[go: nahoru, domu]

1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2/*
3	Written 1996-1999 by Donald Becker.
4
5	This software may be used and distributed according to the terms
6	of the GNU General Public License, incorporated herein by reference.
7
8	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10	and the EtherLink XL 3c900 and 3c905 cards.
11
12	Problem reports and questions should be directed to
13	vortex@scyld.com
14
15	The author may be reached as becker@scyld.com, or C/O
16	Scyld Computing Corporation
17	410 Severn Ave., Suite 210
18	Annapolis MD 21403
19
20*/
21
22/*
23 * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
24 * as well as other drivers
25 *
26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27 * due to dead code elimination.  There will be some performance benefits from this due to
28 * elimination of all the tests and reduced cache footprint.
29 */
30
31
32#define DRV_NAME	"3c59x"
33
34
35
36/* A few values that may be tweaked. */
37/* Keep the ring sizes a power of two for efficiency. */
38#define TX_RING_SIZE	16
39#define RX_RING_SIZE	32
40#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
41
42/* "Knobs" that adjust features and parameters. */
43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44   Setting to > 1512 effectively disables this feature. */
45#ifndef __arm__
46static int rx_copybreak = 200;
47#else
48/* ARM systems perform better by disregarding the bus-master
49   transfer capability of these cards. -- rmk */
50static int rx_copybreak = 1513;
51#endif
52/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53static const int mtu = 1500;
54/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55static int max_interrupt_work = 32;
56/* Tx timeout interval (millisecs) */
57static int watchdog = 5000;
58
59/* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
60 * of possible Tx stalls if the system is blocking interrupts
61 * somewhere else.  Undefine this to disable.
62 */
63#define tx_interrupt_mitigation 1
64
65/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66#define vortex_debug debug
67#ifdef VORTEX_DEBUG
68static int vortex_debug = VORTEX_DEBUG;
69#else
70static int vortex_debug = 1;
71#endif
72
73#include <linux/module.h>
74#include <linux/kernel.h>
75#include <linux/string.h>
76#include <linux/timer.h>
77#include <linux/errno.h>
78#include <linux/in.h>
79#include <linux/ioport.h>
80#include <linux/interrupt.h>
81#include <linux/pci.h>
82#include <linux/mii.h>
83#include <linux/init.h>
84#include <linux/netdevice.h>
85#include <linux/etherdevice.h>
86#include <linux/skbuff.h>
87#include <linux/ethtool.h>
88#include <linux/highmem.h>
89#include <linux/eisa.h>
90#include <linux/bitops.h>
91#include <linux/jiffies.h>
92#include <linux/gfp.h>
93#include <asm/irq.h>			/* For nr_irqs only. */
94#include <asm/io.h>
95#include <asm/uaccess.h>
96
97/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98   This is only in the support-all-kernels source code. */
99
100#define RUN_AT(x) (jiffies + (x))
101
102#include <linux/delay.h>
103
104
105static const char version[] =
106	DRV_NAME ": Donald Becker and others.\n";
107
108MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110MODULE_LICENSE("GPL");
111
112
113/* Operational parameter that usually are not changed. */
114
115/* The Vortex size is twice that of the original EtherLinkIII series: the
116   runtime register window, window 1, is now always mapped in.
117   The Boomerang size is twice as large as the Vortex -- it has additional
118   bus master control registers. */
119#define VORTEX_TOTAL_SIZE 0x20
120#define BOOMERANG_TOTAL_SIZE 0x40
121
122/* Set iff a MII transceiver on any interface requires mdio preamble.
123   This only set with the original DP83840 on older 3c905 boards, so the extra
124   code size of a per-interface flag is not worthwhile. */
125static char mii_preamble_required;
126
127#define PFX DRV_NAME ": "
128
129
130
131/*
132				Theory of Operation
133
134I. Board Compatibility
135
136This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
138versions of the FastEtherLink cards.  The supported product IDs are
139  3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140
141The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142with the kernel source or available from
143    cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144
145II. Board-specific settings
146
147PCI bus devices are configured by the system at boot time, so no jumpers
148need to be set on the board.  The system BIOS should be set to assign the
149PCI INTA signal to an otherwise unused system IRQ line.
150
151The EEPROM settings for media type and forced-full-duplex are observed.
152The EEPROM media type should be left at the default "autoselect" unless using
15310base2 or AUI connections which cannot be reliably detected.
154
155III. Driver operation
156
157The 3c59x series use an interface that's very similar to the previous 3c5x9
158series.  The primary interface is two programmed-I/O FIFOs, with an
159alternate single-contiguous-region bus-master transfer (see next).
160
161The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
164programmed-I/O interface that has been removed in 'B' and subsequent board
165revisions.
166
167One extension that is advertised in a very large font is that the adapters
168are capable of being bus masters.  On the Vortex chip this capability was
169only for a single contiguous region making it far less useful than the full
170bus master capability.  There is a significant performance impact of taking
171an extra interrupt or polling for the completion of each transfer, as well
172as difficulty sharing the single transfer engine between the transmit and
173receive threads.  Using DMA transfers is a win only with large blocks or
174with the flawed versions of the Intel Orion motherboard PCI controller.
175
176The Boomerang chip's full-bus-master interface is useful, and has the
177currently-unused advantages over other similar chips that queued transmit
178packets may be reordered and receive buffer groups are associated with a
179single frame.
180
181With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182Rather than a fixed intermediate receive buffer, this scheme allocates
183full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
184the copying breakpoint: it is chosen to trade-off the memory wasted by
185passing the full-sized skbuff to the queue layer for all frames vs. the
186copying cost of copying a frame to a correctly-sized skbuff.
187
188IIIC. Synchronization
189The driver runs as two independent, single-threaded flows of control.  One
190is the send-packet routine, which enforces single-threaded use by the
191dev->tbusy flag.  The other thread is the interrupt handler, which is single
192threaded by the hardware and other software.
193
194IV. Notes
195
196Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
1973c590, 3c595, and 3c900 boards.
198The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199the EISA version is called "Demon".  According to Terry these names come
200from rides at the local amusement park.
201
202The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203This driver only supports ethernet packets because of the skbuff allocation
204limit of 4K.
205*/
206
207/* This table drives the PCI probe routines.  It's mostly boilerplate in all
208   of the drivers, and will likely be provided by some future kernel.
209*/
210enum pci_flags_bit {
211	PCI_USES_MASTER=4,
212};
213
214enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220
221enum vortex_chips {
222	CH_3C590 = 0,
223	CH_3C592,
224	CH_3C597,
225	CH_3C595_1,
226	CH_3C595_2,
227
228	CH_3C595_3,
229	CH_3C900_1,
230	CH_3C900_2,
231	CH_3C900_3,
232	CH_3C900_4,
233
234	CH_3C900_5,
235	CH_3C900B_FL,
236	CH_3C905_1,
237	CH_3C905_2,
238	CH_3C905B_TX,
239	CH_3C905B_1,
240
241	CH_3C905B_2,
242	CH_3C905B_FX,
243	CH_3C905C,
244	CH_3C9202,
245	CH_3C980,
246	CH_3C9805,
247
248	CH_3CSOHO100_TX,
249	CH_3C555,
250	CH_3C556,
251	CH_3C556B,
252	CH_3C575,
253
254	CH_3C575_1,
255	CH_3CCFE575,
256	CH_3CCFE575CT,
257	CH_3CCFE656,
258	CH_3CCFEM656,
259
260	CH_3CCFEM656_1,
261	CH_3C450,
262	CH_3C920,
263	CH_3C982A,
264	CH_3C982B,
265
266	CH_905BT4,
267	CH_920B_EMB_WNM,
268};
269
270
271/* note: this array directly indexed by above enums, and MUST
272 * be kept in sync with both the enums above, and the PCI device
273 * table below
274 */
275static struct vortex_chip_info {
276	const char *name;
277	int flags;
278	int drv_flags;
279	int io_size;
280} vortex_info_tbl[] = {
281	{"3c590 Vortex 10Mbps",
282	 PCI_USES_MASTER, IS_VORTEX, 32, },
283	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
284	 PCI_USES_MASTER, IS_VORTEX, 32, },
285	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
286	 PCI_USES_MASTER, IS_VORTEX, 32, },
287	{"3c595 Vortex 100baseTx",
288	 PCI_USES_MASTER, IS_VORTEX, 32, },
289	{"3c595 Vortex 100baseT4",
290	 PCI_USES_MASTER, IS_VORTEX, 32, },
291
292	{"3c595 Vortex 100base-MII",
293	 PCI_USES_MASTER, IS_VORTEX, 32, },
294	{"3c900 Boomerang 10baseT",
295	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296	{"3c900 Boomerang 10Mbps Combo",
297	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
299	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300	{"3c900 Cyclone 10Mbps Combo",
301	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302
303	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
304	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305	{"3c900B-FL Cyclone 10base-FL",
306	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307	{"3c905 Boomerang 100baseTx",
308	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309	{"3c905 Boomerang 100baseT4",
310	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311	{"3C905B-TX Fast Etherlink XL PCI",
312	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313	{"3c905B Cyclone 100baseTx",
314	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315
316	{"3c905B Cyclone 10/100/BNC",
317	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318	{"3c905B-FX Cyclone 100baseFx",
319	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320	{"3c905C Tornado",
321	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324	{"3c980 Cyclone",
325	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326
327	{"3c980C Python-T",
328	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329	{"3cSOHO100-TX Hurricane",
330	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331	{"3c555 Laptop Hurricane",
332	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333	{"3c556 Laptop Tornado",
334	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335									HAS_HWCKSM, 128, },
336	{"3c556B Laptop Hurricane",
337	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339
340	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
341	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342	{"3c575 Boomerang CardBus",
343	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344	{"3CCFE575BT Cyclone CardBus",
345	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346									INVERT_LED_PWR|HAS_HWCKSM, 128, },
347	{"3CCFE575CT Tornado CardBus",
348	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350	{"3CCFE656 Cyclone CardBus",
351	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352									INVERT_LED_PWR|HAS_HWCKSM, 128, },
353
354	{"3CCFEM656B Cyclone+Winmodem CardBus",
355	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356									INVERT_LED_PWR|HAS_HWCKSM, 128, },
357	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
358	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
361	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362	{"3c920 Tornado",
363	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364	{"3c982 Hydra Dual Port A",
365	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366
367	{"3c982 Hydra Dual Port B",
368	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369	{"3c905B-T4",
370	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371	{"3c920B-EMB-WNM Tornado",
372	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373
374	{NULL,}, /* NULL terminated list. */
375};
376
377
378static const struct pci_device_id vortex_pci_tbl[] = {
379	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384
385	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390
391	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397
398	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404
405	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410
411	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416
417	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422
423	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425
426	{0,}						/* 0 terminated list. */
427};
428MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429
430
431/* Operational definitions.
