[go: nahoru, domu]

1/*
2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3 *
4 * Based on skelton.c by Donald Becker.
5 *
6 * This driver is a replacement of older and less maintained version.
7 * This is a header of the older version:
8 *	-----<snip>-----
9 *	Copyright 2001 MontaVista Software Inc.
10 *	Author: MontaVista Software, Inc.
11 *		ahennessy@mvista.com
12 *	Copyright (C) 2000-2001 Toshiba Corporation
13 *	static const char *version =
14 *		"tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15 *	-----<snip>-----
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License.  See the file "COPYING" in the main directory of this archive
19 * for more details.
20 *
21 * (C) Copyright TOSHIBA CORPORATION 2004-2005
22 * All Rights Reserved.
23 */
24
25#define DRV_VERSION	"1.39"
26static const char *version = "tc35815.c:v" DRV_VERSION "\n";
27#define MODNAME			"tc35815"
28
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/fcntl.h>
33#include <linux/interrupt.h>
34#include <linux/ioport.h>
35#include <linux/in.h>
36#include <linux/if_vlan.h>
37#include <linux/slab.h>
38#include <linux/string.h>
39#include <linux/spinlock.h>
40#include <linux/errno.h>
41#include <linux/netdevice.h>
42#include <linux/etherdevice.h>
43#include <linux/skbuff.h>
44#include <linux/delay.h>
45#include <linux/pci.h>
46#include <linux/phy.h>
47#include <linux/workqueue.h>
48#include <linux/platform_device.h>
49#include <linux/prefetch.h>
50#include <asm/io.h>
51#include <asm/byteorder.h>
52
53enum tc35815_chiptype {
54	TC35815CF = 0,
55	TC35815_NWU,
56	TC35815_TX4939,
57};
58
59/* indexed by tc35815_chiptype, above */
60static const struct {
61	const char *name;
62} chip_info[] = {
63	{ "TOSHIBA TC35815CF 10/100BaseTX" },
64	{ "TOSHIBA TC35815 with Wake on LAN" },
65	{ "TOSHIBA TC35815/TX4939" },
66};
67
68static const struct pci_device_id tc35815_pci_tbl[] = {
69	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72	{0,}
73};
74MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75
76/* see MODULE_PARM_DESC */
77static struct tc35815_options {
78	int speed;
79	int duplex;
80} options;
81
82/*
83 * Registers
84 */
85struct tc35815_regs {
86	__u32 DMA_Ctl;		/* 0x00 */
87	__u32 TxFrmPtr;
88	__u32 TxThrsh;
89	__u32 TxPollCtr;
90	__u32 BLFrmPtr;
91	__u32 RxFragSize;
92	__u32 Int_En;
93	__u32 FDA_Bas;
94	__u32 FDA_Lim;		/* 0x20 */
95	__u32 Int_Src;
96	__u32 unused0[2];
97	__u32 PauseCnt;
98	__u32 RemPauCnt;
99	__u32 TxCtlFrmStat;
100	__u32 unused1;
101	__u32 MAC_Ctl;		/* 0x40 */
102	__u32 CAM_Ctl;
103	__u32 Tx_Ctl;
104	__u32 Tx_Stat;
105	__u32 Rx_Ctl;
106	__u32 Rx_Stat;
107	__u32 MD_Data;
108	__u32 MD_CA;
109	__u32 CAM_Adr;		/* 0x60 */
110	__u32 CAM_Data;
111	__u32 CAM_Ena;
112	__u32 PROM_Ctl;
113	__u32 PROM_Data;
114	__u32 Algn_Cnt;
115	__u32 CRC_Cnt;
116	__u32 Miss_Cnt;
117};
118
119/*
120 * Bit assignments
121 */
122/* DMA_Ctl bit assign ------------------------------------------------------- */
123#define DMA_RxAlign	       0x00c00000 /* 1:Reception Alignment	     */
124#define DMA_RxAlign_1	       0x00400000
125#define DMA_RxAlign_2	       0x00800000
126#define DMA_RxAlign_3	       0x00c00000
127#define DMA_M66EnStat	       0x00080000 /* 1:66MHz Enable State	     */
128#define DMA_IntMask	       0x00040000 /* 1:Interrupt mask		     */
129#define DMA_SWIntReq	       0x00020000 /* 1:Software Interrupt request    */
130#define DMA_TxWakeUp	       0x00010000 /* 1:Transmit Wake Up		     */
131#define DMA_RxBigE	       0x00008000 /* 1:Receive Big Endian	     */
132#define DMA_TxBigE	       0x00004000 /* 1:Transmit Big Endian	     */
133#define DMA_TestMode	       0x00002000 /* 1:Test Mode		     */
134#define DMA_PowrMgmnt	       0x00001000 /* 1:Power Management		     */
135#define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size		     */
136
137/* RxFragSize bit assign ---------------------------------------------------- */
138#define RxFrag_EnPack	       0x00008000 /* 1:Enable Packing		     */
139#define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment		     */
140
141/* MAC_Ctl bit assign ------------------------------------------------------- */
142#define MAC_Link10	       0x00008000 /* 1:Link Status 10Mbits	     */
143#define MAC_EnMissRoll	       0x00002000 /* 1:Enable Missed Roll	     */
144#define MAC_MissRoll	       0x00000400 /* 1:Missed Roll		     */
145#define MAC_Loop10	       0x00000080 /* 1:Loop 10 Mbps		     */
146#define MAC_Conn_Auto	       0x00000000 /*00:Connection mode (Automatic)   */
147#define MAC_Conn_10M	       0x00000020 /*01:		       (10Mbps endec)*/
148#define MAC_Conn_Mll	       0x00000040 /*10:		       (Mll clock)   */
149#define MAC_MacLoop	       0x00000010 /* 1:MAC Loopback		     */
150#define MAC_FullDup	       0x00000008 /* 1:Full Duplex 0:Half Duplex     */
151#define MAC_Reset	       0x00000004 /* 1:Software Reset		     */
152#define MAC_HaltImm	       0x00000002 /* 1:Halt Immediate		     */
153#define MAC_HaltReq	       0x00000001 /* 1:Halt request		     */
154
155/* PROM_Ctl bit assign ------------------------------------------------------ */
156#define PROM_Busy	       0x00008000 /* 1:Busy (Start Operation)	     */
157#define PROM_Read	       0x00004000 /*10:Read operation		     */
158#define PROM_Write	       0x00002000 /*01:Write operation		     */
159#define PROM_Erase	       0x00006000 /*11:Erase operation		     */
160					  /*00:Enable or Disable Writting,   */
161					  /*	  as specified in PROM_Addr. */
162#define PROM_Addr_Ena	       0x00000030 /*11xxxx:PROM Write enable	     */
163					  /*00xxxx:	      disable	     */
164
165/* CAM_Ctl bit assign ------------------------------------------------------- */
166#define CAM_CompEn	       0x00000010 /* 1:CAM Compare Enable	     */
167#define CAM_NegCAM	       0x00000008 /* 1:Reject packets CAM recognizes,*/
168					  /*			accept other */
169#define CAM_BroadAcc	       0x00000004 /* 1:Broadcast assept		     */
170#define CAM_GroupAcc	       0x00000002 /* 1:Multicast assept		     */
171#define CAM_StationAcc	       0x00000001 /* 1:unicast accept		     */
172
173/* CAM_Ena bit assign ------------------------------------------------------- */
174#define CAM_ENTRY_MAX		       21   /* CAM Data entry max count	     */
175#define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
176#define CAM_Ena_Bit(index)	(1 << (index))
177#define CAM_ENTRY_DESTINATION	0
178#define CAM_ENTRY_SOURCE	1
179#define CAM_ENTRY_MACCTL	20
180
181/* Tx_Ctl bit assign -------------------------------------------------------- */
182#define Tx_En		       0x00000001 /* 1:Transmit enable		     */
183#define Tx_TxHalt	       0x00000002 /* 1:Transmit Halt Request	     */
184#define Tx_NoPad	       0x00000004 /* 1:Suppress Padding		     */
185#define Tx_NoCRC	       0x00000008 /* 1:Suppress Padding		     */
186#define Tx_FBack	       0x00000010 /* 1:Fast Back-off		     */
187#define Tx_EnUnder	       0x00000100 /* 1:Enable Underrun		     */
188#define Tx_EnExDefer	       0x00000200 /* 1:Enable Excessive Deferral     */
189#define Tx_EnLCarr	       0x00000400 /* 1:Enable Lost Carrier	     */
190#define Tx_EnExColl	       0x00000800 /* 1:Enable Excessive Collision    */
191#define Tx_EnLateColl	       0x00001000 /* 1:Enable Late Collision	     */
192#define Tx_EnTxPar	       0x00002000 /* 1:Enable Transmit Parity	     */
193#define Tx_EnComp	       0x00004000 /* 1:Enable Completion	     */
194
195/* Tx_Stat bit assign ------------------------------------------------------- */
196#define Tx_TxColl_MASK	       0x0000000F /* Tx Collision Count		     */
197#define Tx_ExColl	       0x00000010 /* Excessive Collision	     */
198#define Tx_TXDefer	       0x00000020 /* Transmit Defered		     */
199#define Tx_Paused	       0x00000040 /* Transmit Paused		     */
200#define Tx_IntTx	       0x00000080 /* Interrupt on Tx		     */
201#define Tx_Under	       0x00000100 /* Underrun			     */
202#define Tx_Defer	       0x00000200 /* Deferral			     */
203#define Tx_NCarr	       0x00000400 /* No Carrier			     */
204#define Tx_10Stat	       0x00000800 /* 10Mbps Status		     */
205#define Tx_LateColl	       0x00001000 /* Late Collision		     */
206#define Tx_TxPar	       0x00002000 /* Tx Parity Error		     */
207#define Tx_Comp		       0x00004000 /* Completion			     */
208#define Tx_Halted	       0x00008000 /* Tx Halted			     */
209#define Tx_SQErr	       0x00010000 /* Signal Quality Error(SQE)	     */
210
211/* Rx_Ctl bit assign -------------------------------------------------------- */
212#define Rx_EnGood	       0x00004000 /* 1:Enable Good		     */
213#define Rx_EnRxPar	       0x00002000 /* 1:Enable Receive Parity	     */
214#define Rx_EnLongErr	       0x00000800 /* 1:Enable Long Error	     */
