[go: nahoru, domu]

igb_ptp.c revision 102be52ffdb2f7b33c3122409147a05c3e7860ea
1/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2 *
3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18#include <linux/module.h>
19#include <linux/device.h>
20#include <linux/pci.h>
21#include <linux/ptp_classify.h>
22
23#include "igb.h"
24
25#define INCVALUE_MASK		0x7fffffff
26#define ISGN			0x80000000
27
28/* The 82580 timesync updates the system timer every 8ns by 8ns,
29 * and this update value cannot be reprogrammed.
30 *
31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
32 * nanoseconds time values for very long. For the 82580, SYSTIM always
33 * counts nanoseconds, but the upper 24 bits are not availible. The
34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
35 * register, TIMINCA.
36 *
37 * For the 82576, the SYSTIM register time unit is affect by the
38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39 * field are needed to provide the nominal 16 nanosecond period,
40 * leaving 19 bits for fractional nanoseconds.
41 *
42 * We scale the NIC clock cycle by a large factor so that relatively
43 * small clock corrections can be added or subtracted at each clock
44 * tick. The drawbacks of a large factor are a) that the clock
45 * register overflows more quickly (not such a big deal) and b) that
46 * the increment per tick has to fit into 24 bits.  As a result we
47 * need to use a shift of 19 so we can fit a value of 16 into the
48 * TIMINCA register.
49 *
50 *
51 *             SYSTIMH            SYSTIML
52 *        +--------------+   +---+---+------+
53 *  82576 |      32      |   | 8 | 5 |  19  |
54 *        +--------------+   +---+---+------+
55 *         \________ 45 bits _______/  fract
56 *
57 *        +----------+---+   +--------------+
58 *  82580 |    24    | 8 |   |      32      |
59 *        +----------+---+   +--------------+
60 *          reserved  \______ 40 bits _____/
61 *
62 *
63 * The 45 bit 82576 SYSTIM overflows every
64 *   2^45 * 10^-9 / 3600 = 9.77 hours.
65 *
66 * The 40 bit 82580 SYSTIM overflows every
67 *   2^40 * 10^-9 /  60  = 18.3 minutes.
68 */
69
70#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
71#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
72#define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
73#define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
74#define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
75#define IGB_NBITS_82580			40
76
77static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78
79/* SYSTIM read access for the 82576 */
80static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81{
82	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83	struct e1000_hw *hw = &igb->hw;
84	u64 val;
85	u32 lo, hi;
86
87	lo = rd32(E1000_SYSTIML);
88	hi = rd32(E1000_SYSTIMH);
89
90	val = ((u64) hi) << 32;
91	val |= lo;
92
93	return val;
94}
95
96/* SYSTIM read access for the 82580 */
97static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98{
99	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100	struct e1000_hw *hw = &igb->hw;
101	u32 lo, hi;
102	u64 val;
103
104	/* The timestamp latches on lowest register read. For the 82580
105	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
106	 * need to provide nanosecond resolution, so we just ignore it.
107	 */
108	rd32(E1000_SYSTIMR);
109	lo = rd32(E1000_SYSTIML);
110	hi = rd32(E1000_SYSTIMH);
111
112	val = ((u64) hi) << 32;
113	val |= lo;
114
115	return val;
116}
117
118/* SYSTIM read access for I210/I211 */
119static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
120{
121	struct e1000_hw *hw = &adapter->hw;
122	u32 sec, nsec;
123
124	/* The timestamp latches on lowest register read. For I210/I211, the
125	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
126	 * resolution, we can ignore it.
127	 */
128	rd32(E1000_SYSTIMR);
129	nsec = rd32(E1000_SYSTIML);
130	sec = rd32(E1000_SYSTIMH);
131
132	ts->tv_sec = sec;
133	ts->tv_nsec = nsec;
134}
135
136static void igb_ptp_write_i210(struct igb_adapter *adapter,
137			       const struct timespec *ts)
138{
139	struct e1000_hw *hw = &adapter->hw;
140
141	/* Writing the SYSTIMR register is not necessary as it only provides
142	 * sub-nanosecond resolution.
143	 */
144	wr32(E1000_SYSTIML, ts->tv_nsec);
145	wr32(E1000_SYSTIMH, ts->tv_sec);
146}
147
148/**
149 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
150 * @adapter: board private structure
151 * @hwtstamps: timestamp structure to update
152 * @systim: unsigned 64bit system time value.