432   These are not used by other compilation units and thus are not
433   exported in a ".h" file.
434
435   First the windows.  There are eight register windows, with the command
436   and status registers available in each.
437   */
438#define EL3_CMD 0x0e
439#define EL3_STATUS 0x0e
440
441/* The top five bits written to EL3_CMD are a command, the lower
442   11 bits are the parameter, if applicable.
443   Note that 11 parameters bits was fine for ethernet, but the new chip
444   can handle FDDI length frames (~4500 octets) and now parameters count
445   32-bit 'Dwords' rather than octets. */
446
447enum vortex_cmd {
448	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450	UpStall = 6<<11, UpUnstall = (6<<11)+1,
451	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
458
459/* The SetRxFilter command accepts the following classes: */
460enum RxFilter {
461	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
462
463/* Bits in the general status register. */
464enum vortex_status {
465	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467	IntReq = 0x0040, StatsFull = 0x0080,
468	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
470	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
471};
472
473/* Register window 1 offsets, the window used in normal operation.
474   On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475enum Window1 {
476	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
477	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
478	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
479};
480enum Window0 {
481	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
482	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
483	IntrStatus=0x0E,		/* Valid in all windows. */
484};
485enum Win0_EEPROM_bits {
486	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
488	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
489};
490/* EEPROM locations. */
491enum eeprom_offset {
492	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495	DriverTune=13, Checksum=15};
496
497enum Window2 {			/* Window 2. */
498	Wn2_ResetOptions=12,
499};
500enum Window3 {			/* Window 3: MAC/config bits. */
501	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
502};
503
504#define BFEXT(value, offset, bitcount)  \
505    ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
506
507#define BFINS(lhs, rhs, offset, bitcount)					\
508	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
509	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
510
511#define RAM_SIZE(v)		BFEXT(v, 0, 3)
512#define RAM_WIDTH(v)	BFEXT(v, 3, 1)
513#define RAM_SPEED(v)	BFEXT(v, 4, 2)
514#define ROM_SIZE(v)		BFEXT(v, 6, 2)
515#define RAM_SPLIT(v)	BFEXT(v, 16, 2)
516#define XCVR(v)			BFEXT(v, 20, 4)
517#define AUTOSELECT(v)	BFEXT(v, 24, 1)
518
519enum Window4 {		/* Window 4: Xcvr/media bits. */
520	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
521};
522enum Win4_Media_bits {
523	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
524	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
525	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
526	Media_LnkBeat = 0x0800,
527};
528enum Window7 {					/* Window 7: Bus Master control. */
529	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530	Wn7_MasterStatus = 12,
531};
532/* Boomerang bus master control registers. */
533enum MasterCtrl {
534	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
536};
537
538/* The Rx and Tx descriptor lists.
539   Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
540   alignment contraint on tx_ring[] and rx_ring[]. */
541#define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
542#define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
543struct boom_rx_desc {
544	__le32 next;					/* Last entry points to 0.   */
545	__le32 status;
546	__le32 addr;					/* Up to 63 addr/len pairs possible. */
547	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
548};
549/* Values for the Rx status entry. */
550enum rx_desc_status {
551	RxDComplete=0x00008000, RxDError=0x4000,
552	/* See boomerang_rx() for actual error bits */
553	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555};
556
557#ifdef MAX_SKB_FRAGS
558#define DO_ZEROCOPY 1
559#else
560#define DO_ZEROCOPY 0
561#endif
562
563struct boom_tx_desc {
564	__le32 next;					/* Last entry points to 0.   */
565	__le32 status;					/* bits 0:12 length, others see below.  */
566#if DO_ZEROCOPY
567	struct {
568		__le32 addr;
569		__le32 length;
570	} frag[1+MAX_SKB_FRAGS];
571#else
572		__le32 addr;
573		__le32 length;
574#endif
575};
576
577/* Values for the Tx status entry. */
578enum tx_desc_status {
579	CRCDisable=0x2000, TxDComplete=0x8000,
580	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
582};
583
584/* Chip features we care about in vp->capabilities, read from the EEPROM. */
585enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
586
587struct vortex_extra_stats {
588	unsigned long tx_deferred;
589	unsigned long tx_max_collisions;
590	unsigned long tx_multiple_collisions;
591	unsigned long tx_single_collisions;
592	unsigned long rx_bad_ssd;
593};
594
595struct vortex_private {
596	/* The Rx and Tx rings should be quad-word-aligned. */
597	struct boom_rx_desc* rx_ring;
598	struct boom_tx_desc* tx_ring;
599	dma_addr_t rx_ring_dma;
600	dma_addr_t tx_ring_dma;
601	/* The addresses of transmit- and receive-in-place skbuffs. */
602	struct sk_buff* rx_skbuff[RX_RING_SIZE];
603	struct sk_buff* tx_skbuff[TX_RING_SIZE];
604	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
605	unsigned int dirty_rx, dirty_tx;	/* The ring entries to be free()ed. */
606	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
607	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
608	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
609
610	/* PCI configuration space information. */
611	struct device *gendev;
612	void __iomem *ioaddr;			/* IO address space */
613	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
614
615	/* Some values here only for performance evaluation and path-coverage */
616	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617	int card_idx;
618
619	/* The remainder are related to chip state, mostly media selection. */
620	struct timer_list timer;			/* Media selection timer. */
621	struct timer_list rx_oom_timer;		/* Rx skb allocation retry timer */
622	int options;						/* User-settable misc. driver options. */
623	unsigned int media_override:4, 		/* Passed-in media type. */
624		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
625		full_duplex:1, autoselect:1,
626		bus_master:1,					/* Vortex can only do a fragment bus-m. */
627		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
628		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
629		partner_flow_ctrl:1,			/* Partner supports flow control */
630		has_nway:1,
631		enable_wol:1,					/* Wake-on-LAN is enabled */
632		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
633		open:1,
634		medialock:1,
635		large_frames:1,			/* accept large frames */
636		handling_irq:1;			/* private in_irq indicator */
637	/* {get|set}_wol operations are already serialized by rtnl.
638	 * no additional locking is required for the enable_wol and acpi_set_WOL()
639	 */
640	int drv_flags;
641	u16 status_enable;
642	u16 intr_enable;
643	u16 available_media;				/* From Wn3_Options. */
644	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
645	u16 advertising;					/* NWay media advertisement */
646	unsigned char phys[2];				/* MII device addresses. */
647	u16 deferred;						/* Resend these interrupts when we
648										 * bale from the ISR */
649	u16 io_size;						/* Size of PCI region (for release_region) */
650
651	/* Serialises access to hardware other than MII and variables below.
652	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
653	spinlock_t lock;
654
655	spinlock_t mii_lock;		/* Serialises access to MII */
656	struct mii_if_info mii;		/* MII lib hooks/info */
657	spinlock_t window_lock;		/* Serialises access to windowed regs */
658	int window;			/* Register window */
659};
660
661static void window_set(struct vortex_private *vp, int window)
662{
663	if (window != vp->window) {
664		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
665		vp->window = window;
666	}
667}
668
669#define DEFINE_WINDOW_IO(size)						\
670static u ## size							\
671window_read ## size(struct vortex_private *vp, int window, int addr)	\
672{									\
673	unsigned long flags;						\
674	u ## size ret;							\
675	spin_lock_irqsave(&vp->window_lock, flags);			\
676	window_set(vp, window);						\
677	ret = ioread ## size(vp->ioaddr + addr);			\
678	spin_unlock_irqrestore(&vp->window_lock, flags);		\
679	return ret;							\
680}									\
681static void								\
682window_write ## size(struct vortex_private *vp, u ## size value,	\
683		     int window, int addr)				\
684{									\
685	unsigned long flags;						\
686	spin_lock_irqsave(&vp->window_lock, flags);			\
687	window_set(vp, window);						\
688	iowrite ## size(value, vp->ioaddr + addr);			\
689	spin_unlock_irqrestore(&vp->window_lock, flags);		\
690}
691DEFINE_WINDOW_IO(8)
692DEFINE_WINDOW_IO(16)
693DEFINE_WINDOW_IO(32)
694
695#ifdef CONFIG_PCI
696#define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
697#else
698#define DEVICE_PCI(dev) NULL
699#endif
700
701#define VORTEX_PCI(vp)							\
702	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
703
704#ifdef CONFIG_EISA
705#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
706#else
707#define DEVICE_EISA(dev) NULL
708#endif
709
710#define VORTEX_EISA(vp)							\
711	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
712
713/* The action to take with a media selection timer tick.