215#define Rx_EnOver	       0x00000400 /* 1:Enable OverFlow		     */
216#define Rx_EnCRCErr	       0x00000200 /* 1:Enable CRC Error		     */
217#define Rx_EnAlign	       0x00000100 /* 1:Enable Alignment		     */
218#define Rx_IgnoreCRC	       0x00000040 /* 1:Ignore CRC Value		     */
219#define Rx_StripCRC	       0x00000010 /* 1:Strip CRC Value		     */
220#define Rx_ShortEn	       0x00000008 /* 1:Short Enable		     */
221#define Rx_LongEn	       0x00000004 /* 1:Long Enable		     */
222#define Rx_RxHalt	       0x00000002 /* 1:Receive Halt Request	     */
223#define Rx_RxEn		       0x00000001 /* 1:Receive Intrrupt Enable	     */
224
225/* Rx_Stat bit assign ------------------------------------------------------- */
226#define Rx_Halted	       0x00008000 /* Rx Halted			     */
227#define Rx_Good		       0x00004000 /* Rx Good			     */
228#define Rx_RxPar	       0x00002000 /* Rx Parity Error		     */
229#define Rx_TypePkt	       0x00001000 /* Rx Type Packet		     */
230#define Rx_LongErr	       0x00000800 /* Rx Long Error		     */
231#define Rx_Over		       0x00000400 /* Rx Overflow		     */
232#define Rx_CRCErr	       0x00000200 /* Rx CRC Error		     */
233#define Rx_Align	       0x00000100 /* Rx Alignment Error		     */
234#define Rx_10Stat	       0x00000080 /* Rx 10Mbps Status		     */
235#define Rx_IntRx	       0x00000040 /* Rx Interrupt		     */
236#define Rx_CtlRecd	       0x00000020 /* Rx Control Receive		     */
237#define Rx_InLenErr	       0x00000010 /* Rx In Range Frame Length Error  */
238
239#define Rx_Stat_Mask	       0x0000FFF0 /* Rx All Status Mask		     */
240
241/* Int_En bit assign -------------------------------------------------------- */
242#define Int_NRAbtEn	       0x00000800 /* 1:Non-recoverable Abort Enable  */
243#define Int_TxCtlCmpEn	       0x00000400 /* 1:Transmit Ctl Complete Enable  */
244#define Int_DmParErrEn	       0x00000200 /* 1:DMA Parity Error Enable	     */
245#define Int_DParDEn	       0x00000100 /* 1:Data Parity Error Enable	     */
246#define Int_EarNotEn	       0x00000080 /* 1:Early Notify Enable	     */
247#define Int_DParErrEn	       0x00000040 /* 1:Detected Parity Error Enable  */
248#define Int_SSysErrEn	       0x00000020 /* 1:Signalled System Error Enable */
249#define Int_RMasAbtEn	       0x00000010 /* 1:Received Master Abort Enable  */
250#define Int_RTargAbtEn	       0x00000008 /* 1:Received Target Abort Enable  */
251#define Int_STargAbtEn	       0x00000004 /* 1:Signalled Target Abort Enable */
252#define Int_BLExEn	       0x00000002 /* 1:Buffer List Exhausted Enable  */
253#define Int_FDAExEn	       0x00000001 /* 1:Free Descriptor Area	     */
254					  /*		   Exhausted Enable  */
255
256/* Int_Src bit assign ------------------------------------------------------- */
257#define Int_NRabt	       0x00004000 /* 1:Non Recoverable error	     */
258#define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear	     */
259#define Int_BLEx	       0x00001000 /* 1:Buffer List Empty & Clear     */
260#define Int_FDAEx	       0x00000800 /* 1:FDA Empty & Clear	     */
261#define Int_IntNRAbt	       0x00000400 /* 1:Non Recoverable Abort	     */
262#define Int_IntCmp	       0x00000200 /* 1:MAC control packet complete   */
263#define Int_IntExBD	       0x00000100 /* 1:Interrupt Extra BD & Clear    */
264#define Int_DmParErr	       0x00000080 /* 1:DMA Parity Error & Clear	     */
265#define Int_IntEarNot	       0x00000040 /* 1:Receive Data write & Clear    */
266#define Int_SWInt	       0x00000020 /* 1:Software request & Clear	     */
267#define Int_IntBLEx	       0x00000010 /* 1:Buffer List Empty & Clear     */
268#define Int_IntFDAEx	       0x00000008 /* 1:FDA Empty & Clear	     */
269#define Int_IntPCI	       0x00000004 /* 1:PCI controller & Clear	     */
270#define Int_IntMacRx	       0x00000002 /* 1:Rx controller & Clear	     */
271#define Int_IntMacTx	       0x00000001 /* 1:Tx controller & Clear	     */
272
273/* MD_CA bit assign --------------------------------------------------------- */
274#define MD_CA_PreSup	       0x00001000 /* 1:Preamble Suppress		     */
275#define MD_CA_Busy	       0x00000800 /* 1:Busy (Start Operation)	     */
276#define MD_CA_Wr	       0x00000400 /* 1:Write 0:Read		     */
277
278
279/*
280 * Descriptors
281 */
282
283/* Frame descripter */
284struct FDesc {
285	volatile __u32 FDNext;
286	volatile __u32 FDSystem;
287	volatile __u32 FDStat;
288	volatile __u32 FDCtl;
289};
290
291/* Buffer descripter */
292struct BDesc {
293	volatile __u32 BuffData;
294	volatile __u32 BDCtl;
295};
296
297#define FD_ALIGN	16
298
299/* Frame Descripter bit assign ---------------------------------------------- */
300#define FD_FDLength_MASK       0x0000FFFF /* Length MASK		     */
301#define FD_BDCnt_MASK	       0x001F0000 /* BD count MASK in FD	     */
302#define FD_FrmOpt_MASK	       0x7C000000 /* Frame option MASK		     */
303#define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
304#define FD_FrmOpt_IntTx	       0x20000000 /* Tx only */
305#define FD_FrmOpt_NoCRC	       0x10000000 /* Tx only */
306#define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
307#define FD_FrmOpt_Packing      0x04000000 /* Rx only */
308#define FD_CownsFD	       0x80000000 /* FD Controller owner bit	     */
309#define FD_Next_EOL	       0x00000001 /* FD EOL indicator		     */
310#define FD_BDCnt_SHIFT	       16
311
312/* Buffer Descripter bit assign --------------------------------------------- */
313#define BD_BuffLength_MASK     0x0000FFFF /* Receive Data Size		     */
314#define BD_RxBDID_MASK	       0x00FF0000 /* BD ID Number MASK		     */
315#define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number	     */
316#define BD_CownsBD	       0x80000000 /* BD Controller owner bit	     */
317#define BD_RxBDID_SHIFT	       16
318#define BD_RxBDSeqN_SHIFT      24
319
320
321/* Some useful constants. */
322
323#define TX_CTL_CMD	(Tx_EnTxPar | Tx_EnLateColl | \
324	Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325	Tx_En)	/* maybe  0x7b01 */
326/* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327#define RX_CTL_CMD	(Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328	| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329#define INT_EN_CMD  (Int_NRAbtEn | \
330	Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331	Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
332	Int_STargAbtEn | \
333	Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
334#define DMA_CTL_CMD	DMA_BURST_SIZE
335#define HAVE_DMA_RXALIGN(lp)	likely((lp)->chiptype != TC35815CF)
336
337/* Tuning parameters */
338#define DMA_BURST_SIZE	32
339#define TX_THRESHOLD	1024
340/* used threshold with packet max byte for low pci transfer ability.*/
341#define TX_THRESHOLD_MAX 1536
342/* setting threshold max value when overrun error occurred this count. */
343#define TX_THRESHOLD_KEEP_LIMIT 10
344
345/* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346#define FD_PAGE_NUM 4
347#define RX_BUF_NUM	128	/* < 256 */
348#define RX_FD_NUM	256	/* >= 32 */
349#define TX_FD_NUM	128
350#if RX_CTL_CMD & Rx_LongEn
351#define RX_BUF_SIZE	PAGE_SIZE
352#elif RX_CTL_CMD & Rx_StripCRC
353#define RX_BUF_SIZE	\
354	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355#else
356#define RX_BUF_SIZE	\
357	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358#endif
359#define RX_FD_RESERVE	(2 / 2)	/* max 2 BD per RxFD */
360#define NAPI_WEIGHT	16
361
362struct TxFD {
363	struct FDesc fd;
364	struct BDesc bd;
365	struct BDesc unused;
366};
367
368struct RxFD {
369	struct FDesc fd;
370	struct BDesc bd[0];	/* variable length */
371};
372
373struct FrFD {
374	struct FDesc fd;
375	struct BDesc bd[RX_BUF_NUM];
376};
377
378
379#define tc_readl(addr)	ioread32(addr)
380#define tc_writel(d, addr)	iowrite32(d, addr)
381
382#define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
383
384/* Information that need to be kept for each controller. */
385struct tc35815_local {
386	struct pci_dev *pci_dev;
387
388	struct net_device *dev;
389	struct napi_struct napi;
390
391	/* statistics */
392	struct {
393		int max_tx_qlen;
394		int tx_ints;
395		int rx_ints;
396		int tx_underrun;
397	} lstats;
398
399	/* Tx control lock.  This protects the transmit buffer ring
400	 * state along with the "tx full" state of the driver.  This
401	 * means all netif_queue flow control actions are protected
402	 * by this lock as well.
403	 */
404	spinlock_t lock;
405	spinlock_t rx_lock;
406
407	struct mii_bus *mii_bus;
408	struct phy_device *phy_dev;
409	int duplex;
410	int speed;
411	int link;
412	struct work_struct restart_work;
413
414	/*
415	 * Transmitting: Batch Mode.
416	 *	1 BD in 1 TxFD.
417	 * Receiving: Non-Packing Mode.
418	 *	1 circular FD for Free Buffer List.