153 *
154 * We need to convert the system time value stored in the RX/TXSTMP registers
155 * into a hwtstamp which can be used by the upper level timestamping functions.
156 *
157 * The 'tmreg_lock' spinlock is used to protect the consistency of the
158 * system time value. This is needed because reading the 64 bit time
159 * value involves reading two (or three) 32 bit registers. The first
160 * read latches the value. Ditto for writing.
161 *
162 * In addition, here have extended the system time with an overflow
163 * counter in software.
164 **/
165static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
166				       struct skb_shared_hwtstamps *hwtstamps,
167				       u64 systim)
168{
169	unsigned long flags;
170	u64 ns;
171
172	switch (adapter->hw.mac.type) {
173	case e1000_82576:
174	case e1000_82580:
175	case e1000_i354:
176	case e1000_i350:
177		spin_lock_irqsave(&adapter->tmreg_lock, flags);
178
179		ns = timecounter_cyc2time(&adapter->tc, systim);
180
181		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
182
183		memset(hwtstamps, 0, sizeof(*hwtstamps));
184		hwtstamps->hwtstamp = ns_to_ktime(ns);
185		break;
186	case e1000_i210:
187	case e1000_i211:
188		memset(hwtstamps, 0, sizeof(*hwtstamps));
189		/* Upper 32 bits contain s, lower 32 bits contain ns. */
190		hwtstamps->hwtstamp = ktime_set(systim >> 32,
191						systim & 0xFFFFFFFF);
192		break;
193	default:
194		break;
195	}
196}
197
198/* PTP clock operations */
199static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
200{
201	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
202					       ptp_caps);
203	struct e1000_hw *hw = &igb->hw;
204	int neg_adj = 0;
205	u64 rate;
206	u32 incvalue;
207
208	if (ppb < 0) {
209		neg_adj = 1;
210		ppb = -ppb;
211	}
212	rate = ppb;
213	rate <<= 14;
214	rate = div_u64(rate, 1953125);
215
216	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
217
218	if (neg_adj)
219		incvalue -= rate;
220	else
221		incvalue += rate;
222
223	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
224
225	return 0;
226}
227
228static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
229{
230	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231					       ptp_caps);
232	struct e1000_hw *hw = &igb->hw;
233	int neg_adj = 0;
234	u64 rate;
235	u32 inca;
236
237	if (ppb < 0) {
238		neg_adj = 1;
239		ppb = -ppb;
240	}
241	rate = ppb;
242	rate <<= 26;
243	rate = div_u64(rate, 1953125);
244
245	inca = rate & INCVALUE_MASK;
246	if (neg_adj)
247		inca |= ISGN;
248
249	wr32(E1000_TIMINCA, inca);
250
251	return 0;
252}
253
254static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
255{
256	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
257					       ptp_caps);
258	unsigned long flags;
259	s64 now;
260
261	spin_lock_irqsave(&igb->tmreg_lock, flags);
262
263	now = timecounter_read(&igb->tc);
264	now += delta;
265	timecounter_init(&igb->tc, &igb->cc, now);
266
267	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
268
269	return 0;
270}
271
272static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
273{
274	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
275					       ptp_caps);
276	unsigned long flags;
277	struct timespec now, then = ns_to_timespec(delta);
278
279	spin_lock_irqsave(&igb->tmreg_lock, flags);
280
281	igb_ptp_read_i210(igb, &now);
282	now = timespec_add(now, then);
283	igb_ptp_write_i210(igb, (const struct timespec *)&now);
284
285	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
286
287	return 0;
288}
289
290static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
291				 struct timespec *ts)
292{
293	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
294					       ptp_caps);
295	unsigned long flags;
296	u64 ns;
297	u32 remainder;
298
299	spin_lock_irqsave(&igb->tmreg_lock, flags);
300
301	ns = timecounter_read(&igb->tc);
302
303	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
304
305	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
306	ts->tv_nsec = remainder;
307
308	return 0;
309}
310
311static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
312				struct timespec *ts)
313{
314	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
315					       ptp_caps);
316	unsigned long flags;
317
318	spin_lock_irqsave(&igb->tmreg_lock, flags);
319
320	igb_ptp_read_i210(igb, ts);
321
322	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
323
324	return 0;
325}
326
327static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
328				 const struct timespec *ts)
329{
330	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
331					       ptp_caps);
332	unsigned long flags;
333	u64 ns;
334
335	ns = ts->tv_sec * 1000000000ULL;
336	ns += ts->tv_nsec;
337
338	spin_lock_irqsave(&igb->tmreg_lock, flags);
339
340	timecounter_init(&igb->tc, &igb->cc, ns);
341
342	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
343
344	return 0;
345}
346
347static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
348				const struct timespec *ts)
349{
350	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
351					       ptp_caps);
352	unsigned long flags;
353
354	spin_lock_irqsave(&igb->tmreg_lock, flags);
355
356	igb_ptp_write_i210(igb, ts);
357
358	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
359
360	return 0;
361}
362
363static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
364				  struct ptp_clock_request *rq, int on)
365{
366	return -EOPNOTSUPP;
367}
368
369/**
370 * igb_ptp_tx_work
371 * @work: pointer to work struct
372 *
373 * This work function polls the TSYNCTXCTL valid bit to determine when a
374 * timestamp has been taken for the current stored skb.