714   Note that we deviate from the 3Com order by checking 10base2 before AUI.
715 */
716enum xcvr_types {
717	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
718	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
719};
720
721static const struct media_table {
722	char *name;
723	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
724		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
725		next:8;						/* The media type to try next. */
726	int wait;						/* Time before we check media status. */
727} media_tbl[] = {
728  {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
729  { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
730  { "undefined", 0,			0x80, XCVR_10baseT, 10000},
731  { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
732  { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
733  { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
734  { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
735  { "undefined", 0,			0x01, XCVR_10baseT, 10000},
736  { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
737  { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
738  { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
739};
740
741static struct {
742	const char str[ETH_GSTRING_LEN];
743} ethtool_stats_keys[] = {
744	{ "tx_deferred" },
745	{ "tx_max_collisions" },
746	{ "tx_multiple_collisions" },
747	{ "tx_single_collisions" },
748	{ "rx_bad_ssd" },
749};
750
751/* number of ETHTOOL_GSTATS u64's */
752#define VORTEX_NUM_STATS    5
753
754static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
755				   int chip_idx, int card_idx);
756static int vortex_up(struct net_device *dev);
757static void vortex_down(struct net_device *dev, int final);
758static int vortex_open(struct net_device *dev);
759static void mdio_sync(struct vortex_private *vp, int bits);
760static int mdio_read(struct net_device *dev, int phy_id, int location);
761static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
762static void vortex_timer(unsigned long arg);
763static void rx_oom_timer(unsigned long arg);
764static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
765				     struct net_device *dev);
766static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
767					struct net_device *dev);
768static int vortex_rx(struct net_device *dev);
769static int boomerang_rx(struct net_device *dev);
770static irqreturn_t vortex_interrupt(int irq, void *dev_id);
771static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
772static int vortex_close(struct net_device *dev);
773static void dump_tx_ring(struct net_device *dev);
774static void update_stats(void __iomem *ioaddr, struct net_device *dev);
775static struct net_device_stats *vortex_get_stats(struct net_device *dev);
776static void set_rx_mode(struct net_device *dev);
777#ifdef CONFIG_PCI
778static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
779#endif
780static void vortex_tx_timeout(struct net_device *dev);
781static void acpi_set_WOL(struct net_device *dev);
782static const struct ethtool_ops vortex_ethtool_ops;
783static void set_8021q_mode(struct net_device *dev, int enable);
784
785/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
786/* Option count limit only -- unlimited interfaces are supported. */
787#define MAX_UNITS 8
788static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
789static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
790static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
791static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
792static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
793static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
794static int global_options = -1;
795static int global_full_duplex = -1;
796static int global_enable_wol = -1;
797static int global_use_mmio = -1;
798
799/* Variables to work-around the Compaq PCI BIOS32 problem. */
800static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
801static struct net_device *compaq_net_device;
802
803static int vortex_cards_found;
804
805module_param(debug, int, 0);
806module_param(global_options, int, 0);
807module_param_array(options, int, NULL, 0);
808module_param(global_full_duplex, int, 0);
809module_param_array(full_duplex, int, NULL, 0);
810module_param_array(hw_checksums, int, NULL, 0);
811module_param_array(flow_ctrl, int, NULL, 0);
812module_param(global_enable_wol, int, 0);
813module_param_array(enable_wol, int, NULL, 0);
814module_param(rx_copybreak, int, 0);
815module_param(max_interrupt_work, int, 0);
816module_param(compaq_ioaddr, int, 0);
817module_param(compaq_irq, int, 0);
818module_param(compaq_device_id, int, 0);
819module_param(watchdog, int, 0);
820module_param(global_use_mmio, int, 0);
821module_param_array(use_mmio, int, NULL, 0);
822MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
823MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
824MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
825MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
826MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
827MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
828MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
829MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
830MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
831MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
832MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
833MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
834MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
835MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
836MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
837MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
838MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
839
840#ifdef CONFIG_NET_POLL_CONTROLLER
841static void poll_vortex(struct net_device *dev)
842{
843	struct vortex_private *vp = netdev_priv(dev);
844	unsigned long flags;
845	local_irq_save(flags);
846	(vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
847	local_irq_restore(flags);
848}
849#endif
850
851#ifdef CONFIG_PM
852
853static int vortex_suspend(struct device *dev)
854{
855	struct pci_dev *pdev = to_pci_dev(dev);
856	struct net_device *ndev = pci_get_drvdata(pdev);
857
858	if (!ndev || !netif_running(ndev))
859		return 0;
860
861	netif_device_detach(ndev);
862	vortex_down(ndev, 1);
863
864	return 0;
865}
866
867static int vortex_resume(struct device *dev)
868{
869	struct pci_dev *pdev = to_pci_dev(dev);
870	struct net_device *ndev = pci_get_drvdata(pdev);
871	int err;
872
873	if (!ndev || !netif_running(ndev))
874		return 0;
875
876	err = vortex_up(ndev);
877	if (err)
878		return err;
879
880	netif_device_attach(ndev);
881
882	return 0;
883}
884
885static const struct dev_pm_ops vortex_pm_ops = {
886	.suspend = vortex_suspend,
887	.resume = vortex_resume,
888	.freeze = vortex_suspend,
889	.thaw = vortex_resume,
890	.poweroff = vortex_suspend,
891	.restore = vortex_resume,
892};
893
894#define VORTEX_PM_OPS (&vortex_pm_ops)
895
896#else /* !CONFIG_PM */
897
898#define VORTEX_PM_OPS NULL
899
900#endif /* !CONFIG_PM */
901
902#ifdef CONFIG_EISA
903static struct eisa_device_id vortex_eisa_ids[] = {
904	{ "TCM5920", CH_3C592 },
905	{ "TCM5970", CH_3C597 },
906	{ "" }
907};
908MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
909
910static int __init vortex_eisa_probe(struct device *device)
911{
912	void __iomem *ioaddr;
913	struct eisa_device *edev;
914
915	edev = to_eisa_device(device);
916
917	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
918		return -EBUSY;
919
920	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
921
922	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
923					  edev->id.driver_data, vortex_cards_found)) {
924		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
925		return -ENODEV;
926	}
927
928	vortex_cards_found++;
929
930	return 0;
931}
932
933static int vortex_eisa_remove(struct device *device)
934{
935	struct eisa_device *edev;
936	struct net_device *dev;
937	struct vortex_private *vp;
938	void __iomem *ioaddr;
939
940	edev = to_eisa_device(device);
941	dev = eisa_get_drvdata(edev);
942
943	if (!dev) {
944		pr_err("vortex_eisa_remove called for Compaq device!\n");
945		BUG();
946	}
947
948	vp = netdev_priv(dev);
949	ioaddr = vp->ioaddr;
950
951	unregister_netdev(dev);
952	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
953	release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
954
955	free_netdev(dev);
956	return 0;
957}
958
959static struct eisa_driver vortex_eisa_driver = {
960	.id_table = vortex_eisa_ids,
961	.driver   = {
962		.name    = "3c59x",
963		.probe   = vortex_eisa_probe,
964		.remove  = vortex_eisa_remove
965	}
966};
967
968#endif /* CONFIG_EISA */
969
970/* returns count found (>= 0), or negative on error */
971static int __init vortex_eisa_init(void)
972{
973	int eisa_found = 0;
974	int orig_cards_found = vortex_cards_found;
975
976#ifdef CONFIG_EISA
977	int err;
978
979	err = eisa_driver_register (&vortex_eisa_driver);
980	if (!err) {
981		/*
982		 * Because of the way EISA bus is probed, we cannot assume
983		 * any device have been found when we exit from
984		 * eisa_driver_register (the bus root driver may not be
985		 * initialized yet). So we blindly assume something was
986		 * found, and let the sysfs magic happened...
