[go: nahoru, domu]

igb_ptp.c revision 74cfb2e1f296b3f962016adf41b316b8cf7d4ed4
1/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2 *
3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18#include <linux/module.h>
19#include <linux/device.h>
20#include <linux/pci.h>
21#include <linux/ptp_classify.h>
22
23#include "igb.h"
24
25#define INCVALUE_MASK		0x7fffffff
26#define ISGN			0x80000000
27
28/* The 82580 timesync updates the system timer every 8ns by 8ns,
29 * and this update value cannot be reprogrammed.
30 *
31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
32 * nanoseconds time values for very long. For the 82580, SYSTIM always
33 * counts nanoseconds, but the upper 24 bits are not availible. The
34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
35 * register, TIMINCA.
36 *
37 * For the 82576, the SYSTIM register time unit is affect by the
38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39 * field are needed to provide the nominal 16 nanosecond period,
40 * leaving 19 bits for fractional nanoseconds.
41 *
42 * We scale the NIC clock cycle by a large factor so that relatively
43 * small clock corrections can be added or subtracted at each clock
44 * tick. The drawbacks of a large factor are a) that the clock
45 * register overflows more quickly (not such a big deal) and b) that
46 * the increment per tick has to fit into 24 bits.  As a result we
47 * need to use a shift of 19 so we can fit a value of 16 into the
48 * TIMINCA register.
49 *
50 *
51 *             SYSTIMH            SYSTIML
52 *        +--------------+   +---+---+------+
53 *  82576 |      32      |   | 8 | 5 |  19  |
54 *        +--------------+   +---+---+------+
55 *         \________ 45 bits _______/  fract
56 *
57 *        +----------+---+   +--------------+
58 *  82580 |    24    | 8 |   |      32      |
59 *        +----------+---+   +--------------+
60 *          reserved  \______ 40 bits _____/
61 *
62 *
63 * The 45 bit 82576 SYSTIM overflows every
64 *   2^45 * 10^-9 / 3600 = 9.77 hours.
65 *
66 * The 40 bit 82580 SYSTIM overflows every
67 *   2^40 * 10^-9 /  60  = 18.3 minutes.
68 */
69
70#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
71#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
72#define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
73#define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
74#define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
75#define IGB_NBITS_82580			40
76
77static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78
79/* SYSTIM read access for the 82576 */
80static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81{
82	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83	struct e1000_hw *hw = &igb->hw;
84	u64 val;
85	u32 lo, hi;
86
87	lo = rd32(E1000_SYSTIML);
88	hi = rd32(E1000_SYSTIMH);
89
90	val = ((u64) hi) << 32;
91	val |= lo;
92
93	return val;
94}
95
96/* SYSTIM read access for the 82580 */
97static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98{
99	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100	struct e1000_hw *hw = &igb->hw;
101	u32 lo, hi;
102	u64 val;
103
104	/* The timestamp latches on lowest register read. For the 82580
105	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
106	 * need to provide nanosecond resolution, so we just ignore it.
107	 */
108	rd32(E1000_SYSTIMR);
109	lo = rd32(E1000_SYSTIML);
110	hi = rd32(E1000_SYSTIMH);
111
112	val = ((u64) hi) << 32;
113	val |= lo;
114
115	return val;
116}
117
118/* SYSTIM read access for I210/I211 */
119static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
120{
121	struct e1000_hw *hw = &adapter->hw;
122	u32 sec, nsec;
123
124	/* The timestamp latches on lowest register read. For I210/I211, the
125	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
126	 * resolution, we can ignore it.
127	 */
128	rd32(E1000_SYSTIMR);
129	nsec = rd32(E1000_SYSTIML);
130	sec = rd32(E1000_SYSTIMH);
131
132	ts->tv_sec = sec;
133	ts->tv_nsec = nsec;
134}
135
136static void igb_ptp_write_i210(struct igb_adapter *adapter,
137			       const struct timespec *ts)
138{
139	struct e1000_hw *hw = &adapter->hw;
140
141	/* Writing the SYSTIMR register is not necessary as it only provides
142	 * sub-nanosecond resolution.
143	 */
144	wr32(E1000_SYSTIML, ts->tv_nsec);
145	wr32(E1000_SYSTIMH, ts->tv_sec);
146}
147
148/**
149 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
150 * @adapter: board private structure
151 * @hwtstamps: timestamp structure to update
152 * @systim: unsigned 64bit system time value.