419	 *	RX_BUF_NUM BD in Free Buffer FD.
420	 *	One Free Buffer BD has ETH_FRAME_LEN data buffer.
421	 */
422	void *fd_buf;	/* for TxFD, RxFD, FrFD */
423	dma_addr_t fd_buf_dma;
424	struct TxFD *tfd_base;
425	unsigned int tfd_start;
426	unsigned int tfd_end;
427	struct RxFD *rfd_base;
428	struct RxFD *rfd_limit;
429	struct RxFD *rfd_cur;
430	struct FrFD *fbl_ptr;
431	unsigned int fbl_count;
432	struct {
433		struct sk_buff *skb;
434		dma_addr_t skb_dma;
435	} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
436	u32 msg_enable;
437	enum tc35815_chiptype chiptype;
438};
439
440static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
441{
442	return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
443}
444#ifdef DEBUG
445static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
446{
447	return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
448}
449#endif
450static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
451				       struct pci_dev *hwdev,
452				       dma_addr_t *dma_handle)
453{
454	struct sk_buff *skb;
455	skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
456	if (!skb)
457		return NULL;
458	*dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
459				     PCI_DMA_FROMDEVICE);
460	if (pci_dma_mapping_error(hwdev, *dma_handle)) {
461		dev_kfree_skb_any(skb);
462		return NULL;
463	}
464	skb_reserve(skb, 2);	/* make IP header 4byte aligned */
465	return skb;
466}
467
468static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
469{
470	pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
471			 PCI_DMA_FROMDEVICE);
472	dev_kfree_skb_any(skb);
473}
474
475/* Index to functions, as function prototypes. */
476
477static int	tc35815_open(struct net_device *dev);
478static int	tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
479static irqreturn_t	tc35815_interrupt(int irq, void *dev_id);
480static int	tc35815_rx(struct net_device *dev, int limit);
481static int	tc35815_poll(struct napi_struct *napi, int budget);
482static void	tc35815_txdone(struct net_device *dev);
483static int	tc35815_close(struct net_device *dev);
484static struct	net_device_stats *tc35815_get_stats(struct net_device *dev);
485static void	tc35815_set_multicast_list(struct net_device *dev);
486static void	tc35815_tx_timeout(struct net_device *dev);
487static int	tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
488#ifdef CONFIG_NET_POLL_CONTROLLER
489static void	tc35815_poll_controller(struct net_device *dev);
490#endif
491static const struct ethtool_ops tc35815_ethtool_ops;
492
493/* Example routines you must write ;->. */
494static void	tc35815_chip_reset(struct net_device *dev);
495static void	tc35815_chip_init(struct net_device *dev);
496
497#ifdef DEBUG
498static void	panic_queues(struct net_device *dev);
499#endif
500
501static void tc35815_restart_work(struct work_struct *work);
502
503static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
504{
505	struct net_device *dev = bus->priv;
506	struct tc35815_regs __iomem *tr =
507		(struct tc35815_regs __iomem *)dev->base_addr;
508	unsigned long timeout = jiffies + HZ;
509
510	tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
511	udelay(12); /* it takes 32 x 400ns at least */
512	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
513		if (time_after(jiffies, timeout))
514			return -EIO;
515		cpu_relax();
516	}
517	return tc_readl(&tr->MD_Data) & 0xffff;
518}
519
520static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
521{
522	struct net_device *dev = bus->priv;
523	struct tc35815_regs __iomem *tr =
524		(struct tc35815_regs __iomem *)dev->base_addr;
525	unsigned long timeout = jiffies + HZ;
526
527	tc_writel(val, &tr->MD_Data);
528	tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
529		  &tr->MD_CA);
530	udelay(12); /* it takes 32 x 400ns at least */
531	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
532		if (time_after(jiffies, timeout))
533			return -EIO;
534		cpu_relax();
535	}
536	return 0;
537}
538
539static void tc_handle_link_change(struct net_device *dev)
540{
541	struct tc35815_local *lp = netdev_priv(dev);
542	struct phy_device *phydev = lp->phy_dev;
543	unsigned long flags;
544	int status_change = 0;
545
546	spin_lock_irqsave(&lp->lock, flags);
547	if (phydev->link &&
548	    (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
549		struct tc35815_regs __iomem *tr =
550			(struct tc35815_regs __iomem *)dev->base_addr;
551		u32 reg;
552
553		reg = tc_readl(&tr->MAC_Ctl);
554		reg |= MAC_HaltReq;
555		tc_writel(reg, &tr->MAC_Ctl);
556		if (phydev->duplex == DUPLEX_FULL)
557			reg |= MAC_FullDup;
558		else
559			reg &= ~MAC_FullDup;
560		tc_writel(reg, &tr->MAC_Ctl);
561		reg &= ~MAC_HaltReq;
562		tc_writel(reg, &tr->MAC_Ctl);
563
564		/*
565		 * TX4939 PCFG.SPEEDn bit will be changed on
566		 * NETDEV_CHANGE event.
567		 */
568		/*
569		 * WORKAROUND: enable LostCrS only if half duplex
570		 * operation.
571		 * (TX4939 does not have EnLCarr)
572		 */
573		if (phydev->duplex == DUPLEX_HALF &&
574		    lp->chiptype != TC35815_TX4939)
575			tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
576				  &tr->Tx_Ctl);
577
578		lp->speed = phydev->speed;
579		lp->duplex = phydev->duplex;
580		status_change = 1;
581	}
582
583	if (phydev->link != lp->link) {
584		if (phydev->link) {
585			/* delayed promiscuous enabling */
586			if (dev->flags & IFF_PROMISC)
587				tc35815_set_multicast_list(dev);
588		} else {
589			lp->speed = 0;
590			lp->duplex = -1;
591		}
592		lp->link = phydev->link;
593
594		status_change = 1;
595	}
596	spin_unlock_irqrestore(&lp->lock, flags);
597
598	if (status_change && netif_msg_link(lp)) {
599		phy_print_status(phydev);
600		pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
601			 dev->name,
602			 phy_read(phydev, MII_BMCR),
603			 phy_read(phydev, MII_BMSR),
604			 phy_read(phydev, MII_LPA));
605	}
606}
607
608static int tc_mii_probe(struct net_device *dev)
609{
610	struct tc35815_local *lp = netdev_priv(dev);
611	struct phy_device *phydev = NULL;
612	int phy_addr;
613	u32 dropmask;
614
615	/* find the first phy */
616	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
617		if (lp->mii_bus->phy_map[phy_addr]) {
618			if (phydev) {
619				printk(KERN_ERR "%s: multiple PHYs found\n",
620				       dev->name);
621				return -EINVAL;
622			}
623			phydev = lp->mii_bus->phy_map[phy_addr];
624			break;
625		}
626	}
627
628	if (!phydev) {
629		printk(KERN_ERR "%s: no PHY found\n", dev->name);
630		return -ENODEV;
631	}
632
633	/* attach the mac to the phy */
634	phydev = phy_connect(dev, dev_name(&phydev->dev),
635			     &tc_handle_link_change,
636			     lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
637	if (IS_ERR(phydev)) {
638		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
639		return PTR_ERR(phydev);
640	}
641	printk(KERN_INFO "%s: attached PHY driver [%s] "
642		"(mii_bus:phy_addr=%s, id=%x)\n",
643		dev->name, phydev->drv->name, dev_name(&phydev->dev),
644		phydev->phy_id);
645
646	/* mask with MAC supported features */
647	phydev->supported &= PHY_BASIC_FEATURES;
648	dropmask = 0;
649	if (options.speed == 10)
650		dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
651	else if (options.speed == 100)
652		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
653	if (options.duplex == 1)
654		dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
655	else if (options.duplex == 2)
656		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
657	phydev->supported &= ~dropmask;
658	phydev->advertising = phydev->supported;
659
660	lp->link = 0;
661	lp->speed = 0;
662	lp->duplex = -1;
663	lp->phy_dev = phydev;
664
665	return 0;
666}
667
668static int tc_mii_init(struct net_device *dev)
669{
670	struct tc35815_local *lp = netdev_priv(dev);
671	int err;
672	int i;
673
674	lp->mii_bus = mdiobus_alloc();
675	if (lp->mii_bus == NULL) {
676		err = -ENOMEM;
677		goto err_out;
678	}
679
680	lp->mii_bus->name = "tc35815_mii_bus";
681	lp->mii_bus->read = tc_mdio_read;
682	lp->mii_bus->write = tc_mdio_write;
683	snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
684		 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
685	lp->mii_bus->priv = dev;
686	lp->mii_bus->parent = &lp->pci_dev->dev;
687	lp->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
688	if (!lp->mii_bus->irq) {
689		err = -ENOMEM;
690		goto err_out_free_mii_bus;
691	}
692
693	for (i = 0; i < PHY_MAX_ADDR; i++)
694		lp->mii_bus->irq[i] = PHY_POLL;
695
696	err = mdiobus_register(lp->mii_bus);
697	if (err)
698		goto err_out_free_mdio_irq;
699	err = tc_mii_probe(dev);
700	if (err)
701		goto err_out_unregister_bus;
702	return 0;
703
704err_out_unregister_bus:
705	mdiobus_unregister(lp->mii_bus);
706err_out_free_mdio_irq:
707	kfree(lp->mii_bus->irq);
708err_out_free_mii_bus:
709	mdiobus_free(lp->mii_bus);
710err_out:
711	return err;
712}
713
714#ifdef CONFIG_CPU_TX49XX
715/*
716 * Find a platform_device providing a MAC address.  The platform code
717 * should provide a "tc35815-mac" device with a MAC address in its
718 * platform_data.
