[go: nahoru, domu]

1/* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2   Copyright 1999 Silicon Integrated System Corporation
3   Revision:	1.08.10 Apr. 2 2006
4
5   Modified from the driver which is originally written by Donald Becker.
6
7   This software may be used and distributed according to the terms
8   of the GNU General Public License (GPL), incorporated herein by reference.
9   Drivers based on this skeleton fall under the GPL and must retain
10   the authorship (implicit copyright) notice.
11
12   References:
13   SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14   preliminary Rev. 1.0 Jan. 14, 1998
15   SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16   preliminary Rev. 1.0 Nov. 10, 1998
17   SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18   preliminary Rev. 1.0 Jan. 18, 1998
19
20   Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21   Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22   Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23   Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24   Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25   Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26   Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27   Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28   Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29   Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30   Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31   Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32   Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33   Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34   Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35   Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36   Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37   Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38   Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39   Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40   Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41   Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42   Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43   Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44   Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45   Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46   Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47   Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48   Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49   Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50*/
51
52#include <linux/module.h>
53#include <linux/moduleparam.h>
54#include <linux/kernel.h>
55#include <linux/sched.h>
56#include <linux/string.h>
57#include <linux/timer.h>
58#include <linux/errno.h>
59#include <linux/ioport.h>
60#include <linux/slab.h>
61#include <linux/interrupt.h>
62#include <linux/pci.h>
63#include <linux/netdevice.h>
64#include <linux/init.h>
65#include <linux/mii.h>
66#include <linux/etherdevice.h>
67#include <linux/skbuff.h>
68#include <linux/delay.h>
69#include <linux/ethtool.h>
70#include <linux/crc32.h>
71#include <linux/bitops.h>
72#include <linux/dma-mapping.h>
73
74#include <asm/processor.h>      /* Processor type for cache alignment. */
75#include <asm/io.h>
76#include <asm/irq.h>
77#include <asm/uaccess.h>	/* User space memory access functions */
78
79#include "sis900.h"
80
81#define SIS900_MODULE_NAME "sis900"
82#define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83
84static const char version[] =
85	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86
87static int max_interrupt_work = 40;
88static int multicast_filter_limit = 128;
89
90static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91
92#define SIS900_DEF_MSG \
93	(NETIF_MSG_DRV		| \
94	 NETIF_MSG_LINK		| \
95	 NETIF_MSG_RX_ERR	| \
96	 NETIF_MSG_TX_ERR)
97
98/* Time in jiffies before concluding the transmitter is hung. */
99#define TX_TIMEOUT  (4*HZ)
100
101enum {
102	SIS_900 = 0,
103	SIS_7016
104};
105static const char * card_names[] = {
106	"SiS 900 PCI Fast Ethernet",
107	"SiS 7016 PCI Fast Ethernet"
108};
109
110static const struct pci_device_id sis900_pci_tbl[] = {
111	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
112	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
113	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
114	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
115	{0,}
116};
117MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
118
119static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
120
121static const struct mii_chip_info {
122	const char * name;
123	u16 phy_id0;
124	u16 phy_id1;
125	u8  phy_types;
126#define	HOME 	0x0001
127#define LAN	0x0002
128#define MIX	0x0003
129#define UNKNOWN	0x0
130} mii_chip_table[] = {
131	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
132	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
133	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
134	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
135	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
136	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
137	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
138	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
139	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
140	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
141	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
142	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
143	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
144	{NULL,},
145};
146
147struct mii_phy {
148	struct mii_phy * next;
149	int phy_addr;
150	u16 phy_id0;
151	u16 phy_id1;
152	u16 status;
153	u8  phy_types;
154};
155
156typedef struct _BufferDesc {
157	u32 link;
158	u32 cmdsts;
159	u32 bufptr;
160} BufferDesc;
161
162struct sis900_private {
163	struct pci_dev * pci_dev;
164
165	spinlock_t lock;
166
167	struct mii_phy * mii;
168	struct mii_phy * first_mii; /* record the first mii structure */
169	unsigned int cur_phy;
170	struct mii_if_info mii_info;
171
172	void __iomem	*ioaddr;
173
174	struct timer_list timer; /* Link status detection timer. */
175	u8 autong_complete; /* 1: auto-negotiate complete  */
176
177	u32 msg_enable;
178
179	unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
180	unsigned int cur_tx, dirty_tx;
181
182	/* The saved address of a sent/receive-in-place packet buffer */
183	struct sk_buff *tx_skbuff[NUM_TX_DESC];
184	struct sk_buff *rx_skbuff[NUM_RX_DESC];
185	BufferDesc *tx_ring;
186	BufferDesc *rx_ring;
187
188	dma_addr_t tx_ring_dma;
189	dma_addr_t rx_ring_dma;
190
191	unsigned int tx_full; /* The Tx queue is full. */
192	u8 host_bridge_rev;
193	u8 chipset_rev;
194};
195
196MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
197MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
198MODULE_LICENSE("GPL");
199
200module_param(multicast_filter_limit, int, 0444);
201module_param(max_interrupt_work, int, 0444);
202module_param(sis900_debug, int, 0444);
203MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
204MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
205MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
206
207#define sw32(reg, val)	iowrite32(val, ioaddr + (reg))
208#define sw8(reg, val)	iowrite8(val, ioaddr + (reg))
209#define sr32(reg)	ioread32(ioaddr + (reg))
210#define sr16(reg)	ioread16(ioaddr + (reg))
211
212#ifdef CONFIG_NET_POLL_CONTROLLER
213static void sis900_poll(struct net_device *dev);
214#endif
215static int sis900_open(struct net_device *net_dev);
216static int sis900_mii_probe (struct net_device * net_dev);
217static void sis900_init_rxfilter (struct net_device * net_dev);
218static u16 read_eeprom(void __iomem *ioaddr, int location);
219static int mdio_read(struct net_device *net_dev, int phy_id, int location);
220static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
221static void sis900_timer(unsigned long data);
222static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
223static void sis900_tx_timeout(struct net_device *net_dev);
224static void sis900_init_tx_ring(struct net_device *net_dev);
225static void sis900_init_rx_ring(struct net_device *net_dev);
226static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
227				     struct net_device *net_dev);
228static int sis900_rx(struct net_device *net_dev);
229static void sis900_finish_xmit (struct net_device *net_dev);
230static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
231static int sis900_close(struct net_device *net_dev);
232static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
233static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
234static void set_rx_mode(struct net_device *net_dev);
235static void sis900_reset(struct net_device *net_dev);
236static void sis630_set_eq(struct net_device *net_dev, u8 revision);
237static int sis900_set_config(struct net_device *dev, struct ifmap *map);
238static u16 sis900_default_phy(struct net_device * net_dev);
239static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
240static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
241static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
242static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
243static const struct ethtool_ops sis900_ethtool_ops;
244
245/**
246 *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
247 *	@pci_dev: the sis900 pci device
248 *	@net_dev: the net device to get address for
249 *
250 *	Older SiS900 and friends, use EEPROM to store MAC address.
251 *	MAC address is read from read_eeprom() into @net_dev->dev_addr.
252 */
253
254static int sis900_get_mac_addr(struct pci_dev *pci_dev,
255			       struct net_device *net_dev)
256{
257	struct sis900_private *sis_priv = netdev_priv(net_dev);
258	void __iomem *ioaddr = sis_priv->ioaddr;
259	u16 signature;
260	int i;
261
262	/* check to see if we have sane EEPROM */
263	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
264	if (signature == 0xffff || signature == 0x0000) {
265		printk (KERN_WARNING "%s: Error EERPOM read %x\n",
266			pci_name(pci_dev), signature);
267		return 0;
268	}
269
270	/* get MAC address from EEPROM */
271	for (i = 0; i < 3; i++)
272	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
273
274	return 1;
275}
276
277/**
278 *	sis630e_get_mac_addr - Get MAC address for SiS630E model
279 *	@pci_dev: the sis900 pci device
280 *	@net_dev: the net device to get address for
281 *
282 *	SiS630E model, use APC CMOS RAM to store MAC address.
283 *	APC CMOS RAM is accessed through ISA bridge.
284 *	MAC address is read into @net_dev->dev_addr.
285 */
286
287static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
288				struct net_device *net_dev)
289{
290	struct pci_dev *isa_bridge = NULL;
291	u8 reg;
292	int i;
293
294	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
295	if (!isa_bridge)
296		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
297	if (!isa_bridge) {
298		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
299		       pci_name(pci_dev));
300		return 0;
301	}
302	pci_read_config_byte(isa_bridge, 0x48, &reg);
303	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
304
305	for (i = 0; i < 6; i++) {
306		outb(0x09 + i, 0x70);
307		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
308	}
309
310	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
311	pci_dev_put(isa_bridge);
312
313	return 1;
314}
315
316
317/**
318 *	sis635_get_mac_addr - Get MAC address for SIS635 model
319 *	@pci_dev: the sis900 pci device
320 *	@net_dev: the net device to get address for
321 *
322 *	SiS635 model, set MAC Reload Bit to load Mac address from APC
323 *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
324 *	@net_dev->dev_addr.
325 */
326
327static int sis635_get_mac_addr(struct pci_dev *pci_dev,
328			       struct net_device *net_dev)
329{
330	struct sis900_private *sis_priv = netdev_priv(net_dev);
331	void __iomem *ioaddr = sis_priv->ioaddr;
332	u32 rfcrSave;
333	u32 i;
334
335	rfcrSave = sr32(rfcr);
336
337	sw32(cr, rfcrSave | RELOAD);
338	sw32(cr, 0);
339
340	/* disable packet filtering before setting filter */
341	sw32(rfcr, rfcrSave & ~RFEN);
342
343	/* load MAC addr to filter data register */
344	for (i = 0 ; i < 3 ; i++) {
345		sw32(rfcr, (i << RFADDR_shift));
346		*( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
347	}
348
349	/* enable packet filtering */
350	sw32(rfcr, rfcrSave | RFEN);
351
352	return 1;
353}
354
355/**
356 *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
357 *	@pci_dev: the sis900 pci device
358 *	@net_dev: the net device to get address for
359 *
360 *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
361 *	is shared by
362 *	LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
363 *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
364 *	by LAN, otherwise is not. After MAC address is read from EEPROM, send
365 *	EEDONE signal to refuse EEPROM access by LAN.