153 *
154 * We need to convert the system time value stored in the RX/TXSTMP registers
155 * into a hwtstamp which can be used by the upper level timestamping functions.
156 *
157 * The 'tmreg_lock' spinlock is used to protect the consistency of the
158 * system time value. This is needed because reading the 64 bit time
159 * value involves reading two (or three) 32 bit registers. The first
160 * read latches the value. Ditto for writing.
161 *
162 * In addition, here have extended the system time with an overflow
163 * counter in software.
164 **/
165static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
166				       struct skb_shared_hwtstamps *hwtstamps,
167				       u64 systim)
168{
169	unsigned long flags;
170	u64 ns;
171
172	switch (adapter->hw.mac.type) {
173	case e1000_82576:
174	case e1000_82580:
175	case e1000_i354:
176	case e1000_i350:
177		spin_lock_irqsave(&adapter->tmreg_lock, flags);
178
179		ns = timecounter_cyc2time(&adapter->tc, systim);
180
181		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
182
183		memset(hwtstamps, 0, sizeof(*hwtstamps));
184		hwtstamps->hwtstamp = ns_to_ktime(ns);
185		break;
186	case e1000_i210:
187	case e1000_i211:
188		memset(hwtstamps, 0, sizeof(*hwtstamps));
189		/* Upper 32 bits contain s, lower 32 bits contain ns. */
190		hwtstamps->hwtstamp = ktime_set(systim >> 32,
191						systim & 0xFFFFFFFF);
192		break;
193	default:
194		break;
195	}
196}
197
198/* PTP clock operations */
199static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
200{
201	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
202					       ptp_caps);
203	struct e1000_hw *hw = &igb->hw;
204	int neg_adj = 0;
205	u64 rate;
206	u32 incvalue;
207
208	if (ppb < 0) {
209		neg_adj = 1;
210		ppb = -ppb;
211	}
212	rate = ppb;
213	rate <<= 14;
214	rate = div_u64(rate, 1953125);
215
216	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
217
218	if (neg_adj)
219		incvalue -= rate;
220	else
221		incvalue += rate;
222
223	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
224
225	return 0;
226}
227
228static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
229{
230	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231					       ptp_caps);
232	struct e1000_hw *hw = &igb->hw;
233	int neg_adj = 0;
234	u64 rate;
235	u32 inca;
236
237	if (ppb < 0) {
238		neg_adj = 1;
239		ppb = -ppb;
240	}
241	rate = ppb;
242	rate <<= 26;
243	rate = div_u64(rate, 1953125);
244
245	inca = rate & INCVALUE_MASK;
246	if (neg_adj)
247		inca |= ISGN;
248
249	wr32(E1000_TIMINCA, inca);
250
251	return 0;
252}
253
254static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
255{
256	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
257					       ptp_caps);
258	unsigned long flags;
259	s64 now;
260
261	spin_lock_irqsave(&igb->tmreg_lock, flags);
262
263	now = timecounter_read(&igb->tc);
264	now += delta;
265	timecounter_init(&igb->tc, &igb->cc, now);
266
267	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
268
269	return 0;
270}
271
272static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
273{
274	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
275					       ptp_caps);
276	unsigned long flags;
277	struct timespec now, then = ns_to_timespec(delta);
278
279	spin_lock_irqsave(&igb->tmreg_lock, flags);
280
281	igb_ptp_read_i210(igb, &now);
282	now = timespec_add(now, then);
283	igb_ptp_write_i210(igb, (const struct timespec *)&now);
284
285	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
286
287	return 0;
288}
289
290static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
291				 struct timespec *ts)
292{
293	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
294					       ptp_caps);
295	unsigned long flags;
296	u64 ns;
297	u32 remainder;
298
299	spin_lock_irqsave(&igb->tmreg_lock, flags);
300
301	ns = timecounter_read(&igb->tc);
302
303	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
304
305	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
306	ts->tv_nsec = remainder;
307
308	return 0;
309}
310
311static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
312				struct timespec *ts)
313{
314	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
315					       ptp_caps);
316	unsigned long flags;
317
318	spin_lock_irqsave(&igb->tmreg_lock, flags);
319
320	igb_ptp_read_i210(igb, ts);
321
322	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
323
324	return 0;
325}
326
327static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
328				 const struct timespec *ts)
329{
330	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
331					       ptp_caps);
332	unsigned long flags;
333	u64 ns;
334
335	ns = ts->tv_sec * 1000000000ULL;
336	ns += ts->tv_nsec;
337
338	spin_lock_irqsave(&igb->tmreg_lock, flags);
339
340	timecounter_init(&igb->tc, &igb->cc, ns);
341
342	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
343
344	return 0;
345}
346
347static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
348				const struct timespec *ts)
349{
350	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
351					       ptp_caps);
352	unsigned long flags;
353
354	spin_lock_irqsave(&igb->tmreg_lock, flags);
355
356	igb_ptp_write_i210(igb, ts);
357
358	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
359
360	return 0;
361}
362
363static int igb_ptp_enable(struct ptp_clock_info *ptp,
364			  struct ptp_clock_request *rq, int on)
365{
366	return -EOPNOTSUPP;
367}
368
369/**
370 * igb_ptp_tx_work
371 * @work: pointer to work struct
372 *
373 * This work function polls the TSYNCTXCTL valid bit to determine when a
374 * timestamp has been taken for the current stored skb.
