[go: nahoru, domu]

1/*******************************************************************************
2
3  Intel(R) 82576 Virtual Function Linux driver
4  Copyright(c) 2009 - 2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/pci.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/delay.h>
37#include <linux/netdevice.h>
38#include <linux/tcp.h>
39#include <linux/ipv6.h>
40#include <linux/slab.h>
41#include <net/checksum.h>
42#include <net/ip6_checksum.h>
43#include <linux/mii.h>
44#include <linux/ethtool.h>
45#include <linux/if_vlan.h>
46#include <linux/prefetch.h>
47
48#include "igbvf.h"
49
50#define DRV_VERSION "2.0.2-k"
51char igbvf_driver_name[] = "igbvf";
52const char igbvf_driver_version[] = DRV_VERSION;
53static const char igbvf_driver_string[] =
54		  "Intel(R) Gigabit Virtual Function Network Driver";
55static const char igbvf_copyright[] =
56		  "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59static int debug = -1;
60module_param(debug, int, 0);
61MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63static int igbvf_poll(struct napi_struct *napi, int budget);
64static void igbvf_reset(struct igbvf_adapter *);
65static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67
68static struct igbvf_info igbvf_vf_info = {
69	.mac                    = e1000_vfadapt,
70	.flags                  = 0,
71	.pba                    = 10,
72	.init_ops               = e1000_init_function_pointers_vf,
73};
74
75static struct igbvf_info igbvf_i350_vf_info = {
76	.mac			= e1000_vfadapt_i350,
77	.flags			= 0,
78	.pba			= 10,
79	.init_ops		= e1000_init_function_pointers_vf,
80};
81
82static const struct igbvf_info *igbvf_info_tbl[] = {
83	[board_vf]              = &igbvf_vf_info,
84	[board_i350_vf]		= &igbvf_i350_vf_info,
85};
86
87/**
88 * igbvf_desc_unused - calculate if we have unused descriptors
89 **/
90static int igbvf_desc_unused(struct igbvf_ring *ring)
91{
92	if (ring->next_to_clean > ring->next_to_use)
93		return ring->next_to_clean - ring->next_to_use - 1;
94
95	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96}
97
98/**
99 * igbvf_receive_skb - helper function to handle Rx indications
100 * @adapter: board private structure
101 * @status: descriptor status field as written by hardware
102 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103 * @skb: pointer to sk_buff to be indicated to stack
104 **/
105static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106                              struct net_device *netdev,
107                              struct sk_buff *skb,
108                              u32 status, u16 vlan)
109{
110	u16 vid;
111
112	if (status & E1000_RXD_STAT_VP) {
113		if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114		    (status & E1000_RXDEXT_STATERR_LB))
115			vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116		else
117			vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118		if (test_bit(vid, adapter->active_vlans))
119			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
120	}
121
122	napi_gro_receive(&adapter->rx_ring->napi, skb);
123}
124
125static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126                                         u32 status_err, struct sk_buff *skb)
127{
128	skb_checksum_none_assert(skb);
129
130	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
131	if ((status_err & E1000_RXD_STAT_IXSM) ||
132	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
133		return;
134
135	/* TCP/UDP checksum error bit is set */
136	if (status_err &
137	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138		/* let the stack verify checksum errors */
139		adapter->hw_csum_err++;
140		return;
141	}
142
143	/* It must be a TCP or UDP packet with a valid checksum */
144	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145		skb->ip_summed = CHECKSUM_UNNECESSARY;
146
147	adapter->hw_csum_good++;
148}
149
150/**
151 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152 * @rx_ring: address of ring structure to repopulate
153 * @cleaned_count: number of buffers to repopulate
154 **/
155static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156                                   int cleaned_count)
157{
158	struct igbvf_adapter *adapter = rx_ring->adapter;
159	struct net_device *netdev = adapter->netdev;
160	struct pci_dev *pdev = adapter->pdev;
161	union e1000_adv_rx_desc *rx_desc;
162	struct igbvf_buffer *buffer_info;
163	struct sk_buff *skb;
164	unsigned int i;
165	int bufsz;
166
167	i = rx_ring->next_to_use;
168	buffer_info = &rx_ring->buffer_info[i];
169
170	if (adapter->rx_ps_hdr_size)
171		bufsz = adapter->rx_ps_hdr_size;
172	else
173		bufsz = adapter->rx_buffer_len;
174
175	while (cleaned_count--) {
176		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177
178		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179			if (!buffer_info->page) {
180				buffer_info->page = alloc_page(GFP_ATOMIC);
181				if (!buffer_info->page) {
182					adapter->alloc_rx_buff_failed++;
183					goto no_buffers;
184				}
185				buffer_info->page_offset = 0;
186			} else {
187				buffer_info->page_offset ^= PAGE_SIZE / 2;
188			}
189			buffer_info->page_dma =
190				dma_map_page(&pdev->dev, buffer_info->page,
191				             buffer_info->page_offset,
192				             PAGE_SIZE / 2,
193					     DMA_FROM_DEVICE);
194			if (dma_mapping_error(&pdev->dev,
195					      buffer_info->page_dma)) {
196				__free_page(buffer_info->page);
197				buffer_info->page = NULL;
198				dev_err(&pdev->dev, "RX DMA map failed\n");
199				break;
200			}
201		}
202
203		if (!buffer_info->skb) {
204			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
205			if (!skb) {
206				adapter->alloc_rx_buff_failed++;
207				goto no_buffers;
208			}
209
210			buffer_info->skb = skb;
211			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
212			                                  bufsz,
213							  DMA_FROM_DEVICE);
214			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215				dev_kfree_skb(buffer_info->skb);
216				buffer_info->skb = NULL;
217				dev_err(&pdev->dev, "RX DMA map failed\n");
218				goto no_buffers;
219			}
220		}
221		/* Refresh the desc even if buffer_addrs didn't change because
222		 * each write-back erases this info. */
223		if (adapter->rx_ps_hdr_size) {
224			rx_desc->read.pkt_addr =
225			     cpu_to_le64(buffer_info->page_dma);
226			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
227		} else {
228			rx_desc->read.pkt_addr =
229			     cpu_to_le64(buffer_info->dma);
230			rx_desc->read.hdr_addr = 0;
231		}
232
233		i++;
234		if (i == rx_ring->count)
235			i = 0;
236		buffer_info = &rx_ring->buffer_info[i];
237	}
238
239no_buffers:
240	if (rx_ring->next_to_use != i) {
241		rx_ring->next_to_use = i;
242		if (i == 0)
243			i = (rx_ring->count - 1);
244		else
245			i--;
246
247		/* Force memory writes to complete before letting h/w
248		 * know there are new descriptors to fetch.  (Only
249		 * applicable for weak-ordered memory model archs,
250		 * such as IA-64). */
251		wmb();
252		writel(i, adapter->hw.hw_addr + rx_ring->tail);
253	}
254}
255
256/**
257 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
258 * @adapter: board private structure
259 *
260 * the return value indicates whether actual cleaning was done, there
261 * is no guarantee that everything was cleaned
262 **/
263static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
264                               int *work_done, int work_to_do)
265{
266	struct igbvf_ring *rx_ring = adapter->rx_ring;
267	struct net_device *netdev = adapter->netdev;
268	struct pci_dev *pdev = adapter->pdev;
269	union e1000_adv_rx_desc *rx_desc, *next_rxd;
270	struct igbvf_buffer *buffer_info, *next_buffer;
271	struct sk_buff *skb;
272	bool cleaned = false;
273	int cleaned_count = 0;
274	unsigned int total_bytes = 0, total_packets = 0;
275	unsigned int i;
276	u32 length, hlen, staterr;
277
278	i = rx_ring->next_to_clean;
279	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
280	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
281
282	while (staterr & E1000_RXD_STAT_DD) {
283		if (*work_done >= work_to_do)
284			break;
285		(*work_done)++;
286		rmb(); /* read descriptor and rx_buffer_info after status DD */
287
288		buffer_info = &rx_ring->buffer_info[i];
289
290		/* HW will not DMA in data larger than the given buffer, even
291		 * if it parses the (NFS, of course) header to be larger.  In
292		 * that case, it fills the header buffer and spills the rest
293		 * into the page.
