[go: nahoru, domu]

igb_ptp.c revision 9f62ecf4255ea0fb3e653fc5fc91ef7b38812bb5
1/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2 *
3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18#include <linux/module.h>
19#include <linux/device.h>
20#include <linux/pci.h>
21#include <linux/ptp_classify.h>
22
23#include "igb.h"
24
25#define INCVALUE_MASK		0x7fffffff
26#define ISGN			0x80000000
27
28/* The 82580 timesync updates the system timer every 8ns by 8ns,
29 * and this update value cannot be reprogrammed.
30 *
31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
32 * nanoseconds time values for very long. For the 82580, SYSTIM always
33 * counts nanoseconds, but the upper 24 bits are not availible. The
34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
35 * register, TIMINCA.
36 *
37 * For the 82576, the SYSTIM register time unit is affect by the
38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39 * field are needed to provide the nominal 16 nanosecond period,
40 * leaving 19 bits for fractional nanoseconds.
41 *
42 * We scale the NIC clock cycle by a large factor so that relatively
43 * small clock corrections can be added or subtracted at each clock
44 * tick. The drawbacks of a large factor are a) that the clock
45 * register overflows more quickly (not such a big deal) and b) that
46 * the increment per tick has to fit into 24 bits.  As a result we
47 * need to use a shift of 19 so we can fit a value of 16 into the
48 * TIMINCA register.
49 *
50 *
51 *             SYSTIMH            SYSTIML
52 *        +--------------+   +---+---+------+
53 *  82576 |      32      |   | 8 | 5 |  19  |
54 *        +--------------+   +---+---+------+
55 *         \________ 45 bits _______/  fract
56 *
57 *        +----------+---+   +--------------+
58 *  82580 |    24    | 8 |   |      32      |
59 *        +----------+---+   +--------------+
60 *          reserved  \______ 40 bits _____/
61 *
62 *
63 * The 45 bit 82576 SYSTIM overflows every
64 *   2^45 * 10^-9 / 3600 = 9.77 hours.
65 *
66 * The 40 bit 82580 SYSTIM overflows every
67 *   2^40 * 10^-9 /  60  = 18.3 minutes.
68 */
69
70#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
71#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
72#define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
73#define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
74#define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
75#define IGB_NBITS_82580			40
76
77static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78
79/* SYSTIM read access for the 82576 */
80static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81{
82	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83	struct e1000_hw *hw = &igb->hw;
84	u64 val;
85	u32 lo, hi;
86
87	lo = rd32(E1000_SYSTIML);
88	hi = rd32(E1000_SYSTIMH);
89
90	val = ((u64) hi) << 32;
91	val |= lo;
92
93	return val;
94}
95
96/* SYSTIM read access for the 82580 */
97static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98{
99	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100	struct e1000_hw *hw = &igb->hw;
101	u32 lo, hi;
102	u64 val;
103
104	/* The timestamp latches on lowest register read. For the 82580
105	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
106	 * need to provide nanosecond resolution, so we just ignore it.
107	 */
108	rd32(E1000_SYSTIMR);
109	lo = rd32(E1000_SYSTIML);
110	hi = rd32(E1000_SYSTIMH);
111
112	val = ((u64) hi) << 32;
113	val |= lo;
114
115	return val;
116}
117
118/* SYSTIM read access for I210/I211 */
119static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
120{
121	struct e1000_hw *hw = &adapter->hw;
122	u32 sec, nsec;
123
124	/* The timestamp latches on lowest register read. For I210/I211, the
125	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
126	 * resolution, we can ignore it.
127	 */
128	rd32(E1000_SYSTIMR);
129	nsec = rd32(E1000_SYSTIML);
130	sec = rd32(E1000_SYSTIMH);
131
132	ts->tv_sec = sec;
133	ts->tv_nsec = nsec;
134}
135
136static void igb_ptp_write_i210(struct igb_adapter *adapter,
137			       const struct timespec *ts)
138{
139	struct e1000_hw *hw = &adapter->hw;
140
141	/* Writing the SYSTIMR register is not necessary as it only provides
142	 * sub-nanosecond resolution.