375 **/
376static void igb_ptp_tx_work(struct work_struct *work)
377{
378	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
379						   ptp_tx_work);
380	struct e1000_hw *hw = &adapter->hw;
381	u32 tsynctxctl;
382
383	if (!adapter->ptp_tx_skb)
384		return;
385
386	if (time_is_before_jiffies(adapter->ptp_tx_start +
387				   IGB_PTP_TX_TIMEOUT)) {
388		dev_kfree_skb_any(adapter->ptp_tx_skb);
389		adapter->ptp_tx_skb = NULL;
390		adapter->tx_hwtstamp_timeouts++;
391		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang");
392		return;
393	}
394
395	tsynctxctl = rd32(E1000_TSYNCTXCTL);
396	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
397		igb_ptp_tx_hwtstamp(adapter);
398	else
399		/* reschedule to check later */
400		schedule_work(&adapter->ptp_tx_work);
401}
402
403static void igb_ptp_overflow_check(struct work_struct *work)
404{
405	struct igb_adapter *igb =
406		container_of(work, struct igb_adapter, ptp_overflow_work.work);
407	struct timespec ts;
408
409	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
410
411	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
412
413	schedule_delayed_work(&igb->ptp_overflow_work,
414			      IGB_SYSTIM_OVERFLOW_PERIOD);
415}
416
417/**
418 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
419 * @adapter: private network adapter structure
420 *
421 * This watchdog task is scheduled to detect error case where hardware has
422 * dropped an Rx packet that was timestamped when the ring is full. The
423 * particular error is rare but leaves the device in a state unable to timestamp
424 * any future packets.
425 **/
426void igb_ptp_rx_hang(struct igb_adapter *adapter)
427{
428	struct e1000_hw *hw = &adapter->hw;
429	struct igb_ring *rx_ring;
430	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
431	unsigned long rx_event;
432	int n;
433
434	if (hw->mac.type != e1000_82576)
435		return;
436
437	/* If we don't have a valid timestamp in the registers, just update the
438	 * timeout counter and exit
439	 */
440	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
441		adapter->last_rx_ptp_check = jiffies;
442		return;
443	}
444
445	/* Determine the most recent watchdog or rx_timestamp event */
446	rx_event = adapter->last_rx_ptp_check;
447	for (n = 0; n < adapter->num_rx_queues; n++) {
448		rx_ring = adapter->rx_ring[n];
449		if (time_after(rx_ring->last_rx_timestamp, rx_event))
450			rx_event = rx_ring->last_rx_timestamp;
451	}
452
453	/* Only need to read the high RXSTMP register to clear the lock */
454	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
455		rd32(E1000_RXSTMPH);
456		adapter->last_rx_ptp_check = jiffies;
457		adapter->rx_hwtstamp_cleared++;
458		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang");
459	}
460}
461
462/**
463 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
464 * @adapter: Board private structure.
465 *
466 * If we were asked to do hardware stamping and such a time stamp is
467 * available, then it must have been for this skb here because we only
468 * allow only one such packet into the queue.