719 */
720static int tc35815_mac_match(struct device *dev, void *data)
721{
722	struct platform_device *plat_dev = to_platform_device(dev);
723	struct pci_dev *pci_dev = data;
724	unsigned int id = pci_dev->irq;
725	return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
726}
727
728static int tc35815_read_plat_dev_addr(struct net_device *dev)
729{
730	struct tc35815_local *lp = netdev_priv(dev);
731	struct device *pd = bus_find_device(&platform_bus_type, NULL,
732					    lp->pci_dev, tc35815_mac_match);
733	if (pd) {
734		if (pd->platform_data)
735			memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
736		put_device(pd);
737		return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
738	}
739	return -ENODEV;
740}
741#else
742static int tc35815_read_plat_dev_addr(struct net_device *dev)
743{
744	return -ENODEV;
745}
746#endif
747
748static int tc35815_init_dev_addr(struct net_device *dev)
749{
750	struct tc35815_regs __iomem *tr =
751		(struct tc35815_regs __iomem *)dev->base_addr;
752	int i;
753
754	while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
755		;
756	for (i = 0; i < 6; i += 2) {
757		unsigned short data;
758		tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
759		while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
760			;
761		data = tc_readl(&tr->PROM_Data);
762		dev->dev_addr[i] = data & 0xff;
763		dev->dev_addr[i+1] = data >> 8;
764	}
765	if (!is_valid_ether_addr(dev->dev_addr))
766		return tc35815_read_plat_dev_addr(dev);
767	return 0;
768}
769
770static const struct net_device_ops tc35815_netdev_ops = {
771	.ndo_open		= tc35815_open,
772	.ndo_stop		= tc35815_close,
773	.ndo_start_xmit		= tc35815_send_packet,
774	.ndo_get_stats		= tc35815_get_stats,
775	.ndo_set_rx_mode	= tc35815_set_multicast_list,
776	.ndo_tx_timeout		= tc35815_tx_timeout,
777	.ndo_do_ioctl		= tc35815_ioctl,
778	.ndo_validate_addr	= eth_validate_addr,
779	.ndo_change_mtu		= eth_change_mtu,
780	.ndo_set_mac_address	= eth_mac_addr,
781#ifdef CONFIG_NET_POLL_CONTROLLER
782	.ndo_poll_controller	= tc35815_poll_controller,
783#endif
784};
785
786static int tc35815_init_one(struct pci_dev *pdev,
787			    const struct pci_device_id *ent)
788{
789	void __iomem *ioaddr = NULL;
790	struct net_device *dev;
791	struct tc35815_local *lp;
792	int rc;
793
794	static int printed_version;
795	if (!printed_version++) {
796		printk(version);
797		dev_printk(KERN_DEBUG, &pdev->dev,
798			   "speed:%d duplex:%d\n",
799			   options.speed, options.duplex);
800	}
801
802	if (!pdev->irq) {
803		dev_warn(&pdev->dev, "no IRQ assigned.\n");
804		return -ENODEV;
805	}
806
807	/* dev zeroed in alloc_etherdev */
808	dev = alloc_etherdev(sizeof(*lp));
809	if (dev == NULL)
810		return -ENOMEM;
811
812	SET_NETDEV_DEV(dev, &pdev->dev);
813	lp = netdev_priv(dev);
814	lp->dev = dev;
815
816	/* enable device (incl. PCI PM wakeup), and bus-mastering */
817	rc = pcim_enable_device(pdev);
818	if (rc)
819		goto err_out;
820	rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
821	if (rc)
822		goto err_out;
823	pci_set_master(pdev);
824	ioaddr = pcim_iomap_table(pdev)[1];
825
826	/* Initialize the device structure. */
827	dev->netdev_ops = &tc35815_netdev_ops;
828	dev->ethtool_ops = &tc35815_ethtool_ops;
829	dev->watchdog_timeo = TC35815_TX_TIMEOUT;
830	netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
831
832	dev->irq = pdev->irq;
833	dev->base_addr = (unsigned long)ioaddr;
834
835	INIT_WORK(&lp->restart_work, tc35815_restart_work);
836	spin_lock_init(&lp->lock);
837	spin_lock_init(&lp->rx_lock);
838	lp->pci_dev = pdev;
839	lp->chiptype = ent->driver_data;
840
841	lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
842	pci_set_drvdata(pdev, dev);
843
844	/* Soft reset the chip. */
845	tc35815_chip_reset(dev);
846
847	/* Retrieve the ethernet address. */
848	if (tc35815_init_dev_addr(dev)) {
849		dev_warn(&pdev->dev, "not valid ether addr\n");
850		eth_hw_addr_random(dev);
851	}
852
853	rc = register_netdev(dev);
854	if (rc)
855		goto err_out;
856
857	printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
858		dev->name,
859		chip_info[ent->driver_data].name,
860		dev->base_addr,
861		dev->dev_addr,
862		dev->irq);
863
864	rc = tc_mii_init(dev);
865	if (rc)
866		goto err_out_unregister;
867
868	return 0;
869
870err_out_unregister:
871	unregister_netdev(dev);
872err_out:
873	free_netdev(dev);
874	return rc;
875}
876
877
878static void tc35815_remove_one(struct pci_dev *pdev)
879{
880	struct net_device *dev = pci_get_drvdata(pdev);
881	struct tc35815_local *lp = netdev_priv(dev);
882
883	phy_disconnect(lp->phy_dev);
884	mdiobus_unregister(lp->mii_bus);
885	kfree(lp->mii_bus->irq);
886	mdiobus_free(lp->mii_bus);
887	unregister_netdev(dev);
888	free_netdev(dev);
889}
890
891static int
892tc35815_init_queues(struct net_device *dev)
893{
894	struct tc35815_local *lp = netdev_priv(dev);
895	int i;
896	unsigned long fd_addr;
897
898	if (!lp->fd_buf) {
899		BUG_ON(sizeof(struct FDesc) +
900		       sizeof(struct BDesc) * RX_BUF_NUM +
901		       sizeof(struct FDesc) * RX_FD_NUM +
902		       sizeof(struct TxFD) * TX_FD_NUM >
903		       PAGE_SIZE * FD_PAGE_NUM);
904
905		lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
906						  PAGE_SIZE * FD_PAGE_NUM,
907						  &lp->fd_buf_dma);
908		if (!lp->fd_buf)
909			return -ENOMEM;
910		for (i = 0; i < RX_BUF_NUM; i++) {
911			lp->rx_skbs[i].skb =
912				alloc_rxbuf_skb(dev, lp->pci_dev,
913						&lp->rx_skbs[i].skb_dma);
914			if (!lp->rx_skbs[i].skb) {
915				while (--i >= 0) {
916					free_rxbuf_skb(lp->pci_dev,
917						       lp->rx_skbs[i].skb,
918						       lp->rx_skbs[i].skb_dma);
919					lp->rx_skbs[i].skb = NULL;
920				}
921				pci_free_consistent(lp->pci_dev,
922						    PAGE_SIZE * FD_PAGE_NUM,
923						    lp->fd_buf,
924						    lp->fd_buf_dma);
925				lp->fd_buf = NULL;
926				return -ENOMEM;
927			}
928		}
929		printk(KERN_DEBUG "%s: FD buf %p DataBuf",
930		       dev->name, lp->fd_buf);
931		printk("\n");
932	} else {
933		for (i = 0; i < FD_PAGE_NUM; i++)
934			clear_page((void *)((unsigned long)lp->fd_buf +
935					    i * PAGE_SIZE));
936	}
937	fd_addr = (unsigned long)lp->fd_buf;
938
939	/* Free Descriptors (for Receive) */
940	lp->rfd_base = (struct RxFD *)fd_addr;
941	fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
942	for (i = 0; i < RX_FD_NUM; i++)
943		lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
944	lp->rfd_cur = lp->rfd_base;
945	lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
946
947	/* Transmit Descriptors */
948	lp->tfd_base = (struct TxFD *)fd_addr;
949	fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
950	for (i = 0; i < TX_FD_NUM; i++) {
951		lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
952		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
953		lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
954	}
955	lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
956	lp->tfd_start = 0;
957	lp->tfd_end = 0;
958
959	/* Buffer List (for Receive) */
960	lp->fbl_ptr = (struct FrFD *)fd_addr;
961	lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
962	lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
963	/*
964	 * move all allocated skbs to head of rx_skbs[] array.
965	 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
966	 * tc35815_rx() had failed.
967	 */
968	lp->fbl_count = 0;
969	for (i = 0; i < RX_BUF_NUM; i++) {
970		if (lp->rx_skbs[i].skb) {
971			if (i != lp->fbl_count) {
972				lp->rx_skbs[lp->fbl_count].skb =
973					lp->rx_skbs[i].skb;
974				lp->rx_skbs[lp->fbl_count].skb_dma =
975					lp->rx_skbs[i].skb_dma;
976			}
977			lp->fbl_count++;
978		}
979	}
980	for (i = 0; i < RX_BUF_NUM; i++) {
981		if (i >= lp->fbl_count) {
982			lp->fbl_ptr->bd[i].BuffData = 0;
983			lp->fbl_ptr->bd[i].BDCtl = 0;
984			continue;
985		}
986		lp->fbl_ptr->bd[i].BuffData =
987			cpu_to_le32(lp->rx_skbs[i].skb_dma);
988		/* BDID is index of FrFD.bd[] */
989		lp->fbl_ptr->bd[i].BDCtl =
990			cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
991				    RX_BUF_SIZE);
992	}
993
994	printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
995	       dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
996	return 0;
997}
998
999static void
1000tc35815_clear_queues(struct net_device *dev)
1001{
1002	struct tc35815_local *lp = netdev_priv(dev);
1003	int i;
1004
1005	for (i = 0; i < TX_FD_NUM; i++) {
1006		u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1007		struct sk_buff *skb =
1008			fdsystem != 0xffffffff ?
1009			lp->tx_skbs[fdsystem].skb : NULL;
1010#ifdef DEBUG
1011		if (lp->tx_skbs[i].skb != skb) {
1012			printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1013			panic_queues(dev);
1014		}
1015#else
1016		BUG_ON(lp->tx_skbs[i].skb != skb);
1017#endif
1018		if (skb) {
1019			pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1020			lp->tx_skbs[i].skb = NULL;
1021			lp->tx_skbs[i].skb_dma = 0;
1022			dev_kfree_skb_any(skb);
1023		}
1024		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1025	}
1026
1027	tc35815_init_queues(dev);
1028}
1029
1030static void
1031tc35815_free_queues(struct net_device *dev)
1032{
1033	struct tc35815_local *lp = netdev_priv(dev);
1034	int i;
1035
1036	if (lp->tfd_base) {
1037		for (i = 0; i < TX_FD_NUM; i++) {
1038			u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1039			struct sk_buff *skb =
1040				fdsystem != 0xffffffff ?