987		 */
988		eisa_found = 1;
989	}
990#endif
991
992	/* Special code to work-around the Compaq PCI BIOS32 problem. */
993	if (compaq_ioaddr) {
994		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
995			      compaq_irq, compaq_device_id, vortex_cards_found++);
996	}
997
998	return vortex_cards_found - orig_cards_found + eisa_found;
999}
1000
1001/* returns count (>= 0), or negative on error */
1002static int vortex_init_one(struct pci_dev *pdev,
1003			   const struct pci_device_id *ent)
1004{
1005	int rc, unit, pci_bar;
1006	struct vortex_chip_info *vci;
1007	void __iomem *ioaddr;
1008
1009	/* wake up and enable device */
1010	rc = pci_enable_device(pdev);
1011	if (rc < 0)
1012		goto out;
1013
1014	rc = pci_request_regions(pdev, DRV_NAME);
1015	if (rc < 0)
1016		goto out_disable;
1017
1018	unit = vortex_cards_found;
1019
1020	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1021		/* Determine the default if the user didn't override us */
1022		vci = &vortex_info_tbl[ent->driver_data];
1023		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1024	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1025		pci_bar = use_mmio[unit] ? 1 : 0;
1026	else
1027		pci_bar = global_use_mmio ? 1 : 0;
1028
1029	ioaddr = pci_iomap(pdev, pci_bar, 0);
1030	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1031		ioaddr = pci_iomap(pdev, 0, 0);
1032	if (!ioaddr) {
1033		rc = -ENOMEM;
1034		goto out_release;
1035	}
1036
1037	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1038			   ent->driver_data, unit);
1039	if (rc < 0)
1040		goto out_iounmap;
1041
1042	vortex_cards_found++;
1043	goto out;
1044
1045out_iounmap:
1046	pci_iounmap(pdev, ioaddr);
1047out_release:
1048	pci_release_regions(pdev);
1049out_disable:
1050	pci_disable_device(pdev);
1051out:
1052	return rc;
1053}
1054
1055static const struct net_device_ops boomrang_netdev_ops = {
1056	.ndo_open		= vortex_open,
1057	.ndo_stop		= vortex_close,
1058	.ndo_start_xmit		= boomerang_start_xmit,
1059	.ndo_tx_timeout		= vortex_tx_timeout,
1060	.ndo_get_stats		= vortex_get_stats,
1061#ifdef CONFIG_PCI
1062	.ndo_do_ioctl 		= vortex_ioctl,
1063#endif
1064	.ndo_set_rx_mode	= set_rx_mode,
1065	.ndo_change_mtu		= eth_change_mtu,
1066	.ndo_set_mac_address 	= eth_mac_addr,
1067	.ndo_validate_addr	= eth_validate_addr,
1068#ifdef CONFIG_NET_POLL_CONTROLLER
1069	.ndo_poll_controller	= poll_vortex,
1070#endif
1071};
1072
1073static const struct net_device_ops vortex_netdev_ops = {
1074	.ndo_open		= vortex_open,
1075	.ndo_stop		= vortex_close,
1076	.ndo_start_xmit		= vortex_start_xmit,
1077	.ndo_tx_timeout		= vortex_tx_timeout,
1078	.ndo_get_stats		= vortex_get_stats,
1079#ifdef CONFIG_PCI
1080	.ndo_do_ioctl 		= vortex_ioctl,
1081#endif
1082	.ndo_set_rx_mode	= set_rx_mode,
1083	.ndo_change_mtu		= eth_change_mtu,
1084	.ndo_set_mac_address 	= eth_mac_addr,
1085	.ndo_validate_addr	= eth_validate_addr,
1086#ifdef CONFIG_NET_POLL_CONTROLLER
1087	.ndo_poll_controller	= poll_vortex,
1088#endif
1089};
1090
1091/*
1092 * Start up the PCI/EISA device which is described by *gendev.
1093 * Return 0 on success.
1094 *
1095 * NOTE: pdev can be NULL, for the case of a Compaq device
1096 */
1097static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1098			 int chip_idx, int card_idx)
1099{
1100	struct vortex_private *vp;
1101	int option;
1102	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1103	int i, step;
1104	struct net_device *dev;
1105	static int printed_version;
1106	int retval, print_info;
1107	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1108	const char *print_name = "3c59x";
1109	struct pci_dev *pdev = NULL;
1110	struct eisa_device *edev = NULL;
1111
1112	if (!printed_version) {
1113		pr_info("%s", version);
1114		printed_version = 1;
1115	}
1116
1117	if (gendev) {
1118		if ((pdev = DEVICE_PCI(gendev))) {
1119			print_name = pci_name(pdev);
1120		}
1121
1122		if ((edev = DEVICE_EISA(gendev))) {
1123			print_name = dev_name(&edev->dev);
1124		}
1125	}
1126
1127	dev = alloc_etherdev(sizeof(*vp));
1128	retval = -ENOMEM;
1129	if (!dev)
1130		goto out;
1131
1132	SET_NETDEV_DEV(dev, gendev);
1133	vp = netdev_priv(dev);
1134
1135	option = global_options;
1136
1137	/* The lower four bits are the media type. */
1138	if (dev->mem_start) {
1139		/*
1140		 * The 'options' param is passed in as the third arg to the
1141		 * LILO 'ether=' argument for non-modular use
1142		 */
1143		option = dev->mem_start;
1144	}
1145	else if (card_idx < MAX_UNITS) {
1146		if (options[card_idx] >= 0)
1147			option = options[card_idx];
1148	}
1149
1150	if (option > 0) {
1151		if (option & 0x8000)
1152			vortex_debug = 7;
1153		if (option & 0x4000)
1154			vortex_debug = 2;
1155		if (option & 0x0400)
1156			vp->enable_wol = 1;
1157	}
1158
1159	print_info = (vortex_debug > 1);
1160	if (print_info)
1161		pr_info("See Documentation/networking/vortex.txt\n");
1162
1163	pr_info("%s: 3Com %s %s at %p.\n",
1164	       print_name,
1165	       pdev ? "PCI" : "EISA",
1166	       vci->name,
1167	       ioaddr);
1168
1169	dev->base_addr = (unsigned long)ioaddr;
1170	dev->irq = irq;
1171	dev->mtu = mtu;
1172	vp->ioaddr = ioaddr;
1173	vp->large_frames = mtu > 1500;
1174	vp->drv_flags = vci->drv_flags;
1175	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1176	vp->io_size = vci->io_size;
1177	vp->card_idx = card_idx;
1178	vp->window = -1;
1179
1180	/* module list only for Compaq device */
1181	if (gendev == NULL) {
1182		compaq_net_device = dev;
1183	}
1184
1185	/* PCI-only startup logic */
1186	if (pdev) {
1187		/* enable bus-mastering if necessary */
1188		if (vci->flags & PCI_USES_MASTER)
1189			pci_set_master(pdev);
1190
1191		if (vci->drv_flags & IS_VORTEX) {
1192			u8 pci_latency;
1193			u8 new_latency = 248;
1194
1195			/* Check the PCI latency value.  On the 3c590 series the latency timer
1196			   must be set to the maximum value to avoid data corruption that occurs
1197			   when the timer expires during a transfer.  This bug exists the Vortex
1198			   chip only. */
1199			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1200			if (pci_latency < new_latency) {
1201				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1202					print_name, pci_latency, new_latency);
1203				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1204			}
1205		}
1206	}
1207
1208	spin_lock_init(&vp->lock);
1209	spin_lock_init(&vp->mii_lock);
1210	spin_lock_init(&vp->window_lock);
1211	vp->gendev = gendev;
1212	vp->mii.dev = dev;
1213	vp->mii.mdio_read = mdio_read;
1214	vp->mii.mdio_write = mdio_write;
1215	vp->mii.phy_id_mask = 0x1f;
1216	vp->mii.reg_num_mask = 0x1f;
1217
1218	/* Makes sure rings are at least 16 byte aligned. */
1219	vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1220					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1221					   &vp->rx_ring_dma);
1222	retval = -ENOMEM;
1223	if (!vp->rx_ring)
1224		goto free_device;
1225
1226	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1227	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1228
1229	/* if we are a PCI driver, we store info in pdev->driver_data
1230	 * instead of a module list */
1231	if (pdev)
1232		pci_set_drvdata(pdev, dev);
1233	if (edev)
1234		eisa_set_drvdata(edev, dev);
1235
1236	vp->media_override = 7;
1237	if (option >= 0) {
1238		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1239		if (vp->media_override != 7)
1240			vp->medialock = 1;
1241		vp->full_duplex = (option & 0x200) ? 1 : 0;
1242		vp->bus_master = (option & 16) ? 1 : 0;
1243	}
1244
1245	if (global_full_duplex > 0)
1246		vp->full_duplex = 1;
1247	if (global_enable_wol > 0)
1248		vp->enable_wol = 1;
1249
1250	if (card_idx < MAX_UNITS) {
1251		if (full_duplex[card_idx] > 0)
1252			vp->full_duplex = 1;
1253		if (flow_ctrl[card_idx] > 0)
1254			vp->flow_ctrl = 1;
1255		if (enable_wol[card_idx] > 0)
1256			vp->enable_wol = 1;
1257	}
1258
1259	vp->mii.force_media = vp->full_duplex;
1260	vp->options = option;
1261	/* Read the station address from the EEPROM. */
1262	{
1263		int base;
1264
1265		if (vci->drv_flags & EEPROM_8BIT)
1266			base = 0x230;
1267		else if (vci->drv_flags & EEPROM_OFFSET)
1268			base = EEPROM_Read + 0x30;
1269		else
1270			base = EEPROM_Read;
1271
1272		for (i = 0; i < 0x40; i++) {
1273			int timer;
1274			window_write16(vp, base + i, 0, Wn0EepromCmd);
1275			/* Pause for at least 162 us. for the read to take place. */
1276			for (timer = 10; timer >= 0; timer--) {
1277				udelay(162);
1278				if ((window_read16(vp, 0, Wn0EepromCmd) &
1279				     0x8000) == 0)
1280					break;
1281			}
1282			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1283		}
1284	}
1285	for (i = 0; i < 0x18; i++)
1286		checksum ^= eeprom[i];
1287	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1288	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1289		while (i < 0x21)
1290			checksum ^= eeprom[i++];
1291		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1292	}
1293	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1294		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1295	for (i = 0; i < 3; i++)
1296		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1297	if (print_info)
1298		pr_cont(" %pM", dev->dev_addr);
1299	/* Unfortunately an all zero eeprom passes the checksum and this
1300	   gets found in the wild in failure cases. Crypto is hard 8) */
1301	if (!is_valid_ether_addr(dev->dev_addr)) {
1302		retval = -EINVAL;
1303		pr_err("*** EEPROM MAC address is invalid.\n");
1304		goto free_ring;	/* With every pack */