143	 */
144	wr32(E1000_SYSTIML, ts->tv_nsec);
145	wr32(E1000_SYSTIMH, ts->tv_sec);
146}
147
148/**
149 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
150 * @adapter: board private structure
151 * @hwtstamps: timestamp structure to update
152 * @systim: unsigned 64bit system time value.
153 *
154 * We need to convert the system time value stored in the RX/TXSTMP registers
155 * into a hwtstamp which can be used by the upper level timestamping functions.
156 *
157 * The 'tmreg_lock' spinlock is used to protect the consistency of the
158 * system time value. This is needed because reading the 64 bit time
159 * value involves reading two (or three) 32 bit registers. The first
160 * read latches the value. Ditto for writing.
161 *
162 * In addition, here have extended the system time with an overflow
163 * counter in software.
164 **/
165static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
166				       struct skb_shared_hwtstamps *hwtstamps,
167				       u64 systim)
168{
169	unsigned long flags;
170	u64 ns;
171
172	switch (adapter->hw.mac.type) {
173	case e1000_82576:
174	case e1000_82580:
175	case e1000_i354:
176	case e1000_i350:
177		spin_lock_irqsave(&adapter->tmreg_lock, flags);
178
179		ns = timecounter_cyc2time(&adapter->tc, systim);
180
181		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
182
183		memset(hwtstamps, 0, sizeof(*hwtstamps));
184		hwtstamps->hwtstamp = ns_to_ktime(ns);
185		break;
186	case e1000_i210:
187	case e1000_i211:
188		memset(hwtstamps, 0, sizeof(*hwtstamps));
189		/* Upper 32 bits contain s, lower 32 bits contain ns. */
190		hwtstamps->hwtstamp = ktime_set(systim >> 32,
191						systim & 0xFFFFFFFF);
192		break;
193	default:
194		break;
195	}
196}
197
198/* PTP clock operations */
199static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
200{
201	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
202					       ptp_caps);
203	struct e1000_hw *hw = &igb->hw;
204	int neg_adj = 0;
205	u64 rate;
206	u32 incvalue;
207
208	if (ppb < 0) {
209		neg_adj = 1;
210		ppb = -ppb;
211	}
212	rate = ppb;
213	rate <<= 14;
214	rate = div_u64(rate, 1953125);
215
216	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
217
218	if (neg_adj)
219		incvalue -= rate;
220	else
221		incvalue += rate;
222
223	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
224
225	return 0;
226}
227
228static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
229{
230	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231					       ptp_caps);
232	struct e1000_hw *hw = &igb->hw;
233	int neg_adj = 0;
234	u64 rate;
235	u32 inca;
236
237	if (ppb < 0) {
238		neg_adj = 1;
239		ppb = -ppb;
240	}
241	rate = ppb;
242	rate <<= 26;
243	rate = div_u64(rate, 1953125);
244
245	inca = rate & INCVALUE_MASK;
246	if (neg_adj)
247		inca |= ISGN;
248
249	wr32(E1000_TIMINCA, inca);
250
251	return 0;
252}
253
254static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
255{
256	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
257					       ptp_caps);
258	unsigned long flags;
259	s64 now;
260
261	spin_lock_irqsave(&igb->tmreg_lock, flags);
262
263	now = timecounter_read(&igb->tc);
264	now += delta;
265	timecounter_init(&igb->tc, &igb->cc, now);
266
267	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
268
269	return 0;
270}
271
272static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
273{
274	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
275					       ptp_caps);
276	unsigned long flags;
277	struct timespec now, then = ns_to_timespec(delta);
278
279	spin_lock_irqsave(&igb->tmreg_lock, flags);
280
281	igb_ptp_read_i210(igb, &now);
282	now = timespec_add(now, then);
283	igb_ptp_write_i210(igb, (const struct timespec *)&now);
284
285	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
286