294		 */
295		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
296		  E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
297		if (hlen > adapter->rx_ps_hdr_size)
298			hlen = adapter->rx_ps_hdr_size;
299
300		length = le16_to_cpu(rx_desc->wb.upper.length);
301		cleaned = true;
302		cleaned_count++;
303
304		skb = buffer_info->skb;
305		prefetch(skb->data - NET_IP_ALIGN);
306		buffer_info->skb = NULL;
307		if (!adapter->rx_ps_hdr_size) {
308			dma_unmap_single(&pdev->dev, buffer_info->dma,
309			                 adapter->rx_buffer_len,
310					 DMA_FROM_DEVICE);
311			buffer_info->dma = 0;
312			skb_put(skb, length);
313			goto send_up;
314		}
315
316		if (!skb_shinfo(skb)->nr_frags) {
317			dma_unmap_single(&pdev->dev, buffer_info->dma,
318			                 adapter->rx_ps_hdr_size,
319					 DMA_FROM_DEVICE);
320			skb_put(skb, hlen);
321		}
322
323		if (length) {
324			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
325			               PAGE_SIZE / 2,
326				       DMA_FROM_DEVICE);
327			buffer_info->page_dma = 0;
328
329			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
330			                   buffer_info->page,
331			                   buffer_info->page_offset,
332			                   length);
333
334			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
335			    (page_count(buffer_info->page) != 1))
336				buffer_info->page = NULL;
337			else
338				get_page(buffer_info->page);
339
340			skb->len += length;
341			skb->data_len += length;
342			skb->truesize += PAGE_SIZE / 2;
343		}
344send_up:
345		i++;
346		if (i == rx_ring->count)
347			i = 0;
348		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
349		prefetch(next_rxd);
350		next_buffer = &rx_ring->buffer_info[i];
351
352		if (!(staterr & E1000_RXD_STAT_EOP)) {
353			buffer_info->skb = next_buffer->skb;
354			buffer_info->dma = next_buffer->dma;
355			next_buffer->skb = skb;
356			next_buffer->dma = 0;
357			goto next_desc;
358		}
359
360		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
361			dev_kfree_skb_irq(skb);
362			goto next_desc;
363		}
364
365		total_bytes += skb->len;
366		total_packets++;
367
368		igbvf_rx_checksum_adv(adapter, staterr, skb);
369
370		skb->protocol = eth_type_trans(skb, netdev);
371
372		igbvf_receive_skb(adapter, netdev, skb, staterr,
373		                  rx_desc->wb.upper.vlan);
374
375next_desc:
376		rx_desc->wb.upper.status_error = 0;
377
378		/* return some buffers to hardware, one at a time is too slow */
379		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
380			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
381			cleaned_count = 0;
382		}
383
384		/* use prefetched values */
385		rx_desc = next_rxd;
386		buffer_info = next_buffer;
387
388		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
389	}
390
391	rx_ring->next_to_clean = i;
392	cleaned_count = igbvf_desc_unused(rx_ring);
393
394	if (cleaned_count)
395		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
396
397	adapter->total_rx_packets += total_packets;
398	adapter->total_rx_bytes += total_bytes;
399	adapter->net_stats.rx_bytes += total_bytes;
400	adapter->net_stats.rx_packets += total_packets;
401	return cleaned;
402}
403
404static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
405                            struct igbvf_buffer *buffer_info)
406{
407	if (buffer_info->dma) {
408		if (buffer_info->mapped_as_page)
409			dma_unmap_page(&adapter->pdev->dev,
410				       buffer_info->dma,
411				       buffer_info->length,
412				       DMA_TO_DEVICE);
413		else
414			dma_unmap_single(&adapter->pdev->dev,
415					 buffer_info->dma,
416					 buffer_info->length,
417					 DMA_TO_DEVICE);
418		buffer_info->dma = 0;
419	}
420	if (buffer_info->skb) {
421		dev_kfree_skb_any(buffer_info->skb);
422		buffer_info->skb = NULL;
423	}
424	buffer_info->time_stamp = 0;
425}
426
427/**
428 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
429 * @adapter: board private structure
430 *
431 * Return 0 on success, negative on failure
432 **/
433int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
434                             struct igbvf_ring *tx_ring)
435{
436	struct pci_dev *pdev = adapter->pdev;
437	int size;
438
439	size = sizeof(struct igbvf_buffer) * tx_ring->count;
440	tx_ring->buffer_info = vzalloc(size);
441	if (!tx_ring->buffer_info)
442		goto err;
443
444	/* round up to nearest 4K */
445	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
446	tx_ring->size = ALIGN(tx_ring->size, 4096);
447
448	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
449					   &tx_ring->dma, GFP_KERNEL);
450	if (!tx_ring->desc)
451		goto err;
452
453	tx_ring->adapter = adapter;
454	tx_ring->next_to_use = 0;
455	tx_ring->next_to_clean = 0;
456
457	return 0;
458err:
459	vfree(tx_ring->buffer_info);
460	dev_err(&adapter->pdev->dev,
461	        "Unable to allocate memory for the transmit descriptor ring\n");
462	return -ENOMEM;
463}
464
465/**
466 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
467 * @adapter: board private structure
468 *
469 * Returns 0 on success, negative on failure
470 **/
471int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
472			     struct igbvf_ring *rx_ring)
473{
474	struct pci_dev *pdev = adapter->pdev;
475	int size, desc_len;
476
477	size = sizeof(struct igbvf_buffer) * rx_ring->count;
478	rx_ring->buffer_info = vzalloc(size);
479	if (!rx_ring->buffer_info)
480		goto err;
481
482	desc_len = sizeof(union e1000_adv_rx_desc);
483
484	/* Round up to nearest 4K */
485	rx_ring->size = rx_ring->count * desc_len;
486	rx_ring->size = ALIGN(rx_ring->size, 4096);
487
488	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
489					   &rx_ring->dma, GFP_KERNEL);
490	if (!rx_ring->desc)
491		goto err;
492
493	rx_ring->next_to_clean = 0;
494	rx_ring->next_to_use = 0;
495
496	rx_ring->adapter = adapter;
497
498	return 0;
499
500err:
501	vfree(rx_ring->buffer_info);
502	rx_ring->buffer_info = NULL;
503	dev_err(&adapter->pdev->dev,
504	        "Unable to allocate memory for the receive descriptor ring\n");
505	return -ENOMEM;
506}
507
508/**
509 * igbvf_clean_tx_ring - Free Tx Buffers
510 * @tx_ring: ring to be cleaned
511 **/
512static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
513{
514	struct igbvf_adapter *adapter = tx_ring->adapter;
515	struct igbvf_buffer *buffer_info;
516	unsigned long size;
517	unsigned int i;
518
519	if (!tx_ring->buffer_info)
520		return;
521
522	/* Free all the Tx ring sk_buffs */
523	for (i = 0; i < tx_ring->count; i++) {
524		buffer_info = &tx_ring->buffer_info[i];
525		igbvf_put_txbuf(adapter, buffer_info);
526	}
527
528	size = sizeof(struct igbvf_buffer) * tx_ring->count;
529	memset(tx_ring->buffer_info, 0, size);
530
531	/* Zero out the descriptor ring */
532	memset(tx_ring->desc, 0, tx_ring->size);
533
534	tx_ring->next_to_use = 0;
535	tx_ring->next_to_clean = 0;
536
537	writel(0, adapter->hw.hw_addr + tx_ring->head);
538	writel(0, adapter->hw.hw_addr + tx_ring->tail);
539}
540
541/**
542 * igbvf_free_tx_resources - Free Tx Resources per Queue
543 * @tx_ring: ring to free resources from
544 *
545 * Free all transmit software resources
546 **/
547void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
548{
549	struct pci_dev *pdev = tx_ring->adapter->pdev;
550
551	igbvf_clean_tx_ring(tx_ring);
552
553	vfree(tx_ring->buffer_info);
554	tx_ring->buffer_info = NULL;
555
556	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
557			  tx_ring->dma);
558
559	tx_ring->desc = NULL;
560}
561
562/**
563 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
564 * @adapter: board private structure
565 **/
566static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
567{
568	struct igbvf_adapter *adapter = rx_ring->adapter;
569	struct igbvf_buffer *buffer_info;
570	struct pci_dev *pdev = adapter->pdev;
571	unsigned long size;
572	unsigned int i;
573
574	if (!rx_ring->buffer_info)
575		return;
576
577	/* Free all the Rx ring sk_buffs */
578	for (i = 0; i < rx_ring->count; i++) {
579		buffer_info = &rx_ring->buffer_info[i];
580		if (buffer_info->dma) {
581			if (adapter->rx_ps_hdr_size){
582				dma_unmap_single(&pdev->dev, buffer_info->dma,
583				                 adapter->rx_ps_hdr_size,
584						 DMA_FROM_DEVICE);
585			} else {
586				dma_unmap_single(&pdev->dev, buffer_info->dma,
587				                 adapter->rx_buffer_len,
588						 DMA_FROM_DEVICE);
589			}
590			buffer_info->dma = 0;
591		}
592
593		if (buffer_info->skb) {
594			dev_kfree_skb(buffer_info->skb);
595			buffer_info->skb = NULL;
596		}
597
598		if (buffer_info->page) {
599			if (buffer_info->page_dma)
600				dma_unmap_page(&pdev->dev,
601					       buffer_info->page_dma,
602				               PAGE_SIZE / 2,
603					       DMA_FROM_DEVICE);
604			put_page(buffer_info->page);
605			buffer_info->page = NULL;
606			buffer_info->page_dma = 0;
607			buffer_info->page_offset = 0;
608		}
609	}
610
611	size = sizeof(struct igbvf_buffer) * rx_ring->count;
612	memset(rx_ring->buffer_info, 0, size);
613
614	/* Zero out the descriptor ring */
615	memset(rx_ring->desc, 0, rx_ring->size);
616
617	rx_ring->next_to_clean = 0;
618	rx_ring->next_to_use = 0;
619
620	writel(0, adapter->hw.hw_addr + rx_ring->head);
621	writel(0, adapter->hw.hw_addr + rx_ring->tail);
622}
623
624/**
625 * igbvf_free_rx_resources - Free Rx Resources
626 * @rx_ring: ring to clean the resources from
627 *
628 * Free all receive software resources
629 **/
630
631void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
632{
633	struct pci_dev *pdev = rx_ring->adapter->pdev;
634
635	igbvf_clean_rx_ring(rx_ring);
636
637	vfree(rx_ring->buffer_info);
638	rx_ring->buffer_info = NULL;
639
640	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
641	                  rx_ring->dma);
642	rx_ring->desc = NULL;
643}
644
645/**
646 * igbvf_update_itr - update the dynamic ITR value based on statistics
647 * @adapter: pointer to adapter
648 * @itr_setting: current adapter->itr
649 * @packets: the number of packets during this measurement interval
650 * @bytes: the number of bytes during this measurement interval
651 *
652 *      Stores a new ITR value based on packets and byte
653 *      counts during the last interrupt.  The advantage of per interrupt
654 *      computation is faster updates and more accurate ITR for the current
655 *      traffic pattern.  Constants in this function were computed
656 *      based on theoretical maximum wire speed and thresholds were set based
657 *      on testing data as well as attempting to minimize response time
658 *      while increasing bulk throughput.
659 **/
660static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
661					   enum latency_range itr_setting,
662					   int packets, int bytes)
663{
664	enum latency_range retval = itr_setting;
665
666	if (packets == 0)
667		goto update_itr_done;
668
669	switch (itr_setting) {
670	case lowest_latency:
671		/* handle TSO and jumbo frames */
672		if (bytes/packets > 8000)
673			retval = bulk_latency;
674		else if ((packets < 5) && (bytes > 512))
675			retval = low_latency;
676		break;
677	case low_latency:  /* 50 usec aka 20000 ints/s */
678		if (bytes > 10000) {
679			/* this if handles the TSO accounting */
680			if (bytes/packets > 8000)
681				retval = bulk_latency;
682			else if ((packets < 10) || ((bytes/packets) > 1200))
683				retval = bulk_latency;
684			else if ((packets > 35))
685				retval = lowest_latency;
686		} else if (bytes/packets > 2000) {
687			retval = bulk_latency;
688		} else if (packets <= 2 && bytes < 512) {
689			retval = lowest_latency;
690		}
691		break;
692	case bulk_latency: /* 250 usec aka 4000 ints/s */
693		if (bytes > 25000) {
694			if (packets > 35)
695				retval = low_latency;
696		} else if (bytes < 6000) {
697			retval = low_latency;
698		}
699		break;
700	default:
701		break;
702	}
703
704update_itr_done:
705	return retval;
706}
707
708static int igbvf_range_to_itr(enum latency_range current_range)
709{
710	int new_itr;
711
712	switch (current_range) {
713	/* counts and packets in update_itr are dependent on these numbers */
714	case lowest_latency:
715		new_itr = IGBVF_70K_ITR;
716		break;
717	case low_latency:
718		new_itr = IGBVF_20K_ITR;
719		break;
720	case bulk_latency:
721		new_itr = IGBVF_4K_ITR;
722		break;
723	default:
724		new_itr = IGBVF_START_ITR;
725		break;
726	}
727	return new_itr;
728}
729
730static void igbvf_set_itr(struct igbvf_adapter *adapter)
731{
732	u32 new_itr;
733
734	adapter->tx_ring->itr_range =
735			igbvf_update_itr(adapter,
736					 adapter->tx_ring->itr_val,
737					 adapter->total_tx_packets,
738					 adapter->total_tx_bytes);
739
740	/* conservative mode (itr 3) eliminates the lowest_latency setting */
741	if (adapter->requested_itr == 3 &&
742	    adapter->tx_ring->itr_range == lowest_latency)
743		adapter->tx_ring->itr_range = low_latency;
744
745	new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
746
747
748	if (new_itr != adapter->tx_ring->itr_val) {
749		u32 current_itr = adapter->tx_ring->itr_val;
750		/*
751		 * this attempts to bias the interrupt rate towards Bulk
752		 * by adding intermediate steps when interrupt rate is
753		 * increasing
754		 */
755		new_itr = new_itr > current_itr ?
