
291		hw->mac.autoneg = 1;
292		if (hw->phy.media_type == e1000_media_type_fiber) {
293			hw->phy.autoneg_advertised = ecmd->advertising |
294						     ADVERTISED_FIBRE |
295						     ADVERTISED_Autoneg;
296			switch (adapter->link_speed) {
297			case SPEED_2500:
298				hw->phy.autoneg_advertised =
299					ADVERTISED_2500baseX_Full;
300				break;
301			case SPEED_1000:
302				hw->phy.autoneg_advertised =
303					ADVERTISED_1000baseT_Full;
304				break;
305			case SPEED_100:
306				hw->phy.autoneg_advertised =
307					ADVERTISED_100baseT_Full;
308				break;
309			default:
310				break;
311			}
312		} else {
313			hw->phy.autoneg_advertised = ecmd->advertising |
314						     ADVERTISED_TP |
315						     ADVERTISED_Autoneg;
316		}
317		ecmd->advertising = hw->phy.autoneg_advertised;
318		if (adapter->fc_autoneg)
319			hw->fc.requested_mode = e1000_fc_default;
320	} else {
321		u32 speed = ethtool_cmd_speed(ecmd);
322		/* calling this overrides forced MDI setting */
323		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
324			clear_bit(__IGB_RESETTING, &adapter->state);
325			return -EINVAL;
326		}
327	}
328
329	/* MDI-X => 2; MDI => 1; Auto => 3 */
330	if (ecmd->eth_tp_mdix_ctrl) {
331		/* fix up the value for auto (3 => 0) as zero is mapped
332		 * internally to auto
333		 */
334		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
335			hw->phy.mdix = AUTO_ALL_MODES;
336		else
337			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
338	}
339
340	/* reset the link */
341	if (netif_running(adapter->netdev)) {
342		igb_down(adapter);
343		igb_up(adapter);
344	} else
345		igb_reset(adapter);
346
347	clear_bit(__IGB_RESETTING, &adapter->state);
348	return 0;
349}
350
351static u32 igb_get_link(struct net_device *netdev)
352{
353	struct igb_adapter *adapter = netdev_priv(netdev);
354	struct e1000_mac_info *mac = &adapter->hw.mac;
355
356	/* If the link is not reported up to netdev, interrupts are disabled,
357	 * and so the physical link state may have changed since we last
358	 * looked. Set get_link_status to make sure that the true link
359	 * state is interrogated, rather than pulling a cached and possibly
360	 * stale link state from the driver.
361	 */
362	if (!netif_carrier_ok(netdev))
363		mac->get_link_status = 1;
364
365	return igb_has_link(adapter);
366}
367
368static void igb_get_pauseparam(struct net_device *netdev,
369			       struct ethtool_pauseparam *pause)
370{
371	struct igb_adapter *adapter = netdev_priv(netdev);
372	struct e1000_hw *hw = &adapter->hw;
373
374	pause->autoneg =
375		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
376
377	if (hw->fc.current_mode == e1000_fc_rx_pause)
378		pause->rx_pause = 1;
379	else if (hw->fc.current_mode == e1000_fc_tx_pause)
380		pause->tx_pause = 1;
381	else if (hw->fc.current_mode == e1000_fc_full) {
382		pause->rx_pause = 1;
383		pause->tx_pause = 1;
384	}
385}
386
387static int igb_set_pauseparam(struct net_device *netdev,
388			      struct ethtool_pauseparam *pause)
389{
390	struct igb_adapter *adapter = netdev_priv(netdev);
391	struct e1000_hw *hw = &adapter->hw;
392	int retval = 0;
393
394	/* 100basefx does not support setting link flow control */
395	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
396		return -EINVAL;
397
398	adapter->fc_autoneg = pause->autoneg;
399
400	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
401		usleep_range(1000, 2000);
402
403	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
404		hw->fc.requested_mode = e1000_fc_default;
405		if (netif_running(adapter->netdev)) {
406			igb_down(adapter);
407			igb_up(adapter);
408		} else {
409			igb_reset(adapter);
410		}
411	} else {
412		if (pause->rx_pause && pause->tx_pause)
413			hw->fc.requested_mode = e1000_fc_full;
414		else if (pause->rx_pause && !pause->tx_pause)
415			hw->fc.requested_mode = e1000_fc_rx_pause;
416		else if (!pause->rx_pause && pause->tx_pause)
417			hw->fc.requested_mode = e1000_fc_tx_pause;
418		else if (!pause->rx_pause && !pause->tx_pause)
419			hw->fc.requested_mode = e1000_fc_none;
420
421		hw->fc.current_mode = hw->fc.requested_mode;
422
423		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
424			  igb_force_mac_fc(hw) : igb_setup_link(hw));
425	}
426
427	clear_bit(__IGB_RESETTING, &adapter->state);
428	return retval;
429}
430
431static u32 igb_get_msglevel(struct net_device *netdev)
432{
433	struct igb_adapter *adapter = netdev_priv(netdev);
434	return adapter->msg_enable;
435}
436
437static void igb_set_msglevel(struct net_device *netdev, u32 data)
438{
439	struct igb_adapter *adapter = netdev_priv(netdev);
440	adapter->msg_enable = data;
441}
442
443static int igb_get_regs_len(struct net_device *netdev)
444{
445#define IGB_REGS_LEN 739
446	return IGB_REGS_LEN * sizeof(u32);
447}
448
449static void igb_get_regs(struct net_device *netdev,
450			 struct ethtool_regs *regs, void *p)
451{
452	struct igb_adapter *adapter = netdev_priv(netdev);
453	struct e1000_hw *hw = &adapter->hw;
454	u32 *regs_buff = p;
455	u8 i;
456
457	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
458
459	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
460
461	/* General Registers */
462	regs_buff[0] = rd32(E1000_CTRL);
463	regs_buff[1] = rd32(E1000_STATUS);
464	regs_buff[2] = rd32(E1000_CTRL_EXT);
465	regs_buff[3] = rd32(E1000_MDIC);
466	regs_buff[4] = rd32(E1000_SCTL);
467	regs_buff[5] = rd32(E1000_CONNSW);
468	regs_buff[6] = rd32(E1000_VET);
469	regs_buff[7] = rd32(E1000_LEDCTL);
470	regs_buff[8] = rd32(E1000_PBA);
471	regs_buff[9] = rd32(E1000_PBS);
472	regs_buff[10] = rd32(E1000_FRTIMER);
473	regs_buff[11] = rd32(E1000_TCPTIMER);
474
475	/* NVM Register */
476	regs_buff[12] = rd32(E1000_EECD);
477
478	/* Interrupt */
479	/* Reading EICS for EICR because they read the
480	 * same but EICS does not clear on read
481	 */
482	regs_buff[13] = rd32(E1000_EICS);
483	regs_buff[14] = rd32(E1000_EICS);
484	regs_buff[15] = rd32(E1000_EIMS);
485	regs_buff[16] = rd32(E1000_EIMC);
486	regs_buff[17] = rd32(E1000_EIAC);
487	regs_buff[18] = rd32(E1000_EIAM);
488	/* Reading ICS for ICR because they read the
489	 * same but ICS does not clear on read
490	 */
491	regs_buff[19] = rd32(E1000_ICS);
492	regs_buff[20] = rd32(E1000_ICS);
493	regs_buff[21] = rd32(E1000_IMS);
494	regs_buff[22] = rd32(E1000_IMC);
495	regs_buff[23] = rd32(E1000_IAC);
496	regs_buff[24] = rd32(E1000_IAM);
497	regs_buff[25] = rd32(E1000_IMIRVP);
498
499	/* Flow Control */
500	regs_buff[26] = rd32(E1000_FCAL);
501	regs_buff[27] = rd32(E1000_FCAH);
502	regs_buff[28] = rd32(E1000_FCTTV);
503	regs_buff[29] = rd32(E1000_FCRTL);
504	regs_buff[30] = rd32(E1000_FCRTH);
505	regs_buff[31] = rd32(E1000_FCRTV);
506
507	/* Receive */
508	regs_buff[32] = rd32(E1000_RCTL);
509	regs_buff[33] = rd32(E1000_RXCSUM);
510	regs_buff[34] = rd32(E1000_RLPML);
511	regs_buff[35] = rd32(E1000_RFCTL);
512	regs_buff[36] = rd32(E1000_MRQC);
513	regs_buff[37] = rd32(E1000_VT_CTL);
514
515	/* Transmit */
516	regs_buff[38] = rd32(E1000_TCTL);
517	regs_buff[39] = rd32(E1000_TCTL_EXT);
518	regs_buff[40] = rd32(E1000_TIPG);
519	regs_buff[41] = rd32(E1000_DTXCTL);
520
521	/* Wake Up */
522	regs_buff[42] = rd32(E1000_WUC);
523	regs_buff[43] = rd32(E1000_WUFC);
524	regs_buff[44] = rd32(E1000_WUS);
525	regs_buff[45] = rd32(E1000_IPAV);
526	regs_buff[46] = rd32(E1000_WUPL);
527
528	/* MAC */
529	regs_buff[47] = rd32(E1000_PCS_CFG0);
530	regs_buff[48] = rd32(E1000_PCS_LCTL);
531	regs_buff[49] = rd32(E1000_PCS_LSTAT);
532	regs_buff[50] = rd32(E1000_PCS_ANADV);
533	regs_buff[51] = rd32(E1000_PCS_LPAB);
534	regs_buff[52] = rd32(E1000_PCS_NPTX);
535	regs_buff[53] = rd32(E1000_PCS_LPABNP);
536
537	/* Statistics */
538	regs_buff[54] = adapter->stats.crcerrs;
539	regs_buff[55] = adapter->stats.algnerrc;
540	regs_buff[56] = adapter->stats.symerrs;
541	regs_buff[57] = adapter->stats.rxerrc;
542	regs_buff[58] = adapter->stats.mpc;
543	regs_buff[59] = adapter->stats.scc;
544	regs_buff[60] = adapter->stats.ecol;
545	regs_buff[61] = adapter->stats.mcc;
546	regs_buff[62] = adapter->stats.latecol;
547	regs_buff[63] = adapter->stats.colc;
548	regs_buff[64] = adapter->stats.dc;
549	regs_buff[65] = adapter->stats.tncrs;
550	regs_buff[66] = adapter->stats.sec;
551	regs_buff[67] = adapter->stats.htdpmc;
552	regs_buff[68] = adapter->stats.rlec;
553	regs_buff[69] = adapter->stats.xonrxc;
554	regs_buff[70] = adapter->stats.xontxc;
555	regs_buff[71] = adapter->stats.xoffrxc;
556	regs_buff[72] = adapter->stats.xofftxc;
557	regs_buff[73] = adapter->stats.fcruc;
558	regs_buff[74] = adapter->stats.prc64;
559	regs_buff[75] = adapter->stats.prc127;
560	regs_buff[76] = adapter->stats.prc255;
561	regs_buff[77] = adapter->stats.prc511;
562	regs_buff[78] = adapter->stats.prc1023;
563	regs_buff[79] = adapter->stats.prc1522;
564	regs_buff[80] = adapter->stats.gprc;
565	regs_buff[81] = adapter->stats.bprc;
566	regs_buff[82] = adapter->stats.mprc;
567	regs_buff[83] = adapter->stats.gptc;
568	regs_buff[84] = adapter->stats.gorc;
569	regs_buff[86] = adapter->stats.gotc;
570	regs_buff[88] = adapter->stats.rnbc;
571	regs_buff[89] = adapter->stats.ruc;
572	regs_buff[90] = adapter->stats.rfc;
573	regs_buff[91] = adapter->stats.roc;
574	regs_buff[92] = adapter->stats.rjc;
575	regs_buff[93] = adapter->stats.mgprc;
576	regs_buff[94] = adapter->stats.mgpdc;
577	regs_buff[95] = adapter->stats.mgptc;
578	regs_buff[96] = adapter->stats.tor;
579	regs_buff[98] = adapter->stats.tot;
580	regs_buff[100] = adapter->stats.tpr;
581	regs_buff[101] = adapter->stats.tpt;
582	regs_buff[102] = adapter->stats.ptc64;
583	regs_buff[103] = adapter->stats.ptc127;
584	regs_buff[104] = adapter->stats.ptc255;
585	regs_buff[105] = adapter->stats.ptc511;
586	regs_buff[106] = adapter->stats.ptc1023;
587	regs_buff[107] = adapter->stats.ptc1522;
588	regs_buff[108] = adapter->stats.mptc;
589	regs_buff[109] = adapter->stats.bptc;
590	regs_buff[110] = adapter->stats.tsctc;
591	regs_buff[111] = adapter->stats.iac;
592	regs_buff[112] = adapter->stats.rpthc;
593	regs_buff[113] = adapter->stats.hgptc;
594	regs_buff[114] = adapter->stats.hgorc;
595	regs_buff[116] = adapter->stats.hgotc;
596	regs_buff[118] = adapter->stats.lenerrs;
597	regs_buff[119] = adapter->stats.scvpc;
598	regs_buff[120] = adapter->stats.hrmpc;
599
600	for (i = 0; i < 4; i++)
601		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
602	for (i = 0; i < 4; i++)
603		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
604	for (i = 0; i < 4; i++)