1041				lp->tx_skbs[fdsystem].skb : NULL;
1042#ifdef DEBUG
1043			if (lp->tx_skbs[i].skb != skb) {
1044				printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1045				panic_queues(dev);
1046			}
1047#else
1048			BUG_ON(lp->tx_skbs[i].skb != skb);
1049#endif
1050			if (skb) {
1051				dev_kfree_skb(skb);
1052				pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1053				lp->tx_skbs[i].skb = NULL;
1054				lp->tx_skbs[i].skb_dma = 0;
1055			}
1056			lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1057		}
1058	}
1059
1060	lp->rfd_base = NULL;
1061	lp->rfd_limit = NULL;
1062	lp->rfd_cur = NULL;
1063	lp->fbl_ptr = NULL;
1064
1065	for (i = 0; i < RX_BUF_NUM; i++) {
1066		if (lp->rx_skbs[i].skb) {
1067			free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1068				       lp->rx_skbs[i].skb_dma);
1069			lp->rx_skbs[i].skb = NULL;
1070		}
1071	}
1072	if (lp->fd_buf) {
1073		pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1074				    lp->fd_buf, lp->fd_buf_dma);
1075		lp->fd_buf = NULL;
1076	}
1077}
1078
1079static void
1080dump_txfd(struct TxFD *fd)
1081{
1082	printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1083	       le32_to_cpu(fd->fd.FDNext),
1084	       le32_to_cpu(fd->fd.FDSystem),
1085	       le32_to_cpu(fd->fd.FDStat),
1086	       le32_to_cpu(fd->fd.FDCtl));
1087	printk("BD: ");
1088	printk(" %08x %08x",
1089	       le32_to_cpu(fd->bd.BuffData),
1090	       le32_to_cpu(fd->bd.BDCtl));
1091	printk("\n");
1092}
1093
1094static int
1095dump_rxfd(struct RxFD *fd)
1096{
1097	int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1098	if (bd_count > 8)
1099		bd_count = 8;
1100	printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1101	       le32_to_cpu(fd->fd.FDNext),
1102	       le32_to_cpu(fd->fd.FDSystem),
1103	       le32_to_cpu(fd->fd.FDStat),
1104	       le32_to_cpu(fd->fd.FDCtl));
1105	if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1106		return 0;
1107	printk("BD: ");
1108	for (i = 0; i < bd_count; i++)
1109		printk(" %08x %08x",
1110		       le32_to_cpu(fd->bd[i].BuffData),
1111		       le32_to_cpu(fd->bd[i].BDCtl));
1112	printk("\n");
1113	return bd_count;
1114}
1115
1116#ifdef DEBUG
1117static void
1118dump_frfd(struct FrFD *fd)
1119{
1120	int i;
1121	printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1122	       le32_to_cpu(fd->fd.FDNext),
1123	       le32_to_cpu(fd->fd.FDSystem),
1124	       le32_to_cpu(fd->fd.FDStat),
1125	       le32_to_cpu(fd->fd.FDCtl));
1126	printk("BD: ");
1127	for (i = 0; i < RX_BUF_NUM; i++)
1128		printk(" %08x %08x",
1129		       le32_to_cpu(fd->bd[i].BuffData),
1130		       le32_to_cpu(fd->bd[i].BDCtl));
1131	printk("\n");
1132}
1133
1134static void
1135panic_queues(struct net_device *dev)
1136{
1137	struct tc35815_local *lp = netdev_priv(dev);
1138	int i;
1139
1140	printk("TxFD base %p, start %u, end %u\n",
1141	       lp->tfd_base, lp->tfd_start, lp->tfd_end);
1142	printk("RxFD base %p limit %p cur %p\n",
1143	       lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1144	printk("FrFD %p\n", lp->fbl_ptr);
1145	for (i = 0; i < TX_FD_NUM; i++)
1146		dump_txfd(&lp->tfd_base[i]);
1147	for (i = 0; i < RX_FD_NUM; i++) {
1148		int bd_count = dump_rxfd(&lp->rfd_base[i]);
1149		i += (bd_count + 1) / 2;	/* skip BDs */
1150	}
1151	dump_frfd(lp->fbl_ptr);
1152	panic("%s: Illegal queue state.", dev->name);
1153}
1154#endif
1155
1156static void print_eth(const u8 *add)
1157{
1158	printk(KERN_DEBUG "print_eth(%p)\n", add);
1159	printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1160		add + 6, add, add[12], add[13]);
1161}
1162
1163static int tc35815_tx_full(struct net_device *dev)
1164{
1165	struct tc35815_local *lp = netdev_priv(dev);
1166	return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1167}
1168
1169static void tc35815_restart(struct net_device *dev)
1170{
1171	struct tc35815_local *lp = netdev_priv(dev);
1172	int ret;
1173
1174	if (lp->phy_dev) {
1175		ret = phy_init_hw(lp->phy_dev);
1176		if (ret)
1177			printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1178	}
1179
1180	spin_lock_bh(&lp->rx_lock);
1181	spin_lock_irq(&lp->lock);
1182	tc35815_chip_reset(dev);
1183	tc35815_clear_queues(dev);
1184	tc35815_chip_init(dev);
1185	/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1186	tc35815_set_multicast_list(dev);
1187	spin_unlock_irq(&lp->lock);
1188	spin_unlock_bh(&lp->rx_lock);
1189
1190	netif_wake_queue(dev);
1191}
1192
1193static void tc35815_restart_work(struct work_struct *work)
1194{
1195	struct tc35815_local *lp =
1196		container_of(work, struct tc35815_local, restart_work);
1197	struct net_device *dev = lp->dev;
1198
1199	tc35815_restart(dev);
1200}
1201
1202static void tc35815_schedule_restart(struct net_device *dev)
1203{
1204	struct tc35815_local *lp = netdev_priv(dev);
1205	struct tc35815_regs __iomem *tr =
1206		(struct tc35815_regs __iomem *)dev->base_addr;
1207	unsigned long flags;
1208
1209	/* disable interrupts */
1210	spin_lock_irqsave(&lp->lock, flags);
1211	tc_writel(0, &tr->Int_En);
1212	tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1213	schedule_work(&lp->restart_work);
1214	spin_unlock_irqrestore(&lp->lock, flags);
1215}
1216
1217static void tc35815_tx_timeout(struct net_device *dev)
1218{
1219	struct tc35815_regs __iomem *tr =
1220		(struct tc35815_regs __iomem *)dev->base_addr;
1221
1222	printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1223	       dev->name, tc_readl(&tr->Tx_Stat));
1224
1225	/* Try to restart the adaptor. */
1226	tc35815_schedule_restart(dev);
1227	dev->stats.tx_errors++;
1228}
1229
1230/*
1231 * Open/initialize the controller. This is called (in the current kernel)
1232 * sometime after booting when the 'ifconfig' program is run.
1233 *
1234 * This routine should set everything up anew at each open, even
1235 * registers that "should" only need to be set once at boot, so that
1236 * there is non-reboot way to recover if something goes wrong.
1237 */
1238static int
1239tc35815_open(struct net_device *dev)
1240{
1241	struct tc35815_local *lp = netdev_priv(dev);
1242
1243	/*
1244	 * This is used if the interrupt line can turned off (shared).
1245	 * See 3c503.c for an example of selecting the IRQ at config-time.
1246	 */
1247	if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1248			dev->name, dev))
1249		return -EAGAIN;
1250
1251	tc35815_chip_reset(dev);
1252
1253	if (tc35815_init_queues(dev) != 0) {
1254		free_irq(dev->irq, dev);
1255		return -EAGAIN;
1256	}
1257
1258	napi_enable(&lp->napi);
1259
1260	/* Reset the hardware here. Don't forget to set the station address. */
1261	spin_lock_irq(&lp->lock);
1262	tc35815_chip_init(dev);
1263	spin_unlock_irq(&lp->lock);
1264
1265	netif_carrier_off(dev);
1266	/* schedule a link state check */
1267	phy_start(lp->phy_dev);
1268
1269	/* We are now ready to accept transmit requeusts from
1270	 * the queueing layer of the networking.
1271	 */
1272	netif_start_queue(dev);
1273
1274	return 0;
1275}
1276
1277/* This will only be invoked if your driver is _not_ in XOFF state.
1278 * What this means is that you need not check it, and that this
1279 * invariant will hold if you make sure that the netif_*_queue()
1280 * calls are done at the proper times.
1281 */
1282static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1283{
1284	struct tc35815_local *lp = netdev_priv(dev);
1285	struct TxFD *txfd;
1286	unsigned long flags;
1287
1288	/* If some error occurs while trying to transmit this
1289	 * packet, you should return '1' from this function.
1290	 * In such a case you _may not_ do anything to the
1291	 * SKB, it is still owned by the network queueing
1292	 * layer when an error is returned.  This means you
1293	 * may not modify any SKB fields, you may not free
1294	 * the SKB, etc.
1295	 */
1296
1297	/* This is the most common case for modern hardware.
1298	 * The spinlock protects this code from the TX complete
1299	 * hardware interrupt handler.  Queue flow control is
1300	 * thus managed under this lock as well.