756			     min(current_itr + (new_itr >> 2), new_itr) :
757			     new_itr;
758		adapter->tx_ring->itr_val = new_itr;
759
760		adapter->tx_ring->set_itr = 1;
761	}
762
763	adapter->rx_ring->itr_range =
764			igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
765					 adapter->total_rx_packets,
766					 adapter->total_rx_bytes);
767	if (adapter->requested_itr == 3 &&
768	    adapter->rx_ring->itr_range == lowest_latency)
769		adapter->rx_ring->itr_range = low_latency;
770
771	new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
772
773	if (new_itr != adapter->rx_ring->itr_val) {
774		u32 current_itr = adapter->rx_ring->itr_val;
775		new_itr = new_itr > current_itr ?
776			     min(current_itr + (new_itr >> 2), new_itr) :
777			     new_itr;
778		adapter->rx_ring->itr_val = new_itr;
779
780		adapter->rx_ring->set_itr = 1;
781	}
782}
783
784/**
785 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
786 * @adapter: board private structure
787 *
788 * returns true if ring is completely cleaned
789 **/
790static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
791{
792	struct igbvf_adapter *adapter = tx_ring->adapter;
793	struct net_device *netdev = adapter->netdev;
794	struct igbvf_buffer *buffer_info;
795	struct sk_buff *skb;
796	union e1000_adv_tx_desc *tx_desc, *eop_desc;
797	unsigned int total_bytes = 0, total_packets = 0;
798	unsigned int i, count = 0;
799	bool cleaned = false;
800
801	i = tx_ring->next_to_clean;
802	buffer_info = &tx_ring->buffer_info[i];
803	eop_desc = buffer_info->next_to_watch;
804
805	do {
806		/* if next_to_watch is not set then there is no work pending */
807		if (!eop_desc)
808			break;
809
810		/* prevent any other reads prior to eop_desc */
811		read_barrier_depends();
812
813		/* if DD is not set pending work has not been completed */
814		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
815			break;
816
817		/* clear next_to_watch to prevent false hangs */
818		buffer_info->next_to_watch = NULL;
819
820		for (cleaned = false; !cleaned; count++) {
821			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
822			cleaned = (tx_desc == eop_desc);
823			skb = buffer_info->skb;
824
825			if (skb) {
826				unsigned int segs, bytecount;
827
828				/* gso_segs is currently only valid for tcp */
829				segs = skb_shinfo(skb)->gso_segs ?: 1;
830				/* multiply data chunks by size of headers */
831				bytecount = ((segs - 1) * skb_headlen(skb)) +
832				            skb->len;
833				total_packets += segs;
834				total_bytes += bytecount;
835			}
836
837			igbvf_put_txbuf(adapter, buffer_info);
838			tx_desc->wb.status = 0;
839
840			i++;
841			if (i == tx_ring->count)
842				i = 0;
843
844			buffer_info = &tx_ring->buffer_info[i];
845		}
846
847		eop_desc = buffer_info->next_to_watch;
848	} while (count < tx_ring->count);
849
850	tx_ring->next_to_clean = i;
851
852	if (unlikely(count &&
853	             netif_carrier_ok(netdev) &&
854	             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
855		/* Make sure that anybody stopping the queue after this
856		 * sees the new next_to_clean.
857		 */
858		smp_mb();
859		if (netif_queue_stopped(netdev) &&
860		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
861			netif_wake_queue(netdev);
862			++adapter->restart_queue;
863		}
864	}
865
866	adapter->net_stats.tx_bytes += total_bytes;
867	adapter->net_stats.tx_packets += total_packets;
868	return count < tx_ring->count;
869}
870
871static irqreturn_t igbvf_msix_other(int irq, void *data)
872{
873	struct net_device *netdev = data;
874	struct igbvf_adapter *adapter = netdev_priv(netdev);
875	struct e1000_hw *hw = &adapter->hw;
876
877	adapter->int_counter1++;
878
879	netif_carrier_off(netdev);
880	hw->mac.get_link_status = 1;
881	if (!test_bit(__IGBVF_DOWN, &adapter->state))
882		mod_timer(&adapter->watchdog_timer, jiffies + 1);
883
884	ew32(EIMS, adapter->eims_other);
885
886	return IRQ_HANDLED;
887}
888
889static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
890{
891	struct net_device *netdev = data;
892	struct igbvf_adapter *adapter = netdev_priv(netdev);
893	struct e1000_hw *hw = &adapter->hw;
894	struct igbvf_ring *tx_ring = adapter->tx_ring;
895
896	if (tx_ring->set_itr) {
897		writel(tx_ring->itr_val,
898		       adapter->hw.hw_addr + tx_ring->itr_register);
899		adapter->tx_ring->set_itr = 0;
900	}
901
902	adapter->total_tx_bytes = 0;
903	adapter->total_tx_packets = 0;
904
905	/* auto mask will automatically reenable the interrupt when we write
906	 * EICS */
907	if (!igbvf_clean_tx_irq(tx_ring))
908		/* Ring was not completely cleaned, so fire another interrupt */
909		ew32(EICS, tx_ring->eims_value);
910	else
911		ew32(EIMS, tx_ring->eims_value);
912
913	return IRQ_HANDLED;
914}
915
916static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
917{
918	struct net_device *netdev = data;
919	struct igbvf_adapter *adapter = netdev_priv(netdev);
920
921	adapter->int_counter0++;
922
923	/* Write the ITR value calculated at the end of the
924	 * previous interrupt.
925	 */
926	if (adapter->rx_ring->set_itr) {
927		writel(adapter->rx_ring->itr_val,
928		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
929		adapter->rx_ring->set_itr = 0;
930	}
931
932	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
933		adapter->total_rx_bytes = 0;
934		adapter->total_rx_packets = 0;
935		__napi_schedule(&adapter->rx_ring->napi);
936	}
937
938	return IRQ_HANDLED;
939}
940
941#define IGBVF_NO_QUEUE -1
942
943static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
944                                int tx_queue, int msix_vector)
945{
946	struct e1000_hw *hw = &adapter->hw;
947	u32 ivar, index;
948
949	/* 82576 uses a table-based method for assigning vectors.
950	   Each queue has a single entry in the table to which we write
951	   a vector number along with a "valid" bit.  Sadly, the layout
952	   of the table is somewhat counterintuitive. */
953	if (rx_queue > IGBVF_NO_QUEUE) {
954		index = (rx_queue >> 1);
955		ivar = array_er32(IVAR0, index);
956		if (rx_queue & 0x1) {
957			/* vector goes into third byte of register */
958			ivar = ivar & 0xFF00FFFF;
959			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
960		} else {
961			/* vector goes into low byte of register */
962			ivar = ivar & 0xFFFFFF00;
963			ivar |= msix_vector | E1000_IVAR_VALID;
964		}
965		adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
966		array_ew32(IVAR0, index, ivar);
967	}
968	if (tx_queue > IGBVF_NO_QUEUE) {
969		index = (tx_queue >> 1);
970		ivar = array_er32(IVAR0, index);
971		if (tx_queue & 0x1) {
972			/* vector goes into high byte of register */
973			ivar = ivar & 0x00FFFFFF;
974			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
975		} else {
976			/* vector goes into second byte of register */
977			ivar = ivar & 0xFFFF00FF;
978			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
979		}
980		adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
981		array_ew32(IVAR0, index, ivar);
982	}
983}
984
985/**
986 * igbvf_configure_msix - Configure MSI-X hardware
987 *
988 * igbvf_configure_msix sets up the hardware to properly
989 * generate MSI-X interrupts.
990 **/
991static void igbvf_configure_msix(struct igbvf_adapter *adapter)
992{
993	u32 tmp;
994	struct e1000_hw *hw = &adapter->hw;
995	struct igbvf_ring *tx_ring = adapter->tx_ring;
996	struct igbvf_ring *rx_ring = adapter->rx_ring;
997	int vector = 0;
998
999	adapter->eims_enable_mask = 0;
1000
1001	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1002	adapter->eims_enable_mask |= tx_ring->eims_value;
1003	writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1004	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1005	adapter->eims_enable_mask |= rx_ring->eims_value;
1006	writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1007
1008	/* set vector for other causes, i.e. link changes */
1009
1010	tmp = (vector++ | E1000_IVAR_VALID);
1011
1012	ew32(IVAR_MISC, tmp);
1013
1014	adapter->eims_enable_mask = (1 << (vector)) - 1;
1015	adapter->eims_other = 1 << (vector - 1);
1016	e1e_flush();
1017}
1018
1019static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1020{
1021	if (adapter->msix_entries) {
1022		pci_disable_msix(adapter->pdev);
1023		kfree(adapter->msix_entries);
1024		adapter->msix_entries = NULL;
1025	}
1026}
1027
1028/**
1029 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1030 *
1031 * Attempt to configure interrupts using the best available
1032 * capabilities of the hardware and kernel.
1033 **/
1034static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1035{
1036	int err = -ENOMEM;
1037	int i;
1038
1039	/* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1040	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1041	                                GFP_KERNEL);
1042	if (adapter->msix_entries) {
1043		for (i = 0; i < 3; i++)
1044			adapter->msix_entries[i].entry = i;
1045
1046		err = pci_enable_msix_range(adapter->pdev,
1047		                            adapter->msix_entries, 3, 3);
1048	}
1049
1050	if (err < 0) {
1051		/* MSI-X failed */
1052		dev_err(&adapter->pdev->dev,
1053		        "Failed to initialize MSI-X interrupts.\n");
1054		igbvf_reset_interrupt_capability(adapter);
1055	}
1056}
1057
1058/**
1059 * igbvf_request_msix - Initialize MSI-X interrupts
1060 *
1061 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1062 * kernel.
1063 **/
1064static int igbvf_request_msix(struct igbvf_adapter *adapter)
1065{
1066	struct net_device *netdev = adapter->netdev;
1067	int err = 0, vector = 0;
1068
1069	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1070		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1071		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1072	} else {
1073		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1074		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1075	}
1076
1077	err = request_irq(adapter->msix_entries[vector].vector,
1078	                  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1079	                  netdev);
1080	if (err)
1081		goto out;
1082
1083	adapter->tx_ring->itr_register = E1000_EITR(vector);
1084	adapter->tx_ring->itr_val = adapter->current_itr;
1085	vector++;
1086
1087	err = request_irq(adapter->msix_entries[vector].vector,
1088	                  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1089	                  netdev);
1090	if (err)
1091		goto out;
1092
1093	adapter->rx_ring->itr_register = E1000_EITR(vector);
1094	adapter->rx_ring->itr_val = adapter->current_itr;
1095	vector++;
1096
1097	err = request_irq(adapter->msix_entries[vector].vector,
1098	                  igbvf_msix_other, 0, netdev->name, netdev);
1099	if (err)
1100		goto out;
1101
1102	igbvf_configure_msix(adapter);
1103	return 0;
1104out:
1105	return err;
1106}
1107
1108/**
1109 * igbvf_alloc_queues - Allocate memory for all rings
1110 * @adapter: board private structure to initialize
1111 **/
1112static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1113{
1114	struct net_device *netdev = adapter->netdev;
1115
1116	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1117	if (!adapter->tx_ring)
1118		return -ENOMEM;
1119
1120	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1121	if (!adapter->rx_ring) {
1122		kfree(adapter->tx_ring);
1123		return -ENOMEM;
1124	}
1125
1126	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1127
1128	return 0;
1129}
1130
1131/**
1132 * igbvf_request_irq - initialize interrupts
1133 *
1134 * Attempts to configure interrupts using the best available
1135 * capabilities of the hardware and kernel.