375 **/
376static void igb_ptp_tx_work(struct work_struct *work)
377{
378	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
379						   ptp_tx_work);
380	struct e1000_hw *hw = &adapter->hw;
381	u32 tsynctxctl;
382
383	if (!adapter->ptp_tx_skb)
384		return;
385
386	if (time_is_before_jiffies(adapter->ptp_tx_start +
387				   IGB_PTP_TX_TIMEOUT)) {
388		dev_kfree_skb_any(adapter->ptp_tx_skb);
389		adapter->ptp_tx_skb = NULL;
390		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
391		adapter->tx_hwtstamp_timeouts++;
392		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
393		return;
394	}
395
396	tsynctxctl = rd32(E1000_TSYNCTXCTL);
397	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
398		igb_ptp_tx_hwtstamp(adapter);
399	else
400		/* reschedule to check later */
401		schedule_work(&adapter->ptp_tx_work);
402}
403
404static void igb_ptp_overflow_check(struct work_struct *work)
405{
406	struct igb_adapter *igb =
407		container_of(work, struct igb_adapter, ptp_overflow_work.work);
408	struct timespec ts;
409
410	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
411
412	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
413
414	schedule_delayed_work(&igb->ptp_overflow_work,
415			      IGB_SYSTIM_OVERFLOW_PERIOD);
416}
417
418/**
419 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
420 * @adapter: private network adapter structure
421 *
422 * This watchdog task is scheduled to detect error case where hardware has
423 * dropped an Rx packet that was timestamped when the ring is full. The
424 * particular error is rare but leaves the device in a state unable to timestamp
425 * any future packets.
426 **/
427void igb_ptp_rx_hang(struct igb_adapter *adapter)
428{
429	struct e1000_hw *hw = &adapter->hw;
430	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
431	unsigned long rx_event;
432
433	if (hw->mac.type != e1000_82576)
434		return;
435
436	/* If we don't have a valid timestamp in the registers, just update the
437	 * timeout counter and exit
438	 */
439	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
440		adapter->last_rx_ptp_check = jiffies;
441		return;
442	}
443
444	/* Determine the most recent watchdog or rx_timestamp event */
445	rx_event = adapter->last_rx_ptp_check;
446	if (time_after(adapter->last_rx_timestamp, rx_event))
447		rx_event = adapter->last_rx_timestamp;
448
449	/* Only need to read the high RXSTMP register to clear the lock */
450	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
451		rd32(E1000_RXSTMPH);
452		adapter->last_rx_ptp_check = jiffies;
453		adapter->rx_hwtstamp_cleared++;
454		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
455	}
456}
457
458/**
459 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
460 * @adapter: Board private structure.
461 *
462 * If we were asked to do hardware stamping and such a time stamp is
463 * available, then it must have been for this skb here because we only
464 * allow only one such packet into the queue.
465 **/
466static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
467{
468	struct e1000_hw *hw = &adapter->hw;
469	struct skb_shared_hwtstamps shhwtstamps;
470	u64 regval;
471
472	regval = rd32(E1000_TXSTMPL);
473	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
474
475	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
476	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
477	dev_kfree_skb_any(adapter->ptp_tx_skb);
478	adapter->ptp_tx_skb = NULL;
479	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
480}
481
482/**
483 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
484 * @q_vector: Pointer to interrupt specific structure
485 * @va: Pointer to address containing Rx buffer
486 * @skb: Buffer containing timestamp and packet
487 *
488 * This function is meant to retrieve a timestamp from the first buffer of an
489 * incoming frame.  The value is stored in little endian format starting on
490 * byte 8.
491 **/
492void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
493			 unsigned char *va,
494			 struct sk_buff *skb)
495{
496	__le64 *regval = (__le64 *)va;
497
498	/* The timestamp is recorded in little endian format.