366 *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
367 *	The signature field in SiS962 or SiS963 spec is meaningless.
368 *	MAC address is read into @net_dev->dev_addr.
369 */
370
371static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
372			       struct net_device *net_dev)
373{
374	struct sis900_private *sis_priv = netdev_priv(net_dev);
375	void __iomem *ioaddr = sis_priv->ioaddr;
376	int wait, rc = 0;
377
378	sw32(mear, EEREQ);
379	for (wait = 0; wait < 2000; wait++) {
380		if (sr32(mear) & EEGNT) {
381			u16 *mac = (u16 *)net_dev->dev_addr;
382			int i;
383
384			/* get MAC address from EEPROM */
385			for (i = 0; i < 3; i++)
386			        mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
387
388			rc = 1;
389			break;
390		}
391		udelay(1);
392	}
393	sw32(mear, EEDONE);
394	return rc;
395}
396
397static const struct net_device_ops sis900_netdev_ops = {
398	.ndo_open		 = sis900_open,
399	.ndo_stop		= sis900_close,
400	.ndo_start_xmit		= sis900_start_xmit,
401	.ndo_set_config		= sis900_set_config,
402	.ndo_set_rx_mode	= set_rx_mode,
403	.ndo_change_mtu		= eth_change_mtu,
404	.ndo_validate_addr	= eth_validate_addr,
405	.ndo_set_mac_address 	= eth_mac_addr,
406	.ndo_do_ioctl		= mii_ioctl,
407	.ndo_tx_timeout		= sis900_tx_timeout,
408#ifdef CONFIG_NET_POLL_CONTROLLER
409        .ndo_poll_controller	= sis900_poll,
410#endif
411};
412
413/**
414 *	sis900_probe - Probe for sis900 device
415 *	@pci_dev: the sis900 pci device
416 *	@pci_id: the pci device ID
417 *
418 *	Check and probe sis900 net device for @pci_dev.
419 *	Get mac address according to the chip revision,
420 *	and assign SiS900-specific entries in the device structure.
421 *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
422 */
423
424static int sis900_probe(struct pci_dev *pci_dev,
425			const struct pci_device_id *pci_id)
426{
427	struct sis900_private *sis_priv;
428	struct net_device *net_dev;
429	struct pci_dev *dev;
430	dma_addr_t ring_dma;
431	void *ring_space;
432	void __iomem *ioaddr;
433	int i, ret;
434	const char *card_name = card_names[pci_id->driver_data];
435	const char *dev_name = pci_name(pci_dev);
436
437/* when built into the kernel, we only print version if device is found */
438#ifndef MODULE
439	static int printed_version;
440	if (!printed_version++)
441		printk(version);
442#endif
443
444	/* setup various bits in PCI command register */
445	ret = pci_enable_device(pci_dev);
446	if(ret) return ret;
447
448	i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
449	if(i){
450		printk(KERN_ERR "sis900.c: architecture does not support "
451			"32bit PCI busmaster DMA\n");
452		return i;
453	}
454
455	pci_set_master(pci_dev);
456
457	net_dev = alloc_etherdev(sizeof(struct sis900_private));
458	if (!net_dev)
459		return -ENOMEM;
460	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
461
462	/* We do a request_region() to register /proc/ioports info. */
463	ret = pci_request_regions(pci_dev, "sis900");
464	if (ret)
465		goto err_out;
466
467	/* IO region. */
468	ioaddr = pci_iomap(pci_dev, 0, 0);
469	if (!ioaddr) {
470		ret = -ENOMEM;
471		goto err_out_cleardev;
472	}
473
474	sis_priv = netdev_priv(net_dev);
475	sis_priv->ioaddr = ioaddr;
476	sis_priv->pci_dev = pci_dev;
477	spin_lock_init(&sis_priv->lock);
478
479	pci_set_drvdata(pci_dev, net_dev);
480
481	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
482	if (!ring_space) {
483		ret = -ENOMEM;
484		goto err_out_unmap;
485	}
486	sis_priv->tx_ring = ring_space;
487	sis_priv->tx_ring_dma = ring_dma;
488
489	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
490	if (!ring_space) {
491		ret = -ENOMEM;
492		goto err_unmap_tx;
493	}
494	sis_priv->rx_ring = ring_space;
495	sis_priv->rx_ring_dma = ring_dma;
496
497	/* The SiS900-specific entries in the device structure. */
498	net_dev->netdev_ops = &sis900_netdev_ops;
499	net_dev->watchdog_timeo = TX_TIMEOUT;
500	net_dev->ethtool_ops = &sis900_ethtool_ops;
501
502	if (sis900_debug > 0)
503		sis_priv->msg_enable = sis900_debug;
504	else
505		sis_priv->msg_enable = SIS900_DEF_MSG;
506
507	sis_priv->mii_info.dev = net_dev;
508	sis_priv->mii_info.mdio_read = mdio_read;
509	sis_priv->mii_info.mdio_write = mdio_write;
510	sis_priv->mii_info.phy_id_mask = 0x1f;
511	sis_priv->mii_info.reg_num_mask = 0x1f;
512
513	/* Get Mac address according to the chip revision */
514	sis_priv->chipset_rev = pci_dev->revision;
515	if(netif_msg_probe(sis_priv))
516		printk(KERN_DEBUG "%s: detected revision %2.2x, "
517				"trying to get MAC address...\n",
518				dev_name, sis_priv->chipset_rev);
519
520	ret = 0;
521	if (sis_priv->chipset_rev == SIS630E_900_REV)
522		ret = sis630e_get_mac_addr(pci_dev, net_dev);
523	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
524		ret = sis635_get_mac_addr(pci_dev, net_dev);
525	else if (sis_priv->chipset_rev == SIS96x_900_REV)
526		ret = sis96x_get_mac_addr(pci_dev, net_dev);
527	else
528		ret = sis900_get_mac_addr(pci_dev, net_dev);
529
530	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
531		eth_hw_addr_random(net_dev);
532		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
533				"using random generated one\n", dev_name);
534	}
535
536	/* 630ET : set the mii access mode as software-mode */
537	if (sis_priv->chipset_rev == SIS630ET_900_REV)
538		sw32(cr, ACCESSMODE | sr32(cr));
539
540	/* probe for mii transceiver */
541	if (sis900_mii_probe(net_dev) == 0) {
542		printk(KERN_WARNING "%s: Error probing MII device.\n",
543		       dev_name);
544		ret = -ENODEV;
545		goto err_unmap_rx;
546	}
547
548	/* save our host bridge revision */
549	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
550	if (dev) {
551		sis_priv->host_bridge_rev = dev->revision;
552		pci_dev_put(dev);
553	}
554
555	ret = register_netdev(net_dev);
556	if (ret)
557		goto err_unmap_rx;
558
559	/* print some information about our NIC */
560	printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
561	       net_dev->name, card_name, ioaddr, pci_dev->irq,
562	       net_dev->dev_addr);
563
564	/* Detect Wake on Lan support */
565	ret = (sr32(CFGPMC) & PMESP) >> 27;
566	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
567		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
568
569	return 0;
570
571err_unmap_rx:
572	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
573		sis_priv->rx_ring_dma);
574err_unmap_tx:
575	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
576		sis_priv->tx_ring_dma);
577err_out_unmap:
578	pci_iounmap(pci_dev, ioaddr);
579err_out_cleardev:
580	pci_release_regions(pci_dev);
581 err_out:
582	free_netdev(net_dev);
583	return ret;
584}
585
586/**
587 *	sis900_mii_probe - Probe MII PHY for sis900
588 *	@net_dev: the net device to probe for
589 *
590 *	Search for total of 32 possible mii phy addresses.
591 *	Identify and set current phy if found one,
592 *	return error if it failed to found.
593 */
594
595static int sis900_mii_probe(struct net_device *net_dev)
596{
597	struct sis900_private *sis_priv = netdev_priv(net_dev);
598	const char *dev_name = pci_name(sis_priv->pci_dev);
599	u16 poll_bit = MII_STAT_LINK, status = 0;
600	unsigned long timeout = jiffies + 5 * HZ;
601	int phy_addr;
602
603	sis_priv->mii = NULL;
604
605	/* search for total of 32 possible mii phy addresses */
606	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
607		struct mii_phy * mii_phy = NULL;
608		u16 mii_status;
609		int i;
610
611		mii_phy = NULL;
612		for(i = 0; i < 2; i++)
613			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
614
615		if (mii_status == 0xffff || mii_status == 0x0000) {
616			if (netif_msg_probe(sis_priv))
617				printk(KERN_DEBUG "%s: MII at address %d"
618						" not accessible\n",
619						dev_name, phy_addr);
620			continue;
621		}
622
623		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
624			mii_phy = sis_priv->first_mii;
625			while (mii_phy) {
626				struct mii_phy *phy;
627				phy = mii_phy;
628				mii_phy = mii_phy->next;
629				kfree(phy);
630			}
631			return 0;
632		}
633
634		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
635		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
636		mii_phy->phy_addr = phy_addr;
637		mii_phy->status = mii_status;
638		mii_phy->next = sis_priv->mii;
639		sis_priv->mii = mii_phy;
640		sis_priv->first_mii = mii_phy;
641
642		for (i = 0; mii_chip_table[i].phy_id1; i++)
643			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
644			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
645				mii_phy->phy_types = mii_chip_table[i].phy_types;
646				if (mii_chip_table[i].phy_types == MIX)
647					mii_phy->phy_types =
648					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
649				printk(KERN_INFO "%s: %s transceiver found "
650							"at address %d.\n",
651							dev_name,
652							mii_chip_table[i].name,
653							phy_addr);
654				break;
655			}
656
657		if( !mii_chip_table[i].phy_id1 ) {
658			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
659			       dev_name, phy_addr);
660			mii_phy->phy_types = UNKNOWN;
661		}
662	}
663
664	if (sis_priv->mii == NULL) {
665		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
666		return 0;
667	}
668
669	/* select default PHY for mac */
670	sis_priv->mii = NULL;
671	sis900_default_phy( net_dev );
672
673	/* Reset phy if default phy is internal sis900 */
674        if ((sis_priv->mii->phy_id0 == 0x001D) &&
675	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
676        	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
677
678        /* workaround for ICS1893 PHY */
679        if ((sis_priv->mii->phy_id0 == 0x0015) &&
680            ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
681            	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
682
683	if(status & MII_STAT_LINK){
684		while (poll_bit) {
685			yield();
686
687			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
688			if (time_after_eq(jiffies, timeout)) {
689				printk(KERN_WARNING "%s: reset phy and link down now\n",
690				       dev_name);
691				return -ETIME;
692			}
693		}
694	}
695
696	if (sis_priv->chipset_rev == SIS630E_900_REV) {
697		/* SiS 630E has some bugs on default value of PHY registers */
698		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
699		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
700		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
701		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
702		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
703	}
704
705	if (sis_priv->mii->status & MII_STAT_LINK)
706		netif_carrier_on(net_dev);
707	else
708		netif_carrier_off(net_dev);
709
710	return 1;
711}
712
713/**
714 *	sis900_default_phy - Select default PHY for sis900 mac.