1136 **/
1137static int igbvf_request_irq(struct igbvf_adapter *adapter)
1138{
1139	int err = -1;
1140
1141	/* igbvf supports msi-x only */
1142	if (adapter->msix_entries)
1143		err = igbvf_request_msix(adapter);
1144
1145	if (!err)
1146		return err;
1147
1148	dev_err(&adapter->pdev->dev,
1149	        "Unable to allocate interrupt, Error: %d\n", err);
1150
1151	return err;
1152}
1153
1154static void igbvf_free_irq(struct igbvf_adapter *adapter)
1155{
1156	struct net_device *netdev = adapter->netdev;
1157	int vector;
1158
1159	if (adapter->msix_entries) {
1160		for (vector = 0; vector < 3; vector++)
1161			free_irq(adapter->msix_entries[vector].vector, netdev);
1162	}
1163}
1164
1165/**
1166 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1167 **/
1168static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1169{
1170	struct e1000_hw *hw = &adapter->hw;
1171
1172	ew32(EIMC, ~0);
1173
1174	if (adapter->msix_entries)
1175		ew32(EIAC, 0);
1176}
1177
1178/**
1179 * igbvf_irq_enable - Enable default interrupt generation settings
1180 **/
1181static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1182{
1183	struct e1000_hw *hw = &adapter->hw;
1184
1185	ew32(EIAC, adapter->eims_enable_mask);
1186	ew32(EIAM, adapter->eims_enable_mask);
1187	ew32(EIMS, adapter->eims_enable_mask);
1188}
1189
1190/**
1191 * igbvf_poll - NAPI Rx polling callback
1192 * @napi: struct associated with this polling callback
1193 * @budget: amount of packets driver is allowed to process this poll
1194 **/
1195static int igbvf_poll(struct napi_struct *napi, int budget)
1196{
1197	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1198	struct igbvf_adapter *adapter = rx_ring->adapter;
1199	struct e1000_hw *hw = &adapter->hw;
1200	int work_done = 0;
1201
1202	igbvf_clean_rx_irq(adapter, &work_done, budget);
1203
1204	/* If not enough Rx work done, exit the polling mode */
1205	if (work_done < budget) {
1206		napi_complete(napi);
1207
1208		if (adapter->requested_itr & 3)
1209			igbvf_set_itr(adapter);
1210
1211		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1212			ew32(EIMS, adapter->rx_ring->eims_value);
1213	}
1214
1215	return work_done;
1216}
1217
1218/**
1219 * igbvf_set_rlpml - set receive large packet maximum length
1220 * @adapter: board private structure
1221 *
1222 * Configure the maximum size of packets that will be received
1223 */
1224static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1225{
1226	int max_frame_size;
1227	struct e1000_hw *hw = &adapter->hw;
1228
1229	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1230	e1000_rlpml_set_vf(hw, max_frame_size);
1231}
1232
1233static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1234				 __be16 proto, u16 vid)
1235{
1236	struct igbvf_adapter *adapter = netdev_priv(netdev);
1237	struct e1000_hw *hw = &adapter->hw;
1238
1239	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1240		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1241		return -EINVAL;
1242	}
1243	set_bit(vid, adapter->active_vlans);
1244	return 0;
1245}
1246
1247static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1248				  __be16 proto, u16 vid)
1249{
1250	struct igbvf_adapter *adapter = netdev_priv(netdev);
1251	struct e1000_hw *hw = &adapter->hw;
1252
1253	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1254		dev_err(&adapter->pdev->dev,
1255		        "Failed to remove vlan id %d\n", vid);
1256		return -EINVAL;
1257	}
1258	clear_bit(vid, adapter->active_vlans);
1259	return 0;
1260}
1261
1262static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1263{
1264	u16 vid;
1265
1266	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1267		igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1268}
1269
1270/**
1271 * igbvf_configure_tx - Configure Transmit Unit after Reset
1272 * @adapter: board private structure
1273 *
1274 * Configure the Tx unit of the MAC after a reset.
1275 **/
1276static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1277{
1278	struct e1000_hw *hw = &adapter->hw;
1279	struct igbvf_ring *tx_ring = adapter->tx_ring;
1280	u64 tdba;
1281	u32 txdctl, dca_txctrl;
1282
1283	/* disable transmits */
1284	txdctl = er32(TXDCTL(0));
1285	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1286	e1e_flush();
1287	msleep(10);
1288
1289	/* Setup the HW Tx Head and Tail descriptor pointers */
1290	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1291	tdba = tx_ring->dma;
1292	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1293	ew32(TDBAH(0), (tdba >> 32));
1294	ew32(TDH(0), 0);
1295	ew32(TDT(0), 0);
1296	tx_ring->head = E1000_TDH(0);
1297	tx_ring->tail = E1000_TDT(0);
1298
1299	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1300	 * MUST be delivered in order or it will completely screw up
1301	 * our bookeeping.
1302	 */
1303	dca_txctrl = er32(DCA_TXCTRL(0));
1304	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1305	ew32(DCA_TXCTRL(0), dca_txctrl);
1306
1307	/* enable transmits */
1308	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1309	ew32(TXDCTL(0), txdctl);
1310
1311	/* Setup Transmit Descriptor Settings for eop descriptor */
1312	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1313
1314	/* enable Report Status bit */
1315	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1316}
1317
1318/**
1319 * igbvf_setup_srrctl - configure the receive control registers
1320 * @adapter: Board private structure
1321 **/
1322static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1323{
1324	struct e1000_hw *hw = &adapter->hw;
1325	u32 srrctl = 0;
1326
1327	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1328	            E1000_SRRCTL_BSIZEHDR_MASK |
1329	            E1000_SRRCTL_BSIZEPKT_MASK);
1330
1331	/* Enable queue drop to avoid head of line blocking */
1332	srrctl |= E1000_SRRCTL_DROP_EN;
1333
1334	/* Setup buffer sizes */
1335	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1336	          E1000_SRRCTL_BSIZEPKT_SHIFT;
1337
1338	if (adapter->rx_buffer_len < 2048) {
1339		adapter->rx_ps_hdr_size = 0;
1340		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1341	} else {
1342		adapter->rx_ps_hdr_size = 128;
1343		srrctl |= adapter->rx_ps_hdr_size <<
1344		          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1345		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1346	}
1347
1348	ew32(SRRCTL(0), srrctl);
1349}
1350
1351/**
1352 * igbvf_configure_rx - Configure Receive Unit after Reset
1353 * @adapter: board private structure
1354 *
1355 * Configure the Rx unit of the MAC after a reset.
1356 **/
1357static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1358{
1359	struct e1000_hw *hw = &adapter->hw;
1360	struct igbvf_ring *rx_ring = adapter->rx_ring;
1361	u64 rdba;
1362	u32 rdlen, rxdctl;
1363
1364	/* disable receives */
1365	rxdctl = er32(RXDCTL(0));
1366	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1367	e1e_flush();
1368	msleep(10);
1369
1370	rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1371
1372	/*
1373	 * Setup the HW Rx Head and Tail Descriptor Pointers and
1374	 * the Base and Length of the Rx Descriptor Ring
1375	 */
1376	rdba = rx_ring->dma;
1377	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1378	ew32(RDBAH(0), (rdba >> 32));
1379	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1380	rx_ring->head = E1000_RDH(0);
1381	rx_ring->tail = E1000_RDT(0);
1382	ew32(RDH(0), 0);
1383	ew32(RDT(0), 0);
1384
1385	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1386	rxdctl &= 0xFFF00000;
1387	rxdctl |= IGBVF_RX_PTHRESH;
1388	rxdctl |= IGBVF_RX_HTHRESH << 8;
1389	rxdctl |= IGBVF_RX_WTHRESH << 16;
1390
1391	igbvf_set_rlpml(adapter);
1392
1393	/* enable receives */
1394	ew32(RXDCTL(0), rxdctl);
1395}
1396
1397/**
1398 * igbvf_set_multi - Multicast and Promiscuous mode set
1399 * @netdev: network interface device structure
1400 *
1401 * The set_multi entry point is called whenever the multicast address
1402 * list or the network interface flags are updated.  This routine is
1403 * responsible for configuring the hardware for proper multicast,
1404 * promiscuous mode, and all-multi behavior.
1405 **/
1406static void igbvf_set_multi(struct net_device *netdev)
1407{
1408	struct igbvf_adapter *adapter = netdev_priv(netdev);
1409	struct e1000_hw *hw = &adapter->hw;
1410	struct netdev_hw_addr *ha;
1411	u8  *mta_list = NULL;
1412	int i;
1413
1414	if (!netdev_mc_empty(netdev)) {
1415		mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1416					 GFP_ATOMIC);
1417		if (!mta_list)
1418			return;
1419	}
1420
1421	/* prepare a packed array of only addresses. */
1422	i = 0;
1423	netdev_for_each_mc_addr(ha, netdev)
1424		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1425
1426	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1427	kfree(mta_list);
1428}
1429
1430/**
1431 * igbvf_configure - configure the hardware for Rx and Tx
1432 * @adapter: private board structure
1433 **/
1434static void igbvf_configure(struct igbvf_adapter *adapter)
1435{
1436	igbvf_set_multi(adapter->netdev);
1437
1438	igbvf_restore_vlan(adapter);
1439
1440	igbvf_configure_tx(adapter);
1441	igbvf_setup_srrctl(adapter);
1442	igbvf_configure_rx(adapter);
1443	igbvf_alloc_rx_buffers(adapter->rx_ring,
1444	                       igbvf_desc_unused(adapter->rx_ring));
1445}
1446
1447/* igbvf_reset - bring the hardware into a known good state
1448 *
1449 * This function boots the hardware and enables some settings that
1450 * require a configuration cycle of the hardware - those cannot be
1451 * set/changed during runtime. After reset the device needs to be
1452 * properly configured for Rx, Tx etc.