1305	}
1306	for (i = 0; i < 6; i++)
1307		window_write8(vp, dev->dev_addr[i], 2, i);
1308
1309	if (print_info)
1310		pr_cont(", IRQ %d\n", dev->irq);
1311	/* Tell them about an invalid IRQ. */
1312	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1313		pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1314			dev->irq);
1315
1316	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1317	if (print_info) {
1318		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1319			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1320			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1321	}
1322
1323
1324	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1325		unsigned short n;
1326
1327		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1328		if (!vp->cb_fn_base) {
1329			retval = -ENOMEM;
1330			goto free_ring;
1331		}
1332
1333		if (print_info) {
1334			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1335				print_name,
1336				(unsigned long long)pci_resource_start(pdev, 2),
1337				vp->cb_fn_base);
1338		}
1339
1340		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1341		if (vp->drv_flags & INVERT_LED_PWR)
1342			n |= 0x10;
1343		if (vp->drv_flags & INVERT_MII_PWR)
1344			n |= 0x4000;
1345		window_write16(vp, n, 2, Wn2_ResetOptions);
1346		if (vp->drv_flags & WNO_XCVR_PWR) {
1347			window_write16(vp, 0x0800, 0, 0);
1348		}
1349	}
1350
1351	/* Extract our information from the EEPROM data. */
1352	vp->info1 = eeprom[13];
1353	vp->info2 = eeprom[15];
1354	vp->capabilities = eeprom[16];
1355
1356	if (vp->info1 & 0x8000) {
1357		vp->full_duplex = 1;
1358		if (print_info)
1359			pr_info("Full duplex capable\n");
1360	}
1361
1362	{
1363		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1364		unsigned int config;
1365		vp->available_media = window_read16(vp, 3, Wn3_Options);
1366		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1367			vp->available_media = 0x40;
1368		config = window_read32(vp, 3, Wn3_Config);
1369		if (print_info) {
1370			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1371				config, window_read16(vp, 3, Wn3_Options));
1372			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1373				   8 << RAM_SIZE(config),
1374				   RAM_WIDTH(config) ? "word" : "byte",
1375				   ram_split[RAM_SPLIT(config)],
1376				   AUTOSELECT(config) ? "autoselect/" : "",
1377				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1378				   media_tbl[XCVR(config)].name);
1379		}
1380		vp->default_media = XCVR(config);
1381		if (vp->default_media == XCVR_NWAY)
1382			vp->has_nway = 1;
1383		vp->autoselect = AUTOSELECT(config);
1384	}
1385
1386	if (vp->media_override != 7) {
1387		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1388				print_name, vp->media_override,
1389				media_tbl[vp->media_override].name);
1390		dev->if_port = vp->media_override;
1391	} else
1392		dev->if_port = vp->default_media;
1393
1394	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1395		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1396		int phy, phy_idx = 0;
1397		mii_preamble_required++;
1398		if (vp->drv_flags & EXTRA_PREAMBLE)
1399			mii_preamble_required++;
1400		mdio_sync(vp, 32);
1401		mdio_read(dev, 24, MII_BMSR);
1402		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1403			int mii_status, phyx;
1404
1405			/*
1406			 * For the 3c905CX we look at index 24 first, because it bogusly
1407			 * reports an external PHY at all indices
1408			 */
1409			if (phy == 0)
1410				phyx = 24;
1411			else if (phy <= 24)
1412				phyx = phy - 1;
1413			else
1414				phyx = phy;
1415			mii_status = mdio_read(dev, phyx, MII_BMSR);
1416			if (mii_status  &&  mii_status != 0xffff) {
1417				vp->phys[phy_idx++] = phyx;
1418				if (print_info) {
1419					pr_info("  MII transceiver found at address %d, status %4x.\n",
1420						phyx, mii_status);
1421				}
1422				if ((mii_status & 0x0040) == 0)
1423					mii_preamble_required++;
1424			}
1425		}
1426		mii_preamble_required--;
1427		if (phy_idx == 0) {
1428			pr_warn("  ***WARNING*** No MII transceivers found!\n");
1429			vp->phys[0] = 24;
1430		} else {
1431			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1432			if (vp->full_duplex) {
1433				/* Only advertise the FD media types. */
1434				vp->advertising &= ~0x02A0;
1435				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1436			}
1437		}
1438		vp->mii.phy_id = vp->phys[0];
1439	}
1440
1441	if (vp->capabilities & CapBusMaster) {
1442		vp->full_bus_master_tx = 1;
1443		if (print_info) {
1444			pr_info("  Enabling bus-master transmits and %s receives.\n",
1445			(vp->info2 & 1) ? "early" : "whole-frame" );
1446		}
1447		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1448		vp->bus_master = 0;		/* AKPM: vortex only */
1449	}
1450
1451	/* The 3c59x-specific entries in the device structure. */
1452	if (vp->full_bus_master_tx) {
1453		dev->netdev_ops = &boomrang_netdev_ops;
1454		/* Actually, it still should work with iommu. */
1455		if (card_idx < MAX_UNITS &&
1456		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1457				hw_checksums[card_idx] == 1)) {
1458			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1459		}
1460	} else
1461		dev->netdev_ops =  &vortex_netdev_ops;
1462
1463	if (print_info) {
1464		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1465				print_name,
1466				(dev->features & NETIF_F_SG) ? "en":"dis",
1467				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1468	}
1469
1470	dev->ethtool_ops = &vortex_ethtool_ops;
1471	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1472
1473	if (pdev) {
1474		vp->pm_state_valid = 1;
1475		pci_save_state(pdev);
1476 		acpi_set_WOL(dev);
1477	}
1478	retval = register_netdev(dev);
1479	if (retval == 0)
1480		return 0;
1481
1482free_ring:
1483	pci_free_consistent(pdev,
1484						sizeof(struct boom_rx_desc) * RX_RING_SIZE
1485							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1486						vp->rx_ring,
1487						vp->rx_ring_dma);
1488free_device:
1489	free_netdev(dev);
1490	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1491out:
1492	return retval;
1493}
1494
1495static void
1496issue_and_wait(struct net_device *dev, int cmd)
1497{
1498	struct vortex_private *vp = netdev_priv(dev);
1499	void __iomem *ioaddr = vp->ioaddr;
1500	int i;
1501
1502	iowrite16(cmd, ioaddr + EL3_CMD);
1503	for (i = 0; i < 2000; i++) {
1504		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1505			return;
1506	}
1507
1508	/* OK, that didn't work.  Do it the slow way.  One second */
1509	for (i = 0; i < 100000; i++) {
1510		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1511			if (vortex_debug > 1)
1512				pr_info("%s: command 0x%04x took %d usecs\n",
1513					   dev->name, cmd, i * 10);
1514			return;
1515		}
1516		udelay(10);
1517	}
1518	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1519			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1520}
1521
1522static void
1523vortex_set_duplex(struct net_device *dev)
1524{
1525	struct vortex_private *vp = netdev_priv(dev);
1526
1527	pr_info("%s:  setting %s-duplex.\n",
1528		dev->name, (vp->full_duplex) ? "full" : "half");
1529
1530	/* Set the full-duplex bit. */
1531	window_write16(vp,
1532		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1533		       (vp->large_frames ? 0x40 : 0) |
1534		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1535			0x100 : 0),
1536		       3, Wn3_MAC_Ctrl);
1537}
1538
1539static void vortex_check_media(struct net_device *dev, unsigned int init)
1540{
1541	struct vortex_private *vp = netdev_priv(dev);
1542	unsigned int ok_to_print = 0;
1543
1544	if (vortex_debug > 3)
1545		ok_to_print = 1;
1546
1547	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1548		vp->full_duplex = vp->mii.full_duplex;
1549		vortex_set_duplex(dev);
1550	} else if (init) {
1551		vortex_set_duplex(dev);
1552	}
1553}
1554
1555static int
1556vortex_up(struct net_device *dev)
1557{
1558	struct vortex_private *vp = netdev_priv(dev);
1559	void __iomem *ioaddr = vp->ioaddr;
1560	unsigned int config;
1561	int i, mii_reg1, mii_reg5, err = 0;
1562
1563	if (VORTEX_PCI(vp)) {
1564		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1565		if (vp->pm_state_valid)
1566			pci_restore_state(VORTEX_PCI(vp));
1567		err = pci_enable_device(VORTEX_PCI(vp));
1568		if (err) {
1569			pr_warn("%s: Could not enable device\n", dev->name);
1570			goto err_out;
1571		}
1572	}
1573
1574	/* Before initializing select the active media port. */
1575	config = window_read32(vp, 3, Wn3_Config);
1576
1577	if (vp->media_override != 7) {
1578		pr_info("%s: Media override to transceiver %d (%s).\n",
1579			   dev->name, vp->media_override,
1580			   media_tbl[vp->media_override].name);
1581		dev->if_port = vp->media_override;
1582	} else if (vp->autoselect) {
1583		if (vp->has_nway) {
1584			if (vortex_debug > 1)
1585				pr_info("%s: using NWAY device table, not %d\n",
1586								dev->name, dev->if_port);
1587			dev->if_port = XCVR_NWAY;
1588		} else {
1589			/* Find first available media type, starting with 100baseTx. */
1590			dev->if_port = XCVR_100baseTx;
1591			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1592				dev->if_port = media_tbl[dev->if_port].next;
1593			if (vortex_debug > 1)
1594				pr_info("%s: first available media type: %s\n",
1595					dev->name, media_tbl[dev->if_port].name);
1596		}
1597	} else {
1598		dev->if_port = vp->default_media;
1599		if (vortex_debug > 1)
1600			pr_info("%s: using default media %s\n",