287	return 0;
288}
289
290static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
291				 struct timespec *ts)
292{
293	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
294					       ptp_caps);
295	unsigned long flags;
296	u64 ns;
297	u32 remainder;
298
299	spin_lock_irqsave(&igb->tmreg_lock, flags);
300
301	ns = timecounter_read(&igb->tc);
302
303	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
304
305	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
306	ts->tv_nsec = remainder;
307
308	return 0;
309}
310
311static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
312				struct timespec *ts)
313{
314	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
315					       ptp_caps);
316	unsigned long flags;
317
318	spin_lock_irqsave(&igb->tmreg_lock, flags);
319
320	igb_ptp_read_i210(igb, ts);
321
322	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
323
324	return 0;
325}
326
327static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
328				 const struct timespec *ts)
329{
330	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
331					       ptp_caps);
332	unsigned long flags;
333	u64 ns;
334
335	ns = ts->tv_sec * 1000000000ULL;
336	ns += ts->tv_nsec;
337
338	spin_lock_irqsave(&igb->tmreg_lock, flags);
339
340	timecounter_init(&igb->tc, &igb->cc, ns);
341
342	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
343
344	return 0;
345}
346
347static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
348				const struct timespec *ts)
349{
350	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
351					       ptp_caps);
352	unsigned long flags;
353
354	spin_lock_irqsave(&igb->tmreg_lock, flags);
355
356	igb_ptp_write_i210(igb, ts);
357
358	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
359
360	return 0;
361}
362
363static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
364				  struct ptp_clock_request *rq, int on)
365{
366	return -EOPNOTSUPP;
367}
368
369/**
370 * igb_ptp_tx_work
371 * @work: pointer to work struct
372 *
373 * This work function polls the TSYNCTXCTL valid bit to determine when a
374 * timestamp has been taken for the current stored skb.
375 **/
376static void igb_ptp_tx_work(struct work_struct *work)
377{
378	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
379						   ptp_tx_work);
380	struct e1000_hw *hw = &adapter->hw;
381	u32 tsynctxctl;
382
383	if (!adapter->ptp_tx_skb)
384		return;
385
386	if (time_is_before_jiffies(adapter->ptp_tx_start +
387				   IGB_PTP_TX_TIMEOUT)) {
388		dev_kfree_skb_any(adapter->ptp_tx_skb);
389		adapter->ptp_tx_skb = NULL;
390		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
391		adapter->tx_hwtstamp_timeouts++;
392		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
393		return;
394	}
395
396	tsynctxctl = rd32(E1000_TSYNCTXCTL);
397	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
398		igb_ptp_tx_hwtstamp(adapter);
399	else
400		/* reschedule to check later */
401		schedule_work(&adapter->ptp_tx_work);
402}
403
404static void igb_ptp_overflow_check(struct work_struct *work)
405{
406	struct igb_adapter *igb =
407		container_of(work, struct igb_adapter, ptp_overflow_work.work);
408	struct timespec ts;
409
410	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
411
412	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
413
414	schedule_delayed_work(&igb->ptp_overflow_work,
415			      IGB_SYSTIM_OVERFLOW_PERIOD);
416}
417
418/**
419 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
420 * @adapter: private network adapter structure
421 *
422 * This watchdog task is scheduled to detect error case where hardware has
423 * dropped an Rx packet that was timestamped when the ring is full. The
424 * particular error is rare but leaves the device in a state unable to timestamp
425 * any future packets.