469 **/
470static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
471{
472	struct e1000_hw *hw = &adapter->hw;
473	struct skb_shared_hwtstamps shhwtstamps;
474	u64 regval;
475
476	regval = rd32(E1000_TXSTMPL);
477	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
478
479	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
480	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
481	dev_kfree_skb_any(adapter->ptp_tx_skb);
482	adapter->ptp_tx_skb = NULL;
483}
484
485/**
486 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
487 * @q_vector: Pointer to interrupt specific structure
488 * @va: Pointer to address containing Rx buffer
489 * @skb: Buffer containing timestamp and packet
490 *
491 * This function is meant to retrieve a timestamp from the first buffer of an
492 * incoming frame.  The value is stored in little endian format starting on
493 * byte 8.
494 **/
495void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
496			 unsigned char *va,
497			 struct sk_buff *skb)
498{
499	__le64 *regval = (__le64 *)va;
500
501	/* The timestamp is recorded in little endian format.
502	 * DWORD: 0        1        2        3
503	 * Field: Reserved Reserved SYSTIML  SYSTIMH
504	 */
505	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
506				   le64_to_cpu(regval[1]));
507}
508
509/**
510 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
511 * @q_vector: Pointer to interrupt specific structure
512 * @skb: Buffer containing timestamp and packet
513 *
514 * This function is meant to retrieve a timestamp from the internal registers
515 * of the adapter and store it in the skb.
516 **/
517void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
518			 struct sk_buff *skb)
519{
520	struct igb_adapter *adapter = q_vector->adapter;
521	struct e1000_hw *hw = &adapter->hw;
522	u64 regval;
523
524	/* If this bit is set, then the RX registers contain the time stamp. No
525	 * other packet will be time stamped until we read these registers, so
526	 * read the registers to make them available again. Because only one
527	 * packet can be time stamped at a time, we know that the register
528	 * values must belong to this one here and therefore we don't need to
529	 * compare any of the additional attributes stored for it.
530	 *
531	 * If nothing went wrong, then it should have a shared tx_flags that we
532	 * can turn into a skb_shared_hwtstamps.
533	 */
534	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
535		return;
536
537	regval = rd32(E1000_RXSTMPL);
538	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
539
540	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
541}
542
543/**
544 * igb_ptp_hwtstamp_ioctl - control hardware time stamping
545 * @netdev:
546 * @ifreq:
547 * @cmd:
548 *
549 * Outgoing time stamping can be enabled and disabled. Play nice and
550 * disable it when requested, although it shouldn't case any overhead
551 * when no packet needs it. At most one packet in the queue may be
552 * marked for time stamping, otherwise it would be impossible to tell
553 * for sure to which packet the hardware time stamp belongs.
554 *
555 * Incoming time stamping has to be configured via the hardware
556 * filters. Not all combinations are supported, in particular event
557 * type has to be specified. Matching the kind of event packet is
558 * not supported, with the exception of "all V2 events regardless of
559 * level 2 or 4".
560 **/
561int igb_ptp_hwtstamp_ioctl(struct net_device *netdev,
562			   struct ifreq *ifr, int cmd)
563{
564	struct igb_adapter *adapter = netdev_priv(netdev);
565	struct e1000_hw *hw = &adapter->hw;
566	struct hwtstamp_config config;
567	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
568	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
569	u32 tsync_rx_cfg = 0;
570	bool is_l4 = false;
571	bool is_l2 = false;
572	u32 regval;
573
574	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
575		return -EFAULT;
576
577	/* reserved for future extensions */
578	if (config.flags)
579		return -EINVAL;
580
581	switch (config.tx_type) {
582	case HWTSTAMP_TX_OFF:
583		tsync_tx_ctl = 0;
584	case HWTSTAMP_TX_ON:
585		break;
586	default:
587		return -ERANGE;
588	}
589
590	switch (config.rx_filter) {
591	case HWTSTAMP_FILTER_NONE:
592		tsync_rx_ctl = 0;
593		break;
594	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
595		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
596		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
597		is_l4 = true;
598		break;
599	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
600		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
601		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
602		is_l4 = true;
603		break;
604	case HWTSTAMP_FILTER_PTP_V2_EVENT:
605	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
606	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
607	case HWTSTAMP_FILTER_PTP_V2_SYNC:
608	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
609	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
610	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
611	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
612	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
613		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
614		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
615		is_l2 = true;
616		is_l4 = true;
617		break;
618	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
619	case HWTSTAMP_FILTER_ALL:
620		/* 82576 cannot timestamp all packets, which it needs to do to
621		 * support both V1 Sync and Delay_Req messages
622		 */
623		if (hw->mac.type != e1000_82576) {
624			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
625			config.rx_filter = HWTSTAMP_FILTER_ALL;
626			break;
627		}
628		/* fall through */
629	default:
630		config.rx_filter = HWTSTAMP_FILTER_NONE;
631		return -ERANGE;
632	}
633
634	if (hw->mac.type == e1000_82575) {
635		if (tsync_rx_ctl | tsync_tx_ctl)
636			return -EINVAL;
637		return 0;
638	}
639
640	/* Per-packet timestamping only works if all packets are
641	 * timestamped, so enable timestamping in all packets as
642	 * long as one Rx filter was configured.