499	 * DWORD: 0        1        2        3
500	 * Field: Reserved Reserved SYSTIML  SYSTIMH
501	 */
502	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
503				   le64_to_cpu(regval[1]));
504}
505
506/**
507 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
508 * @q_vector: Pointer to interrupt specific structure
509 * @skb: Buffer containing timestamp and packet
510 *
511 * This function is meant to retrieve a timestamp from the internal registers
512 * of the adapter and store it in the skb.
513 **/
514void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
515			 struct sk_buff *skb)
516{
517	struct igb_adapter *adapter = q_vector->adapter;
518	struct e1000_hw *hw = &adapter->hw;
519	u64 regval;
520
521	/* If this bit is set, then the RX registers contain the time stamp. No
522	 * other packet will be time stamped until we read these registers, so
523	 * read the registers to make them available again. Because only one
524	 * packet can be time stamped at a time, we know that the register
525	 * values must belong to this one here and therefore we don't need to
526	 * compare any of the additional attributes stored for it.
527	 *
528	 * If nothing went wrong, then it should have a shared tx_flags that we
529	 * can turn into a skb_shared_hwtstamps.
530	 */
531	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
532		return;
533
534	regval = rd32(E1000_RXSTMPL);
535	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
536
537	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
538
539	/* Update the last_rx_timestamp timer in order to enable watchdog check
540	 * for error case of latched timestamp on a dropped packet.
541	 */
542	adapter->last_rx_timestamp = jiffies;
543}
544
545/**
546 * igb_ptp_get_ts_config - get hardware time stamping config
547 * @netdev:
548 * @ifreq:
549 *
550 * Get the hwtstamp_config settings to return to the user. Rather than attempt
551 * to deconstruct the settings from the registers, just return a shadow copy
552 * of the last known settings.
553 **/
554int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
555{
556	struct igb_adapter *adapter = netdev_priv(netdev);
557	struct hwtstamp_config *config = &adapter->tstamp_config;
558
559	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
560		-EFAULT : 0;
561}
562/**
563 * igb_ptp_set_ts_config - control hardware time stamping
564 * @netdev:
565 * @ifreq:
566 *
567 * Outgoing time stamping can be enabled and disabled. Play nice and
568 * disable it when requested, although it shouldn't case any overhead
569 * when no packet needs it. At most one packet in the queue may be
570 * marked for time stamping, otherwise it would be impossible to tell
571 * for sure to which packet the hardware time stamp belongs.
572 *
573 * Incoming time stamping has to be configured via the hardware
574 * filters. Not all combinations are supported, in particular event
575 * type has to be specified. Matching the kind of event packet is
576 * not supported, with the exception of "all V2 events regardless of
577 * level 2 or 4".
578 **/
579int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
580{
581	struct igb_adapter *adapter = netdev_priv(netdev);
582	struct e1000_hw *hw = &adapter->hw;
583	struct hwtstamp_config *config = &adapter->tstamp_config;
584	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
585	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
586	u32 tsync_rx_cfg = 0;
587	bool is_l4 = false;
588	bool is_l2 = false;
589	u32 regval;
590
591	if (copy_from_user(config, ifr->ifr_data, sizeof(*config)))
592		return -EFAULT;
593
594	/* reserved for future extensions */
595	if (config->flags)
596		return -EINVAL;
597
598	switch (config->tx_type) {
599	case HWTSTAMP_TX_OFF:
600		tsync_tx_ctl = 0;
601	case HWTSTAMP_TX_ON:
602		break;
603	default:
604		return -ERANGE;
605	}
606
607	switch (config->rx_filter) {
608	case HWTSTAMP_FILTER_NONE:
609		tsync_rx_ctl = 0;
610		break;
611	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
612		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
613		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
614		is_l4 = true;
615		break;
616	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
617		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
618		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
619		is_l4 = true;
620		break;
621	case HWTSTAMP_FILTER_PTP_V2_EVENT:
622	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
623	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
624	case HWTSTAMP_FILTER_PTP_V2_SYNC:
625	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
626	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
627	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
628	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
629	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
630		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
631		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
632		is_l2 = true;
633		is_l4 = true;
634		break;
635	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
636	case HWTSTAMP_FILTER_ALL:
637		/* 82576 cannot timestamp all packets, which it needs to do to
638		 * support both V1 Sync and Delay_Req messages
639		 */
640		if (hw->mac.type != e1000_82576) {
641			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
642			config->rx_filter = HWTSTAMP_FILTER_ALL;
643			break;
644		}
645		/* fall through */
646	default:
647		config->rx_filter = HWTSTAMP_FILTER_NONE;
648		return -ERANGE;
649	}
650
651	if (hw->mac.type == e1000_82575) {
652		if (tsync_rx_ctl | tsync_tx_ctl)
653			return -EINVAL;
654		return 0;
655	}
656
657	/* Per-packet timestamping only works if all packets are
658	 * timestamped, so enable timestamping in all packets as
659	 * long as one Rx filter was configured.