715 *	@net_dev: the net device to probe for
716 *
717 *	Select first detected PHY with link as default.
718 *	If no one is link on, select PHY whose types is HOME as default.
719 *	If HOME doesn't exist, select LAN.
720 */
721
722static u16 sis900_default_phy(struct net_device * net_dev)
723{
724	struct sis900_private *sis_priv = netdev_priv(net_dev);
725 	struct mii_phy *phy = NULL, *phy_home = NULL,
726		*default_phy = NULL, *phy_lan = NULL;
727	u16 status;
728
729        for (phy=sis_priv->first_mii; phy; phy=phy->next) {
730		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
731		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
732
733		/* Link ON & Not select default PHY & not ghost PHY */
734		 if ((status & MII_STAT_LINK) && !default_phy &&
735					(phy->phy_types != UNKNOWN))
736		 	default_phy = phy;
737		 else {
738			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
739			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
740				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
741			if (phy->phy_types == HOME)
742				phy_home = phy;
743			else if(phy->phy_types == LAN)
744				phy_lan = phy;
745		 }
746	}
747
748	if (!default_phy && phy_home)
749		default_phy = phy_home;
750	else if (!default_phy && phy_lan)
751		default_phy = phy_lan;
752	else if (!default_phy)
753		default_phy = sis_priv->first_mii;
754
755	if (sis_priv->mii != default_phy) {
756		sis_priv->mii = default_phy;
757		sis_priv->cur_phy = default_phy->phy_addr;
758		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
759		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
760	}
761
762	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
763
764	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
765	status &= (~MII_CNTL_ISOLATE);
766
767	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
768	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
769	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
770
771	return status;
772}
773
774
775/**
776 * 	sis900_set_capability - set the media capability of network adapter.
777 *	@net_dev : the net device to probe for
778 *	@phy : default PHY
779 *
780 *	Set the media capability of network adapter according to
781 *	mii status register. It's necessary before auto-negotiate.
782 */
783
784static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
785{
786	u16 cap;
787	u16 status;
788
789	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
790	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
791
792	cap = MII_NWAY_CSMA_CD |
793		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
794		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
795		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
796		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
797
798	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
799}
800
801
802/* Delay between EEPROM clock transitions. */
803#define eeprom_delay()	sr32(mear)
804
805/**
806 *	read_eeprom - Read Serial EEPROM
807 *	@ioaddr: base i/o address
808 *	@location: the EEPROM location to read
809 *
810 *	Read Serial EEPROM through EEPROM Access Register.
811 *	Note that location is in word (16 bits) unit
812 */
813
814static u16 read_eeprom(void __iomem *ioaddr, int location)
815{
816	u32 read_cmd = location | EEread;
817	int i;
818	u16 retval = 0;
819
820	sw32(mear, 0);
821	eeprom_delay();
822	sw32(mear, EECS);
823	eeprom_delay();
824
825	/* Shift the read command (9) bits out. */
826	for (i = 8; i >= 0; i--) {
827		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
828
829		sw32(mear, dataval);
830		eeprom_delay();
831		sw32(mear, dataval | EECLK);
832		eeprom_delay();
833	}
834	sw32(mear, EECS);
835	eeprom_delay();
836
837	/* read the 16-bits data in */
838	for (i = 16; i > 0; i--) {
839		sw32(mear, EECS);
840		eeprom_delay();
841		sw32(mear, EECS | EECLK);
842		eeprom_delay();
843		retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
844		eeprom_delay();
845	}
846
847	/* Terminate the EEPROM access. */
848	sw32(mear, 0);
849	eeprom_delay();
850
851	return retval;
852}
853
854/* Read and write the MII management registers using software-generated
855   serial MDIO protocol. Note that the command bits and data bits are
856   send out separately */
857#define mdio_delay()	sr32(mear)
858
859static void mdio_idle(struct sis900_private *sp)
860{
861	void __iomem *ioaddr = sp->ioaddr;
862
863	sw32(mear, MDIO | MDDIR);
864	mdio_delay();
865	sw32(mear, MDIO | MDDIR | MDC);
866}
867
868/* Synchronize the MII management interface by shifting 32 one bits out. */
869static void mdio_reset(struct sis900_private *sp)
870{
871	void __iomem *ioaddr = sp->ioaddr;
872	int i;
873
874	for (i = 31; i >= 0; i--) {
875		sw32(mear, MDDIR | MDIO);
876		mdio_delay();
877		sw32(mear, MDDIR | MDIO | MDC);
878		mdio_delay();
879	}
880}
881
882/**
883 *	mdio_read - read MII PHY register
884 *	@net_dev: the net device to read
885 *	@phy_id: the phy address to read
886 *	@location: the phy regiester id to read
887 *
888 *	Read MII registers through MDIO and MDC
889 *	using MDIO management frame structure and protocol(defined by ISO/IEC).
890 *	Please see SiS7014 or ICS spec
891 */
892
893static int mdio_read(struct net_device *net_dev, int phy_id, int location)
894{
895	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
896	struct sis900_private *sp = netdev_priv(net_dev);
897	void __iomem *ioaddr = sp->ioaddr;
898	u16 retval = 0;
899	int i;
900
901	mdio_reset(sp);
902	mdio_idle(sp);
903
904	for (i = 15; i >= 0; i--) {
905		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
906
907		sw32(mear, dataval);
908		mdio_delay();
909		sw32(mear, dataval | MDC);
910		mdio_delay();
911	}
912
913	/* Read the 16 data bits. */
914	for (i = 16; i > 0; i--) {
915		sw32(mear, 0);
916		mdio_delay();
917		retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
918		sw32(mear, MDC);
919		mdio_delay();
920	}
921	sw32(mear, 0x00);
922
923	return retval;
924}
925
926/**
927 *	mdio_write - write MII PHY register
928 *	@net_dev: the net device to write
929 *	@phy_id: the phy address to write
930 *	@location: the phy regiester id to write
931 *	@value: the register value to write with
932 *
933 *	Write MII registers with @value through MDIO and MDC
934 *	using MDIO management frame structure and protocol(defined by ISO/IEC)
935 *	please see SiS7014 or ICS spec
936 */
937
938static void mdio_write(struct net_device *net_dev, int phy_id, int location,
939			int value)
940{
941	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
942	struct sis900_private *sp = netdev_priv(net_dev);
943	void __iomem *ioaddr = sp->ioaddr;
944	int i;
945
946	mdio_reset(sp);
947	mdio_idle(sp);
948
949	/* Shift the command bits out. */
950	for (i = 15; i >= 0; i--) {
951		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
952
953		sw8(mear, dataval);
954		mdio_delay();
955		sw8(mear, dataval | MDC);
956		mdio_delay();
957	}
958	mdio_delay();
959
960	/* Shift the value bits out. */
961	for (i = 15; i >= 0; i--) {
962		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
963
964		sw32(mear, dataval);
965		mdio_delay();
966		sw32(mear, dataval | MDC);
967		mdio_delay();
968	}
969	mdio_delay();
970
971	/* Clear out extra bits. */
972	for (i = 2; i > 0; i--) {
973		sw8(mear, 0);
974		mdio_delay();
975		sw8(mear, MDC);
976		mdio_delay();
977	}
978	sw32(mear, 0x00);
979}
980
981
982/**
983 *	sis900_reset_phy - reset sis900 mii phy.
984 *	@net_dev: the net device to write
985 *	@phy_addr: default phy address
986 *
987 *	Some specific phy can't work properly without reset.
988 *	This function will be called during initialization and
989 *	link status change from ON to DOWN.
990 */
991
992static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
993{
994	int i;
995	u16 status;
996
997	for (i = 0; i < 2; i++)
998		status = mdio_read(net_dev, phy_addr, MII_STATUS);
999
1000	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1001
1002	return status;
1003}
1004
1005#ifdef CONFIG_NET_POLL_CONTROLLER
1006/*
1007 * Polling 'interrupt' - used by things like netconsole to send skbs
1008 * without having to re-enable interrupts. It's not called while
1009 * the interrupt routine is executing.
1010*/
1011static void sis900_poll(struct net_device *dev)
1012{
1013	struct sis900_private *sp = netdev_priv(dev);
1014	const int irq = sp->pci_dev->irq;
1015
1016	disable_irq(irq);
1017	sis900_interrupt(irq, dev);
1018	enable_irq(irq);
1019}
1020#endif
1021
1022/**
1023 *	sis900_open - open sis900 device
1024 *	@net_dev: the net device to open
1025 *
1026 *	Do some initialization and start net interface.
1027 *	enable interrupts and set sis900 timer.