426 **/
427void igb_ptp_rx_hang(struct igb_adapter *adapter)
428{
429	struct e1000_hw *hw = &adapter->hw;
430	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
431	unsigned long rx_event;
432
433	if (hw->mac.type != e1000_82576)
434		return;
435
436	/* If we don't have a valid timestamp in the registers, just update the
437	 * timeout counter and exit
438	 */
439	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
440		adapter->last_rx_ptp_check = jiffies;
441		return;
442	}
443
444	/* Determine the most recent watchdog or rx_timestamp event */
445	rx_event = adapter->last_rx_ptp_check;
446	if (time_after(adapter->last_rx_timestamp, rx_event))
447		rx_event = adapter->last_rx_timestamp;
448
449	/* Only need to read the high RXSTMP register to clear the lock */
450	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
451		rd32(E1000_RXSTMPH);
452		adapter->last_rx_ptp_check = jiffies;
453		adapter->rx_hwtstamp_cleared++;
454		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
455	}
456}
457
458/**
459 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
460 * @adapter: Board private structure.
461 *
462 * If we were asked to do hardware stamping and such a time stamp is
463 * available, then it must have been for this skb here because we only
464 * allow only one such packet into the queue.
465 **/
466static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
467{
468	struct e1000_hw *hw = &adapter->hw;
469	struct skb_shared_hwtstamps shhwtstamps;
470	u64 regval;
471
472	regval = rd32(E1000_TXSTMPL);
473	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
474
475	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
476	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
477	dev_kfree_skb_any(adapter->ptp_tx_skb);
478	adapter->ptp_tx_skb = NULL;
479	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
480}
481
482/**
483 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
484 * @q_vector: Pointer to interrupt specific structure
485 * @va: Pointer to address containing Rx buffer
486 * @skb: Buffer containing timestamp and packet
487 *
488 * This function is meant to retrieve a timestamp from the first buffer of an
489 * incoming frame.  The value is stored in little endian format starting on
490 * byte 8.
491 **/
492void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
493			 unsigned char *va,
494			 struct sk_buff *skb)
495{
496	__le64 *regval = (__le64 *)va;
497
498	/* The timestamp is recorded in little endian format.
499	 * DWORD: 0        1        2        3
500	 * Field: Reserved Reserved SYSTIML  SYSTIMH
501	 */
502	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
503				   le64_to_cpu(regval[1]));
504}
505
506/**
507 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
508 * @q_vector: Pointer to interrupt specific structure
509 * @skb: Buffer containing timestamp and packet
510 *
511 * This function is meant to retrieve a timestamp from the internal registers
512 * of the adapter and store it in the skb.
513 **/
514void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
515			 struct sk_buff *skb)
516{
517	struct igb_adapter *adapter = q_vector->adapter;
518	struct e1000_hw *hw = &adapter->hw;
519	u64 regval;
520
521	/* If this bit is set, then the RX registers contain the time stamp. No
522	 * other packet will be time stamped until we read these registers, so
523	 * read the registers to make them available again. Because only one
524	 * packet can be time stamped at a time, we know that the register
525	 * values must belong to this one here and therefore we don't need to
526	 * compare any of the additional attributes stored for it.
527	 *
528	 * If nothing went wrong, then it should have a shared tx_flags that we
529	 * can turn into a skb_shared_hwtstamps.
530	 */
531	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
532		return;
533
534	regval = rd32(E1000_RXSTMPL);
535	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
536
537	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
538
539	/* Update the last_rx_timestamp timer in order to enable watchdog check
540	 * for error case of latched timestamp on a dropped packet.
541	 */
542	adapter->last_rx_timestamp = jiffies;
543}
544
545/**
546 * igb_ptp_get_ts_config - get hardware time stamping config
547 * @netdev:
548 * @ifreq:
549 *
550 * Get the hwtstamp_config settings to return to the user. Rather than attempt
551 * to deconstruct the settings from the registers, just return a shadow copy
552 * of the last known settings.