660	 */
661	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
662		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
663		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
664		config->rx_filter = HWTSTAMP_FILTER_ALL;
665		is_l2 = true;
666		is_l4 = true;
667
668		if ((hw->mac.type == e1000_i210) ||
669		    (hw->mac.type == e1000_i211)) {
670			regval = rd32(E1000_RXPBS);
671			regval |= E1000_RXPBS_CFG_TS_EN;
672			wr32(E1000_RXPBS, regval);
673		}
674	}
675
676	/* enable/disable TX */
677	regval = rd32(E1000_TSYNCTXCTL);
678	regval &= ~E1000_TSYNCTXCTL_ENABLED;
679	regval |= tsync_tx_ctl;
680	wr32(E1000_TSYNCTXCTL, regval);
681
682	/* enable/disable RX */
683	regval = rd32(E1000_TSYNCRXCTL);
684	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
685	regval |= tsync_rx_ctl;
686	wr32(E1000_TSYNCRXCTL, regval);
687
688	/* define which PTP packets are time stamped */
689	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
690
691	/* define ethertype filter for timestamped packets */
692	if (is_l2)
693		wr32(E1000_ETQF(3),
694		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
695		      E1000_ETQF_1588 | /* enable timestamping */
696		      ETH_P_1588));     /* 1588 eth protocol type */
697	else
698		wr32(E1000_ETQF(3), 0);
699
700	/* L4 Queue Filter[3]: filter by destination port and protocol */
701	if (is_l4) {
702		u32 ftqf = (IPPROTO_UDP /* UDP */
703			| E1000_FTQF_VF_BP /* VF not compared */
704			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
705			| E1000_FTQF_MASK); /* mask all inputs */
706		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
707
708		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
709		wr32(E1000_IMIREXT(3),
710		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
711		if (hw->mac.type == e1000_82576) {
712			/* enable source port check */
713			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
714			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
715		}
716		wr32(E1000_FTQF(3), ftqf);
717	} else {
718		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
719	}
720	wrfl();
721
722	/* clear TX/RX time stamp registers, just to be sure */
723	regval = rd32(E1000_TXSTMPL);
724	regval = rd32(E1000_TXSTMPH);
725	regval = rd32(E1000_RXSTMPL);
726	regval = rd32(E1000_RXSTMPH);
727
728	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
729		-EFAULT : 0;
730}
731
732void igb_ptp_init(struct igb_adapter *adapter)
733{
734	struct e1000_hw *hw = &adapter->hw;
735	struct net_device *netdev = adapter->netdev;
736
737	switch (hw->mac.type) {
738	case e1000_82576:
739		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
740		adapter->ptp_caps.owner = THIS_MODULE;
741		adapter->ptp_caps.max_adj = 999999881;
742		adapter->ptp_caps.n_ext_ts = 0;
743		adapter->ptp_caps.pps = 0;
744		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
745		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
746		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
747		adapter->ptp_caps.settime = igb_ptp_settime_82576;
748		adapter->ptp_caps.enable = igb_ptp_feature_enable;
749		adapter->cc.read = igb_ptp_read_82576;
750		adapter->cc.mask = CLOCKSOURCE_MASK(64);
751		adapter->cc.mult = 1;
752		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
753		/* Dial the nominal frequency. */
754		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
755		break;
756	case e1000_82580:
757	case e1000_i354:
758	case e1000_i350:
759		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
760		adapter->ptp_caps.owner = THIS_MODULE;
761		adapter->ptp_caps.max_adj = 62499999;
762		adapter->ptp_caps.n_ext_ts = 0;
763		adapter->ptp_caps.pps = 0;
764		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
765		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
766		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
767		adapter->ptp_caps.settime = igb_ptp_settime_82576;
768		adapter->ptp_caps.enable = igb_ptp_feature_enable;
769		adapter->cc.read = igb_ptp_read_82580;
770		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
771		adapter->cc.mult = 1;
772		adapter->cc.shift = 0;
773		/* Enable the timer functions by clearing bit 31. */
774		wr32(E1000_TSAUXC, 0x0);
775		break;
776	case e1000_i210:
777	case e1000_i211:
778		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