1301	 */
1302	spin_lock_irqsave(&lp->lock, flags);
1303
1304	/* failsafe... (handle txdone now if half of FDs are used) */
1305	if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1306	    TX_FD_NUM / 2)
1307		tc35815_txdone(dev);
1308
1309	if (netif_msg_pktdata(lp))
1310		print_eth(skb->data);
1311#ifdef DEBUG
1312	if (lp->tx_skbs[lp->tfd_start].skb) {
1313		printk("%s: tx_skbs conflict.\n", dev->name);
1314		panic_queues(dev);
1315	}
1316#else
1317	BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1318#endif
1319	lp->tx_skbs[lp->tfd_start].skb = skb;
1320	lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1321
1322	/*add to ring */
1323	txfd = &lp->tfd_base[lp->tfd_start];
1324	txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1325	txfd->bd.BDCtl = cpu_to_le32(skb->len);
1326	txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1327	txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1328
1329	if (lp->tfd_start == lp->tfd_end) {
1330		struct tc35815_regs __iomem *tr =
1331			(struct tc35815_regs __iomem *)dev->base_addr;
1332		/* Start DMA Transmitter. */
1333		txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1334		txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1335		if (netif_msg_tx_queued(lp)) {
1336			printk("%s: starting TxFD.\n", dev->name);
1337			dump_txfd(txfd);
1338		}
1339		tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1340	} else {
1341		txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1342		if (netif_msg_tx_queued(lp)) {
1343			printk("%s: queueing TxFD.\n", dev->name);
1344			dump_txfd(txfd);
1345		}
1346	}
1347	lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1348
1349	/* If we just used up the very last entry in the
1350	 * TX ring on this device, tell the queueing
1351	 * layer to send no more.
1352	 */
1353	if (tc35815_tx_full(dev)) {
1354		if (netif_msg_tx_queued(lp))
1355			printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1356		netif_stop_queue(dev);
1357	}
1358
1359	/* When the TX completion hw interrupt arrives, this
1360	 * is when the transmit statistics are updated.
1361	 */
1362
1363	spin_unlock_irqrestore(&lp->lock, flags);
1364	return NETDEV_TX_OK;
1365}
1366
1367#define FATAL_ERROR_INT \
1368	(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1369static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1370{
1371	static int count;
1372	printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1373	       dev->name, status);
1374	if (status & Int_IntPCI)
1375		printk(" IntPCI");
1376	if (status & Int_DmParErr)
1377		printk(" DmParErr");
1378	if (status & Int_IntNRAbt)
1379		printk(" IntNRAbt");
1380	printk("\n");
1381	if (count++ > 100)
1382		panic("%s: Too many fatal errors.", dev->name);
1383	printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1384	/* Try to restart the adaptor. */
1385	tc35815_schedule_restart(dev);
1386}
1387
1388static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1389{
1390	struct tc35815_local *lp = netdev_priv(dev);
1391	int ret = -1;
1392
1393	/* Fatal errors... */
1394	if (status & FATAL_ERROR_INT) {
1395		tc35815_fatal_error_interrupt(dev, status);
1396		return 0;
1397	}
1398	/* recoverable errors */
1399	if (status & Int_IntFDAEx) {
1400		if (netif_msg_rx_err(lp))
1401			dev_warn(&dev->dev,
1402				 "Free Descriptor Area Exhausted (%#x).\n",
1403				 status);
1404		dev->stats.rx_dropped++;
1405		ret = 0;
1406	}
1407	if (status & Int_IntBLEx) {
1408		if (netif_msg_rx_err(lp))
1409			dev_warn(&dev->dev,
1410				 "Buffer List Exhausted (%#x).\n",
1411				 status);
1412		dev->stats.rx_dropped++;
1413		ret = 0;
1414	}
1415	if (status & Int_IntExBD) {
1416		if (netif_msg_rx_err(lp))
1417			dev_warn(&dev->dev,
1418				 "Excessive Buffer Descriptiors (%#x).\n",
1419				 status);
1420		dev->stats.rx_length_errors++;
1421		ret = 0;
1422	}
1423
1424	/* normal notification */
1425	if (status & Int_IntMacRx) {
1426		/* Got a packet(s). */
1427		ret = tc35815_rx(dev, limit);
1428		lp->lstats.rx_ints++;
1429	}
1430	if (status & Int_IntMacTx) {
1431		/* Transmit complete. */
1432		lp->lstats.tx_ints++;
1433		spin_lock_irq(&lp->lock);
1434		tc35815_txdone(dev);
1435		spin_unlock_irq(&lp->lock);
1436		if (ret < 0)
1437			ret = 0;
1438	}
1439	return ret;
1440}
1441
1442/*
1443 * The typical workload of the driver:
1444 * Handle the network interface interrupts.
1445 */
1446static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1447{
1448	struct net_device *dev = dev_id;
1449	struct tc35815_local *lp = netdev_priv(dev);
1450	struct tc35815_regs __iomem *tr =
1451		(struct tc35815_regs __iomem *)dev->base_addr;
1452	u32 dmactl = tc_readl(&tr->DMA_Ctl);
1453
1454	if (!(dmactl & DMA_IntMask)) {
1455		/* disable interrupts */
1456		tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1457		if (napi_schedule_prep(&lp->napi))
1458			__napi_schedule(&lp->napi);
1459		else {
1460			printk(KERN_ERR "%s: interrupt taken in poll\n",
1461			       dev->name);
1462			BUG();
1463		}
1464		(void)tc_readl(&tr->Int_Src);	/* flush */
1465		return IRQ_HANDLED;
1466	}
1467	return IRQ_NONE;
1468}
1469
1470#ifdef CONFIG_NET_POLL_CONTROLLER
1471static void tc35815_poll_controller(struct net_device *dev)
1472{
1473	disable_irq(dev->irq);
1474	tc35815_interrupt(dev->irq, dev);
1475	enable_irq(dev->irq);
1476}
1477#endif
1478
1479/* We have a good packet(s), get it/them out of the buffers. */
1480static int
1481tc35815_rx(struct net_device *dev, int limit)
1482{
1483	struct tc35815_local *lp = netdev_priv(dev);
1484	unsigned int fdctl;
1485	int i;
1486	int received = 0;
1487
1488	while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1489		int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1490		int pkt_len = fdctl & FD_FDLength_MASK;
1491		int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1492#ifdef DEBUG
1493		struct RxFD *next_rfd;
1494#endif
1495#if (RX_CTL_CMD & Rx_StripCRC) == 0
1496		pkt_len -= ETH_FCS_LEN;
1497#endif
1498
1499		if (netif_msg_rx_status(lp))
1500			dump_rxfd(lp->rfd_cur);
1501		if (status & Rx_Good) {
1502			struct sk_buff *skb;
1503			unsigned char *data;
1504			int cur_bd;
1505
1506			if (--limit < 0)
1507				break;
1508			BUG_ON(bd_count > 1);
1509			cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1510				  & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1511#ifdef DEBUG
1512			if (cur_bd >= RX_BUF_NUM) {
1513				printk("%s: invalid BDID.\n", dev->name);
1514				panic_queues(dev);
1515			}
1516			BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1517			       (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1518			if (!lp->rx_skbs[cur_bd].skb) {
1519				printk("%s: NULL skb.\n", dev->name);
1520				panic_queues(dev);
1521			}
1522#else
1523			BUG_ON(cur_bd >= RX_BUF_NUM);
1524#endif
1525			skb = lp->rx_skbs[cur_bd].skb;
1526			prefetch(skb->data);
1527			lp->rx_skbs[cur_bd].skb = NULL;
1528			pci_unmap_single(lp->pci_dev,
1529					 lp->rx_skbs[cur_bd].skb_dma,
1530					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1531			if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1532				memmove(skb->data, skb->data - NET_IP_ALIGN,
1533					pkt_len);
1534			data = skb_put(skb, pkt_len);
1535			if (netif_msg_pktdata(lp))
1536				print_eth(data);
1537			skb->protocol = eth_type_trans(skb, dev);
1538			netif_receive_skb(skb);
1539			received++;
1540			dev->stats.rx_packets++;
1541			dev->stats.rx_bytes += pkt_len;
1542		} else {
1543			dev->stats.rx_errors++;
1544			if (netif_msg_rx_err(lp))
1545				dev_info(&dev->dev, "Rx error (status %x)\n",
1546					 status & Rx_Stat_Mask);
1547			/* WORKAROUND: LongErr and CRCErr means Overflow. */
1548			if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1549				status &= ~(Rx_LongErr|Rx_CRCErr);
1550				status |= Rx_Over;
1551			}
1552			if (status & Rx_LongErr)
1553				dev->stats.rx_length_errors++;
1554			if (status & Rx_Over)
1555				dev->stats.rx_fifo_errors++;
1556			if (status & Rx_CRCErr)
1557				dev->stats.rx_crc_errors++;
1558			if (status & Rx_Align)
1559				dev->stats.rx_frame_errors++;
1560		}
1561
1562		if (bd_count > 0) {
1563			/* put Free Buffer back to controller */
1564			int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1565			unsigned char id =
1566				(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1567#ifdef DEBUG
1568			if (id >= RX_BUF_NUM) {
1569				printk("%s: invalid BDID.\n", dev->name);
1570				panic_queues(dev);
1571			}
1572#else
1573			BUG_ON(id >= RX_BUF_NUM);
1574#endif
1575			/* free old buffers */
1576			lp->fbl_count--;
1577			while (lp->fbl_count < RX_BUF_NUM)
1578			{
1579				unsigned char curid =
1580					(id + 1 + lp->fbl_count) % RX_BUF_NUM;
1581				struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1582#ifdef DEBUG
1583				bdctl = le32_to_cpu(bd->BDCtl);
1584				if (bdctl & BD_CownsBD) {
1585					printk("%s: Freeing invalid BD.\n",
1586					       dev->name);
1587					panic_queues(dev);
1588				}
1589#endif
1590				/* pass BD to controller */
1591				if (!lp->rx_skbs[curid].skb) {
1592					lp->rx_skbs[curid].skb =
1593						alloc_rxbuf_skb(dev,
1594								lp->pci_dev,
1595								&lp->rx_skbs[curid].skb_dma);
1596					if (!lp->rx_skbs[curid].skb)
1597						break; /* try on next reception */
1598					bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1599				}
1600				/* Note: BDLength was modified by chip. */
1601				bd->BDCtl = cpu_to_le32(BD_CownsBD |
1602							(curid << BD_RxBDID_SHIFT) |
1603							RX_BUF_SIZE);
1604				lp->fbl_count++;
1605			}
1606		}
1607
1608		/* put RxFD back to controller */
1609#ifdef DEBUG
1610		next_rfd = fd_bus_to_virt(lp,