1028 */
1029
1030static int
1031sis900_open(struct net_device *net_dev)
1032{
1033	struct sis900_private *sis_priv = netdev_priv(net_dev);
1034	void __iomem *ioaddr = sis_priv->ioaddr;
1035	int ret;
1036
1037	/* Soft reset the chip. */
1038	sis900_reset(net_dev);
1039
1040	/* Equalizer workaround Rule */
1041	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1042
1043	ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1044			  net_dev->name, net_dev);
1045	if (ret)
1046		return ret;
1047
1048	sis900_init_rxfilter(net_dev);
1049
1050	sis900_init_tx_ring(net_dev);
1051	sis900_init_rx_ring(net_dev);
1052
1053	set_rx_mode(net_dev);
1054
1055	netif_start_queue(net_dev);
1056
1057	/* Workaround for EDB */
1058	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1059
1060	/* Enable all known interrupts by setting the interrupt mask. */
1061	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1062	sw32(cr, RxENA | sr32(cr));
1063	sw32(ier, IE);
1064
1065	sis900_check_mode(net_dev, sis_priv->mii);
1066
1067	/* Set the timer to switch to check for link beat and perhaps switch
1068	   to an alternate media type. */
1069	init_timer(&sis_priv->timer);
1070	sis_priv->timer.expires = jiffies + HZ;
1071	sis_priv->timer.data = (unsigned long)net_dev;
1072	sis_priv->timer.function = sis900_timer;
1073	add_timer(&sis_priv->timer);
1074
1075	return 0;
1076}
1077
1078/**
1079 *	sis900_init_rxfilter - Initialize the Rx filter
1080 *	@net_dev: the net device to initialize for
1081 *
1082 *	Set receive filter address to our MAC address
1083 *	and enable packet filtering.
1084 */
1085
1086static void
1087sis900_init_rxfilter (struct net_device * net_dev)
1088{
1089	struct sis900_private *sis_priv = netdev_priv(net_dev);
1090	void __iomem *ioaddr = sis_priv->ioaddr;
1091	u32 rfcrSave;
1092	u32 i;
1093
1094	rfcrSave = sr32(rfcr);
1095
1096	/* disable packet filtering before setting filter */
1097	sw32(rfcr, rfcrSave & ~RFEN);
1098
1099	/* load MAC addr to filter data register */
1100	for (i = 0 ; i < 3 ; i++) {
1101		u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1102
1103		sw32(rfcr, i << RFADDR_shift);
1104		sw32(rfdr, w);
1105
1106		if (netif_msg_hw(sis_priv)) {
1107			printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1108			       net_dev->name, i, sr32(rfdr));
1109		}
1110	}
1111
1112	/* enable packet filtering */
1113	sw32(rfcr, rfcrSave | RFEN);
1114}
1115
1116/**
1117 *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1118 *	@net_dev: the net device to initialize for
1119 *
1120 *	Initialize the Tx descriptor ring,
1121 */
1122
1123static void
1124sis900_init_tx_ring(struct net_device *net_dev)
1125{
1126	struct sis900_private *sis_priv = netdev_priv(net_dev);
1127	void __iomem *ioaddr = sis_priv->ioaddr;
1128	int i;
1129
1130	sis_priv->tx_full = 0;
1131	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1132
1133	for (i = 0; i < NUM_TX_DESC; i++) {
1134		sis_priv->tx_skbuff[i] = NULL;
1135
1136		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1137			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1138		sis_priv->tx_ring[i].cmdsts = 0;
1139		sis_priv->tx_ring[i].bufptr = 0;
1140	}
1141
1142	/* load Transmit Descriptor Register */
1143	sw32(txdp, sis_priv->tx_ring_dma);
1144	if (netif_msg_hw(sis_priv))
1145		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1146		       net_dev->name, sr32(txdp));
1147}
1148
1149/**
1150 *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1151 *	@net_dev: the net device to initialize for
1152 *
1153 *	Initialize the Rx descriptor ring,
1154 *	and pre-allocate recevie buffers (socket buffer)
1155 */
1156
1157static void
1158sis900_init_rx_ring(struct net_device *net_dev)
1159{
1160	struct sis900_private *sis_priv = netdev_priv(net_dev);
1161	void __iomem *ioaddr = sis_priv->ioaddr;
1162	int i;
1163
1164	sis_priv->cur_rx = 0;
1165	sis_priv->dirty_rx = 0;
1166
1167	/* init RX descriptor */
1168	for (i = 0; i < NUM_RX_DESC; i++) {
1169		sis_priv->rx_skbuff[i] = NULL;
1170
1171		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1172			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1173		sis_priv->rx_ring[i].cmdsts = 0;
1174		sis_priv->rx_ring[i].bufptr = 0;
1175	}
1176
1177	/* allocate sock buffers */
1178	for (i = 0; i < NUM_RX_DESC; i++) {
1179		struct sk_buff *skb;
1180
1181		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1182			/* not enough memory for skbuff, this makes a "hole"
1183			   on the buffer ring, it is not clear how the
1184			   hardware will react to this kind of degenerated
1185			   buffer */
1186			break;
1187		}
1188		sis_priv->rx_skbuff[i] = skb;
1189		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1190		sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1191				skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1192		if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1193				sis_priv->rx_ring[i].bufptr))) {
1194			dev_kfree_skb(skb);
1195			sis_priv->rx_skbuff[i] = NULL;
1196			break;
1197		}
1198	}
1199	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1200
1201	/* load Receive Descriptor Register */
1202	sw32(rxdp, sis_priv->rx_ring_dma);
1203	if (netif_msg_hw(sis_priv))
1204		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1205		       net_dev->name, sr32(rxdp));
1206}
1207
1208/**
1209 *	sis630_set_eq - set phy equalizer value for 630 LAN
1210 *	@net_dev: the net device to set equalizer value
1211 *	@revision: 630 LAN revision number
1212 *
1213 *	630E equalizer workaround rule(Cyrus Huang 08/15)
1214 *	PHY register 14h(Test)
1215 *	Bit 14: 0 -- Automatically detect (default)
1216 *		1 -- Manually set Equalizer filter
1217 *	Bit 13: 0 -- (Default)
1218 *		1 -- Speed up convergence of equalizer setting
1219 *	Bit 9 : 0 -- (Default)
1220 *		1 -- Disable Baseline Wander
1221 *	Bit 3~7   -- Equalizer filter setting
1222 *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1223 *	Then calculate equalizer value
1224 *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1225 *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1226 *	Calculate Equalizer value:
1227 *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1228 *	When the equalizer is stable, this value is not a fixed value. It will be within
1229 *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1230 *	0 <= max <= 4  --> set equalizer to max
1231 *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1232 *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1233 */
1234
1235static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1236{
1237	struct sis900_private *sis_priv = netdev_priv(net_dev);
1238	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1239	int i, maxcount=10;
1240
1241	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1242	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1243		return;
1244
1245	if (netif_carrier_ok(net_dev)) {
1246		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1247		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1248					(0x2200 | reg14h) & 0xBFFF);
1249		for (i=0; i < maxcount; i++) {
1250			eq_value = (0x00F8 & mdio_read(net_dev,
1251					sis_priv->cur_phy, MII_RESV)) >> 3;
1252			if (i == 0)
1253				max_value=min_value=eq_value;
1254			max_value = (eq_value > max_value) ?
1255						eq_value : max_value;
1256			min_value = (eq_value < min_value) ?
1257						eq_value : min_value;
1258		}
1259		/* 630E rule to determine the equalizer value */
1260		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1261		    revision == SIS630ET_900_REV) {
1262			if (max_value < 5)
1263				eq_value = max_value;
1264			else if (max_value >= 5 && max_value < 15)
1265				eq_value = (max_value == min_value) ?
1266						max_value+2 : max_value+1;
1267			else if (max_value >= 15)
1268				eq_value=(max_value == min_value) ?
1269						max_value+6 : max_value+5;
1270		}
1271		/* 630B0&B1 rule to determine the equalizer value */
1272		if (revision == SIS630A_900_REV &&
1273		    (sis_priv->host_bridge_rev == SIS630B0 ||
1274		     sis_priv->host_bridge_rev == SIS630B1)) {
1275			if (max_value == 0)
1276				eq_value = 3;
1277			else
1278				eq_value = (max_value + min_value + 1)/2;
1279		}
1280		/* write equalizer value and setting */
1281		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1282		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1283		reg14h = (reg14h | 0x6000) & 0xFDFF;
1284		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1285	} else {
1286		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1287		if (revision == SIS630A_900_REV &&
1288		    (sis_priv->host_bridge_rev == SIS630B0 ||
1289		     sis_priv->host_bridge_rev == SIS630B1))
1290			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1291						(reg14h | 0x2200) & 0xBFFF);
1292		else
1293			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1294						(reg14h | 0x2000) & 0xBFFF);
1295	}
1296}
1297
1298/**
1299 *	sis900_timer - sis900 timer routine
1300 *	@data: pointer to sis900 net device
1301 *
1302 *	On each timer ticks we check two things,
1303 *	link status (ON/OFF) and link mode (10/100/Full/Half)
1304 */
1305
1306static void sis900_timer(unsigned long data)
1307{
1308	struct net_device *net_dev = (struct net_device *)data;
1309	struct sis900_private *sis_priv = netdev_priv(net_dev);
1310	struct mii_phy *mii_phy = sis_priv->mii;
1311	static const int next_tick = 5*HZ;
1312	int speed = 0, duplex = 0;
1313	u16 status;
1314
1315	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1316	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1317
1318	/* Link OFF -> ON */
1319	if (!netif_carrier_ok(net_dev)) {
1320	LookForLink:
1321		/* Search for new PHY */
1322		status = sis900_default_phy(net_dev);
1323		mii_phy = sis_priv->mii;
1324
1325		if (status & MII_STAT_LINK) {
1326			WARN_ON(!(status & MII_STAT_AUTO_DONE));
1327
1328			sis900_read_mode(net_dev, &speed, &duplex);
1329			if (duplex) {
1330				sis900_set_mode(sis_priv, speed, duplex);
1331				sis630_set_eq(net_dev, sis_priv->chipset_rev);
1332				netif_carrier_on(net_dev);
1333			}
1334		}
1335	} else {
1336	/* Link ON -> OFF */
1337                if (!(status & MII_STAT_LINK)){
1338                	netif_carrier_off(net_dev);
1339			if(netif_msg_link(sis_priv))
1340                		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1341
1342                	/* Change mode issue */
1343                	if ((mii_phy->phy_id0 == 0x001D) &&
1344			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1345               			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1346
1347			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1348
1349                	goto LookForLink;
1350                }
1351	}
1352
1353	sis_priv->timer.expires = jiffies + next_tick;
1354	add_timer(&sis_priv->timer);
1355}
1356
1357/**
1358 *	sis900_check_mode - check the media mode for sis900
1359 *	@net_dev: the net device to be checked
1360 *	@mii_phy: the mii phy
1361 *
1362 *	Older driver gets the media mode from mii status output
1363 *	register. Now we set our media capability and auto-negotiate
1364 *	to get the upper bound of speed and duplex between two ends.