1601				dev->name, media_tbl[dev->if_port].name);
1602	}
1603
1604	init_timer(&vp->timer);
1605	vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1606	vp->timer.data = (unsigned long)dev;
1607	vp->timer.function = vortex_timer;		/* timer handler */
1608	add_timer(&vp->timer);
1609
1610	init_timer(&vp->rx_oom_timer);
1611	vp->rx_oom_timer.data = (unsigned long)dev;
1612	vp->rx_oom_timer.function = rx_oom_timer;
1613
1614	if (vortex_debug > 1)
1615		pr_debug("%s: Initial media type %s.\n",
1616			   dev->name, media_tbl[dev->if_port].name);
1617
1618	vp->full_duplex = vp->mii.force_media;
1619	config = BFINS(config, dev->if_port, 20, 4);
1620	if (vortex_debug > 6)
1621		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1622	window_write32(vp, config, 3, Wn3_Config);
1623
1624	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1625		mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1626		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1627		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1628		vp->mii.full_duplex = vp->full_duplex;
1629
1630		vortex_check_media(dev, 1);
1631	}
1632	else
1633		vortex_set_duplex(dev);
1634
1635	issue_and_wait(dev, TxReset);
1636	/*
1637	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1638	 */
1639	issue_and_wait(dev, RxReset|0x04);
1640
1641
1642	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1643
1644	if (vortex_debug > 1) {
1645		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1646			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1647	}
1648
1649	/* Set the station address and mask in window 2 each time opened. */
1650	for (i = 0; i < 6; i++)
1651		window_write8(vp, dev->dev_addr[i], 2, i);
1652	for (; i < 12; i+=2)
1653		window_write16(vp, 0, 2, i);
1654
1655	if (vp->cb_fn_base) {
1656		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1657		if (vp->drv_flags & INVERT_LED_PWR)
1658			n |= 0x10;
1659		if (vp->drv_flags & INVERT_MII_PWR)
1660			n |= 0x4000;
1661		window_write16(vp, n, 2, Wn2_ResetOptions);
1662	}
1663
1664	if (dev->if_port == XCVR_10base2)
1665		/* Start the thinnet transceiver. We should really wait 50ms...*/
1666		iowrite16(StartCoax, ioaddr + EL3_CMD);
1667	if (dev->if_port != XCVR_NWAY) {
1668		window_write16(vp,
1669			       (window_read16(vp, 4, Wn4_Media) &
1670				~(Media_10TP|Media_SQE)) |
1671			       media_tbl[dev->if_port].media_bits,
1672			       4, Wn4_Media);
1673	}
1674
1675	/* Switch to the stats window, and clear all stats by reading. */
1676	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1677	for (i = 0; i < 10; i++)
1678		window_read8(vp, 6, i);
1679	window_read16(vp, 6, 10);
1680	window_read16(vp, 6, 12);
1681	/* New: On the Vortex we must also clear the BadSSD counter. */
1682	window_read8(vp, 4, 12);
1683	/* ..and on the Boomerang we enable the extra statistics bits. */
1684	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1685
1686	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1687		vp->cur_rx = vp->dirty_rx = 0;
1688		/* Initialize the RxEarly register as recommended. */
1689		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1690		iowrite32(0x0020, ioaddr + PktStatus);
1691		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1692	}
1693	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1694		vp->cur_tx = vp->dirty_tx = 0;
1695		if (vp->drv_flags & IS_BOOMERANG)
1696			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1697		/* Clear the Rx, Tx rings. */
1698		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1699			vp->rx_ring[i].status = 0;
1700		for (i = 0; i < TX_RING_SIZE; i++)
1701			vp->tx_skbuff[i] = NULL;
1702		iowrite32(0, ioaddr + DownListPtr);
1703	}
1704	/* Set receiver mode: presumably accept b-case and phys addr only. */
1705	set_rx_mode(dev);
1706	/* enable 802.1q tagged frames */
1707	set_8021q_mode(dev, 1);
1708	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1709
1710	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1711	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1712	/* Allow status bits to be seen. */
1713	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1714		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1715		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1716		(vp->bus_master ? DMADone : 0);
1717	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1718		(vp->full_bus_master_rx ? 0 : RxComplete) |
1719		StatsFull | HostError | TxComplete | IntReq
1720		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1721	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1722	/* Ack all pending events, and set active indicator mask. */
1723	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1724		 ioaddr + EL3_CMD);
1725	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1726	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1727		iowrite32(0x8000, vp->cb_fn_base + 4);
1728	netif_start_queue (dev);
1729err_out:
1730	return err;
1731}
1732
1733static int
1734vortex_open(struct net_device *dev)
1735{
1736	struct vortex_private *vp = netdev_priv(dev);
1737	int i;
1738	int retval;
1739
1740	/* Use the now-standard shared IRQ implementation. */
1741	if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1742				boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1743		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1744		goto err;
1745	}
1746
1747	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1748		if (vortex_debug > 2)
1749			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1750		for (i = 0; i < RX_RING_SIZE; i++) {
1751			struct sk_buff *skb;
1752			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1753			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1754			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1755
1756			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1757						 GFP_KERNEL);
1758			vp->rx_skbuff[i] = skb;
1759			if (skb == NULL)
1760				break;			/* Bad news!  */
1761
1762			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1763			vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1764		}
1765		if (i != RX_RING_SIZE) {
1766			int j;
1767			pr_emerg("%s: no memory for rx ring\n", dev->name);
1768			for (j = 0; j < i; j++) {
1769				if (vp->rx_skbuff[j]) {
1770					dev_kfree_skb(vp->rx_skbuff[j]);
1771					vp->rx_skbuff[j] = NULL;
1772				}
1773			}
1774			retval = -ENOMEM;
1775			goto err_free_irq;
1776		}
1777		/* Wrap the ring. */
1778		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1779	}
1780
1781	retval = vortex_up(dev);
1782	if (!retval)
1783		goto out;
1784
1785err_free_irq:
1786	free_irq(dev->irq, dev);
1787err:
1788	if (vortex_debug > 1)
1789		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1790out:
1791	return retval;
1792}
1793
1794static void
1795vortex_timer(unsigned long data)
1796{
1797	struct net_device *dev = (struct net_device *)data;
1798	struct vortex_private *vp = netdev_priv(dev);
1799	void __iomem *ioaddr = vp->ioaddr;
1800	int next_tick = 60*HZ;
1801	int ok = 0;
1802	int media_status;
1803
1804	if (vortex_debug > 2) {
1805		pr_debug("%s: Media selection timer tick happened, %s.\n",
1806			   dev->name, media_tbl[dev->if_port].name);
1807		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1808	}
1809
1810	media_status = window_read16(vp, 4, Wn4_Media);
1811	switch (dev->if_port) {
1812	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1813		if (media_status & Media_LnkBeat) {
1814			netif_carrier_on(dev);
1815			ok = 1;
1816			if (vortex_debug > 1)
1817				pr_debug("%s: Media %s has link beat, %x.\n",
1818					   dev->name, media_tbl[dev->if_port].name, media_status);
1819		} else {
1820			netif_carrier_off(dev);
1821			if (vortex_debug > 1) {
1822				pr_debug("%s: Media %s has no link beat, %x.\n",
1823					   dev->name, media_tbl[dev->if_port].name, media_status);
1824			}
1825		}
1826		break;
1827	case XCVR_MII: case XCVR_NWAY:
1828		{
1829			ok = 1;
1830			vortex_check_media(dev, 0);
1831		}
1832		break;
1833	  default:					/* Other media types handled by Tx timeouts. */
1834		if (vortex_debug > 1)
1835		  pr_debug("%s: Media %s has no indication, %x.\n",
1836				 dev->name, media_tbl[dev->if_port].name, media_status);
1837		ok = 1;
1838	}
1839
1840	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1841		next_tick = 5*HZ;
1842
1843	if (vp->medialock)
1844		goto leave_media_alone;
1845
1846	if (!ok) {
1847		unsigned int config;
1848
1849		spin_lock_irq(&vp->lock);
1850
1851		do {
1852			dev->if_port = media_tbl[dev->if_port].next;
1853		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1854		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1855		  dev->if_port = vp->default_media;
1856		  if (vortex_debug > 1)
1857			pr_debug("%s: Media selection failing, using default %s port.\n",
1858				   dev->name, media_tbl[dev->if_port].name);
1859		} else {
1860			if (vortex_debug > 1)
1861				pr_debug("%s: Media selection failed, now trying %s port.\n",
1862					   dev->name, media_tbl[dev->if_port].name);
1863			next_tick = media_tbl[dev->if_port].wait;
1864		}
1865		window_write16(vp,
1866			       (media_status & ~(Media_10TP|Media_SQE)) |
1867			       media_tbl[dev->if_port].media_bits,
1868			       4, Wn4_Media);
1869
1870		config = window_read32(vp, 3, Wn3_Config);
1871		config = BFINS(config, dev->if_port, 20, 4);
1872		window_write32(vp, config, 3, Wn3_Config);
1873
1874		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1875			 ioaddr + EL3_CMD);