605		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
606	for (i = 0; i < 4; i++)
607		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
608	for (i = 0; i < 4; i++)
609		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
610	for (i = 0; i < 4; i++)
611		regs_buff[141 + i] = rd32(E1000_RDH(i));
612	for (i = 0; i < 4; i++)
613		regs_buff[145 + i] = rd32(E1000_RDT(i));
614	for (i = 0; i < 4; i++)
615		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
616
617	for (i = 0; i < 10; i++)
618		regs_buff[153 + i] = rd32(E1000_EITR(i));
619	for (i = 0; i < 8; i++)
620		regs_buff[163 + i] = rd32(E1000_IMIR(i));
621	for (i = 0; i < 8; i++)
622		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
623	for (i = 0; i < 16; i++)
624		regs_buff[179 + i] = rd32(E1000_RAL(i));
625	for (i = 0; i < 16; i++)
626		regs_buff[195 + i] = rd32(E1000_RAH(i));
627
628	for (i = 0; i < 4; i++)
629		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
630	for (i = 0; i < 4; i++)
631		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
632	for (i = 0; i < 4; i++)
633		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
634	for (i = 0; i < 4; i++)
635		regs_buff[223 + i] = rd32(E1000_TDH(i));
636	for (i = 0; i < 4; i++)
637		regs_buff[227 + i] = rd32(E1000_TDT(i));
638	for (i = 0; i < 4; i++)
639		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
640	for (i = 0; i < 4; i++)
641		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
642	for (i = 0; i < 4; i++)
643		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
644	for (i = 0; i < 4; i++)
645		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
646
647	for (i = 0; i < 4; i++)
648		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
649	for (i = 0; i < 4; i++)
650		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
651	for (i = 0; i < 32; i++)
652		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
653	for (i = 0; i < 128; i++)
654		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
655	for (i = 0; i < 128; i++)
656		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
657	for (i = 0; i < 4; i++)
658		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
659
660	regs_buff[547] = rd32(E1000_TDFH);
661	regs_buff[548] = rd32(E1000_TDFT);
662	regs_buff[549] = rd32(E1000_TDFHS);
663	regs_buff[550] = rd32(E1000_TDFPC);
664
665	if (hw->mac.type > e1000_82580) {
666		regs_buff[551] = adapter->stats.o2bgptc;
667		regs_buff[552] = adapter->stats.b2ospc;
668		regs_buff[553] = adapter->stats.o2bspc;
669		regs_buff[554] = adapter->stats.b2ogprc;
670	}
671
672	if (hw->mac.type != e1000_82576)
673		return;
674	for (i = 0; i < 12; i++)
675		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
676	for (i = 0; i < 4; i++)
677		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
678	for (i = 0; i < 12; i++)
679		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
680	for (i = 0; i < 12; i++)
681		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
682	for (i = 0; i < 12; i++)
683		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
684	for (i = 0; i < 12; i++)
685		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
686	for (i = 0; i < 12; i++)
687		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
688	for (i = 0; i < 12; i++)
689		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
690
691	for (i = 0; i < 12; i++)
692		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
693	for (i = 0; i < 12; i++)
694		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
695	for (i = 0; i < 12; i++)
696		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
697	for (i = 0; i < 12; i++)
698		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
699	for (i = 0; i < 12; i++)
700		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
701	for (i = 0; i < 12; i++)
702		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
703	for (i = 0; i < 12; i++)
704		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
705	for (i = 0; i < 12; i++)
706		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
707}
708
709static int igb_get_eeprom_len(struct net_device *netdev)
710{
711	struct igb_adapter *adapter = netdev_priv(netdev);
712	return adapter->hw.nvm.word_size * 2;
713}
714
715static int igb_get_eeprom(struct net_device *netdev,
716			  struct ethtool_eeprom *eeprom, u8 *bytes)
717{
718	struct igb_adapter *adapter = netdev_priv(netdev);
719	struct e1000_hw *hw = &adapter->hw;
720	u16 *eeprom_buff;
721	int first_word, last_word;
722	int ret_val = 0;
723	u16 i;
724
725	if (eeprom->len == 0)
726		return -EINVAL;
727
728	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
729
730	first_word = eeprom->offset >> 1;
731	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
732
733	eeprom_buff = kmalloc(sizeof(u16) *
734			(last_word - first_word + 1), GFP_KERNEL);
735	if (!eeprom_buff)
736		return -ENOMEM;
737
738	if (hw->nvm.type == e1000_nvm_eeprom_spi)
739		ret_val = hw->nvm.ops.read(hw, first_word,
740					   last_word - first_word + 1,
741					   eeprom_buff);
742	else {
743		for (i = 0; i < last_word - first_word + 1; i++) {
744			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
745						   &eeprom_buff[i]);
746			if (ret_val)
747				break;
748		}
749	}
750
751	/* Device's eeprom is always little-endian, word addressable */
752	for (i = 0; i < last_word - first_word + 1; i++)
753		le16_to_cpus(&eeprom_buff[i]);
754
755	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
756			eeprom->len);
757	kfree(eeprom_buff);
758
759	return ret_val;
760}
761
762static int igb_set_eeprom(struct net_device *netdev,
763			  struct ethtool_eeprom *eeprom, u8 *bytes)
764{
765	struct igb_adapter *adapter = netdev_priv(netdev);
766	struct e1000_hw *hw = &adapter->hw;
767	u16 *eeprom_buff;
768	void *ptr;
769	int max_len, first_word, last_word, ret_val = 0;
770	u16 i;
771
772	if (eeprom->len == 0)
773		return -EOPNOTSUPP;
774
775	if ((hw->mac.type >= e1000_i210) &&
776	    !igb_get_flash_presence_i210(hw)) {
777		return -EOPNOTSUPP;
778	}
779
780	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
781		return -EFAULT;
782
783	max_len = hw->nvm.word_size * 2;
784
785	first_word = eeprom->offset >> 1;
786	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
787	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
788	if (!eeprom_buff)
789		return -ENOMEM;
790
791	ptr = (void *)eeprom_buff;
792
793	if (eeprom->offset & 1) {
794		/* need read/modify/write of first changed EEPROM word
795		 * only the second byte of the word is being modified
796		 */
797		ret_val = hw->nvm.ops.read(hw, first_word, 1,
798					    &eeprom_buff[0]);
799		ptr++;
800	}
801	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
802		/* need read/modify/write of last changed EEPROM word
803		 * only the first byte of the word is being modified
804		 */
805		ret_val = hw->nvm.ops.read(hw, last_word, 1,
806				   &eeprom_buff[last_word - first_word]);
807	}
808
809	/* Device's eeprom is always little-endian, word addressable */
810	for (i = 0; i < last_word - first_word + 1; i++)
811		le16_to_cpus(&eeprom_buff[i]);
812
813	memcpy(ptr, bytes, eeprom->len);
814
815	for (i = 0; i < last_word - first_word + 1; i++)
816		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
817
818	ret_val = hw->nvm.ops.write(hw, first_word,
819				    last_word - first_word + 1, eeprom_buff);
820
821	/* Update the checksum if nvm write succeeded */
822	if (ret_val == 0)
823		hw->nvm.ops.update(hw);
824
825	igb_set_fw_version(adapter);
826	kfree(eeprom_buff);
827	return ret_val;
828}
829
830static void igb_get_drvinfo(struct net_device *netdev,
831			    struct ethtool_drvinfo *drvinfo)
832{
833	struct igb_adapter *adapter = netdev_priv(netdev);
834
835	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
836	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
837
838	/* EEPROM image version # is reported as firmware version # for
839	 * 82575 controllers
840	 */
841	strlcpy(drvinfo->fw_version, adapter->fw_version,
842		sizeof(drvinfo->fw_version));
843	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
844		sizeof(drvinfo->bus_info));
845	drvinfo->n_stats = IGB_STATS_LEN;
846	drvinfo->testinfo_len = IGB_TEST_LEN;
847	drvinfo->regdump_len = igb_get_regs_len(netdev);
848	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
849}
850
851static void igb_get_ringparam(struct net_device *netdev,
852			      struct ethtool_ringparam *ring)
853{
854	struct igb_adapter *adapter = netdev_priv(netdev);
855
856	ring->rx_max_pending = IGB_MAX_RXD;
857	ring->tx_max_pending = IGB_MAX_TXD;
858	ring->rx_pending = adapter->rx_ring_count;
859	ring->tx_pending = adapter->tx_ring_count;
860}
861
862static int igb_set_ringparam(struct net_device *netdev,
863			     struct ethtool_ringparam *ring)
864{
865	struct igb_adapter *adapter = netdev_priv(netdev);
866	struct igb_ring *temp_ring;
867	int i, err = 0;
868	u16 new_rx_count, new_tx_count;
869
870	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
871		return -EINVAL;
872
873	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
874	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
875	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
876
877	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
878	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
879	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
880
881	if ((new_tx_count == adapter->tx_ring_count) &&
882	    (new_rx_count == adapter->rx_ring_count)) {
883		/* nothing to do */
884		return 0;
885	}
886
887	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
888		usleep_range(1000, 2000);
889
890	if (!netif_running(adapter->netdev)) {
891		for (i = 0; i < adapter->num_tx_queues; i++)
892			adapter->tx_ring[i]->count = new_tx_count;
893		for (i = 0; i < adapter->num_rx_queues; i++)
894			adapter->rx_ring[i]->count = new_rx_count;
895		adapter->tx_ring_count = new_tx_count;
896		adapter->rx_ring_count = new_rx_count;
897		goto clear_reset;
898	}
899
900	if (adapter->num_tx_queues > adapter->num_rx_queues)
901		temp_ring = vmalloc(adapter->num_tx_queues *
902				    sizeof(struct igb_ring));
903	else
904		temp_ring = vmalloc(adapter->num_rx_queues *
905				    sizeof(struct igb_ring));
906
907	if (!temp_ring) {
908		err = -ENOMEM;
909		goto clear_reset;
910	}
911
912	igb_down(adapter);
913
914	/* We can't just free everything and then setup again,
915	 * because the ISRs in MSI-X mode get passed pointers
916	 * to the Tx and Rx ring structs.