1453 */
1454static void igbvf_reset(struct igbvf_adapter *adapter)
1455{
1456	struct e1000_mac_info *mac = &adapter->hw.mac;
1457	struct net_device *netdev = adapter->netdev;
1458	struct e1000_hw *hw = &adapter->hw;
1459
1460	/* Allow time for pending master requests to run */
1461	if (mac->ops.reset_hw(hw))
1462		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1463
1464	mac->ops.init_hw(hw);
1465
1466	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1467		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1468		       netdev->addr_len);
1469		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1470		       netdev->addr_len);
1471	}
1472
1473	adapter->last_reset = jiffies;
1474}
1475
1476int igbvf_up(struct igbvf_adapter *adapter)
1477{
1478	struct e1000_hw *hw = &adapter->hw;
1479
1480	/* hardware has been reset, we need to reload some things */
1481	igbvf_configure(adapter);
1482
1483	clear_bit(__IGBVF_DOWN, &adapter->state);
1484
1485	napi_enable(&adapter->rx_ring->napi);
1486	if (adapter->msix_entries)
1487		igbvf_configure_msix(adapter);
1488
1489	/* Clear any pending interrupts. */
1490	er32(EICR);
1491	igbvf_irq_enable(adapter);
1492
1493	/* start the watchdog */
1494	hw->mac.get_link_status = 1;
1495	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1496
1497
1498	return 0;
1499}
1500
1501void igbvf_down(struct igbvf_adapter *adapter)
1502{
1503	struct net_device *netdev = adapter->netdev;
1504	struct e1000_hw *hw = &adapter->hw;
1505	u32 rxdctl, txdctl;
1506
1507	/*
1508	 * signal that we're down so the interrupt handler does not
1509	 * reschedule our watchdog timer
1510	 */
1511	set_bit(__IGBVF_DOWN, &adapter->state);
1512
1513	/* disable receives in the hardware */
1514	rxdctl = er32(RXDCTL(0));
1515	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1516
1517	netif_stop_queue(netdev);
1518
1519	/* disable transmits in the hardware */
1520	txdctl = er32(TXDCTL(0));
1521	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1522
1523	/* flush both disables and wait for them to finish */
1524	e1e_flush();
1525	msleep(10);
1526
1527	napi_disable(&adapter->rx_ring->napi);
1528
1529	igbvf_irq_disable(adapter);
1530
1531	del_timer_sync(&adapter->watchdog_timer);
1532
1533	netif_carrier_off(netdev);
1534
1535	/* record the stats before reset*/
1536	igbvf_update_stats(adapter);
1537
1538	adapter->link_speed = 0;
1539	adapter->link_duplex = 0;
1540
1541	igbvf_reset(adapter);
1542	igbvf_clean_tx_ring(adapter->tx_ring);
1543	igbvf_clean_rx_ring(adapter->rx_ring);
1544}
1545
1546void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1547{
1548	might_sleep();
1549	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1550		msleep(1);
1551	igbvf_down(adapter);
1552	igbvf_up(adapter);
1553	clear_bit(__IGBVF_RESETTING, &adapter->state);
1554}
1555
1556/**
1557 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1558 * @adapter: board private structure to initialize
1559 *
1560 * igbvf_sw_init initializes the Adapter private data structure.
1561 * Fields are initialized based on PCI device information and
1562 * OS network device settings (MTU size).
1563 **/
1564static int igbvf_sw_init(struct igbvf_adapter *adapter)
1565{
1566	struct net_device *netdev = adapter->netdev;
1567	s32 rc;
1568
1569	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1570	adapter->rx_ps_hdr_size = 0;
1571	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1572	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1573
1574	adapter->tx_int_delay = 8;
1575	adapter->tx_abs_int_delay = 32;
1576	adapter->rx_int_delay = 0;
1577	adapter->rx_abs_int_delay = 8;
1578	adapter->requested_itr = 3;
1579	adapter->current_itr = IGBVF_START_ITR;
1580
1581	/* Set various function pointers */
1582	adapter->ei->init_ops(&adapter->hw);
1583
1584	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1585	if (rc)
1586		return rc;
1587
1588	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1589	if (rc)
1590		return rc;
1591
1592	igbvf_set_interrupt_capability(adapter);
1593
1594	if (igbvf_alloc_queues(adapter))
1595		return -ENOMEM;
1596
1597	spin_lock_init(&adapter->tx_queue_lock);
1598
1599	/* Explicitly disable IRQ since the NIC can be in any state. */
1600	igbvf_irq_disable(adapter);
1601
1602	spin_lock_init(&adapter->stats_lock);
1603
1604	set_bit(__IGBVF_DOWN, &adapter->state);
1605	return 0;
1606}
1607
1608static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1609{
1610	struct e1000_hw *hw = &adapter->hw;
1611
1612	adapter->stats.last_gprc = er32(VFGPRC);
1613	adapter->stats.last_gorc = er32(VFGORC);
1614	adapter->stats.last_gptc = er32(VFGPTC);
1615	adapter->stats.last_gotc = er32(VFGOTC);
1616	adapter->stats.last_mprc = er32(VFMPRC);
1617	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1618	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1619	adapter->stats.last_gorlbc = er32(VFGORLBC);
1620	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1621
1622	adapter->stats.base_gprc = er32(VFGPRC);
1623	adapter->stats.base_gorc = er32(VFGORC);
1624	adapter->stats.base_gptc = er32(VFGPTC);
1625	adapter->stats.base_gotc = er32(VFGOTC);
1626	adapter->stats.base_mprc = er32(VFMPRC);
1627	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1628	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1629	adapter->stats.base_gorlbc = er32(VFGORLBC);
1630	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1631}
1632
1633/**
1634 * igbvf_open - Called when a network interface is made active
1635 * @netdev: network interface device structure
1636 *
1637 * Returns 0 on success, negative value on failure
1638 *
1639 * The open entry point is called when a network interface is made
1640 * active by the system (IFF_UP).  At this point all resources needed
1641 * for transmit and receive operations are allocated, the interrupt
1642 * handler is registered with the OS, the watchdog timer is started,
1643 * and the stack is notified that the interface is ready.
1644 **/
1645static int igbvf_open(struct net_device *netdev)
1646{
1647	struct igbvf_adapter *adapter = netdev_priv(netdev);
1648	struct e1000_hw *hw = &adapter->hw;
1649	int err;
1650
1651	/* disallow open during test */
1652	if (test_bit(__IGBVF_TESTING, &adapter->state))
1653		return -EBUSY;
1654
1655	/* allocate transmit descriptors */
1656	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1657	if (err)
1658		goto err_setup_tx;
1659
1660	/* allocate receive descriptors */
1661	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1662	if (err)
1663		goto err_setup_rx;
1664
1665	/*
1666	 * before we allocate an interrupt, we must be ready to handle it.
1667	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1668	 * as soon as we call pci_request_irq, so we have to setup our
1669	 * clean_rx handler before we do so.
1670	 */
1671	igbvf_configure(adapter);
1672
1673	err = igbvf_request_irq(adapter);
1674	if (err)
1675		goto err_req_irq;
1676
1677	/* From here on the code is the same as igbvf_up() */
1678	clear_bit(__IGBVF_DOWN, &adapter->state);
1679
1680	napi_enable(&adapter->rx_ring->napi);
1681
1682	/* clear any pending interrupts */
1683	er32(EICR);
1684
1685	igbvf_irq_enable(adapter);
1686
1687	/* start the watchdog */
1688	hw->mac.get_link_status = 1;
1689	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1690
1691	return 0;
1692
1693err_req_irq:
1694	igbvf_free_rx_resources(adapter->rx_ring);
1695err_setup_rx:
1696	igbvf_free_tx_resources(adapter->tx_ring);
1697err_setup_tx:
1698	igbvf_reset(adapter);
1699
1700	return err;
1701}
1702
1703/**
1704 * igbvf_close - Disables a network interface
1705 * @netdev: network interface device structure
1706 *
1707 * Returns 0, this is not allowed to fail
1708 *
1709 * The close entry point is called when an interface is de-activated
1710 * by the OS.  The hardware is still under the drivers control, but
1711 * needs to be disabled.  A global MAC reset is issued to stop the
1712 * hardware, and all transmit and receive resources are freed.
1713 **/
1714static int igbvf_close(struct net_device *netdev)
1715{
1716	struct igbvf_adapter *adapter = netdev_priv(netdev);
1717
1718	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1719	igbvf_down(adapter);
1720
1721	igbvf_free_irq(adapter);
1722
1723	igbvf_free_tx_resources(adapter->tx_ring);
1724	igbvf_free_rx_resources(adapter->rx_ring);
1725
1726	return 0;
1727}
1728/**
1729 * igbvf_set_mac - Change the Ethernet Address of the NIC
1730 * @netdev: network interface device structure
1731 * @p: pointer to an address structure
1732 *
1733 * Returns 0 on success, negative on failure
1734 **/
1735static int igbvf_set_mac(struct net_device *netdev, void *p)
1736{
1737	struct igbvf_adapter *adapter = netdev_priv(netdev);
1738	struct e1000_hw *hw = &adapter->hw;
1739	struct sockaddr *addr = p;
1740
1741	if (!is_valid_ether_addr(addr->sa_data))
1742		return -EADDRNOTAVAIL;
1743
1744	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1745
1746	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1747
1748	if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1749		return -EADDRNOTAVAIL;
1750
1751	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1752
1753	return 0;
1754}
1755
1756#define UPDATE_VF_COUNTER(reg, name)                                    \
1757	{                                                               \
1758		u32 current_counter = er32(reg);                        \
1759		if (current_counter < adapter->stats.last_##name)       \
1760			adapter->stats.name += 0x100000000LL;           \
1761		adapter->stats.last_##name = current_counter;           \
1762		adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1763		adapter->stats.name |= current_counter;                 \
1764	}
1765
1766/**
1767 * igbvf_update_stats - Update the board statistics counters
1768 * @adapter: board private structure
1769**/
1770void igbvf_update_stats(struct igbvf_adapter *adapter)
1771{
1772	struct e1000_hw *hw = &adapter->hw;
1773	struct pci_dev *pdev = adapter->pdev;
1774
1775	/*
1776	 * Prevent stats update while adapter is being reset, link is down
1777	 * or if the pci connection is down.