1876		if (vortex_debug > 1)
1877			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1878		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1879
1880		spin_unlock_irq(&vp->lock);
1881	}
1882
1883leave_media_alone:
1884	if (vortex_debug > 2)
1885	  pr_debug("%s: Media selection timer finished, %s.\n",
1886			 dev->name, media_tbl[dev->if_port].name);
1887
1888	mod_timer(&vp->timer, RUN_AT(next_tick));
1889	if (vp->deferred)
1890		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1891}
1892
1893static void vortex_tx_timeout(struct net_device *dev)
1894{
1895	struct vortex_private *vp = netdev_priv(dev);
1896	void __iomem *ioaddr = vp->ioaddr;
1897
1898	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1899		   dev->name, ioread8(ioaddr + TxStatus),
1900		   ioread16(ioaddr + EL3_STATUS));
1901	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1902			window_read16(vp, 4, Wn4_NetDiag),
1903			window_read16(vp, 4, Wn4_Media),
1904			ioread32(ioaddr + PktStatus),
1905			window_read16(vp, 4, Wn4_FIFODiag));
1906	/* Slight code bloat to be user friendly. */
1907	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1908		pr_err("%s: Transmitter encountered 16 collisions --"
1909			   " network cable problem?\n", dev->name);
1910	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1911		pr_err("%s: Interrupt posted but not delivered --"
1912			   " IRQ blocked by another device?\n", dev->name);
1913		/* Bad idea here.. but we might as well handle a few events. */
1914		{
1915			/*
1916			 * Block interrupts because vortex_interrupt does a bare spin_lock()
1917			 */
1918			unsigned long flags;
1919			local_irq_save(flags);
1920			if (vp->full_bus_master_tx)
1921				boomerang_interrupt(dev->irq, dev);
1922			else
1923				vortex_interrupt(dev->irq, dev);
1924			local_irq_restore(flags);
1925		}
1926	}
1927
1928	if (vortex_debug > 0)
1929		dump_tx_ring(dev);
1930
1931	issue_and_wait(dev, TxReset);
1932
1933	dev->stats.tx_errors++;
1934	if (vp->full_bus_master_tx) {
1935		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1936		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1937			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1938				 ioaddr + DownListPtr);
1939		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1940			netif_wake_queue (dev);
1941		if (vp->drv_flags & IS_BOOMERANG)
1942			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1943		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1944	} else {
1945		dev->stats.tx_dropped++;
1946		netif_wake_queue(dev);
1947	}
1948
1949	/* Issue Tx Enable */
1950	iowrite16(TxEnable, ioaddr + EL3_CMD);
1951	dev->trans_start = jiffies; /* prevent tx timeout */
1952}
1953
1954/*
1955 * Handle uncommon interrupt sources.  This is a separate routine to minimize
1956 * the cache impact.
1957 */
1958static void
1959vortex_error(struct net_device *dev, int status)
1960{
1961	struct vortex_private *vp = netdev_priv(dev);
1962	void __iomem *ioaddr = vp->ioaddr;
1963	int do_tx_reset = 0, reset_mask = 0;
1964	unsigned char tx_status = 0;
1965
1966	if (vortex_debug > 2) {
1967		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1968	}
1969
1970	if (status & TxComplete) {			/* Really "TxError" for us. */
1971		tx_status = ioread8(ioaddr + TxStatus);
1972		/* Presumably a tx-timeout. We must merely re-enable. */
1973		if (vortex_debug > 2 ||
1974		    (tx_status != 0x88 && vortex_debug > 0)) {
1975			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1976				   dev->name, tx_status);
1977			if (tx_status == 0x82) {
1978				pr_err("Probably a duplex mismatch.  See "
1979						"Documentation/networking/vortex.txt\n");
1980			}
1981			dump_tx_ring(dev);
1982		}
1983		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1984		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1985		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1986		iowrite8(0, ioaddr + TxStatus);
1987		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1988			do_tx_reset = 1;
1989		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1990			do_tx_reset = 1;
1991			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1992		} else {				/* Merely re-enable the transmitter. */
1993			iowrite16(TxEnable, ioaddr + EL3_CMD);
1994		}
1995	}
1996
1997	if (status & RxEarly)				/* Rx early is unused. */
1998		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1999
2000	if (status & StatsFull) {			/* Empty statistics. */
2001		static int DoneDidThat;
2002		if (vortex_debug > 4)
2003			pr_debug("%s: Updating stats.\n", dev->name);
2004		update_stats(ioaddr, dev);
2005		/* HACK: Disable statistics as an interrupt source. */
2006		/* This occurs when we have the wrong media type! */
2007		if (DoneDidThat == 0  &&
2008			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2009			pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
2010				dev->name);
2011			iowrite16(SetIntrEnb |
2012				  (window_read16(vp, 5, 10) & ~StatsFull),
2013				  ioaddr + EL3_CMD);
2014			vp->intr_enable &= ~StatsFull;
2015			DoneDidThat++;
2016		}
2017	}
2018	if (status & IntReq) {		/* Restore all interrupt sources.  */
2019		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2020		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2021	}
2022	if (status & HostError) {
2023		u16 fifo_diag;
2024		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2025		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2026			   dev->name, fifo_diag);
2027		/* Adapter failure requires Tx/Rx reset and reinit. */
2028		if (vp->full_bus_master_tx) {
2029			int bus_status = ioread32(ioaddr + PktStatus);
2030			/* 0x80000000 PCI master abort. */
2031			/* 0x40000000 PCI target abort. */
2032			if (vortex_debug)
2033				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2034
2035			/* In this case, blow the card away */
2036			/* Must not enter D3 or we can't legally issue the reset! */
2037			vortex_down(dev, 0);
2038			issue_and_wait(dev, TotalReset | 0xff);
2039			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2040		} else if (fifo_diag & 0x0400)
2041			do_tx_reset = 1;
2042		if (fifo_diag & 0x3000) {
2043			/* Reset Rx fifo and upload logic */
2044			issue_and_wait(dev, RxReset|0x07);
2045			/* Set the Rx filter to the current state. */
2046			set_rx_mode(dev);
2047			/* enable 802.1q VLAN tagged frames */
2048			set_8021q_mode(dev, 1);
2049			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2050			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2051		}
2052	}
2053
2054	if (do_tx_reset) {
2055		issue_and_wait(dev, TxReset|reset_mask);
2056		iowrite16(TxEnable, ioaddr + EL3_CMD);
2057		if (!vp->full_bus_master_tx)
2058			netif_wake_queue(dev);
2059	}
2060}
2061
2062static netdev_tx_t
2063vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2064{
2065	struct vortex_private *vp = netdev_priv(dev);
2066	void __iomem *ioaddr = vp->ioaddr;
2067
2068	/* Put out the doubleword header... */
2069	iowrite32(skb->len, ioaddr + TX_FIFO);
2070	if (vp->bus_master) {
2071		/* Set the bus-master controller to transfer the packet. */
2072		int len = (skb->len + 3) & ~3;
2073		vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2074						PCI_DMA_TODEVICE);
2075		spin_lock_irq(&vp->window_lock);
2076		window_set(vp, 7);
2077		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2078		iowrite16(len, ioaddr + Wn7_MasterLen);
2079		spin_unlock_irq(&vp->window_lock);
2080		vp->tx_skb = skb;
2081		skb_tx_timestamp(skb);
2082		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2083		/* netif_wake_queue() will be called at the DMADone interrupt. */
2084	} else {
2085		/* ... and the packet rounded to a doubleword. */
2086		skb_tx_timestamp(skb);
2087		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2088		dev_consume_skb_any (skb);
2089		if (ioread16(ioaddr + TxFree) > 1536) {
2090			netif_start_queue (dev);	/* AKPM: redundant? */
2091		} else {
2092			/* Interrupt us when the FIFO has room for max-sized packet. */
2093			netif_stop_queue(dev);
2094			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2095		}
2096	}
2097
2098
2099	/* Clear the Tx status stack. */
2100	{
2101		int tx_status;
2102		int i = 32;
2103
2104		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2105			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2106				if (vortex_debug > 2)
2107				  pr_debug("%s: Tx error, status %2.2x.\n",
2108						 dev->name, tx_status);
2109				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2110				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2111				if (tx_status & 0x30) {
2112					issue_and_wait(dev, TxReset);
2113				}
2114				iowrite16(TxEnable, ioaddr + EL3_CMD);
2115			}
2116			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2117		}
2118	}
2119	return NETDEV_TX_OK;
2120}
2121
2122static netdev_tx_t
2123boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2124{
2125	struct vortex_private *vp = netdev_priv(dev);
2126	void __iomem *ioaddr = vp->ioaddr;
2127	/* Calculate the next Tx descriptor entry. */
2128	int entry = vp->cur_tx % TX_RING_SIZE;
2129	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2130	unsigned long flags;
2131	dma_addr_t dma_addr;
2132
2133	if (vortex_debug > 6) {
2134		pr_debug("boomerang_start_xmit()\n");
2135		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2136			   dev->name, vp->cur_tx);
2137	}
2138
2139	/*
2140	 * We can't allow a recursion from our interrupt handler back into the
2141	 * tx routine, as they take the same spin lock, and that causes