553 **/
554int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
555{
556	struct igb_adapter *adapter = netdev_priv(netdev);
557	struct hwtstamp_config *config = &adapter->tstamp_config;
558
559	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
560		-EFAULT : 0;
561}
562
563/**
564 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
565 * @adapter: networking device structure
566 * @config: hwtstamp configuration
567 *
568 * Outgoing time stamping can be enabled and disabled. Play nice and
569 * disable it when requested, although it shouldn't case any overhead
570 * when no packet needs it. At most one packet in the queue may be
571 * marked for time stamping, otherwise it would be impossible to tell
572 * for sure to which packet the hardware time stamp belongs.
573 *
574 * Incoming time stamping has to be configured via the hardware
575 * filters. Not all combinations are supported, in particular event
576 * type has to be specified. Matching the kind of event packet is
577 * not supported, with the exception of "all V2 events regardless of
578 * level 2 or 4".
579 */
580static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
581				      struct hwtstamp_config *config)
582{
583	struct e1000_hw *hw = &adapter->hw;
584	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
585	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
586	u32 tsync_rx_cfg = 0;
587	bool is_l4 = false;
588	bool is_l2 = false;
589	u32 regval;
590
591	/* reserved for future extensions */
592	if (config->flags)
593		return -EINVAL;
594
595	switch (config->tx_type) {
596	case HWTSTAMP_TX_OFF:
597		tsync_tx_ctl = 0;
598	case HWTSTAMP_TX_ON:
599		break;
600	default:
601		return -ERANGE;
602	}
603
604	switch (config->rx_filter) {
605	case HWTSTAMP_FILTER_NONE:
606		tsync_rx_ctl = 0;
607		break;
608	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
609		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
610		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
611		is_l4 = true;
612		break;
613	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
614		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
615		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
616		is_l4 = true;
617		break;
618	case HWTSTAMP_FILTER_PTP_V2_EVENT:
619	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
620	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
621	case HWTSTAMP_FILTER_PTP_V2_SYNC:
622	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
623	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
624	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
625	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
626	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
627		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
628		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
629		is_l2 = true;
630		is_l4 = true;
631		break;
632	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
633	case HWTSTAMP_FILTER_ALL:
634		/* 82576 cannot timestamp all packets, which it needs to do to
635		 * support both V1 Sync and Delay_Req messages
636		 */
637		if (hw->mac.type != e1000_82576) {
638			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
639			config->rx_filter = HWTSTAMP_FILTER_ALL;
640			break;
641		}
642		/* fall through */
643	default:
644		config->rx_filter = HWTSTAMP_FILTER_NONE;
645		return -ERANGE;
646	}
647
648	if (hw->mac.type == e1000_82575) {
649		if (tsync_rx_ctl | tsync_tx_ctl)
650			return -EINVAL;
651		return 0;
652	}
653
654	/* Per-packet timestamping only works if all packets are
655	 * timestamped, so enable timestamping in all packets as
656	 * long as one Rx filter was configured.