643	 */
644	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
645		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
646		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
647		config.rx_filter = HWTSTAMP_FILTER_ALL;
648		is_l2 = true;
649		is_l4 = true;
650
651		if ((hw->mac.type == e1000_i210) ||
652		    (hw->mac.type == e1000_i211)) {
653			regval = rd32(E1000_RXPBS);
654			regval |= E1000_RXPBS_CFG_TS_EN;
655			wr32(E1000_RXPBS, regval);
656		}
657	}
658
659	/* enable/disable TX */
660	regval = rd32(E1000_TSYNCTXCTL);
661	regval &= ~E1000_TSYNCTXCTL_ENABLED;
662	regval |= tsync_tx_ctl;
663	wr32(E1000_TSYNCTXCTL, regval);
664
665	/* enable/disable RX */
666	regval = rd32(E1000_TSYNCRXCTL);
667	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
668	regval |= tsync_rx_ctl;
669	wr32(E1000_TSYNCRXCTL, regval);
670
671	/* define which PTP packets are time stamped */
672	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
673
674	/* define ethertype filter for timestamped packets */
675	if (is_l2)
676		wr32(E1000_ETQF(3),
677		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
678		      E1000_ETQF_1588 | /* enable timestamping */
679		      ETH_P_1588));     /* 1588 eth protocol type */
680	else
681		wr32(E1000_ETQF(3), 0);
682
683	/* L4 Queue Filter[3]: filter by destination port and protocol */
684	if (is_l4) {
685		u32 ftqf = (IPPROTO_UDP /* UDP */
686			| E1000_FTQF_VF_BP /* VF not compared */
687			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
688			| E1000_FTQF_MASK); /* mask all inputs */
689		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
690
691		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
692		wr32(E1000_IMIREXT(3),
693		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
694		if (hw->mac.type == e1000_82576) {
695			/* enable source port check */
696			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
697			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
698		}
699		wr32(E1000_FTQF(3), ftqf);
700	} else {
701		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
702	}
703	wrfl();
704
705	/* clear TX/RX time stamp registers, just to be sure */
706	regval = rd32(E1000_TXSTMPL);
707	regval = rd32(E1000_TXSTMPH);
708	regval = rd32(E1000_RXSTMPL);
709	regval = rd32(E1000_RXSTMPH);
710
711	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
712		-EFAULT : 0;
713}
714
715void igb_ptp_init(struct igb_adapter *adapter)
716{
717	struct e1000_hw *hw = &adapter->hw;
718	struct net_device *netdev = adapter->netdev;
719
720	switch (hw->mac.type) {
721	case e1000_82576:
722		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
723		adapter->ptp_caps.owner = THIS_MODULE;
724		adapter->ptp_caps.max_adj = 999999881;
725		adapter->ptp_caps.n_ext_ts = 0;
726		adapter->ptp_caps.pps = 0;
727		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
728		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
729		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
730		adapter->ptp_caps.settime = igb_ptp_settime_82576;
731		adapter->ptp_caps.enable = igb_ptp_enable;
732		adapter->cc.read = igb_ptp_read_82576;
733		adapter->cc.mask = CLOCKSOURCE_MASK(64);
734		adapter->cc.mult = 1;
735		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
736		/* Dial the nominal frequency. */
737		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
738		break;
739	case e1000_82580:
740	case e1000_i354:
741	case e1000_i350:
742		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
743		adapter->ptp_caps.owner = THIS_MODULE;
744		adapter->ptp_caps.max_adj = 62499999;
745		adapter->ptp_caps.n_ext_ts = 0;
746		adapter->ptp_caps.pps = 0;
747		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
748		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
749		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
750		adapter->ptp_caps.settime = igb_ptp_settime_82576;
751		adapter->ptp_caps.enable = igb_ptp_enable;
752		adapter->cc.read = igb_ptp_read_82580;
753		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
754		adapter->cc.mult = 1;
755		adapter->cc.shift = 0;
756		/* Enable the timer functions by clearing bit 31. */
757		wr32(E1000_TSAUXC, 0x0);