1365 *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1366 *	and autong_complete should be set to 1.
1367 */
1368
1369static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1370{
1371	struct sis900_private *sis_priv = netdev_priv(net_dev);
1372	void __iomem *ioaddr = sis_priv->ioaddr;
1373	int speed, duplex;
1374
1375	if (mii_phy->phy_types == LAN) {
1376		sw32(cfg, ~EXD & sr32(cfg));
1377		sis900_set_capability(net_dev , mii_phy);
1378		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1379	} else {
1380		sw32(cfg, EXD | sr32(cfg));
1381		speed = HW_SPEED_HOME;
1382		duplex = FDX_CAPABLE_HALF_SELECTED;
1383		sis900_set_mode(sis_priv, speed, duplex);
1384		sis_priv->autong_complete = 1;
1385	}
1386}
1387
1388/**
1389 *	sis900_set_mode - Set the media mode of mac register.
1390 *	@sp:     the device private data
1391 *	@speed : the transmit speed to be determined
1392 *	@duplex: the duplex mode to be determined
1393 *
1394 *	Set the media mode of mac register txcfg/rxcfg according to
1395 *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1396 *	bus is used instead of PCI bus. When this bit is set 1, the
1397 *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1398 *	double words.
1399 */
1400
1401static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1402{
1403	void __iomem *ioaddr = sp->ioaddr;
1404	u32 tx_flags = 0, rx_flags = 0;
1405
1406	if (sr32( cfg) & EDB_MASTER_EN) {
1407		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1408					(TX_FILL_THRESH << TxFILLT_shift);
1409		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1410	} else {
1411		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1412					(TX_FILL_THRESH << TxFILLT_shift);
1413		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1414	}
1415
1416	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1417		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1418		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1419	} else {
1420		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1421		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1422	}
1423
1424	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1425		tx_flags |= (TxCSI | TxHBI);
1426		rx_flags |= RxATX;
1427	}
1428
1429#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1430	/* Can accept Jumbo packet */
1431	rx_flags |= RxAJAB;
1432#endif
1433
1434	sw32(txcfg, tx_flags);
1435	sw32(rxcfg, rx_flags);
1436}
1437
1438/**
1439 *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1440 *	@net_dev: the net device to read mode for
1441 *	@phy_addr: mii phy address
1442 *
1443 *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1444 *	autong_complete should be set to 0 when starting auto-negotiation.
1445 *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1446 *	sis900_timer will wait for link on again if autong_complete = 0.
1447 */
1448
1449static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1450{
1451	struct sis900_private *sis_priv = netdev_priv(net_dev);
1452	int i = 0;
1453	u32 status;
1454
1455	for (i = 0; i < 2; i++)
1456		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1457
1458	if (!(status & MII_STAT_LINK)){
1459		if(netif_msg_link(sis_priv))
1460			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1461		sis_priv->autong_complete = 1;
1462		netif_carrier_off(net_dev);
1463		return;
1464	}
1465
1466	/* (Re)start AutoNegotiate */
1467	mdio_write(net_dev, phy_addr, MII_CONTROL,
1468		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1469	sis_priv->autong_complete = 0;
1470}
1471
1472
1473/**
1474 *	sis900_read_mode - read media mode for sis900 internal phy
1475 *	@net_dev: the net device to read mode for
1476 *	@speed  : the transmit speed to be determined
1477 *	@duplex : the duplex mode to be determined
1478 *
1479 *	The capability of remote end will be put in mii register autorec
1480 *	after auto-negotiation. Use AND operation to get the upper bound
1481 *	of speed and duplex between two ends.
1482 */
1483
1484static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1485{
1486	struct sis900_private *sis_priv = netdev_priv(net_dev);
1487	struct mii_phy *phy = sis_priv->mii;
1488	int phy_addr = sis_priv->cur_phy;
1489	u32 status;
1490	u16 autoadv, autorec;
1491	int i;
1492
1493	for (i = 0; i < 2; i++)
1494		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1495
1496	if (!(status & MII_STAT_LINK))
1497		return;
1498
1499	/* AutoNegotiate completed */
1500	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1501	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1502	status = autoadv & autorec;
1503
1504	*speed = HW_SPEED_10_MBPS;
1505	*duplex = FDX_CAPABLE_HALF_SELECTED;
1506
1507	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1508		*speed = HW_SPEED_100_MBPS;
1509	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1510		*duplex = FDX_CAPABLE_FULL_SELECTED;
1511
1512	sis_priv->autong_complete = 1;
1513
1514	/* Workaround for Realtek RTL8201 PHY issue */
1515	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1516		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1517			*duplex = FDX_CAPABLE_FULL_SELECTED;
1518		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1519			*speed = HW_SPEED_100_MBPS;
1520	}
1521
1522	if(netif_msg_link(sis_priv))
1523		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1524	       				net_dev->name,
1525	       				*speed == HW_SPEED_100_MBPS ?
1526	       					"100mbps" : "10mbps",
1527	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1528	       					"full" : "half");
1529}
1530
1531/**
1532 *	sis900_tx_timeout - sis900 transmit timeout routine
1533 *	@net_dev: the net device to transmit
1534 *
1535 *	print transmit timeout status
1536 *	disable interrupts and do some tasks
1537 */
1538
1539static void sis900_tx_timeout(struct net_device *net_dev)
1540{
1541	struct sis900_private *sis_priv = netdev_priv(net_dev);
1542	void __iomem *ioaddr = sis_priv->ioaddr;
1543	unsigned long flags;
1544	int i;
1545
1546	if (netif_msg_tx_err(sis_priv)) {
1547		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1548			net_dev->name, sr32(cr), sr32(isr));
1549	}
1550
1551	/* Disable interrupts by clearing the interrupt mask. */
1552	sw32(imr, 0x0000);
1553
1554	/* use spinlock to prevent interrupt handler accessing buffer ring */
1555	spin_lock_irqsave(&sis_priv->lock, flags);
1556
1557	/* discard unsent packets */
1558	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1559	for (i = 0; i < NUM_TX_DESC; i++) {
1560		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1561
1562		if (skb) {
1563			pci_unmap_single(sis_priv->pci_dev,
1564				sis_priv->tx_ring[i].bufptr, skb->len,
1565				PCI_DMA_TODEVICE);
1566			dev_kfree_skb_irq(skb);
1567			sis_priv->tx_skbuff[i] = NULL;
1568			sis_priv->tx_ring[i].cmdsts = 0;
1569			sis_priv->tx_ring[i].bufptr = 0;
1570			net_dev->stats.tx_dropped++;
1571		}
1572	}
1573	sis_priv->tx_full = 0;
1574	netif_wake_queue(net_dev);
1575
1576	spin_unlock_irqrestore(&sis_priv->lock, flags);
1577
1578	net_dev->trans_start = jiffies; /* prevent tx timeout */
1579
1580	/* load Transmit Descriptor Register */
1581	sw32(txdp, sis_priv->tx_ring_dma);
1582
1583	/* Enable all known interrupts by setting the interrupt mask. */
1584	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1585}
1586
1587/**
1588 *	sis900_start_xmit - sis900 start transmit routine
1589 *	@skb: socket buffer pointer to put the data being transmitted
1590 *	@net_dev: the net device to transmit with
1591 *
1592 *	Set the transmit buffer descriptor,
1593 *	and write TxENA to enable transmit state machine.