917	 */
918	if (new_tx_count != adapter->tx_ring_count) {
919		for (i = 0; i < adapter->num_tx_queues; i++) {
920			memcpy(&temp_ring[i], adapter->tx_ring[i],
921			       sizeof(struct igb_ring));
922
923			temp_ring[i].count = new_tx_count;
924			err = igb_setup_tx_resources(&temp_ring[i]);
925			if (err) {
926				while (i) {
927					i--;
928					igb_free_tx_resources(&temp_ring[i]);
929				}
930				goto err_setup;
931			}
932		}
933
934		for (i = 0; i < adapter->num_tx_queues; i++) {
935			igb_free_tx_resources(adapter->tx_ring[i]);
936
937			memcpy(adapter->tx_ring[i], &temp_ring[i],
938			       sizeof(struct igb_ring));
939		}
940
941		adapter->tx_ring_count = new_tx_count;
942	}
943
944	if (new_rx_count != adapter->rx_ring_count) {
945		for (i = 0; i < adapter->num_rx_queues; i++) {
946			memcpy(&temp_ring[i], adapter->rx_ring[i],
947			       sizeof(struct igb_ring));
948
949			temp_ring[i].count = new_rx_count;
950			err = igb_setup_rx_resources(&temp_ring[i]);
951			if (err) {
952				while (i) {
953					i--;
954					igb_free_rx_resources(&temp_ring[i]);
955				}
956				goto err_setup;
957			}
958
959		}
960
961		for (i = 0; i < adapter->num_rx_queues; i++) {
962			igb_free_rx_resources(adapter->rx_ring[i]);
963
964			memcpy(adapter->rx_ring[i], &temp_ring[i],
965			       sizeof(struct igb_ring));
966		}
967
968		adapter->rx_ring_count = new_rx_count;
969	}
970err_setup:
971	igb_up(adapter);
972	vfree(temp_ring);
973clear_reset:
974	clear_bit(__IGB_RESETTING, &adapter->state);
975	return err;
976}
977
978/* ethtool register test data */
979struct igb_reg_test {
980	u16 reg;
981	u16 reg_offset;
982	u16 array_len;
983	u16 test_type;
984	u32 mask;
985	u32 write;
986};
987
988/* In the hardware, registers are laid out either singly, in arrays
989 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
990 * most tests take place on arrays or single registers (handled
991 * as a single-element array) and special-case the tables.
992 * Table tests are always pattern tests.
993 *
994 * We also make provision for some required setup steps by specifying
995 * registers to be written without any read-back testing.
996 */
997
998#define PATTERN_TEST	1
999#define SET_READ_TEST	2
1000#define WRITE_NO_TEST	3
1001#define TABLE32_TEST	4
1002#define TABLE64_TEST_LO	5
1003#define TABLE64_TEST_HI	6
1004
1005/* i210 reg test */
1006static struct igb_reg_test reg_test_i210[] = {
1007	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1008	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1009	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1010	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1011	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1012	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1013	/* RDH is read-only for i210, only test RDT. */
1014	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1015	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1016	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1017	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1018	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1019	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1020	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1021	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1022	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1023	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1024	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1025	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1026	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1027						0xFFFFFFFF, 0xFFFFFFFF },
1028	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1029						0x900FFFFF, 0xFFFFFFFF },
1030	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1031						0xFFFFFFFF, 0xFFFFFFFF },
1032	{ 0, 0, 0, 0, 0 }
1033};
1034
1035/* i350 reg test */
1036static struct igb_reg_test reg_test_i350[] = {
1037	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1038	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1039	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1040	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1041	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1042	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1043	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1044	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1045	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1046	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1047	/* RDH is read-only for i350, only test RDT. */
1048	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1049	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1050	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1051	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1052	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1053	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1054	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1055	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1056	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1057	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1058	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1059	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1060	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1061	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1062	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1063	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1064	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1065	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1066						0xFFFFFFFF, 0xFFFFFFFF },
1067	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1068						0xC3FFFFFF, 0xFFFFFFFF },
1069	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1070						0xFFFFFFFF, 0xFFFFFFFF },
1071	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1072						0xC3FFFFFF, 0xFFFFFFFF },
1073	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1074						0xFFFFFFFF, 0xFFFFFFFF },
1075	{ 0, 0, 0, 0 }
1076};
1077
1078/* 82580 reg test */
1079static struct igb_reg_test reg_test_82580[] = {
1080	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1081	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1082	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1083	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1084	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1085	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1086	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1087	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1088	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1089	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1090	/* RDH is read-only for 82580, only test RDT. */
1091	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1092	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1093	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1094	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1095	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1096	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1097	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1098	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1099	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1100	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1101	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1102	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1103	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1104	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1105	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1106	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1107	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1108	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1109						0xFFFFFFFF, 0xFFFFFFFF },
1110	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1111						0x83FFFFFF, 0xFFFFFFFF },
1112	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1113						0xFFFFFFFF, 0xFFFFFFFF },
1114	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1115						0x83FFFFFF, 0xFFFFFFFF },
1116	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1117						0xFFFFFFFF, 0xFFFFFFFF },
1118	{ 0, 0, 0, 0 }
1119};
1120
1121/* 82576 reg test */
1122static struct igb_reg_test reg_test_82576[] = {
1123	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1124	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1125	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1126	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1127	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1128	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1129	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1130	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1131	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1132	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1133	/* Enable all RX queues before testing. */
1134	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1135	  E1000_RXDCTL_QUEUE_ENABLE },
1136	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1137	  E1000_RXDCTL_QUEUE_ENABLE },
1138	/* RDH is read-only for 82576, only test RDT. */
1139	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1140	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1141	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1142	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1143	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1144	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1145	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1146	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1147	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1148	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1149	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1150	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1151	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1152	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1153	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1154	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1155	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1156	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1157	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1158	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1159	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1160	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1161	{ 0, 0, 0, 0 }
1162};
1163
1164/* 82575 register test */
1165static struct igb_reg_test reg_test_82575[] = {
1166	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1168	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1169	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1170	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1171	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1172	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1173	/* Enable all four RX queues before testing. */
1174	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1175	  E1000_RXDCTL_QUEUE_ENABLE },
1176	/* RDH is read-only for 82575, only test RDT. */
1177	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1178	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1179	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1180	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1181	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1182	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1183	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1184	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1185	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1186	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1187	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1188	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1189	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1190	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1191	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1192	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1193	{ 0, 0, 0, 0 }
1194};
1195
1196static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1197			     int reg, u32 mask, u32 write)
1198{
1199	struct e1000_hw *hw = &adapter->hw;
1200	u32 pat, val;
1201	static const u32 _test[] = {
1202		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1203	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1204		wr32(reg, (_test[pat] & write));
1205		val = rd32(reg) & mask;
1206		if (val != (_test[pat] & write & mask)) {
1207			dev_err(&adapter->pdev->dev,
1208				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1209				reg, val, (_test[pat] & write & mask));
1210			*data = reg;
1211			return true;
1212		}
1213	}
1214
1215	return false;
1216}
1217
1218static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1219			      int reg, u32 mask, u32 write)
1220{
1221	struct e1000_hw *hw = &adapter->hw;
1222	u32 val;
1223
1224	wr32(reg, write & mask);
1225	val = rd32(reg);
1226	if ((write & mask) != (val & mask)) {
1227		dev_err(&adapter->pdev->dev,
1228			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1229			reg, (val & mask), (write & mask));
1230		*data = reg;
1231		return true;
1232	}
1233
1234	return false;
1235}
1236
1237#define REG_PATTERN_TEST(reg, mask, write) \
1238	do { \
1239		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1240			return 1; \
1241	} while (0)
1242
1243#define REG_SET_AND_CHECK(reg, mask, write) \
1244	do { \
1245		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1246			return 1; \
1247	} while (0)
1248
1249static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1250{
1251	struct e1000_hw *hw = &adapter->hw;
1252	struct igb_reg_test *test;
1253	u32 value, before, after;
1254	u32 i, toggle;
1255
1256	switch (adapter->hw.mac.type) {
1257	case e1000_i350:
1258	case e1000_i354:
1259		test = reg_test_i350;
1260		toggle = 0x7FEFF3FF;
1261		break;
1262	case e1000_i210:
1263	case e1000_i211:
1264		test = reg_test_i210;
1265		toggle = 0x7FEFF3FF;
1266		break;
1267	case e1000_82580:
1268		test = reg_test_82580;
1269		toggle = 0x7FEFF3FF;
1270		break;
1271	case e1000_82576:
1272		test = reg_test_82576;
1273		toggle = 0x7FFFF3FF;
1274		break;
1275	default:
1276		test = reg_test_82575;
1277		toggle = 0x7FFFF3FF;
1278		break;
1279	}
1280
1281	/* Because the status register is such a special case,
1282	 * we handle it separately from the rest of the register
1283	 * tests.  Some bits are read-only, some toggle, and some
1284	 * are writable on newer MACs.
1285	 */
1286	before = rd32(E1000_STATUS);
1287	value = (rd32(E1000_STATUS) & toggle);
1288	wr32(E1000_STATUS, toggle);
1289	after = rd32(E1000_STATUS) & toggle;
1290	if (value != after) {
1291		dev_err(&adapter->pdev->dev,
1292			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1293			after, value);
1294		*data = 1;
1295		return 1;
1296	}
1297	/* restore previous status */
1298	wr32(E1000_STATUS, before);
1299
1300	/* Perform the remainder of the register test, looping through
1301	 * the test table until we either fail or reach the null entry.