1778	 */
1779	if (adapter->link_speed == 0)
1780		return;
1781
1782	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1783		return;
1784
1785	if (pci_channel_offline(pdev))
1786		return;
1787
1788	UPDATE_VF_COUNTER(VFGPRC, gprc);
1789	UPDATE_VF_COUNTER(VFGORC, gorc);
1790	UPDATE_VF_COUNTER(VFGPTC, gptc);
1791	UPDATE_VF_COUNTER(VFGOTC, gotc);
1792	UPDATE_VF_COUNTER(VFMPRC, mprc);
1793	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1794	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1795	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1796	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1797
1798	/* Fill out the OS statistics structure */
1799	adapter->net_stats.multicast = adapter->stats.mprc;
1800}
1801
1802static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1803{
1804	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1805		 adapter->link_speed,
1806		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1807}
1808
1809static bool igbvf_has_link(struct igbvf_adapter *adapter)
1810{
1811	struct e1000_hw *hw = &adapter->hw;
1812	s32 ret_val = E1000_SUCCESS;
1813	bool link_active;
1814
1815	/* If interface is down, stay link down */
1816	if (test_bit(__IGBVF_DOWN, &adapter->state))
1817		return false;
1818
1819	ret_val = hw->mac.ops.check_for_link(hw);
1820	link_active = !hw->mac.get_link_status;
1821
1822	/* if check for link returns error we will need to reset */
1823	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1824		schedule_work(&adapter->reset_task);
1825
1826	return link_active;
1827}
1828
1829/**
1830 * igbvf_watchdog - Timer Call-back
1831 * @data: pointer to adapter cast into an unsigned long
1832 **/
1833static void igbvf_watchdog(unsigned long data)
1834{
1835	struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1836
1837	/* Do the rest outside of interrupt context */
1838	schedule_work(&adapter->watchdog_task);
1839}
1840
1841static void igbvf_watchdog_task(struct work_struct *work)
1842{
1843	struct igbvf_adapter *adapter = container_of(work,
1844	                                             struct igbvf_adapter,
1845	                                             watchdog_task);
1846	struct net_device *netdev = adapter->netdev;
1847	struct e1000_mac_info *mac = &adapter->hw.mac;
1848	struct igbvf_ring *tx_ring = adapter->tx_ring;
1849	struct e1000_hw *hw = &adapter->hw;
1850	u32 link;
1851	int tx_pending = 0;
1852
1853	link = igbvf_has_link(adapter);
1854
1855	if (link) {
1856		if (!netif_carrier_ok(netdev)) {
1857			mac->ops.get_link_up_info(&adapter->hw,
1858			                          &adapter->link_speed,
1859			                          &adapter->link_duplex);
1860			igbvf_print_link_info(adapter);
1861
1862			netif_carrier_on(netdev);
1863			netif_wake_queue(netdev);
1864		}
1865	} else {
1866		if (netif_carrier_ok(netdev)) {
1867			adapter->link_speed = 0;
1868			adapter->link_duplex = 0;
1869			dev_info(&adapter->pdev->dev, "Link is Down\n");
1870			netif_carrier_off(netdev);
1871			netif_stop_queue(netdev);
1872		}
1873	}
1874
1875	if (netif_carrier_ok(netdev)) {
1876		igbvf_update_stats(adapter);
1877	} else {
1878		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1879		              tx_ring->count);
1880		if (tx_pending) {
1881			/*
1882			 * We've lost link, so the controller stops DMA,
1883			 * but we've got queued Tx work that's never going
1884			 * to get done, so reset controller to flush Tx.
1885			 * (Do the reset outside of interrupt context).
1886			 */
1887			adapter->tx_timeout_count++;
1888			schedule_work(&adapter->reset_task);
1889		}
1890	}
1891
1892	/* Cause software interrupt to ensure Rx ring is cleaned */
1893	ew32(EICS, adapter->rx_ring->eims_value);
1894
1895	/* Reset the timer */
1896	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1897		mod_timer(&adapter->watchdog_timer,
1898			  round_jiffies(jiffies + (2 * HZ)));
1899}
1900
1901#define IGBVF_TX_FLAGS_CSUM             0x00000001
1902#define IGBVF_TX_FLAGS_VLAN             0x00000002
1903#define IGBVF_TX_FLAGS_TSO              0x00000004
1904#define IGBVF_TX_FLAGS_IPV4             0x00000008
1905#define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1906#define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1907
1908static int igbvf_tso(struct igbvf_adapter *adapter,
1909                     struct igbvf_ring *tx_ring,
1910                     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1911{
1912	struct e1000_adv_tx_context_desc *context_desc;
1913	struct igbvf_buffer *buffer_info;
1914	u32 info = 0, tu_cmd = 0;
1915	u32 mss_l4len_idx, l4len;
1916	unsigned int i;
1917	int err;
1918
1919	*hdr_len = 0;
1920
1921	err = skb_cow_head(skb, 0);
1922	if (err < 0) {
1923		dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n");
1924		return err;
1925	}
1926
1927	l4len = tcp_hdrlen(skb);
1928	*hdr_len += l4len;
1929
1930	if (skb->protocol == htons(ETH_P_IP)) {
1931		struct iphdr *iph = ip_hdr(skb);
1932		iph->tot_len = 0;
1933		iph->check = 0;
1934		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1935		                                         iph->daddr, 0,
1936		                                         IPPROTO_TCP,
1937		                                         0);
1938	} else if (skb_is_gso_v6(skb)) {
1939		ipv6_hdr(skb)->payload_len = 0;
1940		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1941		                                       &ipv6_hdr(skb)->daddr,
1942		                                       0, IPPROTO_TCP, 0);
1943	}
1944
1945	i = tx_ring->next_to_use;
1946
1947	buffer_info = &tx_ring->buffer_info[i];
1948	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1949	/* VLAN MACLEN IPLEN */
1950	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1951		info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1952	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1953	*hdr_len += skb_network_offset(skb);
1954	info |= (skb_transport_header(skb) - skb_network_header(skb));
1955	*hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1956	context_desc->vlan_macip_lens = cpu_to_le32(info);
1957
1958	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1959	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1960
1961	if (skb->protocol == htons(ETH_P_IP))
1962		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1963	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1964
1965	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1966
1967	/* MSS L4LEN IDX */
1968	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1969	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1970
1971	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1972	context_desc->seqnum_seed = 0;
1973
1974	buffer_info->time_stamp = jiffies;
1975	buffer_info->dma = 0;
1976	i++;
1977	if (i == tx_ring->count)
1978		i = 0;
1979
1980	tx_ring->next_to_use = i;
1981
1982	return true;
1983}
1984
1985static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1986                                 struct igbvf_ring *tx_ring,
1987                                 struct sk_buff *skb, u32 tx_flags)
1988{
1989	struct e1000_adv_tx_context_desc *context_desc;
1990	unsigned int i;
1991	struct igbvf_buffer *buffer_info;
1992	u32 info = 0, tu_cmd = 0;
1993
1994	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1995	    (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1996		i = tx_ring->next_to_use;
1997		buffer_info = &tx_ring->buffer_info[i];
1998		context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1999
2000		if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2001			info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2002
2003		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2004		if (skb->ip_summed == CHECKSUM_PARTIAL)
2005			info |= (skb_transport_header(skb) -
2006			         skb_network_header(skb));
2007
2008
2009		context_desc->vlan_macip_lens = cpu_to_le32(info);
2010
2011		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2012
2013		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2014			switch (skb->protocol) {
2015			case htons(ETH_P_IP):
2016				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2017				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2018					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2019				break;
2020			case htons(ETH_P_IPV6):
2021				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2022					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2023				break;
2024			default:
2025				break;
2026			}
2027		}
2028
2029		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2030		context_desc->seqnum_seed = 0;
2031		context_desc->mss_l4len_idx = 0;
2032
2033		buffer_info->time_stamp = jiffies;
2034		buffer_info->dma = 0;
2035		i++;
2036		if (i == tx_ring->count)
2037			i = 0;
2038		tx_ring->next_to_use = i;
2039
2040		return true;
2041	}
2042
2043	return false;
2044}
2045
2046static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2047{
2048	struct igbvf_adapter *adapter = netdev_priv(netdev);
2049
2050	/* there is enough descriptors then we don't need to worry  */
2051	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2052		return 0;
2053
2054	netif_stop_queue(netdev);
2055
2056	smp_mb();
2057
2058	/* We need to check again just in case room has been made available */
2059	if (igbvf_desc_unused(adapter->tx_ring) < size)
2060		return -EBUSY;
2061
2062	netif_wake_queue(netdev);
2063
2064	++adapter->restart_queue;
2065	return 0;
2066}
2067
2068#define IGBVF_MAX_TXD_PWR       16
2069#define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2070
2071static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2072                                   struct igbvf_ring *tx_ring,
2073				   struct sk_buff *skb)
2074{
2075	struct igbvf_buffer *buffer_info;
2076	struct pci_dev *pdev = adapter->pdev;
2077	unsigned int len = skb_headlen(skb);
2078	unsigned int count = 0, i;
2079	unsigned int f;
2080
2081	i = tx_ring->next_to_use;
2082
2083	buffer_info = &tx_ring->buffer_info[i];
2084	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2085	buffer_info->length = len;
2086	/* set time_stamp *before* dma to help avoid a possible race */
2087	buffer_info->time_stamp = jiffies;
2088	buffer_info->mapped_as_page = false;
2089	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2090					  DMA_TO_DEVICE);
2091	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2092		goto dma_error;
2093
2094
2095	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2096		const struct skb_frag_struct *frag;
2097
2098		count++;
2099		i++;
2100		if (i == tx_ring->count)
2101			i = 0;
2102
2103		frag = &skb_shinfo(skb)->frags[f];
2104		len = skb_frag_size(frag);
2105
2106		buffer_info = &tx_ring->buffer_info[i];
2107		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2108		buffer_info->length = len;
2109		buffer_info->time_stamp = jiffies;
2110		buffer_info->mapped_as_page = true;
2111		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2112						DMA_TO_DEVICE);
2113		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2114			goto dma_error;
2115	}
2116
2117	tx_ring->buffer_info[i].skb = skb;
2118
2119	return ++count;
2120
2121dma_error:
2122	dev_err(&pdev->dev, "TX DMA map failed\n");
2123
2124	/* clear timestamp and dma mappings for failed buffer_info mapping */
2125	buffer_info->dma = 0;
2126	buffer_info->time_stamp = 0;
2127	buffer_info->length = 0;
2128	buffer_info->mapped_as_page = false;
2129	if (count)
2130		count--;
2131
2132	/* clear timestamp and dma mappings for remaining portion of packet */
2133	while (count--) {
2134		if (i==0)
2135			i += tx_ring->count;
2136		i--;
2137		buffer_info = &tx_ring->buffer_info[i];
2138		igbvf_put_txbuf(adapter, buffer_info);
2139	}
2140
2141	return 0;
2142}
2143
2144static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2145                                      struct igbvf_ring *tx_ring,
2146				      int tx_flags, int count,
2147				      unsigned int first, u32 paylen,
2148                                      u8 hdr_len)
2149{
2150	union e1000_adv_tx_desc *tx_desc = NULL;
2151	struct igbvf_buffer *buffer_info;
2152	u32 olinfo_status = 0, cmd_type_len;
2153	unsigned int i;
2154
2155	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2156	                E1000_ADVTXD_DCMD_DEXT);
2157
2158	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2159		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2160
2161	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2162		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2163
2164		/* insert tcp checksum */
2165		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2166
2167		/* insert ip checksum */
2168		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2169			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2170
2171	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2172		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2173	}
2174
2175	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2176
2177	i = tx_ring->next_to_use;
2178	while (count--) {
2179		buffer_info = &tx_ring->buffer_info[i];
2180		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2181		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2182		tx_desc->read.cmd_type_len =
2183		         cpu_to_le32(cmd_type_len | buffer_info->length);
2184		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2185		i++;
2186		if (i == tx_ring->count)
2187			i = 0;
2188	}
2189
2190	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2191	/* Force memory writes to complete before letting h/w
2192	 * know there are new descriptors to fetch.  (Only
2193	 * applicable for weak-ordered memory model archs,
2194	 * such as IA-64). */
2195	wmb();
2196
2197	tx_ring->buffer_info[first].next_to_watch = tx_desc;
2198	tx_ring->next_to_use = i;
2199	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2200	/* we need this if more than one processor can write to our tail
2201	 * at a time, it syncronizes IO on IA64/Altix systems */
2202	mmiowb();
2203}
2204
2205static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2206					     struct net_device *netdev,
2207					     struct igbvf_ring *tx_ring)
2208{
2209	struct igbvf_adapter *adapter = netdev_priv(netdev);
2210	unsigned int first, tx_flags = 0;
2211	u8 hdr_len = 0;
2212	int count = 0;
2213	int tso = 0;
2214
2215	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2216		dev_kfree_skb_any(skb);
2217		return NETDEV_TX_OK;
2218	}
2219
2220	if (skb->len <= 0) {
2221		dev_kfree_skb_any(skb);
2222		return NETDEV_TX_OK;
2223	}
2224
2225	/*
2226	 * need: count + 4 desc gap to keep tail from touching
2227         *       + 2 desc gap to keep tail from touching head,
2228         *       + 1 desc for skb->data,
2229         *       + 1 desc for context descriptor,
2230	 * head, otherwise try next time
2231	 */
2232	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2233		/* this is a hard error */
2234		return NETDEV_TX_BUSY;
2235	}
2236
2237	if (vlan_tx_tag_present(skb)) {
2238		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2239		tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2240	}
2241
2242	if (skb->protocol == htons(ETH_P_IP))
2243		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2244
2245	first = tx_ring->next_to_use;
2246
2247	tso = skb_is_gso(skb) ?