1594 *	tell upper layer if the buffer is full
1595 */
1596
1597static netdev_tx_t
1598sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1599{
1600	struct sis900_private *sis_priv = netdev_priv(net_dev);
1601	void __iomem *ioaddr = sis_priv->ioaddr;
1602	unsigned int  entry;
1603	unsigned long flags;
1604	unsigned int  index_cur_tx, index_dirty_tx;
1605	unsigned int  count_dirty_tx;
1606
1607	spin_lock_irqsave(&sis_priv->lock, flags);
1608
1609	/* Calculate the next Tx descriptor entry. */
1610	entry = sis_priv->cur_tx % NUM_TX_DESC;
1611	sis_priv->tx_skbuff[entry] = skb;
1612
1613	/* set the transmit buffer descriptor and enable Transmit State Machine */
1614	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1615		skb->data, skb->len, PCI_DMA_TODEVICE);
1616	if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1617		sis_priv->tx_ring[entry].bufptr))) {
1618			dev_kfree_skb_any(skb);
1619			sis_priv->tx_skbuff[entry] = NULL;
1620			net_dev->stats.tx_dropped++;
1621			spin_unlock_irqrestore(&sis_priv->lock, flags);
1622			return NETDEV_TX_OK;
1623	}
1624	sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1625	sw32(cr, TxENA | sr32(cr));
1626
1627	sis_priv->cur_tx ++;
1628	index_cur_tx = sis_priv->cur_tx;
1629	index_dirty_tx = sis_priv->dirty_tx;
1630
1631	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1632		count_dirty_tx ++;
1633
1634	if (index_cur_tx == index_dirty_tx) {
1635		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1636		sis_priv->tx_full = 1;
1637		netif_stop_queue(net_dev);
1638	} else if (count_dirty_tx < NUM_TX_DESC) {
1639		/* Typical path, tell upper layer that more transmission is possible */
1640		netif_start_queue(net_dev);
1641	} else {
1642		/* buffer full, tell upper layer no more transmission */
1643		sis_priv->tx_full = 1;
1644		netif_stop_queue(net_dev);
1645	}
1646
1647	spin_unlock_irqrestore(&sis_priv->lock, flags);
1648
1649	if (netif_msg_tx_queued(sis_priv))
1650		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1651		       "to slot %d.\n",
1652		       net_dev->name, skb->data, (int)skb->len, entry);
1653
1654	return NETDEV_TX_OK;
1655}
1656
1657/**
1658 *	sis900_interrupt - sis900 interrupt handler
1659 *	@irq: the irq number
1660 *	@dev_instance: the client data object
1661 *
1662 *	The interrupt handler does all of the Rx thread work,
1663 *	and cleans up after the Tx thread
1664 */
1665
1666static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1667{
1668	struct net_device *net_dev = dev_instance;
1669	struct sis900_private *sis_priv = netdev_priv(net_dev);
1670	int boguscnt = max_interrupt_work;
1671	void __iomem *ioaddr = sis_priv->ioaddr;
1672	u32 status;
1673	unsigned int handled = 0;
1674
1675	spin_lock (&sis_priv->lock);
1676
1677	do {
1678		status = sr32(isr);
1679
1680		if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1681			/* nothing intresting happened */
1682			break;
1683		handled = 1;
1684
1685		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1686		if (status & (RxORN | RxERR | RxOK))
1687			/* Rx interrupt */
1688			sis900_rx(net_dev);
1689
1690		if (status & (TxURN | TxERR | TxIDLE))
1691			/* Tx interrupt */
1692			sis900_finish_xmit(net_dev);
1693
1694		/* something strange happened !!! */
1695		if (status & HIBERR) {
1696			if(netif_msg_intr(sis_priv))
1697				printk(KERN_INFO "%s: Abnormal interrupt, "
1698					"status %#8.8x.\n", net_dev->name, status);
1699			break;
1700		}
1701		if (--boguscnt < 0) {
1702			if(netif_msg_intr(sis_priv))
1703				printk(KERN_INFO "%s: Too much work at interrupt, "
1704					"interrupt status = %#8.8x.\n",
1705					net_dev->name, status);
1706			break;
1707		}
1708	} while (1);
1709
1710	if(netif_msg_intr(sis_priv))
1711		printk(KERN_DEBUG "%s: exiting interrupt, "
1712		       "interrupt status = %#8.8x\n",
1713		       net_dev->name, sr32(isr));
1714
1715	spin_unlock (&sis_priv->lock);
1716	return IRQ_RETVAL(handled);
1717}
1718
1719/**
1720 *	sis900_rx - sis900 receive routine
1721 *	@net_dev: the net device which receives data
1722 *
1723 *	Process receive interrupt events,
1724 *	put buffer to higher layer and refill buffer pool
1725 *	Note: This function is called by interrupt handler,
1726 *	don't do "too much" work here
1727 */
1728
1729static int sis900_rx(struct net_device *net_dev)
1730{
1731	struct sis900_private *sis_priv = netdev_priv(net_dev);
1732	void __iomem *ioaddr = sis_priv->ioaddr;
1733	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1734	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1735	int rx_work_limit;
1736
1737	if (netif_msg_rx_status(sis_priv))
1738		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1739		       "status:0x%8.8x\n",
1740		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1741	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1742
1743	while (rx_status & OWN) {
1744		unsigned int rx_size;
1745		unsigned int data_size;
1746
1747		if (--rx_work_limit < 0)
1748			break;
1749
1750		data_size = rx_status & DSIZE;
1751		rx_size = data_size - CRC_SIZE;
1752
1753#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1754		/* ``TOOLONG'' flag means jumbo packet received. */
1755		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1756			rx_status &= (~ ((unsigned int)TOOLONG));
1757#endif
1758
1759		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1760			/* corrupted packet received */
1761			if (netif_msg_rx_err(sis_priv))
1762				printk(KERN_DEBUG "%s: Corrupted packet "
1763				       "received, buffer status = 0x%8.8x/%d.\n",
1764				       net_dev->name, rx_status, data_size);
1765			net_dev->stats.rx_errors++;
1766			if (rx_status & OVERRUN)
1767				net_dev->stats.rx_over_errors++;
1768			if (rx_status & (TOOLONG|RUNT))
1769				net_dev->stats.rx_length_errors++;
1770			if (rx_status & (RXISERR | FAERR))
1771				net_dev->stats.rx_frame_errors++;
1772			if (rx_status & CRCERR)
1773				net_dev->stats.rx_crc_errors++;
1774			/* reset buffer descriptor state */
1775			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1776		} else {
1777			struct sk_buff * skb;
1778			struct sk_buff * rx_skb;
1779
1780			pci_unmap_single(sis_priv->pci_dev,
1781				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1782				PCI_DMA_FROMDEVICE);
1783
1784			/* refill the Rx buffer, what if there is not enough
1785			 * memory for new socket buffer ?? */
1786			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1787				/*
1788				 * Not enough memory to refill the buffer
1789				 * so we need to recycle the old one so
1790				 * as to avoid creating a memory hole
1791				 * in the rx ring
1792				 */
1793				skb = sis_priv->rx_skbuff[entry];
1794				net_dev->stats.rx_dropped++;
1795				goto refill_rx_ring;
1796			}
1797
1798			/* This situation should never happen, but due to
1799			   some unknown bugs, it is possible that
1800			   we are working on NULL sk_buff :-( */
1801			if (sis_priv->rx_skbuff[entry] == NULL) {
1802				if (netif_msg_rx_err(sis_priv))
1803					printk(KERN_WARNING "%s: NULL pointer "
1804					      "encountered in Rx ring\n"
1805					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1806					      net_dev->name, sis_priv->cur_rx,
1807					      sis_priv->dirty_rx);
1808				dev_kfree_skb(skb);
1809				break;
1810			}
1811
1812			/* give the socket buffer to upper layers */
1813			rx_skb = sis_priv->rx_skbuff[entry];
1814			skb_put(rx_skb, rx_size);
1815			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1816			netif_rx(rx_skb);
1817
1818			/* some network statistics */
1819			if ((rx_status & BCAST) == MCAST)
1820				net_dev->stats.multicast++;
1821			net_dev->stats.rx_bytes += rx_size;
1822			net_dev->stats.rx_packets++;
1823			sis_priv->dirty_rx++;
1824refill_rx_ring:
1825			sis_priv->rx_skbuff[entry] = skb;
1826			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1827			sis_priv->rx_ring[entry].bufptr =
1828				pci_map_single(sis_priv->pci_dev, skb->data,
1829					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1830			if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1831				sis_priv->rx_ring[entry].bufptr))) {
1832				dev_kfree_skb_irq(skb);
1833				sis_priv->rx_skbuff[entry] = NULL;
1834				break;
1835			}
1836		}
1837		sis_priv->cur_rx++;
1838		entry = sis_priv->cur_rx % NUM_RX_DESC;
1839		rx_status = sis_priv->rx_ring[entry].cmdsts;
1840	} // while
1841
1842	/* refill the Rx buffer, what if the rate of refilling is slower
1843	 * than consuming ?? */
1844	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1845		struct sk_buff *skb;
1846
1847		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1848
1849		if (sis_priv->rx_skbuff[entry] == NULL) {
1850			skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE);
1851			if (skb == NULL) {
1852				/* not enough memory for skbuff, this makes a
1853				 * "hole" on the buffer ring, it is not clear
1854				 * how the hardware will react to this kind
1855				 * of degenerated buffer */
1856				net_dev->stats.rx_dropped++;
1857				break;
1858			}
1859			sis_priv->rx_skbuff[entry] = skb;
1860			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1861			sis_priv->rx_ring[entry].bufptr =
1862				pci_map_single(sis_priv->pci_dev, skb->data,
1863					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1864			if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1865					sis_priv->rx_ring[entry].bufptr))) {
1866				dev_kfree_skb_irq(skb);
1867				sis_priv->rx_skbuff[entry] = NULL;
1868				break;
1869			}
1870		}
1871	}
1872	/* re-enable the potentially idle receive state matchine */
1873	sw32(cr , RxENA | sr32(cr));
1874
1875	return 0;
1876}
1877
1878/**
1879 *	sis900_finish_xmit - finish up transmission of packets
1880 *	@net_dev: the net device to be transmitted on
1881 *
1882 *	Check for error condition and free socket buffer etc
1883 *	schedule for more transmission as needed
1884 *	Note: This function is called by interrupt handler,
1885 *	don't do "too much" work here
1886 */
1887
1888static void sis900_finish_xmit (struct net_device *net_dev)
1889{
1890	struct sis900_private *sis_priv = netdev_priv(net_dev);
1891
1892	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1893		struct sk_buff *skb;
1894		unsigned int entry;
1895		u32 tx_status;
1896
1897		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1898		tx_status = sis_priv->tx_ring[entry].cmdsts;
1899
1900		if (tx_status & OWN) {
1901			/* The packet is not transmitted yet (owned by hardware) !