1302	 */
1303	while (test->reg) {
1304		for (i = 0; i < test->array_len; i++) {
1305			switch (test->test_type) {
1306			case PATTERN_TEST:
1307				REG_PATTERN_TEST(test->reg +
1308						(i * test->reg_offset),
1309						test->mask,
1310						test->write);
1311				break;
1312			case SET_READ_TEST:
1313				REG_SET_AND_CHECK(test->reg +
1314						(i * test->reg_offset),
1315						test->mask,
1316						test->write);
1317				break;
1318			case WRITE_NO_TEST:
1319				writel(test->write,
1320				    (adapter->hw.hw_addr + test->reg)
1321					+ (i * test->reg_offset));
1322				break;
1323			case TABLE32_TEST:
1324				REG_PATTERN_TEST(test->reg + (i * 4),
1325						test->mask,
1326						test->write);
1327				break;
1328			case TABLE64_TEST_LO:
1329				REG_PATTERN_TEST(test->reg + (i * 8),
1330						test->mask,
1331						test->write);
1332				break;
1333			case TABLE64_TEST_HI:
1334				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1335						test->mask,
1336						test->write);
1337				break;
1338			}
1339		}
1340		test++;
1341	}
1342
1343	*data = 0;
1344	return 0;
1345}
1346
1347static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1348{
1349	struct e1000_hw *hw = &adapter->hw;
1350
1351	*data = 0;
1352
1353	/* Validate eeprom on all parts but flashless */
1354	switch (hw->mac.type) {
1355	case e1000_i210:
1356	case e1000_i211:
1357		if (igb_get_flash_presence_i210(hw)) {
1358			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1359				*data = 2;
1360		}
1361		break;
1362	default:
1363		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1364			*data = 2;
1365		break;
1366	}
1367
1368	return *data;
1369}
1370
1371static irqreturn_t igb_test_intr(int irq, void *data)
1372{
1373	struct igb_adapter *adapter = (struct igb_adapter *) data;
1374	struct e1000_hw *hw = &adapter->hw;
1375
1376	adapter->test_icr |= rd32(E1000_ICR);
1377
1378	return IRQ_HANDLED;
1379}
1380
1381static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1382{
1383	struct e1000_hw *hw = &adapter->hw;
1384	struct net_device *netdev = adapter->netdev;
1385	u32 mask, ics_mask, i = 0, shared_int = true;
1386	u32 irq = adapter->pdev->irq;
1387
1388	*data = 0;
1389
1390	/* Hook up test interrupt handler just for this test */
1391	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1392		if (request_irq(adapter->msix_entries[0].vector,
1393				igb_test_intr, 0, netdev->name, adapter)) {
1394			*data = 1;
1395			return -1;
1396		}
1397	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1398		shared_int = false;
1399		if (request_irq(irq,
1400				igb_test_intr, 0, netdev->name, adapter)) {
1401			*data = 1;
1402			return -1;
1403		}
1404	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1405				netdev->name, adapter)) {
1406		shared_int = false;
1407	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1408		 netdev->name, adapter)) {
1409		*data = 1;
1410		return -1;
1411	}
1412	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1413		(shared_int ? "shared" : "unshared"));
1414
1415	/* Disable all the interrupts */
1416	wr32(E1000_IMC, ~0);
1417	wrfl();
1418	usleep_range(10000, 11000);
1419
1420	/* Define all writable bits for ICS */
1421	switch (hw->mac.type) {
1422	case e1000_82575:
1423		ics_mask = 0x37F47EDD;
1424		break;
1425	case e1000_82576:
1426		ics_mask = 0x77D4FBFD;
1427		break;
1428	case e1000_82580:
1429		ics_mask = 0x77DCFED5;
1430		break;
1431	case e1000_i350:
1432	case e1000_i354:
1433	case e1000_i210:
1434	case e1000_i211:
1435		ics_mask = 0x77DCFED5;
1436		break;
1437	default:
1438		ics_mask = 0x7FFFFFFF;
1439		break;
1440	}
1441
1442	/* Test each interrupt */
1443	for (; i < 31; i++) {
1444		/* Interrupt to test */
1445		mask = 1 << i;
1446
1447		if (!(mask & ics_mask))
1448			continue;
1449
1450		if (!shared_int) {
1451			/* Disable the interrupt to be reported in
1452			 * the cause register and then force the same
1453			 * interrupt and see if one gets posted.  If
1454			 * an interrupt was posted to the bus, the
1455			 * test failed.
1456			 */
1457			adapter->test_icr = 0;
1458
1459			/* Flush any pending interrupts */
1460			wr32(E1000_ICR, ~0);
1461
1462			wr32(E1000_IMC, mask);
1463			wr32(E1000_ICS, mask);
1464			wrfl();
1465			usleep_range(10000, 11000);
1466
1467			if (adapter->test_icr & mask) {
1468				*data = 3;
1469				break;
1470			}
1471		}
1472
1473		/* Enable the interrupt to be reported in
1474		 * the cause register and then force the same
1475		 * interrupt and see if one gets posted.  If
1476		 * an interrupt was not posted to the bus, the
1477		 * test failed.
1478		 */
1479		adapter->test_icr = 0;
1480
1481		/* Flush any pending interrupts */
1482		wr32(E1000_ICR, ~0);
1483
1484		wr32(E1000_IMS, mask);
1485		wr32(E1000_ICS, mask);
1486		wrfl();
1487		usleep_range(10000, 11000);
1488
1489		if (!(adapter->test_icr & mask)) {
1490			*data = 4;
1491			break;
1492		}
1493
1494		if (!shared_int) {
1495			/* Disable the other interrupts to be reported in
1496			 * the cause register and then force the other
1497			 * interrupts and see if any get posted.  If
1498			 * an interrupt was posted to the bus, the
1499			 * test failed.
1500			 */
1501			adapter->test_icr = 0;
1502
1503			/* Flush any pending interrupts */
1504			wr32(E1000_ICR, ~0);
1505
1506			wr32(E1000_IMC, ~mask);
1507			wr32(E1000_ICS, ~mask);
1508			wrfl();
1509			usleep_range(10000, 11000);
1510
1511			if (adapter->test_icr & mask) {
1512				*data = 5;
1513				break;
1514			}
1515		}
1516	}
1517
1518	/* Disable all the interrupts */
1519	wr32(E1000_IMC, ~0);
1520	wrfl();
1521	usleep_range(10000, 11000);
1522
1523	/* Unhook test interrupt handler */
1524	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1525		free_irq(adapter->msix_entries[0].vector, adapter);
1526	else
1527		free_irq(irq, adapter);
1528
1529	return *data;
1530}
1531
1532static void igb_free_desc_rings(struct igb_adapter *adapter)
1533{
1534	igb_free_tx_resources(&adapter->test_tx_ring);
1535	igb_free_rx_resources(&adapter->test_rx_ring);
1536}
1537
1538static int igb_setup_desc_rings(struct igb_adapter *adapter)
1539{
1540	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1541	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1542	struct e1000_hw *hw = &adapter->hw;
1543	int ret_val;
1544
1545	/* Setup Tx descriptor ring and Tx buffers */
1546	tx_ring->count = IGB_DEFAULT_TXD;
1547	tx_ring->dev = &adapter->pdev->dev;
1548	tx_ring->netdev = adapter->netdev;
1549	tx_ring->reg_idx = adapter->vfs_allocated_count;
1550
1551	if (igb_setup_tx_resources(tx_ring)) {
1552		ret_val = 1;
1553		goto err_nomem;
1554	}
1555
1556	igb_setup_tctl(adapter);
1557	igb_configure_tx_ring(adapter, tx_ring);
1558
1559	/* Setup Rx descriptor ring and Rx buffers */
1560	rx_ring->count = IGB_DEFAULT_RXD;
1561	rx_ring->dev = &adapter->pdev->dev;
1562	rx_ring->netdev = adapter->netdev;
1563	rx_ring->reg_idx = adapter->vfs_allocated_count;
1564
1565	if (igb_setup_rx_resources(rx_ring)) {
1566		ret_val = 3;
1567		goto err_nomem;
1568	}
1569
1570	/* set the default queue to queue 0 of PF */
1571	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1572
1573	/* enable receive ring */
1574	igb_setup_rctl(adapter);
1575	igb_configure_rx_ring(adapter, rx_ring);
1576
1577	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1578
1579	return 0;
1580
1581err_nomem:
1582	igb_free_desc_rings(adapter);
1583	return ret_val;
1584}
1585
1586static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1587{
1588	struct e1000_hw *hw = &adapter->hw;
1589
1590	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1591	igb_write_phy_reg(hw, 29, 0x001F);
1592	igb_write_phy_reg(hw, 30, 0x8FFC);
1593	igb_write_phy_reg(hw, 29, 0x001A);
1594	igb_write_phy_reg(hw, 30, 0x8FF0);
1595}
1596
1597static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1598{
1599	struct e1000_hw *hw = &adapter->hw;
1600	u32 ctrl_reg = 0;
1601
1602	hw->mac.autoneg = false;
1603
1604	if (hw->phy.type == e1000_phy_m88) {
1605		if (hw->phy.id != I210_I_PHY_ID) {
1606			/* Auto-MDI/MDIX Off */
1607			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1608			/* reset to update Auto-MDI/MDIX */
1609			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1610			/* autoneg off */
1611			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1612		} else {
1613			/* force 1000, set loopback  */
1614			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1615			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1616		}
1617	} else if (hw->phy.type == e1000_phy_82580) {
1618		/* enable MII loopback */
1619		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1620	}
1621
1622	/* add small delay to avoid loopback test failure */
1623	msleep(50);
1624
1625	/* force 1000, set loopback */
1626	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1627
1628	/* Now set up the MAC to the same speed/duplex as the PHY. */
1629	ctrl_reg = rd32(E1000_CTRL);
1630	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1631	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1632		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1633		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1634		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1635		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1636
1637	if (hw->phy.type == e1000_phy_m88)
1638		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1639
1640	wr32(E1000_CTRL, ctrl_reg);
1641
1642	/* Disable the receiver on the PHY so when a cable is plugged in, the
1643	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1644	 */
1645	if (hw->phy.type == e1000_phy_m88)
1646		igb_phy_disable_receiver(adapter);
1647
1648	mdelay(500);
1649	return 0;
1650}
1651
1652static int igb_set_phy_loopback(struct igb_adapter *adapter)
1653{
1654	return igb_integrated_phy_loopback(adapter);
1655}
1656
1657static int igb_setup_loopback_test(struct igb_adapter *adapter)
1658{
1659	struct e1000_hw *hw = &adapter->hw;
1660	u32 reg;
1661
1662	reg = rd32(E1000_CTRL_EXT);
1663
1664	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1665	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1666		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1667		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1668		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1669		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1670		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1671		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1672			/* Enable DH89xxCC MPHY for near end loopback */
1673			reg = rd32(E1000_MPHY_ADDR_CTL);
1674			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1675			E1000_MPHY_PCS_CLK_REG_OFFSET;
1676			wr32(E1000_MPHY_ADDR_CTL, reg);
1677
1678			reg = rd32(E1000_MPHY_DATA);
1679			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1680			wr32(E1000_MPHY_DATA, reg);
1681		}
1682
1683		reg = rd32(E1000_RCTL);
1684		reg |= E1000_RCTL_LBM_TCVR;
1685		wr32(E1000_RCTL, reg);
1686
1687		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1688
1689		reg = rd32(E1000_CTRL);
1690		reg &= ~(E1000_CTRL_RFCE |
1691			 E1000_CTRL_TFCE |
1692			 E1000_CTRL_LRST);
1693		reg |= E1000_CTRL_SLU |
1694		       E1000_CTRL_FD;
1695		wr32(E1000_CTRL, reg);
1696
1697		/* Unset switch control to serdes energy detect */
1698		reg = rd32(E1000_CONNSW);
1699		reg &= ~E1000_CONNSW_ENRGSRC;
1700		wr32(E1000_CONNSW, reg);
1701
1702		/* Unset sigdetect for SERDES loopback on
1703		 * 82580 and newer devices.