2248		igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2249	if (unlikely(tso < 0)) {
2250		dev_kfree_skb_any(skb);
2251		return NETDEV_TX_OK;
2252	}
2253
2254	if (tso)
2255		tx_flags |= IGBVF_TX_FLAGS_TSO;
2256	else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2257	         (skb->ip_summed == CHECKSUM_PARTIAL))
2258		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2259
2260	/*
2261	 * count reflects descriptors mapped, if 0 then mapping error
2262	 * has occurred and we need to rewind the descriptor queue
2263	 */
2264	count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2265
2266	if (count) {
2267		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2268				   first, skb->len, hdr_len);
2269		/* Make sure there is space in the ring for the next send. */
2270		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2271	} else {
2272		dev_kfree_skb_any(skb);
2273		tx_ring->buffer_info[first].time_stamp = 0;
2274		tx_ring->next_to_use = first;
2275	}
2276
2277	return NETDEV_TX_OK;
2278}
2279
2280static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2281				    struct net_device *netdev)
2282{
2283	struct igbvf_adapter *adapter = netdev_priv(netdev);
2284	struct igbvf_ring *tx_ring;
2285
2286	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2287		dev_kfree_skb_any(skb);
2288		return NETDEV_TX_OK;
2289	}
2290
2291	tx_ring = &adapter->tx_ring[0];
2292
2293	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2294}
2295
2296/**
2297 * igbvf_tx_timeout - Respond to a Tx Hang
2298 * @netdev: network interface device structure
2299 **/
2300static void igbvf_tx_timeout(struct net_device *netdev)
2301{
2302	struct igbvf_adapter *adapter = netdev_priv(netdev);
2303
2304	/* Do the reset outside of interrupt context */
2305	adapter->tx_timeout_count++;
2306	schedule_work(&adapter->reset_task);
2307}
2308
2309static void igbvf_reset_task(struct work_struct *work)
2310{
2311	struct igbvf_adapter *adapter;
2312	adapter = container_of(work, struct igbvf_adapter, reset_task);
2313
2314	igbvf_reinit_locked(adapter);
2315}
2316
2317/**
2318 * igbvf_get_stats - Get System Network Statistics
2319 * @netdev: network interface device structure
2320 *
2321 * Returns the address of the device statistics structure.
2322 * The statistics are actually updated from the timer callback.
2323 **/
2324static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2325{
2326	struct igbvf_adapter *adapter = netdev_priv(netdev);
2327
2328	/* only return the current stats */
2329	return &adapter->net_stats;
2330}
2331
2332/**
2333 * igbvf_change_mtu - Change the Maximum Transfer Unit
2334 * @netdev: network interface device structure
2335 * @new_mtu: new value for maximum frame size
2336 *
2337 * Returns 0 on success, negative on failure
2338 **/
2339static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2340{
2341	struct igbvf_adapter *adapter = netdev_priv(netdev);
2342	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2343
2344	if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2345	    max_frame > MAX_JUMBO_FRAME_SIZE)
2346		return -EINVAL;
2347
2348#define MAX_STD_JUMBO_FRAME_SIZE 9234
2349	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2350		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2351		return -EINVAL;
2352	}
2353
2354	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2355		msleep(1);
2356	/* igbvf_down has a dependency on max_frame_size */
2357	adapter->max_frame_size = max_frame;
2358	if (netif_running(netdev))
2359		igbvf_down(adapter);
2360
2361	/*
2362	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2363	 * means we reserve 2 more, this pushes us to allocate from the next
2364	 * larger slab size.
2365	 * i.e. RXBUFFER_2048 --> size-4096 slab
2366	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2367	 * fragmented skbs
2368	 */
2369
2370	if (max_frame <= 1024)
2371		adapter->rx_buffer_len = 1024;
2372	else if (max_frame <= 2048)
2373		adapter->rx_buffer_len = 2048;
2374	else
2375#if (PAGE_SIZE / 2) > 16384
2376		adapter->rx_buffer_len = 16384;
2377#else
2378		adapter->rx_buffer_len = PAGE_SIZE / 2;
2379#endif
2380
2381
2382	/* adjust allocation if LPE protects us, and we aren't using SBP */
2383	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2384	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2385		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2386		                         ETH_FCS_LEN;
2387
2388	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2389	         netdev->mtu, new_mtu);
2390	netdev->mtu = new_mtu;
2391
2392	if (netif_running(netdev))
2393		igbvf_up(adapter);
2394	else
2395		igbvf_reset(adapter);
2396
2397	clear_bit(__IGBVF_RESETTING, &adapter->state);
2398
2399	return 0;
2400}
2401
2402static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2403{
2404	switch (cmd) {
2405	default:
2406		return -EOPNOTSUPP;
2407	}
2408}
2409
2410static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2411{
2412	struct net_device *netdev = pci_get_drvdata(pdev);
2413	struct igbvf_adapter *adapter = netdev_priv(netdev);
2414#ifdef CONFIG_PM
2415	int retval = 0;
2416#endif
2417
2418	netif_device_detach(netdev);
2419
2420	if (netif_running(netdev)) {
2421		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2422		igbvf_down(adapter);
2423		igbvf_free_irq(adapter);
2424	}
2425
2426#ifdef CONFIG_PM
2427	retval = pci_save_state(pdev);
2428	if (retval)
2429		return retval;
2430#endif
2431
2432	pci_disable_device(pdev);
2433
2434	return 0;
2435}
2436
2437#ifdef CONFIG_PM
2438static int igbvf_resume(struct pci_dev *pdev)
2439{
2440	struct net_device *netdev = pci_get_drvdata(pdev);
2441	struct igbvf_adapter *adapter = netdev_priv(netdev);
2442	u32 err;
2443
2444	pci_restore_state(pdev);
2445	err = pci_enable_device_mem(pdev);
2446	if (err) {
2447		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2448		return err;
2449	}
2450
2451	pci_set_master(pdev);
2452
2453	if (netif_running(netdev)) {
2454		err = igbvf_request_irq(adapter);
2455		if (err)
2456			return err;
2457	}
2458
2459	igbvf_reset(adapter);
2460
2461	if (netif_running(netdev))
2462		igbvf_up(adapter);
2463
2464	netif_device_attach(netdev);
2465
2466	return 0;
2467}
2468#endif
2469
2470static void igbvf_shutdown(struct pci_dev *pdev)
2471{
2472	igbvf_suspend(pdev, PMSG_SUSPEND);
2473}
2474
2475#ifdef CONFIG_NET_POLL_CONTROLLER
2476/*
2477 * Polling 'interrupt' - used by things like netconsole to send skbs
2478 * without having to re-enable interrupts. It's not called while
2479 * the interrupt routine is executing.
2480 */
2481static void igbvf_netpoll(struct net_device *netdev)
2482{
2483	struct igbvf_adapter *adapter = netdev_priv(netdev);
2484
2485	disable_irq(adapter->pdev->irq);
2486
2487	igbvf_clean_tx_irq(adapter->tx_ring);
2488
2489	enable_irq(adapter->pdev->irq);
2490}
2491#endif
2492
2493/**
2494 * igbvf_io_error_detected - called when PCI error is detected
2495 * @pdev: Pointer to PCI device
2496 * @state: The current pci connection state
2497 *
2498 * This function is called after a PCI bus error affecting
2499 * this device has been detected.
2500 */
2501static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2502                                                pci_channel_state_t state)
2503{
2504	struct net_device *netdev = pci_get_drvdata(pdev);
2505	struct igbvf_adapter *adapter = netdev_priv(netdev);
2506
2507	netif_device_detach(netdev);
2508
2509	if (state == pci_channel_io_perm_failure)
2510		return PCI_ERS_RESULT_DISCONNECT;
2511
2512	if (netif_running(netdev))
2513		igbvf_down(adapter);
2514	pci_disable_device(pdev);
2515
2516	/* Request a slot slot reset. */
2517	return PCI_ERS_RESULT_NEED_RESET;
2518}
2519
2520/**
2521 * igbvf_io_slot_reset - called after the pci bus has been reset.
2522 * @pdev: Pointer to PCI device
2523 *
2524 * Restart the card from scratch, as if from a cold-boot. Implementation
2525 * resembles the first-half of the igbvf_resume routine.
2526 */
2527static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2528{
2529	struct net_device *netdev = pci_get_drvdata(pdev);
2530	struct igbvf_adapter *adapter = netdev_priv(netdev);
2531
2532	if (pci_enable_device_mem(pdev)) {
2533		dev_err(&pdev->dev,
2534			"Cannot re-enable PCI device after reset.\n");
2535		return PCI_ERS_RESULT_DISCONNECT;
2536	}
2537	pci_set_master(pdev);
2538
2539	igbvf_reset(adapter);
2540
2541	return PCI_ERS_RESULT_RECOVERED;
2542}
2543
2544/**
2545 * igbvf_io_resume - called when traffic can start flowing again.
2546 * @pdev: Pointer to PCI device
2547 *
2548 * This callback is called when the error recovery driver tells us that
2549 * its OK to resume normal operation. Implementation resembles the
2550 * second-half of the igbvf_resume routine.