1902			 * Note: the interrupt is generated only when Tx Machine
1903			 * is idle, so this is an almost impossible case */
1904			break;
1905		}
1906
1907		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1908			/* packet unsuccessfully transmitted */
1909			if (netif_msg_tx_err(sis_priv))
1910				printk(KERN_DEBUG "%s: Transmit "
1911				       "error, Tx status %8.8x.\n",
1912				       net_dev->name, tx_status);
1913			net_dev->stats.tx_errors++;
1914			if (tx_status & UNDERRUN)
1915				net_dev->stats.tx_fifo_errors++;
1916			if (tx_status & ABORT)
1917				net_dev->stats.tx_aborted_errors++;
1918			if (tx_status & NOCARRIER)
1919				net_dev->stats.tx_carrier_errors++;
1920			if (tx_status & OWCOLL)
1921				net_dev->stats.tx_window_errors++;
1922		} else {
1923			/* packet successfully transmitted */
1924			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1925			net_dev->stats.tx_bytes += tx_status & DSIZE;
1926			net_dev->stats.tx_packets++;
1927		}
1928		/* Free the original skb. */
1929		skb = sis_priv->tx_skbuff[entry];
1930		pci_unmap_single(sis_priv->pci_dev,
1931			sis_priv->tx_ring[entry].bufptr, skb->len,
1932			PCI_DMA_TODEVICE);
1933		dev_kfree_skb_irq(skb);
1934		sis_priv->tx_skbuff[entry] = NULL;
1935		sis_priv->tx_ring[entry].bufptr = 0;
1936		sis_priv->tx_ring[entry].cmdsts = 0;
1937	}
1938
1939	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1940	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1941		/* The ring is no longer full, clear tx_full and schedule
1942		 * more transmission by netif_wake_queue(net_dev) */
1943		sis_priv->tx_full = 0;
1944		netif_wake_queue (net_dev);
1945	}
1946}
1947
1948/**
1949 *	sis900_close - close sis900 device
1950 *	@net_dev: the net device to be closed
1951 *
1952 *	Disable interrupts, stop the Tx and Rx Status Machine
1953 *	free Tx and RX socket buffer
1954 */
1955
1956static int sis900_close(struct net_device *net_dev)
1957{
1958	struct sis900_private *sis_priv = netdev_priv(net_dev);
1959	struct pci_dev *pdev = sis_priv->pci_dev;
1960	void __iomem *ioaddr = sis_priv->ioaddr;
1961	struct sk_buff *skb;
1962	int i;
1963
1964	netif_stop_queue(net_dev);
1965
1966	/* Disable interrupts by clearing the interrupt mask. */
1967	sw32(imr, 0x0000);
1968	sw32(ier, 0x0000);
1969
1970	/* Stop the chip's Tx and Rx Status Machine */
1971	sw32(cr, RxDIS | TxDIS | sr32(cr));
1972
1973	del_timer(&sis_priv->timer);
1974
1975	free_irq(pdev->irq, net_dev);
1976
1977	/* Free Tx and RX skbuff */
1978	for (i = 0; i < NUM_RX_DESC; i++) {
1979		skb = sis_priv->rx_skbuff[i];
1980		if (skb) {
1981			pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1982					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1983			dev_kfree_skb(skb);
1984			sis_priv->rx_skbuff[i] = NULL;
1985		}
1986	}
1987	for (i = 0; i < NUM_TX_DESC; i++) {
1988		skb = sis_priv->tx_skbuff[i];
1989		if (skb) {
1990			pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
1991					 skb->len, PCI_DMA_TODEVICE);
1992			dev_kfree_skb(skb);
1993			sis_priv->tx_skbuff[i] = NULL;
1994		}
1995	}
1996
1997	/* Green! Put the chip in low-power mode. */
1998
1999	return 0;
2000}
2001
2002/**
2003 *	sis900_get_drvinfo - Return information about driver
2004 *	@net_dev: the net device to probe
2005 *	@info: container for info returned
2006 *
2007 *	Process ethtool command such as "ehtool -i" to show information
2008 */
2009
2010static void sis900_get_drvinfo(struct net_device *net_dev,
2011			       struct ethtool_drvinfo *info)
2012{
2013	struct sis900_private *sis_priv = netdev_priv(net_dev);
2014
2015	strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2016	strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2017	strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2018		sizeof(info->bus_info));
2019}
2020
2021static u32 sis900_get_msglevel(struct net_device *net_dev)
2022{
2023	struct sis900_private *sis_priv = netdev_priv(net_dev);
2024	return sis_priv->msg_enable;
2025}
2026
2027static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2028{
2029	struct sis900_private *sis_priv = netdev_priv(net_dev);
2030	sis_priv->msg_enable = value;
2031}
2032
2033static u32 sis900_get_link(struct net_device *net_dev)
2034{
2035	struct sis900_private *sis_priv = netdev_priv(net_dev);
2036	return mii_link_ok(&sis_priv->mii_info);
2037}
2038
2039static int sis900_get_settings(struct net_device *net_dev,
2040				struct ethtool_cmd *cmd)
2041{
2042	struct sis900_private *sis_priv = netdev_priv(net_dev);
2043	spin_lock_irq(&sis_priv->lock);
2044	mii_ethtool_gset(&sis_priv->mii_info, cmd);
2045	spin_unlock_irq(&sis_priv->lock);
2046	return 0;
2047}
2048
2049static int sis900_set_settings(struct net_device *net_dev,
2050				struct ethtool_cmd *cmd)
2051{
2052	struct sis900_private *sis_priv = netdev_priv(net_dev);
2053	int rt;
2054	spin_lock_irq(&sis_priv->lock);
2055	rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2056	spin_unlock_irq(&sis_priv->lock);
2057	return rt;
2058}
2059
2060static int sis900_nway_reset(struct net_device *net_dev)
2061{
2062	struct sis900_private *sis_priv = netdev_priv(net_dev);
2063	return mii_nway_restart(&sis_priv->mii_info);
2064}
2065
2066/**
2067 *	sis900_set_wol - Set up Wake on Lan registers
2068 *	@net_dev: the net device to probe
2069 *	@wol: container for info passed to the driver
2070 *
2071 *	Process ethtool command "wol" to setup wake on lan features.
2072 *	SiS900 supports sending WoL events if a correct packet is received,
2073 *	but there is no simple way to filter them to only a subset (broadcast,
2074 *	multicast, unicast or arp).
2075 */
2076
2077static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2078{
2079	struct sis900_private *sis_priv = netdev_priv(net_dev);
2080	void __iomem *ioaddr = sis_priv->ioaddr;
2081	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2082
2083	if (wol->wolopts == 0) {
2084		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2085		cfgpmcsr &= ~PME_EN;
2086		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2087		sw32(pmctrl, pmctrl_bits);
2088		if (netif_msg_wol(sis_priv))
2089			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2090		return 0;
2091	}
2092
2093	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2094				| WAKE_BCAST | WAKE_ARP))
2095		return -EINVAL;
2096
2097	if (wol->wolopts & WAKE_MAGIC)
2098		pmctrl_bits |= MAGICPKT;
2099	if (wol->wolopts & WAKE_PHY)
2100		pmctrl_bits |= LINKON;
2101
2102	sw32(pmctrl, pmctrl_bits);
2103
2104	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2105	cfgpmcsr |= PME_EN;
2106	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2107	if (netif_msg_wol(sis_priv))
2108		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2109
2110	return 0;
2111}
2112
2113static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2114{
2115	struct sis900_private *sp = netdev_priv(net_dev);
2116	void __iomem *ioaddr = sp->ioaddr;
2117	u32 pmctrl_bits;
2118
2119	pmctrl_bits = sr32(pmctrl);
2120	if (pmctrl_bits & MAGICPKT)
2121		wol->wolopts |= WAKE_MAGIC;
2122	if (pmctrl_bits & LINKON)
2123		wol->wolopts |= WAKE_PHY;
2124
2125	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2126}
2127
2128static const struct ethtool_ops sis900_ethtool_ops = {
2129	.get_drvinfo 	= sis900_get_drvinfo,
2130	.get_msglevel	= sis900_get_msglevel,
2131	.set_msglevel	= sis900_set_msglevel,
2132	.get_link	= sis900_get_link,
2133	.get_settings	= sis900_get_settings,
2134	.set_settings	= sis900_set_settings,
2135	.nway_reset	= sis900_nway_reset,
2136	.get_wol	= sis900_get_wol,
2137	.set_wol	= sis900_set_wol
2138};
2139
2140/**
2141 *	mii_ioctl - process MII i/o control command
2142 *	@net_dev: the net device to command for
2143 *	@rq: parameter for command
2144 *	@cmd: the i/o command
2145 *
2146 *	Process MII command like read/write MII register
2147 */
2148
2149static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2150{
2151	struct sis900_private *sis_priv = netdev_priv(net_dev);
2152	struct mii_ioctl_data *data = if_mii(rq);
2153
2154	switch(cmd) {
2155	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2156		data->phy_id = sis_priv->mii->phy_addr;
2157		/* Fall Through */
2158
2159	case SIOCGMIIREG:		/* Read MII PHY register. */
2160		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2161		return 0;
2162
2163	case SIOCSMIIREG:		/* Write MII PHY register. */
2164		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2165		return 0;
2166	default:
2167		return -EOPNOTSUPP;
2168	}
2169}
2170
2171/**
2172 *	sis900_set_config - Set media type by net_device.set_config
2173 *	@dev: the net device for media type change
2174 *	@map: ifmap passed by ifconfig
2175 *
2176 *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2177 *	we support only port changes. All other runtime configuration
2178 *	changes will be ignored
2179 */
2180
2181static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2182{
2183	struct sis900_private *sis_priv = netdev_priv(dev);
2184	struct mii_phy *mii_phy = sis_priv->mii;
2185
2186	u16 status;
2187
2188	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2189		/* we switch on the ifmap->port field. I couldn't find anything
2190		 * like a definition or standard for the values of that field.