1704		 */
1705		if (hw->mac.type >= e1000_82580) {
1706			reg = rd32(E1000_PCS_CFG0);
1707			reg |= E1000_PCS_CFG_IGN_SD;
1708			wr32(E1000_PCS_CFG0, reg);
1709		}
1710
1711		/* Set PCS register for forced speed */
1712		reg = rd32(E1000_PCS_LCTL);
1713		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1714		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1715		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1716		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1717		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1718		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1719		wr32(E1000_PCS_LCTL, reg);
1720
1721		return 0;
1722	}
1723
1724	return igb_set_phy_loopback(adapter);
1725}
1726
1727static void igb_loopback_cleanup(struct igb_adapter *adapter)
1728{
1729	struct e1000_hw *hw = &adapter->hw;
1730	u32 rctl;
1731	u16 phy_reg;
1732
1733	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1734	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1735	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1736	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1737	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1738		u32 reg;
1739
1740		/* Disable near end loopback on DH89xxCC */
1741		reg = rd32(E1000_MPHY_ADDR_CTL);
1742		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1743		E1000_MPHY_PCS_CLK_REG_OFFSET;
1744		wr32(E1000_MPHY_ADDR_CTL, reg);
1745
1746		reg = rd32(E1000_MPHY_DATA);
1747		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1748		wr32(E1000_MPHY_DATA, reg);
1749	}
1750
1751	rctl = rd32(E1000_RCTL);
1752	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1753	wr32(E1000_RCTL, rctl);
1754
1755	hw->mac.autoneg = true;
1756	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1757	if (phy_reg & MII_CR_LOOPBACK) {
1758		phy_reg &= ~MII_CR_LOOPBACK;
1759		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1760		igb_phy_sw_reset(hw);
1761	}
1762}
1763
1764static void igb_create_lbtest_frame(struct sk_buff *skb,
1765				    unsigned int frame_size)
1766{
1767	memset(skb->data, 0xFF, frame_size);
1768	frame_size /= 2;
1769	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1770	memset(&skb->data[frame_size + 10], 0xBE, 1);
1771	memset(&skb->data[frame_size + 12], 0xAF, 1);
1772}
1773
1774static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1775				  unsigned int frame_size)
1776{
1777	unsigned char *data;
1778	bool match = true;
1779
1780	frame_size >>= 1;
1781
1782	data = kmap(rx_buffer->page);
1783
1784	if (data[3] != 0xFF ||
1785	    data[frame_size + 10] != 0xBE ||
1786	    data[frame_size + 12] != 0xAF)
1787		match = false;
1788
1789	kunmap(rx_buffer->page);
1790
1791	return match;
1792}
1793
1794static int igb_clean_test_rings(struct igb_ring *rx_ring,
1795				struct igb_ring *tx_ring,
1796				unsigned int size)
1797{
1798	union e1000_adv_rx_desc *rx_desc;
1799	struct igb_rx_buffer *rx_buffer_info;
1800	struct igb_tx_buffer *tx_buffer_info;
1801	u16 rx_ntc, tx_ntc, count = 0;
1802
1803	/* initialize next to clean and descriptor values */
1804	rx_ntc = rx_ring->next_to_clean;
1805	tx_ntc = tx_ring->next_to_clean;
1806	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1807
1808	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1809		/* check Rx buffer */
1810		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1811
1812		/* sync Rx buffer for CPU read */
1813		dma_sync_single_for_cpu(rx_ring->dev,
1814					rx_buffer_info->dma,
1815					IGB_RX_BUFSZ,
1816					DMA_FROM_DEVICE);
1817
1818		/* verify contents of skb */
1819		if (igb_check_lbtest_frame(rx_buffer_info, size))
1820			count++;
1821
1822		/* sync Rx buffer for device write */
1823		dma_sync_single_for_device(rx_ring->dev,
1824					   rx_buffer_info->dma,
1825					   IGB_RX_BUFSZ,
1826					   DMA_FROM_DEVICE);
1827
1828		/* unmap buffer on Tx side */
1829		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1830		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1831
1832		/* increment Rx/Tx next to clean counters */
1833		rx_ntc++;
1834		if (rx_ntc == rx_ring->count)
1835			rx_ntc = 0;
1836		tx_ntc++;
1837		if (tx_ntc == tx_ring->count)
1838			tx_ntc = 0;
1839
1840		/* fetch next descriptor */
1841		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1842	}
1843
1844	netdev_tx_reset_queue(txring_txq(tx_ring));
1845
1846	/* re-map buffers to ring, store next to clean values */
1847	igb_alloc_rx_buffers(rx_ring, count);
1848	rx_ring->next_to_clean = rx_ntc;
1849	tx_ring->next_to_clean = tx_ntc;
1850
1851	return count;
1852}
1853
1854static int igb_run_loopback_test(struct igb_adapter *adapter)
1855{
1856	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1857	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1858	u16 i, j, lc, good_cnt;
1859	int ret_val = 0;
1860	unsigned int size = IGB_RX_HDR_LEN;
1861	netdev_tx_t tx_ret_val;
1862	struct sk_buff *skb;
1863
1864	/* allocate test skb */
1865	skb = alloc_skb(size, GFP_KERNEL);
1866	if (!skb)
1867		return 11;
1868
1869	/* place data into test skb */
1870	igb_create_lbtest_frame(skb, size);
1871	skb_put(skb, size);
1872
1873	/* Calculate the loop count based on the largest descriptor ring
1874	 * The idea is to wrap the largest ring a number of times using 64
1875	 * send/receive pairs during each loop
1876	 */
1877
1878	if (rx_ring->count <= tx_ring->count)
1879		lc = ((tx_ring->count / 64) * 2) + 1;
1880	else
1881		lc = ((rx_ring->count / 64) * 2) + 1;
1882
1883	for (j = 0; j <= lc; j++) { /* loop count loop */
1884		/* reset count of good packets */
1885		good_cnt = 0;
1886
1887		/* place 64 packets on the transmit queue*/
1888		for (i = 0; i < 64; i++) {
1889			skb_get(skb);
1890			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1891			if (tx_ret_val == NETDEV_TX_OK)
1892				good_cnt++;
1893		}
1894
1895		if (good_cnt != 64) {
1896			ret_val = 12;
1897			break;
1898		}
1899
1900		/* allow 200 milliseconds for packets to go from Tx to Rx */
1901		msleep(200);
1902
1903		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1904		if (good_cnt != 64) {
1905			ret_val = 13;
1906			break;
1907		}
1908	} /* end loop count loop */
1909
1910	/* free the original skb */
1911	kfree_skb(skb);
1912
1913	return ret_val;
1914}
1915
1916static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1917{
1918	/* PHY loopback cannot be performed if SoL/IDER
1919	 * sessions are active
1920	 */
1921	if (igb_check_reset_block(&adapter->hw)) {
1922		dev_err(&adapter->pdev->dev,
1923			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1924		*data = 0;
1925		goto out;
1926	}
1927
1928	if (adapter->hw.mac.type == e1000_i354) {
1929		dev_info(&adapter->pdev->dev,
1930			"Loopback test not supported on i354.\n");
1931		*data = 0;
1932		goto out;
1933	}
1934	*data = igb_setup_desc_rings(adapter);
1935	if (*data)
1936		goto out;
1937	*data = igb_setup_loopback_test(adapter);
1938	if (*data)
1939		goto err_loopback;
1940	*data = igb_run_loopback_test(adapter);
1941	igb_loopback_cleanup(adapter);
1942
1943err_loopback:
1944	igb_free_desc_rings(adapter);
1945out:
1946	return *data;
1947}
1948
1949static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1950{
1951	struct e1000_hw *hw = &adapter->hw;
1952	*data = 0;
1953	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1954		int i = 0;
1955
1956		hw->mac.serdes_has_link = false;
1957
1958		/* On some blade server designs, link establishment
1959		 * could take as long as 2-3 minutes
1960		 */
1961		do {
1962			hw->mac.ops.check_for_link(&adapter->hw);
1963			if (hw->mac.serdes_has_link)
1964				return *data;
1965			msleep(20);
1966		} while (i++ < 3750);
1967
1968		*data = 1;
1969	} else {
1970		hw->mac.ops.check_for_link(&adapter->hw);
1971		if (hw->mac.autoneg)
1972			msleep(5000);
1973
1974		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1975			*data = 1;
1976	}
1977	return *data;
1978}
1979
1980static void igb_diag_test(struct net_device *netdev,
1981			  struct ethtool_test *eth_test, u64 *data)
1982{
1983	struct igb_adapter *adapter = netdev_priv(netdev);
1984	u16 autoneg_advertised;
1985	u8 forced_speed_duplex, autoneg;
1986	bool if_running = netif_running(netdev);
1987
1988	set_bit(__IGB_TESTING, &adapter->state);
1989
1990	/* can't do offline tests on media switching devices */
1991	if (adapter->hw.dev_spec._82575.mas_capable)
1992		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
1993	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1994		/* Offline tests */
1995
1996		/* save speed, duplex, autoneg settings */
1997		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1998		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1999		autoneg = adapter->hw.mac.autoneg;
2000
2001		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2002
2003		/* power up link for link test */
2004		igb_power_up_link(adapter);
2005
2006		/* Link test performed before hardware reset so autoneg doesn't
2007		 * interfere with test result
2008		 */
2009		if (igb_link_test(adapter, &data[4]))
2010			eth_test->flags |= ETH_TEST_FL_FAILED;
2011
2012		if (if_running)
2013			/* indicate we're in test mode */
2014			dev_close(netdev);
2015		else
2016			igb_reset(adapter);
2017
2018		if (igb_reg_test(adapter, &data[0]))
2019			eth_test->flags |= ETH_TEST_FL_FAILED;
2020
2021		igb_reset(adapter);
2022		if (igb_eeprom_test(adapter, &data[1]))
2023			eth_test->flags |= ETH_TEST_FL_FAILED;
2024
2025		igb_reset(adapter);
2026		if (igb_intr_test(adapter, &data[2]))
2027			eth_test->flags |= ETH_TEST_FL_FAILED;
2028
2029		igb_reset(adapter);
2030		/* power up link for loopback test */
2031		igb_power_up_link(adapter);
2032		if (igb_loopback_test(adapter, &data[3]))
2033			eth_test->flags |= ETH_TEST_FL_FAILED;
2034
2035		/* restore speed, duplex, autoneg settings */
2036		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2037		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2038		adapter->hw.mac.autoneg = autoneg;