657	 */
658	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
659		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
660		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
661		config->rx_filter = HWTSTAMP_FILTER_ALL;
662		is_l2 = true;
663		is_l4 = true;
664
665		if ((hw->mac.type == e1000_i210) ||
666		    (hw->mac.type == e1000_i211)) {
667			regval = rd32(E1000_RXPBS);
668			regval |= E1000_RXPBS_CFG_TS_EN;
669			wr32(E1000_RXPBS, regval);
670		}
671	}
672
673	/* enable/disable TX */
674	regval = rd32(E1000_TSYNCTXCTL);
675	regval &= ~E1000_TSYNCTXCTL_ENABLED;
676	regval |= tsync_tx_ctl;
677	wr32(E1000_TSYNCTXCTL, regval);
678
679	/* enable/disable RX */
680	regval = rd32(E1000_TSYNCRXCTL);
681	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
682	regval |= tsync_rx_ctl;
683	wr32(E1000_TSYNCRXCTL, regval);
684
685	/* define which PTP packets are time stamped */
686	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
687
688	/* define ethertype filter for timestamped packets */
689	if (is_l2)
690		wr32(E1000_ETQF(3),
691		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
692		      E1000_ETQF_1588 | /* enable timestamping */
693		      ETH_P_1588));     /* 1588 eth protocol type */
694	else
695		wr32(E1000_ETQF(3), 0);
696
697	/* L4 Queue Filter[3]: filter by destination port and protocol */
698	if (is_l4) {
699		u32 ftqf = (IPPROTO_UDP /* UDP */
700			| E1000_FTQF_VF_BP /* VF not compared */
701			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
702			| E1000_FTQF_MASK); /* mask all inputs */
703		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
704
705		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
706		wr32(E1000_IMIREXT(3),
707		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
708		if (hw->mac.type == e1000_82576) {
709			/* enable source port check */
710			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
711			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
712		}
713		wr32(E1000_FTQF(3), ftqf);
714	} else {
715		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
716	}
717	wrfl();
718
719	/* clear TX/RX time stamp registers, just to be sure */
720	regval = rd32(E1000_TXSTMPL);
721	regval = rd32(E1000_TXSTMPH);
722	regval = rd32(E1000_RXSTMPL);
723	regval = rd32(E1000_RXSTMPH);
724
725	return 0;
726}
727
728/**
729 * igb_ptp_set_ts_config - set hardware time stamping config
730 * @netdev:
731 * @ifreq:
732 *
733 **/
734int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
735{
736	struct igb_adapter *adapter = netdev_priv(netdev);
737	struct hwtstamp_config config;
738	int err;
739
740	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
741		return -EFAULT;
742
743	err = igb_ptp_set_timestamp_mode(adapter, &config);
744	if (err)
745		return err;
746
747	/* save these settings for future reference */
748	memcpy(&adapter->tstamp_config, &config,
749	       sizeof(adapter->tstamp_config));
750
751	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
752		-EFAULT : 0;
753}
754
755void igb_ptp_init(struct igb_adapter *adapter)
756{
757	struct e1000_hw *hw = &adapter->hw;
758	struct net_device *netdev = adapter->netdev;
759
760	switch (hw->mac.type) {
761	case e1000_82576:
762		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
763		adapter->ptp_caps.owner = THIS_MODULE;
764		adapter->ptp_caps.max_adj = 999999881;
765		adapter->ptp_caps.n_ext_ts = 0;
766		adapter->ptp_caps.pps = 0;
767		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
768		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
769		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
770		adapter->ptp_caps.settime = igb_ptp_settime_82576;
771		adapter->ptp_caps.enable = igb_ptp_feature_enable;
772		adapter->cc.read = igb_ptp_read_82576;
773		adapter->cc.mask = CLOCKSOURCE_MASK(64);
774		adapter->cc.mult = 1;
775		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
776		/* Dial the nominal frequency. */
777		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
778		break;
779	case e1000_82580:
780	case e1000_i354:
781	case e1000_i350:
782		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
783		adapter->ptp_caps.owner = THIS_MODULE;
784		adapter->ptp_caps.max_adj = 62499999;
785		adapter->ptp_caps.n_ext_ts = 0;
786		adapter->ptp_caps.pps = 0;
787		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
788		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
789		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
790		adapter->ptp_caps.settime = igb_ptp_settime_82576;
791		adapter->ptp_caps.enable = igb_ptp_feature_enable;
792		adapter->cc.read = igb_ptp_read_82580;
793		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