779		adapter->ptp_caps.owner = THIS_MODULE;
780		adapter->ptp_caps.max_adj = 62499999;
781		adapter->ptp_caps.n_ext_ts = 0;
782		adapter->ptp_caps.pps = 0;
783		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
784		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
785		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
786		adapter->ptp_caps.settime = igb_ptp_settime_i210;
787		adapter->ptp_caps.enable = igb_ptp_feature_enable;
788		/* Enable the timer functions by clearing bit 31. */
789		wr32(E1000_TSAUXC, 0x0);
790		break;
791	default:
792		adapter->ptp_clock = NULL;
793		return;
794	}
795
796	wrfl();
797
798	spin_lock_init(&adapter->tmreg_lock);
799	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
800
801	/* Initialize the clock and overflow work for devices that need it. */
802	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
803		struct timespec ts = ktime_to_timespec(ktime_get_real());
804
805		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
806	} else {
807		timecounter_init(&adapter->tc, &adapter->cc,
808				 ktime_to_ns(ktime_get_real()));
809
810		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
811				  igb_ptp_overflow_check);
812
813		schedule_delayed_work(&adapter->ptp_overflow_work,
814				      IGB_SYSTIM_OVERFLOW_PERIOD);
815	}
816
817	/* Initialize the time sync interrupts for devices that support it. */
818	if (hw->mac.type >= e1000_82580) {
819		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
820		wr32(E1000_IMS, E1000_IMS_TS);
821	}
822
823	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
824						&adapter->pdev->dev);
825	if (IS_ERR(adapter->ptp_clock)) {
826		adapter->ptp_clock = NULL;
827		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
828	} else {
829		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
830			 adapter->netdev->name);
831		adapter->flags |= IGB_FLAG_PTP;
832	}
833}
834
835/**
836 * igb_ptp_stop - Disable PTP device and stop the overflow check.
837 * @adapter: Board private structure.
838 *
839 * This function stops the PTP support and cancels the delayed work.
840 **/
841void igb_ptp_stop(struct igb_adapter *adapter)
842{
843	switch (adapter->hw.mac.type) {
844	case e1000_82576:
845	case e1000_82580:
846	case e1000_i354:
847	case e1000_i350:
848		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
849		break;
850	case e1000_i210:
851	case e1000_i211:
852		/* No delayed work to cancel. */
853		break;
854	default:
855		return;
856	}
857
858	cancel_work_sync(&adapter->ptp_tx_work);
859	if (adapter->ptp_tx_skb) {
860		dev_kfree_skb_any(adapter->ptp_tx_skb);
861		adapter->ptp_tx_skb = NULL;
862		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
863	}
864
865	if (adapter->ptp_clock) {
866		ptp_clock_unregister(adapter->ptp_clock);
867		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
868			 adapter->netdev->name);
869		adapter->flags &= ~IGB_FLAG_PTP;
870	}
871}
872
873/**
874 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
875 * @adapter: Board private structure.
876 *
877 * This function handles the reset work required to re-enable the PTP device.
878 **/
879void igb_ptp_reset(struct igb_adapter *adapter)
880{
881	struct e1000_hw *hw = &adapter->hw;
882
883	if (!(adapter->flags & IGB_FLAG_PTP))
884		return;
885
886	/* reset the tstamp_config */
887	memset(&adapter->tstamp_config, 0, sizeof(adapter->tstamp_config));
888
889	switch (adapter->hw.mac.type) {
890	case e1000_82576:
891		/* Dial the nominal frequency. */
892		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
893		break;
894	case e1000_82580:
895	case e1000_i354:
896	case e1000_i350:
897	case e1000_i210:
898	case e1000_i211:
899		/* Enable the timer functions and interrupts. */
900		wr32(E1000_TSAUXC, 0x0);
901		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
902		wr32(E1000_IMS, E1000_IMS_TS);
903		break;
904	default:
905		/* No work to do. */
906		return;
907	}
908
909	/* Re-initialize the timer. */
910	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
911		struct timespec ts = ktime_to_timespec(ktime_get_real());
912
913		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
914	} else {
915		timecounter_init(&adapter->tc, &adapter->cc,
916				 ktime_to_ns(ktime_get_real()));
917	}
918}
919