2039
2040		/* force this routine to wait until autoneg complete/timeout */
2041		adapter->hw.phy.autoneg_wait_to_complete = true;
2042		igb_reset(adapter);
2043		adapter->hw.phy.autoneg_wait_to_complete = false;
2044
2045		clear_bit(__IGB_TESTING, &adapter->state);
2046		if (if_running)
2047			dev_open(netdev);
2048	} else {
2049		dev_info(&adapter->pdev->dev, "online testing starting\n");
2050
2051		/* PHY is powered down when interface is down */
2052		if (if_running && igb_link_test(adapter, &data[4]))
2053			eth_test->flags |= ETH_TEST_FL_FAILED;
2054		else
2055			data[4] = 0;
2056
2057		/* Online tests aren't run; pass by default */
2058		data[0] = 0;
2059		data[1] = 0;
2060		data[2] = 0;
2061		data[3] = 0;
2062
2063		clear_bit(__IGB_TESTING, &adapter->state);
2064	}
2065	msleep_interruptible(4 * 1000);
2066}
2067
2068static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2069{
2070	struct igb_adapter *adapter = netdev_priv(netdev);
2071
2072	wol->wolopts = 0;
2073
2074	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2075		return;
2076
2077	wol->supported = WAKE_UCAST | WAKE_MCAST |
2078			 WAKE_BCAST | WAKE_MAGIC |
2079			 WAKE_PHY;
2080
2081	/* apply any specific unsupported masks here */
2082	switch (adapter->hw.device_id) {
2083	default:
2084		break;
2085	}
2086
2087	if (adapter->wol & E1000_WUFC_EX)
2088		wol->wolopts |= WAKE_UCAST;
2089	if (adapter->wol & E1000_WUFC_MC)
2090		wol->wolopts |= WAKE_MCAST;
2091	if (adapter->wol & E1000_WUFC_BC)
2092		wol->wolopts |= WAKE_BCAST;
2093	if (adapter->wol & E1000_WUFC_MAG)
2094		wol->wolopts |= WAKE_MAGIC;
2095	if (adapter->wol & E1000_WUFC_LNKC)
2096		wol->wolopts |= WAKE_PHY;
2097}
2098
2099static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2100{
2101	struct igb_adapter *adapter = netdev_priv(netdev);
2102
2103	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2104		return -EOPNOTSUPP;
2105
2106	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2107		return wol->wolopts ? -EOPNOTSUPP : 0;
2108
2109	/* these settings will always override what we currently have */
2110	adapter->wol = 0;
2111
2112	if (wol->wolopts & WAKE_UCAST)
2113		adapter->wol |= E1000_WUFC_EX;
2114	if (wol->wolopts & WAKE_MCAST)
2115		adapter->wol |= E1000_WUFC_MC;
2116	if (wol->wolopts & WAKE_BCAST)
2117		adapter->wol |= E1000_WUFC_BC;
2118	if (wol->wolopts & WAKE_MAGIC)
2119		adapter->wol |= E1000_WUFC_MAG;
2120	if (wol->wolopts & WAKE_PHY)
2121		adapter->wol |= E1000_WUFC_LNKC;
2122	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2123
2124	return 0;
2125}
2126
2127/* bit defines for adapter->led_status */
2128#define IGB_LED_ON		0
2129
2130static int igb_set_phys_id(struct net_device *netdev,
2131			   enum ethtool_phys_id_state state)
2132{
2133	struct igb_adapter *adapter = netdev_priv(netdev);
2134	struct e1000_hw *hw = &adapter->hw;
2135
2136	switch (state) {
2137	case ETHTOOL_ID_ACTIVE:
2138		igb_blink_led(hw);
2139		return 2;
2140	case ETHTOOL_ID_ON:
2141		igb_blink_led(hw);
2142		break;
2143	case ETHTOOL_ID_OFF:
2144		igb_led_off(hw);
2145		break;
2146	case ETHTOOL_ID_INACTIVE:
2147		igb_led_off(hw);
2148		clear_bit(IGB_LED_ON, &adapter->led_status);
2149		igb_cleanup_led(hw);
2150		break;
2151	}
2152
2153	return 0;
2154}
2155
2156static int igb_set_coalesce(struct net_device *netdev,
2157			    struct ethtool_coalesce *ec)
2158{
2159	struct igb_adapter *adapter = netdev_priv(netdev);
2160	int i;
2161
2162	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2163	    ((ec->rx_coalesce_usecs > 3) &&
2164	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2165	    (ec->rx_coalesce_usecs == 2))
2166		return -EINVAL;
2167
2168	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2169	    ((ec->tx_coalesce_usecs > 3) &&
2170	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2171	    (ec->tx_coalesce_usecs == 2))
2172		return -EINVAL;
2173
2174	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2175		return -EINVAL;
2176
2177	/* If ITR is disabled, disable DMAC */
2178	if (ec->rx_coalesce_usecs == 0) {
2179		if (adapter->flags & IGB_FLAG_DMAC)
2180			adapter->flags &= ~IGB_FLAG_DMAC;
2181	}
2182
2183	/* convert to rate of irq's per second */
2184	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2185		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2186	else
2187		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2188
2189	/* convert to rate of irq's per second */
2190	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2191		adapter->tx_itr_setting = adapter->rx_itr_setting;
2192	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2193		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2194	else
2195		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2196
2197	for (i = 0; i < adapter->num_q_vectors; i++) {
2198		struct igb_q_vector *q_vector = adapter->q_vector[i];
2199		q_vector->tx.work_limit = adapter->tx_work_limit;
2200		if (q_vector->rx.ring)
2201			q_vector->itr_val = adapter->rx_itr_setting;
2202		else
2203			q_vector->itr_val = adapter->tx_itr_setting;
2204		if (q_vector->itr_val && q_vector->itr_val <= 3)
2205			q_vector->itr_val = IGB_START_ITR;
2206		q_vector->set_itr = 1;
2207	}
2208
2209	return 0;
2210}
2211
2212static int igb_get_coalesce(struct net_device *netdev,
2213			    struct ethtool_coalesce *ec)
2214{
2215	struct igb_adapter *adapter = netdev_priv(netdev);
2216
2217	if (adapter->rx_itr_setting <= 3)
2218		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2219	else
2220		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2221
2222	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2223		if (adapter->tx_itr_setting <= 3)
2224			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2225		else
2226			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2227	}
2228
2229	return 0;
2230}
2231
2232static int igb_nway_reset(struct net_device *netdev)
2233{
2234	struct igb_adapter *adapter = netdev_priv(netdev);
2235	if (netif_running(netdev))
2236		igb_reinit_locked(adapter);
2237	return 0;
2238}
2239
2240static int igb_get_sset_count(struct net_device *netdev, int sset)
2241{
2242	switch (sset) {
2243	case ETH_SS_STATS:
2244		return IGB_STATS_LEN;
2245	case ETH_SS_TEST:
2246		return IGB_TEST_LEN;
2247	default:
2248		return -ENOTSUPP;
2249	}
2250}
2251
2252static void igb_get_ethtool_stats(struct net_device *netdev,
2253				  struct ethtool_stats *stats, u64 *data)
2254{
2255	struct igb_adapter *adapter = netdev_priv(netdev);
2256	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2257	unsigned int start;
2258	struct igb_ring *ring;
2259	int i, j;
2260	char *p;
2261
2262	spin_lock(&adapter->stats64_lock);
2263	igb_update_stats(adapter, net_stats);
2264
2265	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2266		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2267		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2268			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2269	}
2270	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2271		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2272		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2273			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2274	}
2275	for (j = 0; j < adapter->num_tx_queues; j++) {
2276		u64	restart2;
2277
2278		ring = adapter->tx_ring[j];
2279		do {
2280			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2281			data[i]   = ring->tx_stats.packets;
2282			data[i+1] = ring->tx_stats.bytes;
2283			data[i+2] = ring->tx_stats.restart_queue;
2284		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2285		do {
2286			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2287			restart2  = ring->tx_stats.restart_queue2;
2288		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2289		data[i+2] += restart2;
2290
2291		i += IGB_TX_QUEUE_STATS_LEN;
2292	}
2293	for (j = 0; j < adapter->num_rx_queues; j++) {
2294		ring = adapter->rx_ring[j];
2295		do {
2296			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2297			data[i]   = ring->rx_stats.packets;
2298			data[i+1] = ring->rx_stats.bytes;
2299			data[i+2] = ring->rx_stats.drops;
2300			data[i+3] = ring->rx_stats.csum_err;
2301			data[i+4] = ring->rx_stats.alloc_failed;
2302		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2303		i += IGB_RX_QUEUE_STATS_LEN;
2304	}
2305	spin_unlock(&adapter->stats64_lock);
2306}
2307
2308static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2309{
2310	struct igb_adapter *adapter = netdev_priv(netdev);
2311	u8 *p = data;
2312	int i;
2313
2314	switch (stringset) {
2315	case ETH_SS_TEST:
2316		memcpy(data, *igb_gstrings_test,
2317			IGB_TEST_LEN*ETH_GSTRING_LEN);
2318		break;
2319	case ETH_SS_STATS:
2320		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2321			memcpy(p, igb_gstrings_stats[i].stat_string,
2322			       ETH_GSTRING_LEN);
2323			p += ETH_GSTRING_LEN;
2324		}
2325		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2326			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2327			       ETH_GSTRING_LEN);
2328			p += ETH_GSTRING_LEN;
2329		}
2330		for (i = 0; i < adapter->num_tx_queues; i++) {
2331			sprintf(p, "tx_queue_%u_packets", i);
2332			p += ETH_GSTRING_LEN;
2333			sprintf(p, "tx_queue_%u_bytes", i);
2334			p += ETH_GSTRING_LEN;
2335			sprintf(p, "tx_queue_%u_restart", i);
2336			p += ETH_GSTRING_LEN;
2337		}
2338		for (i = 0; i < adapter->num_rx_queues; i++) {
2339			sprintf(p, "rx_queue_%u_packets", i);
2340			p += ETH_GSTRING_LEN;
2341			sprintf(p, "rx_queue_%u_bytes", i);
2342			p += ETH_GSTRING_LEN;
2343			sprintf(p, "rx_queue_%u_drops", i);
2344			p += ETH_GSTRING_LEN;
2345			sprintf(p, "rx_queue_%u_csum_err", i);
2346			p += ETH_GSTRING_LEN;
2347			sprintf(p, "rx_queue_%u_alloc_failed", i);
2348			p += ETH_GSTRING_LEN;
2349		}
2350		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2351		break;