2551 */
2552static void igbvf_io_resume(struct pci_dev *pdev)
2553{
2554	struct net_device *netdev = pci_get_drvdata(pdev);
2555	struct igbvf_adapter *adapter = netdev_priv(netdev);
2556
2557	if (netif_running(netdev)) {
2558		if (igbvf_up(adapter)) {
2559			dev_err(&pdev->dev,
2560				"can't bring device back up after reset\n");
2561			return;
2562		}
2563	}
2564
2565	netif_device_attach(netdev);
2566}
2567
2568static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2569{
2570	struct e1000_hw *hw = &adapter->hw;
2571	struct net_device *netdev = adapter->netdev;
2572	struct pci_dev *pdev = adapter->pdev;
2573
2574	if (hw->mac.type == e1000_vfadapt_i350)
2575		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2576	else
2577		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2578	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2579}
2580
2581static int igbvf_set_features(struct net_device *netdev,
2582	netdev_features_t features)
2583{
2584	struct igbvf_adapter *adapter = netdev_priv(netdev);
2585
2586	if (features & NETIF_F_RXCSUM)
2587		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2588	else
2589		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2590
2591	return 0;
2592}
2593
2594static const struct net_device_ops igbvf_netdev_ops = {
2595	.ndo_open                       = igbvf_open,
2596	.ndo_stop                       = igbvf_close,
2597	.ndo_start_xmit                 = igbvf_xmit_frame,
2598	.ndo_get_stats                  = igbvf_get_stats,
2599	.ndo_set_rx_mode		= igbvf_set_multi,
2600	.ndo_set_mac_address            = igbvf_set_mac,
2601	.ndo_change_mtu                 = igbvf_change_mtu,
2602	.ndo_do_ioctl                   = igbvf_ioctl,
2603	.ndo_tx_timeout                 = igbvf_tx_timeout,
2604	.ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2605	.ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2606#ifdef CONFIG_NET_POLL_CONTROLLER
2607	.ndo_poll_controller            = igbvf_netpoll,
2608#endif
2609	.ndo_set_features               = igbvf_set_features,
2610};
2611
2612/**
2613 * igbvf_probe - Device Initialization Routine
2614 * @pdev: PCI device information struct
2615 * @ent: entry in igbvf_pci_tbl
2616 *
2617 * Returns 0 on success, negative on failure
2618 *
2619 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2620 * The OS initialization, configuring of the adapter private structure,
2621 * and a hardware reset occur.
2622 **/
2623static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2624{
2625	struct net_device *netdev;
2626	struct igbvf_adapter *adapter;
2627	struct e1000_hw *hw;
2628	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2629
2630	static int cards_found;
2631	int err, pci_using_dac;
2632
2633	err = pci_enable_device_mem(pdev);
2634	if (err)
2635		return err;
2636
2637	pci_using_dac = 0;
2638	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2639	if (!err) {
2640		pci_using_dac = 1;
2641	} else {
2642		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2643		if (err) {
2644			dev_err(&pdev->dev, "No usable DMA "
2645			        "configuration, aborting\n");
2646			goto err_dma;
2647		}
2648	}
2649
2650	err = pci_request_regions(pdev, igbvf_driver_name);
2651	if (err)
2652		goto err_pci_reg;
2653
2654	pci_set_master(pdev);
2655
2656	err = -ENOMEM;
2657	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2658	if (!netdev)
2659		goto err_alloc_etherdev;
2660
2661	SET_NETDEV_DEV(netdev, &pdev->dev);
2662
2663	pci_set_drvdata(pdev, netdev);
2664	adapter = netdev_priv(netdev);
2665	hw = &adapter->hw;
2666	adapter->netdev = netdev;
2667	adapter->pdev = pdev;
2668	adapter->ei = ei;
2669	adapter->pba = ei->pba;
2670	adapter->flags = ei->flags;
2671	adapter->hw.back = adapter;
2672	adapter->hw.mac.type = ei->mac;
2673	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2674
2675	/* PCI config space info */
2676
2677	hw->vendor_id = pdev->vendor;
2678	hw->device_id = pdev->device;
2679	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2680	hw->subsystem_device_id = pdev->subsystem_device;
2681	hw->revision_id = pdev->revision;
2682
2683	err = -EIO;
2684	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2685	                              pci_resource_len(pdev, 0));
2686
2687	if (!adapter->hw.hw_addr)
2688		goto err_ioremap;
2689
2690	if (ei->get_variants) {
2691		err = ei->get_variants(adapter);
2692		if (err)
2693			goto err_get_variants;
2694	}
2695
2696	/* setup adapter struct */
2697	err = igbvf_sw_init(adapter);
2698	if (err)
2699		goto err_sw_init;
2700
2701	/* construct the net_device struct */
2702	netdev->netdev_ops = &igbvf_netdev_ops;
2703
2704	igbvf_set_ethtool_ops(netdev);
2705	netdev->watchdog_timeo = 5 * HZ;
2706	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2707
2708	adapter->bd_number = cards_found++;
2709
2710	netdev->hw_features = NETIF_F_SG |
2711	                   NETIF_F_IP_CSUM |
2712			   NETIF_F_IPV6_CSUM |
2713			   NETIF_F_TSO |
2714			   NETIF_F_TSO6 |
2715			   NETIF_F_RXCSUM;
2716
2717	netdev->features = netdev->hw_features |
2718	                   NETIF_F_HW_VLAN_CTAG_TX |
2719	                   NETIF_F_HW_VLAN_CTAG_RX |
2720	                   NETIF_F_HW_VLAN_CTAG_FILTER;
2721
2722	if (pci_using_dac)
2723		netdev->features |= NETIF_F_HIGHDMA;
2724
2725	netdev->vlan_features |= NETIF_F_TSO;
2726	netdev->vlan_features |= NETIF_F_TSO6;
2727	netdev->vlan_features |= NETIF_F_IP_CSUM;
2728	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2729	netdev->vlan_features |= NETIF_F_SG;
2730
2731	/*reset the controller to put the device in a known good state */
2732	err = hw->mac.ops.reset_hw(hw);
2733	if (err) {
2734		dev_info(&pdev->dev,
2735			 "PF still in reset state. Is the PF interface up?\n");
2736	} else {
2737		err = hw->mac.ops.read_mac_addr(hw);
2738		if (err)
2739			dev_info(&pdev->dev, "Error reading MAC address.\n");
2740		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2741			dev_info(&pdev->dev, "MAC address not assigned by administrator.\n");
2742		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2743		       netdev->addr_len);
2744	}
2745
2746	if (!is_valid_ether_addr(netdev->dev_addr)) {
2747		dev_info(&pdev->dev, "Assigning random MAC address.\n");
2748		eth_hw_addr_random(netdev);
2749		memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2750			netdev->addr_len);
2751	}
2752
2753	setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2754	            (unsigned long) adapter);
2755
2756	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2757	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2758
2759	/* ring size defaults */
2760	adapter->rx_ring->count = 1024;
2761	adapter->tx_ring->count = 1024;
2762
2763	/* reset the hardware with the new settings */
2764	igbvf_reset(adapter);
2765
2766	/* set hardware-specific flags */
2767	if (adapter->hw.mac.type == e1000_vfadapt_i350)
2768		adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2769
2770	strcpy(netdev->name, "eth%d");
2771	err = register_netdev(netdev);
2772	if (err)
2773		goto err_hw_init;
2774
2775	/* tell the stack to leave us alone until igbvf_open() is called */
2776	netif_carrier_off(netdev);
2777	netif_stop_queue(netdev);
2778
2779	igbvf_print_device_info(adapter);
2780
2781	igbvf_initialize_last_counter_stats(adapter);
2782
2783	return 0;
2784
2785err_hw_init:
2786	kfree(adapter->tx_ring);
2787	kfree(adapter->rx_ring);
2788err_sw_init:
2789	igbvf_reset_interrupt_capability(adapter);
2790err_get_variants:
2791	iounmap(adapter->hw.hw_addr);
2792err_ioremap:
2793	free_netdev(netdev);
2794err_alloc_etherdev:
2795	pci_release_regions(pdev);
2796err_pci_reg:
2797err_dma:
2798	pci_disable_device(pdev);
2799	return err;
2800}
2801
2802/**
2803 * igbvf_remove - Device Removal Routine
2804 * @pdev: PCI device information struct
2805 *
2806 * igbvf_remove is called by the PCI subsystem to alert the driver
2807 * that it should release a PCI device.  The could be caused by a
2808 * Hot-Plug event, or because the driver is going to be removed from
2809 * memory.
2810 **/
2811static void igbvf_remove(struct pci_dev *pdev)
2812{
2813	struct net_device *netdev = pci_get_drvdata(pdev);
2814	struct igbvf_adapter *adapter = netdev_priv(netdev);
2815	struct e1000_hw *hw = &adapter->hw;
2816
2817	/*
2818	 * The watchdog timer may be rescheduled, so explicitly
2819	 * disable it from being rescheduled.
2820	 */
2821	set_bit(__IGBVF_DOWN, &adapter->state);
2822	del_timer_sync(&adapter->watchdog_timer);
2823
2824	cancel_work_sync(&adapter->reset_task);
2825	cancel_work_sync(&adapter->watchdog_task);
2826
2827	unregister_netdev(netdev);
2828
2829	igbvf_reset_interrupt_capability(adapter);
2830
2831	/*
2832	 * it is important to delete the napi struct prior to freeing the
2833	 * rx ring so that you do not end up with null pointer refs
2834	 */
2835	netif_napi_del(&adapter->rx_ring->napi);
2836	kfree(adapter->tx_ring);
2837	kfree(adapter->rx_ring);
2838
2839	iounmap(hw->hw_addr);
2840	if (hw->flash_address)
2841		iounmap(hw->flash_address);
2842	pci_release_regions(pdev);
2843
2844	free_netdev(netdev);
2845
2846	pci_disable_device(pdev);
2847}
2848
2849/* PCI Error Recovery (ERS) */
2850static const struct pci_error_handlers igbvf_err_handler = {
2851	.error_detected = igbvf_io_error_detected,
2852	.slot_reset = igbvf_io_slot_reset,
2853	.resume = igbvf_io_resume,
2854};
2855
2856static const struct pci_device_id igbvf_pci_tbl[] = {
2857	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2858	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2859	{ } /* terminate list */
2860};
2861MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2862
2863/* PCI Device API Driver */
2864static struct pci_driver igbvf_driver = {
2865	.name     = igbvf_driver_name,
2866	.id_table = igbvf_pci_tbl,
2867	.probe    = igbvf_probe,
2868	.remove   = igbvf_remove,
2869#ifdef CONFIG_PM
2870	/* Power Management Hooks */
2871	.suspend  = igbvf_suspend,
2872	.resume   = igbvf_resume,
2873#endif
2874	.shutdown = igbvf_shutdown,
2875	.err_handler = &igbvf_err_handler
2876};
2877
2878/**
2879 * igbvf_init_module - Driver Registration Routine
2880 *
2881 * igbvf_init_module is the first routine called when the driver is
2882 * loaded. All it does is register with the PCI subsystem.
2883 **/
2884static int __init igbvf_init_module(void)
2885{
2886	int ret;
2887	pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2888	pr_info("%s\n", igbvf_copyright);
2889
2890	ret = pci_register_driver(&igbvf_driver);
2891
2892	return ret;
2893}
2894module_init(igbvf_init_module);
2895
2896/**
2897 * igbvf_exit_module - Driver Exit Cleanup Routine
2898 *
2899 * igbvf_exit_module is called just before the driver is removed
2900 * from memory.
2901 **/
2902static void __exit igbvf_exit_module(void)
2903{
2904	pci_unregister_driver(&igbvf_driver);
2905}
2906module_exit(igbvf_exit_module);
2907
2908
2909MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2910MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2911MODULE_LICENSE("GPL");
2912MODULE_VERSION(DRV_VERSION);
2913
2914/* netdev.c */
2915