758		break;
759	case e1000_i210:
760	case e1000_i211:
761		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
762		adapter->ptp_caps.owner = THIS_MODULE;
763		adapter->ptp_caps.max_adj = 62499999;
764		adapter->ptp_caps.n_ext_ts = 0;
765		adapter->ptp_caps.pps = 0;
766		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
767		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
768		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
769		adapter->ptp_caps.settime = igb_ptp_settime_i210;
770		adapter->ptp_caps.enable = igb_ptp_enable;
771		/* Enable the timer functions by clearing bit 31. */
772		wr32(E1000_TSAUXC, 0x0);
773		break;
774	default:
775		adapter->ptp_clock = NULL;
776		return;
777	}
778
779	wrfl();
780
781	spin_lock_init(&adapter->tmreg_lock);
782	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
783
784	/* Initialize the clock and overflow work for devices that need it. */
785	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
786		struct timespec ts = ktime_to_timespec(ktime_get_real());
787
788		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
789	} else {
790		timecounter_init(&adapter->tc, &adapter->cc,
791				 ktime_to_ns(ktime_get_real()));
792
793		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
794				  igb_ptp_overflow_check);
795
796		schedule_delayed_work(&adapter->ptp_overflow_work,
797				      IGB_SYSTIM_OVERFLOW_PERIOD);
798	}
799
800	/* Initialize the time sync interrupts for devices that support it. */
801	if (hw->mac.type >= e1000_82580) {
802		wr32(E1000_TSIM, E1000_TSIM_TXTS);
803		wr32(E1000_IMS, E1000_IMS_TS);
804	}
805
806	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
807						&adapter->pdev->dev);
808	if (IS_ERR(adapter->ptp_clock)) {
809		adapter->ptp_clock = NULL;
810		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
811	} else {
812		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
813			 adapter->netdev->name);
814		adapter->flags |= IGB_FLAG_PTP;
815	}
816}
817
818/**
819 * igb_ptp_stop - Disable PTP device and stop the overflow check.
820 * @adapter: Board private structure.
821 *
822 * This function stops the PTP support and cancels the delayed work.
823 **/
824void igb_ptp_stop(struct igb_adapter *adapter)
825{
826	switch (adapter->hw.mac.type) {
827	case e1000_82576:
828	case e1000_82580:
829	case e1000_i354:
830	case e1000_i350:
831		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
832		break;
833	case e1000_i210:
834	case e1000_i211:
835		/* No delayed work to cancel. */
836		break;
837	default:
838		return;
839	}
840
841	cancel_work_sync(&adapter->ptp_tx_work);
842	if (adapter->ptp_tx_skb) {
843		dev_kfree_skb_any(adapter->ptp_tx_skb);
844		adapter->ptp_tx_skb = NULL;
845	}
846
847	if (adapter->ptp_clock) {
848		ptp_clock_unregister(adapter->ptp_clock);
849		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
850			 adapter->netdev->name);
851		adapter->flags &= ~IGB_FLAG_PTP;
852	}
853}
854
855/**
856 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
857 * @adapter: Board private structure.
858 *
859 * This function handles the reset work required to re-enable the PTP device.
860 **/
861void igb_ptp_reset(struct igb_adapter *adapter)
862{
863	struct e1000_hw *hw = &adapter->hw;
864
865	if (!(adapter->flags & IGB_FLAG_PTP))
866		return;
867
868	switch (adapter->hw.mac.type) {
869	case e1000_82576:
870		/* Dial the nominal frequency. */
871		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
872		break;
873	case e1000_82580:
874	case e1000_i354:
875	case e1000_i350:
876	case e1000_i210:
877	case e1000_i211:
878		/* Enable the timer functions and interrupts. */
879		wr32(E1000_TSAUXC, 0x0);
880		wr32(E1000_TSIM, E1000_TSIM_TXTS);
881		wr32(E1000_IMS, E1000_IMS_TS);
882		break;
883	default:
884		/* No work to do. */
885		return;
886	}
887
888	/* Re-initialize the timer. */
889	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
890		struct timespec ts = ktime_to_timespec(ktime_get_real());
891
892		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
893	} else {
894		timecounter_init(&adapter->tc, &adapter->cc,
895				 ktime_to_ns(ktime_get_real()));
896	}
897}
898