2352	}
2353}
2354
2355static int igb_get_ts_info(struct net_device *dev,
2356			   struct ethtool_ts_info *info)
2357{
2358	struct igb_adapter *adapter = netdev_priv(dev);
2359
2360	if (adapter->ptp_clock)
2361		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2362	else
2363		info->phc_index = -1;
2364
2365	switch (adapter->hw.mac.type) {
2366	case e1000_82575:
2367		info->so_timestamping =
2368			SOF_TIMESTAMPING_TX_SOFTWARE |
2369			SOF_TIMESTAMPING_RX_SOFTWARE |
2370			SOF_TIMESTAMPING_SOFTWARE;
2371		return 0;
2372	case e1000_82576:
2373	case e1000_82580:
2374	case e1000_i350:
2375	case e1000_i354:
2376	case e1000_i210:
2377	case e1000_i211:
2378		info->so_timestamping =
2379			SOF_TIMESTAMPING_TX_SOFTWARE |
2380			SOF_TIMESTAMPING_RX_SOFTWARE |
2381			SOF_TIMESTAMPING_SOFTWARE |
2382			SOF_TIMESTAMPING_TX_HARDWARE |
2383			SOF_TIMESTAMPING_RX_HARDWARE |
2384			SOF_TIMESTAMPING_RAW_HARDWARE;
2385
2386		info->tx_types =
2387			(1 << HWTSTAMP_TX_OFF) |
2388			(1 << HWTSTAMP_TX_ON);
2389
2390		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2391
2392		/* 82576 does not support timestamping all packets. */
2393		if (adapter->hw.mac.type >= e1000_82580)
2394			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2395		else
2396			info->rx_filters |=
2397				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2398				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2399				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2400				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2401				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2402				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2403				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2404
2405		return 0;
2406	default:
2407		return -EOPNOTSUPP;
2408	}
2409}
2410
2411static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2412				 struct ethtool_rxnfc *cmd)
2413{
2414	cmd->data = 0;
2415
2416	/* Report default options for RSS on igb */
2417	switch (cmd->flow_type) {
2418	case TCP_V4_FLOW:
2419		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2420		/* Fall through */
2421	case UDP_V4_FLOW:
2422		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2423			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2424		/* Fall through */
2425	case SCTP_V4_FLOW:
2426	case AH_ESP_V4_FLOW:
2427	case AH_V4_FLOW:
2428	case ESP_V4_FLOW:
2429	case IPV4_FLOW:
2430		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2431		break;
2432	case TCP_V6_FLOW:
2433		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2434		/* Fall through */
2435	case UDP_V6_FLOW:
2436		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2437			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2438		/* Fall through */
2439	case SCTP_V6_FLOW:
2440	case AH_ESP_V6_FLOW:
2441	case AH_V6_FLOW:
2442	case ESP_V6_FLOW:
2443	case IPV6_FLOW:
2444		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2445		break;
2446	default:
2447		return -EINVAL;
2448	}
2449
2450	return 0;
2451}
2452
2453static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2454			 u32 *rule_locs)
2455{
2456	struct igb_adapter *adapter = netdev_priv(dev);
2457	int ret = -EOPNOTSUPP;
2458
2459	switch (cmd->cmd) {
2460	case ETHTOOL_GRXRINGS:
2461		cmd->data = adapter->num_rx_queues;
2462		ret = 0;
2463		break;
2464	case ETHTOOL_GRXFH:
2465		ret = igb_get_rss_hash_opts(adapter, cmd);
2466		break;
2467	default:
2468		break;
2469	}
2470
2471	return ret;
2472}
2473
2474#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2475		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2476static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2477				struct ethtool_rxnfc *nfc)
2478{
2479	u32 flags = adapter->flags;
2480
2481	/* RSS does not support anything other than hashing
2482	 * to queues on src and dst IPs and ports
2483	 */
2484	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2485			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2486		return -EINVAL;
2487
2488	switch (nfc->flow_type) {
2489	case TCP_V4_FLOW:
2490	case TCP_V6_FLOW:
2491		if (!(nfc->data & RXH_IP_SRC) ||
2492		    !(nfc->data & RXH_IP_DST) ||
2493		    !(nfc->data & RXH_L4_B_0_1) ||
2494		    !(nfc->data & RXH_L4_B_2_3))
2495			return -EINVAL;
2496		break;
2497	case UDP_V4_FLOW:
2498		if (!(nfc->data & RXH_IP_SRC) ||
2499		    !(nfc->data & RXH_IP_DST))
2500			return -EINVAL;
2501		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2502		case 0:
2503			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2504			break;
2505		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2506			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2507			break;
2508		default:
2509			return -EINVAL;
2510		}
2511		break;
2512	case UDP_V6_FLOW:
2513		if (!(nfc->data & RXH_IP_SRC) ||
2514		    !(nfc->data & RXH_IP_DST))
2515			return -EINVAL;
2516		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2517		case 0:
2518			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2519			break;
2520		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2521			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2522			break;
2523		default:
2524			return -EINVAL;
2525		}
2526		break;
2527	case AH_ESP_V4_FLOW:
2528	case AH_V4_FLOW:
2529	case ESP_V4_FLOW:
2530	case SCTP_V4_FLOW:
2531	case AH_ESP_V6_FLOW:
2532	case AH_V6_FLOW:
2533	case ESP_V6_FLOW:
2534	case SCTP_V6_FLOW:
2535		if (!(nfc->data & RXH_IP_SRC) ||
2536		    !(nfc->data & RXH_IP_DST) ||
2537		    (nfc->data & RXH_L4_B_0_1) ||
2538		    (nfc->data & RXH_L4_B_2_3))
2539			return -EINVAL;
2540		break;
2541	default:
2542		return -EINVAL;
2543	}
2544
2545	/* if we changed something we need to update flags */
2546	if (flags != adapter->flags) {
2547		struct e1000_hw *hw = &adapter->hw;
2548		u32 mrqc = rd32(E1000_MRQC);
2549
2550		if ((flags & UDP_RSS_FLAGS) &&
2551		    !(adapter->flags & UDP_RSS_FLAGS))
2552			dev_err(&adapter->pdev->dev,
2553				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2554
2555		adapter->flags = flags;
2556
2557		/* Perform hash on these packet types */
2558		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2559			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2560			E1000_MRQC_RSS_FIELD_IPV6 |
2561			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2562
2563		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2564			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2565
2566		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2567			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2568
2569		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2570			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2571
2572		wr32(E1000_MRQC, mrqc);
2573	}
2574
2575	return 0;
2576}
2577
2578static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2579{
2580	struct igb_adapter *adapter = netdev_priv(dev);
2581	int ret = -EOPNOTSUPP;
2582
2583	switch (cmd->cmd) {
2584	case ETHTOOL_SRXFH:
2585		ret = igb_set_rss_hash_opt(adapter, cmd);
2586		break;
2587	default:
2588		break;
2589	}
2590
2591	return ret;
2592}
2593
2594static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2595{
2596	struct igb_adapter *adapter = netdev_priv(netdev);
2597	struct e1000_hw *hw = &adapter->hw;
2598	u32 ret_val;
2599	u16 phy_data;
2600
2601	if ((hw->mac.type < e1000_i350) ||
2602	    (hw->phy.media_type != e1000_media_type_copper))
2603		return -EOPNOTSUPP;
2604
2605	edata->supported = (SUPPORTED_1000baseT_Full |
2606			    SUPPORTED_100baseT_Full);
2607	if (!hw->dev_spec._82575.eee_disable)
2608		edata->advertised =
2609			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2610
2611	/* The IPCNFG and EEER registers are not supported on I354. */
2612	if (hw->mac.type == e1000_i354) {
2613		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
2614	} else {
2615		u32 eeer;
2616
2617		eeer = rd32(E1000_EEER);
2618
2619		/* EEE status on negotiated link */
2620		if (eeer & E1000_EEER_EEE_NEG)
2621			edata->eee_active = true;
2622
2623		if (eeer & E1000_EEER_TX_LPI_EN)
2624			edata->tx_lpi_enabled = true;
2625	}
2626
2627	/* EEE Link Partner Advertised */
2628	switch (hw->mac.type) {
2629	case e1000_i350:
2630		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2631					   &phy_data);
2632		if (ret_val)
2633			return -ENODATA;
2634
2635		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2636		break;
2637	case e1000_i354:
2638	case e1000_i210:
2639	case e1000_i211:
2640		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2641					     E1000_EEE_LP_ADV_DEV_I210,
2642					     &phy_data);
2643		if (ret_val)
2644			return -ENODATA;
2645
2646		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2647
2648		break;
2649	default:
2650		break;
2651	}
2652
2653	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2654
2655	if ((hw->mac.type == e1000_i354) &&
2656	    (edata->eee_enabled))
2657		edata->tx_lpi_enabled = true;
2658
2659	/* Report correct negotiated EEE status for devices that
2660	 * wrongly report EEE at half-duplex
2661	 */
2662	if (adapter->link_duplex == HALF_DUPLEX) {
2663		edata->eee_enabled = false;
2664		edata->eee_active = false;
2665		edata->tx_lpi_enabled = false;
2666		edata->advertised &= ~edata->advertised;
2667	}
2668
2669	return 0;
2670}
2671
2672static int igb_set_eee(struct net_device *netdev,
2673		       struct ethtool_eee *edata)
2674{
2675	struct igb_adapter *adapter = netdev_priv(netdev);
2676	struct e1000_hw *hw = &adapter->hw;
2677	struct ethtool_eee eee_curr;
2678	s32 ret_val;
2679
2680	if ((hw->mac.type < e1000_i350) ||
2681	    (hw->phy.media_type != e1000_media_type_copper))
2682		return -EOPNOTSUPP;
2683
2684	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2685
2686	ret_val = igb_get_eee(netdev, &eee_curr);
2687	if (ret_val)
2688		return ret_val;
2689
2690	if (eee_curr.eee_enabled) {
2691		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2692			dev_err(&adapter->pdev->dev,