1611					  le32_to_cpu(lp->rfd_cur->fd.FDNext));
1612		if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1613			printk("%s: RxFD FDNext invalid.\n", dev->name);
1614			panic_queues(dev);
1615		}
1616#endif
1617		for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1618			/* pass FD to controller */
1619#ifdef DEBUG
1620			lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1621#else
1622			lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1623#endif
1624			lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1625			lp->rfd_cur++;
1626		}
1627		if (lp->rfd_cur > lp->rfd_limit)
1628			lp->rfd_cur = lp->rfd_base;
1629#ifdef DEBUG
1630		if (lp->rfd_cur != next_rfd)
1631			printk("rfd_cur = %p, next_rfd %p\n",
1632			       lp->rfd_cur, next_rfd);
1633#endif
1634	}
1635
1636	return received;
1637}
1638
1639static int tc35815_poll(struct napi_struct *napi, int budget)
1640{
1641	struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1642	struct net_device *dev = lp->dev;
1643	struct tc35815_regs __iomem *tr =
1644		(struct tc35815_regs __iomem *)dev->base_addr;
1645	int received = 0, handled;
1646	u32 status;
1647
1648	if (budget <= 0)
1649		return received;
1650
1651	spin_lock(&lp->rx_lock);
1652	status = tc_readl(&tr->Int_Src);
1653	do {
1654		/* BLEx, FDAEx will be cleared later */
1655		tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1656			  &tr->Int_Src);	/* write to clear */
1657
1658		handled = tc35815_do_interrupt(dev, status, budget - received);
1659		if (status & (Int_BLEx | Int_FDAEx))
1660			tc_writel(status & (Int_BLEx | Int_FDAEx),
1661				  &tr->Int_Src);
1662		if (handled >= 0) {
1663			received += handled;
1664			if (received >= budget)
1665				break;
1666		}
1667		status = tc_readl(&tr->Int_Src);
1668	} while (status);
1669	spin_unlock(&lp->rx_lock);
1670
1671	if (received < budget) {
1672		napi_complete(napi);
1673		/* enable interrupts */
1674		tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1675	}
1676	return received;
1677}
1678
1679#define TX_STA_ERR	(Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1680
1681static void
1682tc35815_check_tx_stat(struct net_device *dev, int status)
1683{
1684	struct tc35815_local *lp = netdev_priv(dev);
1685	const char *msg = NULL;
1686
1687	/* count collisions */
1688	if (status & Tx_ExColl)
1689		dev->stats.collisions += 16;
1690	if (status & Tx_TxColl_MASK)
1691		dev->stats.collisions += status & Tx_TxColl_MASK;
1692
1693	/* TX4939 does not have NCarr */
1694	if (lp->chiptype == TC35815_TX4939)
1695		status &= ~Tx_NCarr;
1696	/* WORKAROUND: ignore LostCrS in full duplex operation */
1697	if (!lp->link || lp->duplex == DUPLEX_FULL)
1698		status &= ~Tx_NCarr;
1699
1700	if (!(status & TX_STA_ERR)) {
1701		/* no error. */
1702		dev->stats.tx_packets++;
1703		return;
1704	}
1705
1706	dev->stats.tx_errors++;
1707	if (status & Tx_ExColl) {
1708		dev->stats.tx_aborted_errors++;
1709		msg = "Excessive Collision.";
1710	}
1711	if (status & Tx_Under) {
1712		dev->stats.tx_fifo_errors++;
1713		msg = "Tx FIFO Underrun.";
1714		if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1715			lp->lstats.tx_underrun++;
1716			if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1717				struct tc35815_regs __iomem *tr =
1718					(struct tc35815_regs __iomem *)dev->base_addr;
1719				tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1720				msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1721			}
1722		}
1723	}
1724	if (status & Tx_Defer) {
1725		dev->stats.tx_fifo_errors++;
1726		msg = "Excessive Deferral.";
1727	}
1728	if (status & Tx_NCarr) {
1729		dev->stats.tx_carrier_errors++;
1730		msg = "Lost Carrier Sense.";
1731	}
1732	if (status & Tx_LateColl) {
1733		dev->stats.tx_aborted_errors++;
1734		msg = "Late Collision.";
1735	}
1736	if (status & Tx_TxPar) {
1737		dev->stats.tx_fifo_errors++;
1738		msg = "Transmit Parity Error.";
1739	}
1740	if (status & Tx_SQErr) {
1741		dev->stats.tx_heartbeat_errors++;
1742		msg = "Signal Quality Error.";
1743	}
1744	if (msg && netif_msg_tx_err(lp))
1745		printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1746}
1747
1748/* This handles TX complete events posted by the device
1749 * via interrupts.
1750 */
1751static void
1752tc35815_txdone(struct net_device *dev)
1753{
1754	struct tc35815_local *lp = netdev_priv(dev);
1755	struct TxFD *txfd;
1756	unsigned int fdctl;
1757
1758	txfd = &lp->tfd_base[lp->tfd_end];
1759	while (lp->tfd_start != lp->tfd_end &&
1760	       !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1761		int status = le32_to_cpu(txfd->fd.FDStat);
1762		struct sk_buff *skb;
1763		unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1764		u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1765
1766		if (netif_msg_tx_done(lp)) {
1767			printk("%s: complete TxFD.\n", dev->name);
1768			dump_txfd(txfd);
1769		}
1770		tc35815_check_tx_stat(dev, status);
1771
1772		skb = fdsystem != 0xffffffff ?
1773			lp->tx_skbs[fdsystem].skb : NULL;
1774#ifdef DEBUG
1775		if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1776			printk("%s: tx_skbs mismatch.\n", dev->name);
1777			panic_queues(dev);
1778		}
1779#else
1780		BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1781#endif
1782		if (skb) {
1783			dev->stats.tx_bytes += skb->len;
1784			pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1785			lp->tx_skbs[lp->tfd_end].skb = NULL;
1786			lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1787			dev_kfree_skb_any(skb);
1788		}
1789		txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1790
1791		lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1792		txfd = &lp->tfd_base[lp->tfd_end];
1793#ifdef DEBUG
1794		if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1795			printk("%s: TxFD FDNext invalid.\n", dev->name);
1796			panic_queues(dev);
1797		}
1798#endif
1799		if (fdnext & FD_Next_EOL) {
1800			/* DMA Transmitter has been stopping... */
1801			if (lp->tfd_end != lp->tfd_start) {
1802				struct tc35815_regs __iomem *tr =
1803					(struct tc35815_regs __iomem *)dev->base_addr;
1804				int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1805				struct TxFD *txhead = &lp->tfd_base[head];
1806				int qlen = (lp->tfd_start + TX_FD_NUM
1807					    - lp->tfd_end) % TX_FD_NUM;
1808
1809#ifdef DEBUG
1810				if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1811					printk("%s: TxFD FDCtl invalid.\n", dev->name);
1812					panic_queues(dev);
1813				}
1814#endif
1815				/* log max queue length */
1816				if (lp->lstats.max_tx_qlen < qlen)
1817					lp->lstats.max_tx_qlen = qlen;
1818
1819
1820				/* start DMA Transmitter again */
1821				txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1822				txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1823				if (netif_msg_tx_queued(lp)) {
1824					printk("%s: start TxFD on queue.\n",
1825					       dev->name);
1826					dump_txfd(txfd);
1827				}
1828				tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1829			}
1830			break;
1831		}
1832	}
1833
1834	/* If we had stopped the queue due to a "tx full"
1835	 * condition, and space has now been made available,
1836	 * wake up the queue.
1837	 */
1838	if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1839		netif_wake_queue(dev);
1840}
1841
1842/* The inverse routine to tc35815_open(). */
1843static int
1844tc35815_close(struct net_device *dev)
1845{
1846	struct tc35815_local *lp = netdev_priv(dev);
1847
1848	netif_stop_queue(dev);
1849	napi_disable(&lp->napi);
1850	if (lp->phy_dev)
1851		phy_stop(lp->phy_dev);
1852	cancel_work_sync(&lp->restart_work);
1853
1854	/* Flush the Tx and disable Rx here. */
1855	tc35815_chip_reset(dev);
1856	free_irq(dev->irq, dev);
1857
1858	tc35815_free_queues(dev);
1859
1860	return 0;
1861
1862}
1863
1864/*
1865 * Get the current statistics.
1866 * This may be called with the card open or closed.
1867 */
1868static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1869{
1870	struct tc35815_regs __iomem *tr =
1871		(struct tc35815_regs __iomem *)dev->base_addr;
1872	if (netif_running(dev))
1873		/* Update the statistics from the device registers. */
1874		dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1875
1876	return &dev->stats;
1877}
1878
1879static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1880{
1881	struct tc35815_local *lp = netdev_priv(dev);
1882	struct tc35815_regs __iomem *tr =
1883		(struct tc35815_regs __iomem *)dev->base_addr;
1884	int cam_index = index * 6;
1885	u32 cam_data;
1886	u32 saved_addr;
1887
1888	saved_addr = tc_readl(&tr->CAM_Adr);
1889
1890	if (netif_msg_hw(lp))
1891		printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1892			dev->name, index, addr);
1893	if (index & 1) {
1894		/* read modify write */
1895		tc_writel(cam_index - 2, &tr->CAM_Adr);
1896		cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1897		cam_data |= addr[0] << 8 | addr[1];
1898		tc_writel(cam_data, &tr->CAM_Data);
1899		/* write whole word */
1900		tc_writel(cam_index + 2, &tr->CAM_Adr);
1901		cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1902		tc_writel(cam_data, &tr->CAM_Data);
1903	} else {
1904		/* write whole word */
1905		tc_writel(cam_index, &tr->CAM_Adr);
1906		cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1907		tc_writel(cam_data, &tr->CAM_Data);
1908		/* read modify write */
1909		tc_writel(cam_index + 4, &tr->CAM_Adr);
1910		cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1911		cam_data |= addr[4] << 24 | (addr[5] << 16);
1912		tc_writel(cam_data, &tr->CAM_Data);
1913	}
1914
1915	tc_writel(saved_addr, &tr->CAM_Adr);
1916}
1917
1918
1919/*
1920 * Set or clear the multicast filter for this adaptor.