794		adapter->cc.mult = 1;
795		adapter->cc.shift = 0;
796		/* Enable the timer functions by clearing bit 31. */
797		wr32(E1000_TSAUXC, 0x0);
798		break;
799	case e1000_i210:
800	case e1000_i211:
801		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
802		adapter->ptp_caps.owner = THIS_MODULE;
803		adapter->ptp_caps.max_adj = 62499999;
804		adapter->ptp_caps.n_ext_ts = 0;
805		adapter->ptp_caps.pps = 0;
806		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
807		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
808		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
809		adapter->ptp_caps.settime = igb_ptp_settime_i210;
810		adapter->ptp_caps.enable = igb_ptp_feature_enable;
811		/* Enable the timer functions by clearing bit 31. */
812		wr32(E1000_TSAUXC, 0x0);
813		break;
814	default:
815		adapter->ptp_clock = NULL;
816		return;
817	}
818
819	wrfl();
820
821	spin_lock_init(&adapter->tmreg_lock);
822	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
823
824	/* Initialize the clock and overflow work for devices that need it. */
825	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
826		struct timespec ts = ktime_to_timespec(ktime_get_real());
827
828		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
829	} else {
830		timecounter_init(&adapter->tc, &adapter->cc,
831				 ktime_to_ns(ktime_get_real()));
832
833		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
834				  igb_ptp_overflow_check);
835
836		schedule_delayed_work(&adapter->ptp_overflow_work,
837				      IGB_SYSTIM_OVERFLOW_PERIOD);
838	}
839
840	/* Initialize the time sync interrupts for devices that support it. */
841	if (hw->mac.type >= e1000_82580) {
842		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
843		wr32(E1000_IMS, E1000_IMS_TS);
844	}
845
846	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
847	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
848
849	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
850						&adapter->pdev->dev);
851	if (IS_ERR(adapter->ptp_clock)) {
852		adapter->ptp_clock = NULL;
853		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
854	} else {
855		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
856			 adapter->netdev->name);
857		adapter->flags |= IGB_FLAG_PTP;
858	}
859}
860
861/**
862 * igb_ptp_stop - Disable PTP device and stop the overflow check.
863 * @adapter: Board private structure.
864 *
865 * This function stops the PTP support and cancels the delayed work.
866 **/
867void igb_ptp_stop(struct igb_adapter *adapter)
868{
869	switch (adapter->hw.mac.type) {
870	case e1000_82576:
871	case e1000_82580:
872	case e1000_i354:
873	case e1000_i350:
874		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
875		break;
876	case e1000_i210:
877	case e1000_i211:
878		/* No delayed work to cancel. */
879		break;
880	default:
881		return;
882	}
883
884	cancel_work_sync(&adapter->ptp_tx_work);
885	if (adapter->ptp_tx_skb) {
886		dev_kfree_skb_any(adapter->ptp_tx_skb);
887		adapter->ptp_tx_skb = NULL;
888		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
889	}
890
891	if (adapter->ptp_clock) {
892		ptp_clock_unregister(adapter->ptp_clock);
893		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
894			 adapter->netdev->name);
895		adapter->flags &= ~IGB_FLAG_PTP;
896	}
897}
898
899/**
900 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
901 * @adapter: Board private structure.
902 *
903 * This function handles the reset work required to re-enable the PTP device.
904 **/
905void igb_ptp_reset(struct igb_adapter *adapter)
906{
907	struct e1000_hw *hw = &adapter->hw;
908
909	if (!(adapter->flags & IGB_FLAG_PTP))
910		return;
911
912	/* reset the tstamp_config */
913	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
914
915	switch (adapter->hw.mac.type) {
916	case e1000_82576:
917		/* Dial the nominal frequency. */
918		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
919		break;
920	case e1000_82580:
921	case e1000_i354:
922	case e1000_i350:
923	case e1000_i210:
924	case e1000_i211:
925		/* Enable the timer functions and interrupts. */
926		wr32(E1000_TSAUXC, 0x0);
927		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
928		wr32(E1000_IMS, E1000_IMS_TS);
929		break;
930	default:
931		/* No work to do. */
932		return;
933	}
934
935	/* Re-initialize the timer. */
936	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
937		struct timespec ts = ktime_to_timespec(ktime_get_real());
938
939		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
940	} else {
941		timecounter_init(&adapter->tc, &adapter->cc,
942				 ktime_to_ns(ktime_get_real()));
943	}
944}
945