2693				"Setting EEE tx-lpi is not supported\n");
2694			return -EINVAL;
2695		}
2696
2697		/* Tx LPI timer is not implemented currently */
2698		if (edata->tx_lpi_timer) {
2699			dev_err(&adapter->pdev->dev,
2700				"Setting EEE Tx LPI timer is not supported\n");
2701			return -EINVAL;
2702		}
2703
2704		if (edata->advertised &
2705		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2706			dev_err(&adapter->pdev->dev,
2707				"EEE Advertisement supports only 100Tx and or 100T full duplex\n");
2708			return -EINVAL;
2709		}
2710
2711	} else if (!edata->eee_enabled) {
2712		dev_err(&adapter->pdev->dev,
2713			"Setting EEE options are not supported with EEE disabled\n");
2714			return -EINVAL;
2715		}
2716
2717	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2718	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2719		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2720		adapter->flags |= IGB_FLAG_EEE;
2721		if (hw->mac.type == e1000_i350)
2722			igb_set_eee_i350(hw);
2723		else
2724			igb_set_eee_i354(hw);
2725
2726		/* reset link */
2727		if (netif_running(netdev))
2728			igb_reinit_locked(adapter);
2729		else
2730			igb_reset(adapter);
2731	}
2732
2733	return 0;
2734}
2735
2736static int igb_get_module_info(struct net_device *netdev,
2737			       struct ethtool_modinfo *modinfo)
2738{
2739	struct igb_adapter *adapter = netdev_priv(netdev);
2740	struct e1000_hw *hw = &adapter->hw;
2741	u32 status = E1000_SUCCESS;
2742	u16 sff8472_rev, addr_mode;
2743	bool page_swap = false;
2744
2745	if ((hw->phy.media_type == e1000_media_type_copper) ||
2746	    (hw->phy.media_type == e1000_media_type_unknown))
2747		return -EOPNOTSUPP;
2748
2749	/* Check whether we support SFF-8472 or not */
2750	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2751	if (status != E1000_SUCCESS)
2752		return -EIO;
2753
2754	/* addressing mode is not supported */
2755	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2756	if (status != E1000_SUCCESS)
2757		return -EIO;
2758
2759	/* addressing mode is not supported */
2760	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2761		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2762		page_swap = true;
2763	}
2764
2765	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2766		/* We have an SFP, but it does not support SFF-8472 */
2767		modinfo->type = ETH_MODULE_SFF_8079;
2768		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2769	} else {
2770		/* We have an SFP which supports a revision of SFF-8472 */
2771		modinfo->type = ETH_MODULE_SFF_8472;
2772		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2773	}
2774
2775	return 0;
2776}
2777
2778static int igb_get_module_eeprom(struct net_device *netdev,
2779				 struct ethtool_eeprom *ee, u8 *data)
2780{
2781	struct igb_adapter *adapter = netdev_priv(netdev);
2782	struct e1000_hw *hw = &adapter->hw;
2783	u32 status = E1000_SUCCESS;
2784	u16 *dataword;
2785	u16 first_word, last_word;
2786	int i = 0;
2787
2788	if (ee->len == 0)
2789		return -EINVAL;
2790
2791	first_word = ee->offset >> 1;
2792	last_word = (ee->offset + ee->len - 1) >> 1;
2793
2794	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2795			   GFP_KERNEL);
2796	if (!dataword)
2797		return -ENOMEM;
2798
2799	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2800	for (i = 0; i < last_word - first_word + 1; i++) {
2801		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2802		if (status != E1000_SUCCESS) {
2803			/* Error occurred while reading module */
2804			kfree(dataword);
2805			return -EIO;
2806		}
2807
2808		be16_to_cpus(&dataword[i]);
2809	}
2810
2811	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2812	kfree(dataword);
2813
2814	return 0;
2815}
2816
2817static int igb_ethtool_begin(struct net_device *netdev)
2818{
2819	struct igb_adapter *adapter = netdev_priv(netdev);
2820	pm_runtime_get_sync(&adapter->pdev->dev);
2821	return 0;
2822}
2823
2824static void igb_ethtool_complete(struct net_device *netdev)
2825{
2826	struct igb_adapter *adapter = netdev_priv(netdev);
2827	pm_runtime_put(&adapter->pdev->dev);
2828}
2829
2830static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2831{
2832	return IGB_RETA_SIZE;
2833}
2834
2835static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key)
2836{
2837	struct igb_adapter *adapter = netdev_priv(netdev);
2838	int i;
2839
2840	for (i = 0; i < IGB_RETA_SIZE; i++)
2841		indir[i] = adapter->rss_indir_tbl[i];
2842
2843	return 0;
2844}
2845
2846void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2847{
2848	struct e1000_hw *hw = &adapter->hw;
2849	u32 reg = E1000_RETA(0);
2850	u32 shift = 0;
2851	int i = 0;
2852
2853	switch (hw->mac.type) {
2854	case e1000_82575:
2855		shift = 6;
2856		break;
2857	case e1000_82576:
2858		/* 82576 supports 2 RSS queues for SR-IOV */
2859		if (adapter->vfs_allocated_count)
2860			shift = 3;
2861		break;
2862	default:
2863		break;
2864	}
2865
2866	while (i < IGB_RETA_SIZE) {
2867		u32 val = 0;
2868		int j;
2869
2870		for (j = 3; j >= 0; j--) {
2871			val <<= 8;
2872			val |= adapter->rss_indir_tbl[i + j];
2873		}
2874
2875		wr32(reg, val << shift);
2876		reg += 4;
2877		i += 4;
2878	}
2879}
2880
2881static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
2882			const u8 *key)
2883{
2884	struct igb_adapter *adapter = netdev_priv(netdev);
2885	struct e1000_hw *hw = &adapter->hw;
2886	int i;
2887	u32 num_queues;
2888
2889	num_queues = adapter->rss_queues;
2890
2891	switch (hw->mac.type) {
2892	case e1000_82576:
2893		/* 82576 supports 2 RSS queues for SR-IOV */
2894		if (adapter->vfs_allocated_count)
2895			num_queues = 2;
2896		break;
2897	default:
2898		break;
2899	}
2900
2901	/* Verify user input. */
2902	for (i = 0; i < IGB_RETA_SIZE; i++)
2903		if (indir[i] >= num_queues)
2904			return -EINVAL;
2905
2906
2907	for (i = 0; i < IGB_RETA_SIZE; i++)
2908		adapter->rss_indir_tbl[i] = indir[i];
2909
2910	igb_write_rss_indir_tbl(adapter);
2911
2912	return 0;
2913}
2914
2915static unsigned int igb_max_channels(struct igb_adapter *adapter)
2916{
2917	struct e1000_hw *hw = &adapter->hw;
2918	unsigned int max_combined = 0;
2919
2920	switch (hw->mac.type) {
2921	case e1000_i211:
2922		max_combined = IGB_MAX_RX_QUEUES_I211;
2923		break;
2924	case e1000_82575:
2925	case e1000_i210:
2926		max_combined = IGB_MAX_RX_QUEUES_82575;
2927		break;
2928	case e1000_i350:
2929		if (!!adapter->vfs_allocated_count) {
2930			max_combined = 1;
2931			break;
2932		}
2933		/* fall through */
2934	case e1000_82576:
2935		if (!!adapter->vfs_allocated_count) {
2936			max_combined = 2;
2937			break;
2938		}
2939		/* fall through */
2940	case e1000_82580:
2941	case e1000_i354:
2942	default:
2943		max_combined = IGB_MAX_RX_QUEUES;
2944		break;
2945	}
2946
2947	return max_combined;
2948}
2949
2950static void igb_get_channels(struct net_device *netdev,
2951			     struct ethtool_channels *ch)
2952{
2953	struct igb_adapter *adapter = netdev_priv(netdev);
2954
2955	/* Report maximum channels */
2956	ch->max_combined = igb_max_channels(adapter);
2957
2958	/* Report info for other vector */
2959	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2960		ch->max_other = NON_Q_VECTORS;
2961		ch->other_count = NON_Q_VECTORS;
2962	}
2963
2964	ch->combined_count = adapter->rss_queues;
2965}
2966
2967static int igb_set_channels(struct net_device *netdev,
2968			    struct ethtool_channels *ch)
2969{
2970	struct igb_adapter *adapter = netdev_priv(netdev);
2971	unsigned int count = ch->combined_count;
2972
2973	/* Verify they are not requesting separate vectors */
2974	if (!count || ch->rx_count || ch->tx_count)
2975		return -EINVAL;
2976
2977	/* Verify other_count is valid and has not been changed */
2978	if (ch->other_count != NON_Q_VECTORS)
2979		return -EINVAL;
2980
2981	/* Verify the number of channels doesn't exceed hw limits */
2982	if (count > igb_max_channels(adapter))
2983		return -EINVAL;
2984
2985	if (count != adapter->rss_queues) {
2986		adapter->rss_queues = count;
2987
2988		/* Hardware has to reinitialize queues and interrupts to
2989		 * match the new configuration.
2990		 */
2991		return igb_reinit_queues(adapter);
2992	}
2993
2994	return 0;
2995}
2996
2997static const struct ethtool_ops igb_ethtool_ops = {
2998	.get_settings		= igb_get_settings,
2999	.set_settings		= igb_set_settings,
3000	.get_drvinfo		= igb_get_drvinfo,
3001	.get_regs_len		= igb_get_regs_len,
3002	.get_regs		= igb_get_regs,
3003	.get_wol		= igb_get_wol,
3004	.set_wol		= igb_set_wol,
3005	.get_msglevel		= igb_get_msglevel,
3006	.set_msglevel		= igb_set_msglevel,
3007	.nway_reset		= igb_nway_reset,
3008	.get_link		= igb_get_link,
3009	.get_eeprom_len		= igb_get_eeprom_len,
3010	.get_eeprom		= igb_get_eeprom,
3011	.set_eeprom		= igb_set_eeprom,
3012	.get_ringparam		= igb_get_ringparam,
3013	.set_ringparam		= igb_set_ringparam,
3014	.get_pauseparam		= igb_get_pauseparam,
3015	.set_pauseparam		= igb_set_pauseparam,
3016	.self_test		= igb_diag_test,
3017	.get_strings		= igb_get_strings,
3018	.set_phys_id		= igb_set_phys_id,
3019	.get_sset_count		= igb_get_sset_count,
3020	.get_ethtool_stats	= igb_get_ethtool_stats,
3021	.get_coalesce		= igb_get_coalesce,
3022	.set_coalesce		= igb_set_coalesce,
3023	.get_ts_info		= igb_get_ts_info,
3024	.get_rxnfc		= igb_get_rxnfc,
3025	.set_rxnfc		= igb_set_rxnfc,
3026	.get_eee		= igb_get_eee,
3027	.set_eee		= igb_set_eee,
3028	.get_module_info	= igb_get_module_info,
3029	.get_module_eeprom	= igb_get_module_eeprom,
3030	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3031	.get_rxfh		= igb_get_rxfh,
3032	.set_rxfh		= igb_set_rxfh,
3033	.get_channels		= igb_get_channels,
3034	.set_channels		= igb_set_channels,
3035	.begin			= igb_ethtool_begin,
3036	.complete		= igb_ethtool_complete,
3037};
3038
3039void igb_set_ethtool_ops(struct net_device *netdev)
3040{
3041	netdev->ethtool_ops = &igb_ethtool_ops;
3042}
3043