1921 * num_addrs == -1	Promiscuous mode, receive all packets
1922 * num_addrs == 0	Normal mode, clear multicast list
1923 * num_addrs > 0	Multicast mode, receive normal and MC packets,
1924 *			and do best-effort filtering.
1925 */
1926static void
1927tc35815_set_multicast_list(struct net_device *dev)
1928{
1929	struct tc35815_regs __iomem *tr =
1930		(struct tc35815_regs __iomem *)dev->base_addr;
1931
1932	if (dev->flags & IFF_PROMISC) {
1933		/* With some (all?) 100MHalf HUB, controller will hang
1934		 * if we enabled promiscuous mode before linkup... */
1935		struct tc35815_local *lp = netdev_priv(dev);
1936
1937		if (!lp->link)
1938			return;
1939		/* Enable promiscuous mode */
1940		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1941	} else if ((dev->flags & IFF_ALLMULTI) ||
1942		  netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1943		/* CAM 0, 1, 20 are reserved. */
1944		/* Disable promiscuous mode, use normal mode. */
1945		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1946	} else if (!netdev_mc_empty(dev)) {
1947		struct netdev_hw_addr *ha;
1948		int i;
1949		int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1950
1951		tc_writel(0, &tr->CAM_Ctl);
1952		/* Walk the address list, and load the filter */
1953		i = 0;
1954		netdev_for_each_mc_addr(ha, dev) {
1955			/* entry 0,1 is reserved. */
1956			tc35815_set_cam_entry(dev, i + 2, ha->addr);
1957			ena_bits |= CAM_Ena_Bit(i + 2);
1958			i++;
1959		}
1960		tc_writel(ena_bits, &tr->CAM_Ena);
1961		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1962	} else {
1963		tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1964		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1965	}
1966}
1967
1968static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1969{
1970	struct tc35815_local *lp = netdev_priv(dev);
1971
1972	strlcpy(info->driver, MODNAME, sizeof(info->driver));
1973	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1974	strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1975}
1976
1977static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1978{
1979	struct tc35815_local *lp = netdev_priv(dev);
1980
1981	if (!lp->phy_dev)
1982		return -ENODEV;
1983	return phy_ethtool_gset(lp->phy_dev, cmd);
1984}
1985
1986static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1987{
1988	struct tc35815_local *lp = netdev_priv(dev);
1989
1990	if (!lp->phy_dev)
1991		return -ENODEV;
1992	return phy_ethtool_sset(lp->phy_dev, cmd);
1993}
1994
1995static u32 tc35815_get_msglevel(struct net_device *dev)
1996{
1997	struct tc35815_local *lp = netdev_priv(dev);
1998	return lp->msg_enable;
1999}
2000
2001static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
2002{
2003	struct tc35815_local *lp = netdev_priv(dev);
2004	lp->msg_enable = datum;
2005}
2006
2007static int tc35815_get_sset_count(struct net_device *dev, int sset)
2008{
2009	struct tc35815_local *lp = netdev_priv(dev);
2010
2011	switch (sset) {
2012	case ETH_SS_STATS:
2013		return sizeof(lp->lstats) / sizeof(int);
2014	default:
2015		return -EOPNOTSUPP;
2016	}
2017}
2018
2019static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
2020{
2021	struct tc35815_local *lp = netdev_priv(dev);
2022	data[0] = lp->lstats.max_tx_qlen;
2023	data[1] = lp->lstats.tx_ints;
2024	data[2] = lp->lstats.rx_ints;
2025	data[3] = lp->lstats.tx_underrun;
2026}
2027
2028static struct {
2029	const char str[ETH_GSTRING_LEN];
2030} ethtool_stats_keys[] = {
2031	{ "max_tx_qlen" },
2032	{ "tx_ints" },
2033	{ "rx_ints" },
2034	{ "tx_underrun" },
2035};
2036
2037static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2038{
2039	memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2040}
2041
2042static const struct ethtool_ops tc35815_ethtool_ops = {
2043	.get_drvinfo		= tc35815_get_drvinfo,
2044	.get_settings		= tc35815_get_settings,
2045	.set_settings		= tc35815_set_settings,
2046	.get_link		= ethtool_op_get_link,
2047	.get_msglevel		= tc35815_get_msglevel,
2048	.set_msglevel		= tc35815_set_msglevel,
2049	.get_strings		= tc35815_get_strings,
2050	.get_sset_count		= tc35815_get_sset_count,
2051	.get_ethtool_stats	= tc35815_get_ethtool_stats,
2052};
2053
2054static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2055{
2056	struct tc35815_local *lp = netdev_priv(dev);
2057
2058	if (!netif_running(dev))
2059		return -EINVAL;
2060	if (!lp->phy_dev)
2061		return -ENODEV;
2062	return phy_mii_ioctl(lp->phy_dev, rq, cmd);
2063}
2064
2065static void tc35815_chip_reset(struct net_device *dev)
2066{
2067	struct tc35815_regs __iomem *tr =
2068		(struct tc35815_regs __iomem *)dev->base_addr;
2069	int i;
2070	/* reset the controller */
2071	tc_writel(MAC_Reset, &tr->MAC_Ctl);
2072	udelay(4); /* 3200ns */
2073	i = 0;
2074	while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2075		if (i++ > 100) {
2076			printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2077			break;
2078		}
2079		mdelay(1);
2080	}
2081	tc_writel(0, &tr->MAC_Ctl);
2082
2083	/* initialize registers to default value */
2084	tc_writel(0, &tr->DMA_Ctl);
2085	tc_writel(0, &tr->TxThrsh);
2086	tc_writel(0, &tr->TxPollCtr);
2087	tc_writel(0, &tr->RxFragSize);
2088	tc_writel(0, &tr->Int_En);
2089	tc_writel(0, &tr->FDA_Bas);
2090	tc_writel(0, &tr->FDA_Lim);
2091	tc_writel(0xffffffff, &tr->Int_Src);	/* Write 1 to clear */
2092	tc_writel(0, &tr->CAM_Ctl);
2093	tc_writel(0, &tr->Tx_Ctl);
2094	tc_writel(0, &tr->Rx_Ctl);
2095	tc_writel(0, &tr->CAM_Ena);
2096	(void)tc_readl(&tr->Miss_Cnt);	/* Read to clear */
2097
2098	/* initialize internal SRAM */
2099	tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2100	for (i = 0; i < 0x1000; i += 4) {
2101		tc_writel(i, &tr->CAM_Adr);
2102		tc_writel(0, &tr->CAM_Data);
2103	}
2104	tc_writel(0, &tr->DMA_Ctl);
2105}
2106
2107static void tc35815_chip_init(struct net_device *dev)
2108{
2109	struct tc35815_local *lp = netdev_priv(dev);
2110	struct tc35815_regs __iomem *tr =
2111		(struct tc35815_regs __iomem *)dev->base_addr;
2112	unsigned long txctl = TX_CTL_CMD;
2113
2114	/* load station address to CAM */
2115	tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2116
2117	/* Enable CAM (broadcast and unicast) */
2118	tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2119	tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2120
2121	/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2122	if (HAVE_DMA_RXALIGN(lp))
2123		tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2124	else
2125		tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2126	tc_writel(0, &tr->TxPollCtr);	/* Batch mode */
2127	tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2128	tc_writel(INT_EN_CMD, &tr->Int_En);
2129
2130	/* set queues */
2131	tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2132	tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2133		  &tr->FDA_Lim);
2134	/*
2135	 * Activation method:
2136	 * First, enable the MAC Transmitter and the DMA Receive circuits.
2137	 * Then enable the DMA Transmitter and the MAC Receive circuits.
2138	 */
2139	tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);	/* start DMA receiver */
2140	tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);	/* start MAC receiver */
2141
2142	/* start MAC transmitter */
2143	/* TX4939 does not have EnLCarr */
2144	if (lp->chiptype == TC35815_TX4939)
2145		txctl &= ~Tx_EnLCarr;
2146	/* WORKAROUND: ignore LostCrS in full duplex operation */
2147	if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
2148		txctl &= ~Tx_EnLCarr;
2149	tc_writel(txctl, &tr->Tx_Ctl);
2150}
2151
2152#ifdef CONFIG_PM
2153static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2154{
2155	struct net_device *dev = pci_get_drvdata(pdev);
2156	struct tc35815_local *lp = netdev_priv(dev);
2157	unsigned long flags;
2158
2159	pci_save_state(pdev);
2160	if (!netif_running(dev))
2161		return 0;
2162	netif_device_detach(dev);
2163	if (lp->phy_dev)
2164		phy_stop(lp->phy_dev);
2165	spin_lock_irqsave(&lp->lock, flags);
2166	tc35815_chip_reset(dev);
2167	spin_unlock_irqrestore(&lp->lock, flags);
2168	pci_set_power_state(pdev, PCI_D3hot);
2169	return 0;
2170}
2171
2172static int tc35815_resume(struct pci_dev *pdev)
2173{
2174	struct net_device *dev = pci_get_drvdata(pdev);
2175	struct tc35815_local *lp = netdev_priv(dev);
2176
2177	pci_restore_state(pdev);
2178	if (!netif_running(dev))
2179		return 0;
2180	pci_set_power_state(pdev, PCI_D0);
2181	tc35815_restart(dev);
2182	netif_carrier_off(dev);
2183	if (lp->phy_dev)
2184		phy_start(lp->phy_dev);
2185	netif_device_attach(dev);
2186	return 0;
2187}
2188#endif /* CONFIG_PM */
2189
2190static struct pci_driver tc35815_pci_driver = {
2191	.name		= MODNAME,
2192	.id_table	= tc35815_pci_tbl,
2193	.probe		= tc35815_init_one,
2194	.remove		= tc35815_remove_one,
2195#ifdef CONFIG_PM
2196	.suspend	= tc35815_suspend,
2197	.resume		= tc35815_resume,
2198#endif
2199};
2200
2201module_param_named(speed, options.speed, int, 0);
2202MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2203module_param_named(duplex, options.duplex, int, 0);
2204MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2205
2206module_pci_driver(tc35815_pci_driver);
2207MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2208MODULE_LICENSE("GPL");
2209