2191		 * I think the meaning of those values is device specific. But
2192		 * since I would like to change the media type via the ifconfig
2193		 * command I use the definition from linux/netdevice.h
2194		 * (which seems to be different from the ifport(pcmcia) definition) */
2195		switch(map->port){
2196		case IF_PORT_UNKNOWN: /* use auto here */
2197			dev->if_port = map->port;
2198			/* we are going to change the media type, so the Link
2199			 * will be temporary down and we need to reflect that
2200			 * here. When the Link comes up again, it will be
2201			 * sensed by the sis_timer procedure, which also does
2202			 * all the rest for us */
2203			netif_carrier_off(dev);
2204
2205			/* read current state */
2206			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2207
2208			/* enable auto negotiation and reset the negotioation
2209			 * (I don't really know what the auto negatiotiation
2210			 * reset really means, but it sounds for me right to
2211			 * do one here) */
2212			mdio_write(dev, mii_phy->phy_addr,
2213				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2214
2215			break;
2216
2217		case IF_PORT_10BASET: /* 10BaseT */
2218			dev->if_port = map->port;
2219
2220			/* we are going to change the media type, so the Link
2221			 * will be temporary down and we need to reflect that
2222			 * here. When the Link comes up again, it will be
2223			 * sensed by the sis_timer procedure, which also does
2224			 * all the rest for us */
2225			netif_carrier_off(dev);
2226
2227			/* set Speed to 10Mbps */
2228			/* read current state */
2229			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2230
2231			/* disable auto negotiation and force 10MBit mode*/
2232			mdio_write(dev, mii_phy->phy_addr,
2233				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2234					MII_CNTL_AUTO));
2235			break;
2236
2237		case IF_PORT_100BASET: /* 100BaseT */
2238		case IF_PORT_100BASETX: /* 100BaseTx */
2239			dev->if_port = map->port;
2240
2241			/* we are going to change the media type, so the Link
2242			 * will be temporary down and we need to reflect that
2243			 * here. When the Link comes up again, it will be
2244			 * sensed by the sis_timer procedure, which also does
2245			 * all the rest for us */
2246			netif_carrier_off(dev);
2247
2248			/* set Speed to 100Mbps */
2249			/* disable auto negotiation and enable 100MBit Mode */
2250			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2251			mdio_write(dev, mii_phy->phy_addr,
2252				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2253				   MII_CNTL_SPEED);
2254
2255			break;
2256
2257		case IF_PORT_10BASE2: /* 10Base2 */
2258		case IF_PORT_AUI: /* AUI */
2259		case IF_PORT_100BASEFX: /* 100BaseFx */
2260                	/* These Modes are not supported (are they?)*/
2261			return -EOPNOTSUPP;
2262
2263		default:
2264			return -EINVAL;
2265		}
2266	}
2267	return 0;
2268}
2269
2270/**
2271 *	sis900_mcast_bitnr - compute hashtable index
2272 *	@addr: multicast address
2273 *	@revision: revision id of chip
2274 *
2275 *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2276 *	hash table, which makes this function a little bit different from other drivers
2277 *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2278 *   	multicast hash table.
2279 */
2280
2281static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2282{
2283
2284	u32 crc = ether_crc(6, addr);
2285
2286	/* leave 8 or 7 most siginifant bits */
2287	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2288		return (int)(crc >> 24);
2289	else
2290		return (int)(crc >> 25);
2291}
2292
2293/**
2294 *	set_rx_mode - Set SiS900 receive mode
2295 *	@net_dev: the net device to be set
2296 *
2297 *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2298 *	And set the appropriate multicast filter.
2299 *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2300 */
2301
2302static void set_rx_mode(struct net_device *net_dev)
2303{
2304	struct sis900_private *sis_priv = netdev_priv(net_dev);
2305	void __iomem *ioaddr = sis_priv->ioaddr;
2306	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2307	int i, table_entries;
2308	u32 rx_mode;
2309
2310	/* 635 Hash Table entries = 256(2^16) */
2311	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2312			(sis_priv->chipset_rev == SIS900B_900_REV))
2313		table_entries = 16;
2314	else
2315		table_entries = 8;
2316
2317	if (net_dev->flags & IFF_PROMISC) {
2318		/* Accept any kinds of packets */
2319		rx_mode = RFPromiscuous;
2320		for (i = 0; i < table_entries; i++)
2321			mc_filter[i] = 0xffff;
2322	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2323		   (net_dev->flags & IFF_ALLMULTI)) {
2324		/* too many multicast addresses or accept all multicast packet */
2325		rx_mode = RFAAB | RFAAM;
2326		for (i = 0; i < table_entries; i++)
2327			mc_filter[i] = 0xffff;
2328	} else {
2329		/* Accept Broadcast packet, destination address matchs our
2330		 * MAC address, use Receive Filter to reject unwanted MCAST
2331		 * packets */
2332		struct netdev_hw_addr *ha;
2333		rx_mode = RFAAB;
2334
2335		netdev_for_each_mc_addr(ha, net_dev) {
2336			unsigned int bit_nr;
2337
2338			bit_nr = sis900_mcast_bitnr(ha->addr,
2339						    sis_priv->chipset_rev);
2340			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2341		}
2342	}
2343
2344	/* update Multicast Hash Table in Receive Filter */
2345	for (i = 0; i < table_entries; i++) {
2346                /* why plus 0x04 ??, That makes the correct value for hash table. */
2347		sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2348		sw32(rfdr, mc_filter[i]);
2349	}
2350
2351	sw32(rfcr, RFEN | rx_mode);
2352
2353	/* sis900 is capable of looping back packets at MAC level for
2354	 * debugging purpose */
2355	if (net_dev->flags & IFF_LOOPBACK) {
2356		u32 cr_saved;
2357		/* We must disable Tx/Rx before setting loopback mode */
2358		cr_saved = sr32(cr);
2359		sw32(cr, cr_saved | TxDIS | RxDIS);
2360		/* enable loopback */
2361		sw32(txcfg, sr32(txcfg) | TxMLB);
2362		sw32(rxcfg, sr32(rxcfg) | RxATX);
2363		/* restore cr */
2364		sw32(cr, cr_saved);
2365	}
2366}
2367
2368/**
2369 *	sis900_reset - Reset sis900 MAC
2370 *	@net_dev: the net device to reset
2371 *
2372 *	reset sis900 MAC and wait until finished
2373 *	reset through command register
2374 *	change backoff algorithm for 900B0 & 635 M/B
2375 */
2376
2377static void sis900_reset(struct net_device *net_dev)
2378{
2379	struct sis900_private *sis_priv = netdev_priv(net_dev);
2380	void __iomem *ioaddr = sis_priv->ioaddr;
2381	u32 status = TxRCMP | RxRCMP;
2382	int i;
2383
2384	sw32(ier, 0);
2385	sw32(imr, 0);
2386	sw32(rfcr, 0);
2387
2388	sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2389
2390	/* Check that the chip has finished the reset. */
2391	for (i = 0; status && (i < 1000); i++)
2392		status ^= sr32(isr) & status;
2393
2394	if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2395	    sis_priv->chipset_rev == SIS900B_900_REV)
2396		sw32(cfg, PESEL | RND_CNT);
2397	else
2398		sw32(cfg, PESEL);
2399}
2400
2401/**
2402 *	sis900_remove - Remove sis900 device
2403 *	@pci_dev: the pci device to be removed
2404 *
2405 *	remove and release SiS900 net device
2406 */
2407
2408static void sis900_remove(struct pci_dev *pci_dev)
2409{
2410	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2411	struct sis900_private *sis_priv = netdev_priv(net_dev);
2412
2413	unregister_netdev(net_dev);
2414
2415	while (sis_priv->first_mii) {
2416		struct mii_phy *phy = sis_priv->first_mii;
2417
2418		sis_priv->first_mii = phy->next;
2419		kfree(phy);
2420	}
2421
2422	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2423		sis_priv->rx_ring_dma);
2424	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2425		sis_priv->tx_ring_dma);
2426	pci_iounmap(pci_dev, sis_priv->ioaddr);
2427	free_netdev(net_dev);
2428	pci_release_regions(pci_dev);
2429}
2430
2431#ifdef CONFIG_PM
2432
2433static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2434{
2435	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2436	struct sis900_private *sis_priv = netdev_priv(net_dev);
2437	void __iomem *ioaddr = sis_priv->ioaddr;
2438
2439	if(!netif_running(net_dev))
2440		return 0;
2441
2442	netif_stop_queue(net_dev);
2443	netif_device_detach(net_dev);
2444
2445	/* Stop the chip's Tx and Rx Status Machine */
2446	sw32(cr, RxDIS | TxDIS | sr32(cr));
2447
2448	pci_set_power_state(pci_dev, PCI_D3hot);
2449	pci_save_state(pci_dev);
2450
2451	return 0;
2452}
2453
2454static int sis900_resume(struct pci_dev *pci_dev)
2455{
2456	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2457	struct sis900_private *sis_priv = netdev_priv(net_dev);
2458	void __iomem *ioaddr = sis_priv->ioaddr;
2459
2460	if(!netif_running(net_dev))
2461		return 0;
2462	pci_restore_state(pci_dev);
2463	pci_set_power_state(pci_dev, PCI_D0);
2464
2465	sis900_init_rxfilter(net_dev);
2466
2467	sis900_init_tx_ring(net_dev);
2468	sis900_init_rx_ring(net_dev);
2469
2470	set_rx_mode(net_dev);
2471
2472	netif_device_attach(net_dev);
2473	netif_start_queue(net_dev);
2474
2475	/* Workaround for EDB */
2476	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2477
2478	/* Enable all known interrupts by setting the interrupt mask. */
2479	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
2480	sw32(cr, RxENA | sr32(cr));
2481	sw32(ier, IE);
2482
2483	sis900_check_mode(net_dev, sis_priv->mii);
2484
2485	return 0;
2486}
2487#endif /* CONFIG_PM */
2488
2489static struct pci_driver sis900_pci_driver = {
2490	.name		= SIS900_MODULE_NAME,
2491	.id_table	= sis900_pci_tbl,
2492	.probe		= sis900_probe,
2493	.remove		= sis900_remove,
2494#ifdef CONFIG_PM
2495	.suspend	= sis900_suspend,
2496	.resume		= sis900_resume,
2497#endif /* CONFIG_PM */
2498};
2499
2500static int __init sis900_init_module(void)
2501{
2502/* when a module, this is printed whether or not devices are found in probe */
2503#ifdef MODULE
2504	printk(version);
2505#endif
2506
2507	return pci_register_driver(&sis900_pci_driver);
2508}
2509
2510static void __exit sis900_cleanup_module(void)
2511{
2512	pci_unregister_driver(&sis900_pci_driver);
2513}
2514
2515module_init(sis900_init_module);
2516module_exit(sis900_cleanup_module);
2517
2518