2142	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2143	 * a bit
2144	 */
2145	if (vp->handling_irq)
2146		return NETDEV_TX_BUSY;
2147
2148	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2149		if (vortex_debug > 0)
2150			pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2151				dev->name);
2152		netif_stop_queue(dev);
2153		return NETDEV_TX_BUSY;
2154	}
2155
2156	vp->tx_skbuff[entry] = skb;
2157
2158	vp->tx_ring[entry].next = 0;
2159#if DO_ZEROCOPY
2160	if (skb->ip_summed != CHECKSUM_PARTIAL)
2161			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2162	else
2163			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2164
2165	if (!skb_shinfo(skb)->nr_frags) {
2166		dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len,
2167					  PCI_DMA_TODEVICE);
2168		if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2169			goto out_dma_err;
2170
2171		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2172		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2173	} else {
2174		int i;
2175
2176		dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data,
2177					  skb_headlen(skb), PCI_DMA_TODEVICE);
2178		if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2179			goto out_dma_err;
2180
2181		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2182		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2183
2184		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2185			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2186
2187			dma_addr = skb_frag_dma_map(&VORTEX_PCI(vp)->dev, frag,
2188						    0,
2189						    frag->size,
2190						    DMA_TO_DEVICE);
2191			if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) {
2192				for(i = i-1; i >= 0; i--)
2193					dma_unmap_page(&VORTEX_PCI(vp)->dev,
2194						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2195						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2196						       DMA_TO_DEVICE);
2197
2198				pci_unmap_single(VORTEX_PCI(vp),
2199						 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2200						 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2201						 PCI_DMA_TODEVICE);
2202
2203				goto out_dma_err;
2204			}
2205
2206			vp->tx_ring[entry].frag[i+1].addr =
2207						cpu_to_le32(dma_addr);
2208
2209			if (i == skb_shinfo(skb)->nr_frags-1)
2210					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2211			else
2212					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2213		}
2214	}
2215#else
2216	dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE);
2217	if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2218		goto out_dma_err;
2219	vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2220	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2221	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2222#endif
2223
2224	spin_lock_irqsave(&vp->lock, flags);
2225	/* Wait for the stall to complete. */
2226	issue_and_wait(dev, DownStall);
2227	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2228	if (ioread32(ioaddr + DownListPtr) == 0) {
2229		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2230		vp->queued_packet++;
2231	}
2232
2233	vp->cur_tx++;
2234	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2235		netif_stop_queue (dev);
2236	} else {					/* Clear previous interrupt enable. */
2237#if defined(tx_interrupt_mitigation)
2238		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2239		 * were selected, this would corrupt DN_COMPLETE. No?
2240		 */
2241		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2242#endif
2243	}
2244	skb_tx_timestamp(skb);
2245	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2246	spin_unlock_irqrestore(&vp->lock, flags);
2247out:
2248	return NETDEV_TX_OK;
2249out_dma_err:
2250	dev_err(&VORTEX_PCI(vp)->dev, "Error mapping dma buffer\n");
2251	goto out;
2252}
2253
2254/* The interrupt handler does all of the Rx thread work and cleans up
2255   after the Tx thread. */
2256
2257/*
2258 * This is the ISR for the vortex series chips.
2259 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2260 */
2261
2262static irqreturn_t
2263vortex_interrupt(int irq, void *dev_id)
2264{
2265	struct net_device *dev = dev_id;
2266	struct vortex_private *vp = netdev_priv(dev);
2267	void __iomem *ioaddr;
2268	int status;
2269	int work_done = max_interrupt_work;
2270	int handled = 0;
2271
2272	ioaddr = vp->ioaddr;
2273	spin_lock(&vp->lock);
2274
2275	status = ioread16(ioaddr + EL3_STATUS);
2276
2277	if (vortex_debug > 6)
2278		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2279
2280	if ((status & IntLatch) == 0)
2281		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2282	handled = 1;
2283
2284	if (status & IntReq) {
2285		status |= vp->deferred;
2286		vp->deferred = 0;
2287	}
2288
2289	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2290		goto handler_exit;
2291
2292	if (vortex_debug > 4)
2293		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2294			   dev->name, status, ioread8(ioaddr + Timer));
2295
2296	spin_lock(&vp->window_lock);
2297	window_set(vp, 7);
2298
2299	do {
2300		if (vortex_debug > 5)
2301				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2302					   dev->name, status);
2303		if (status & RxComplete)
2304			vortex_rx(dev);
2305
2306		if (status & TxAvailable) {
2307			if (vortex_debug > 5)
2308				pr_debug("	TX room bit was handled.\n");
2309			/* There's room in the FIFO for a full-sized packet. */
2310			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2311			netif_wake_queue (dev);
2312		}
2313
2314		if (status & DMADone) {
2315			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2316				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2317				pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2318				dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2319				if (ioread16(ioaddr + TxFree) > 1536) {
2320					/*
2321					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2322					 * insufficient FIFO room, the TxAvailable test will succeed and call
2323					 * netif_wake_queue()
2324					 */
2325					netif_wake_queue(dev);
2326				} else { /* Interrupt when FIFO has room for max-sized packet. */
2327					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2328					netif_stop_queue(dev);
2329				}
2330			}
2331		}
2332		/* Check for all uncommon interrupts at once. */
2333		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2334			if (status == 0xffff)
2335				break;
2336			if (status & RxEarly)
2337				vortex_rx(dev);
2338			spin_unlock(&vp->window_lock);
2339			vortex_error(dev, status);
2340			spin_lock(&vp->window_lock);
2341			window_set(vp, 7);
2342		}
2343
2344		if (--work_done < 0) {
2345			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2346				dev->name, status);
2347			/* Disable all pending interrupts. */
2348			do {
2349				vp->deferred |= status;
2350				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2351					 ioaddr + EL3_CMD);
2352				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2353			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2354			/* The timer will reenable interrupts. */
2355			mod_timer(&vp->timer, jiffies + 1*HZ);
2356			break;
2357		}
2358		/* Acknowledge the IRQ. */
2359		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2360	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2361
2362	spin_unlock(&vp->window_lock);
2363
2364	if (vortex_debug > 4)
2365		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2366			   dev->name, status);
2367handler_exit:
2368	spin_unlock(&vp->lock);
2369	return IRQ_RETVAL(handled);
2370}
2371
2372/*
2373 * This is the ISR for the boomerang series chips.
2374 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2375 */
2376
2377static irqreturn_t
2378boomerang_interrupt(int irq, void *dev_id)
2379{
2380	struct net_device *dev = dev_id;
2381	struct vortex_private *vp = netdev_priv(dev);
2382	void __iomem *ioaddr;
2383	int status;
2384	int work_done = max_interrupt_work;
2385
2386	ioaddr = vp->ioaddr;
2387
2388
2389	/*
2390	 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2391	 * and boomerang_start_xmit
2392	 */
2393	spin_lock(&vp->lock);
2394	vp->handling_irq = 1;
2395
2396	status = ioread16(ioaddr + EL3_STATUS);
2397
2398	if (vortex_debug > 6)
2399		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2400
2401	if ((status & IntLatch) == 0)
2402		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2403
2404	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2405		if (vortex_debug > 1)
2406			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2407		goto handler_exit;
2408	}
2409
2410	if (status & IntReq) {
2411		status |= vp->deferred;
2412		vp->deferred = 0;
2413	}
2414
2415	if (vortex_debug > 4)
2416		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2417			   dev->name, status, ioread8(ioaddr + Timer));
2418	do {
2419		if (vortex_debug > 5)
2420				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2421					   dev->name, status);
2422		if (status & UpComplete) {
2423			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2424			if (vortex_debug > 5)
2425				pr_debug("boomerang_interrupt->boomerang_rx\n");
2426			boomerang_rx(dev);
2427		}
2428
2429		if (status & DownComplete) {
2430			unsigned int dirty_tx = vp->dirty_tx;
2431
2432			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2433			while (vp->cur_tx - dirty_tx > 0) {
2434				int entry = dirty_tx % TX_RING_SIZE;
2435#if 1	/* AKPM: the latter is faster, but cyclone-only */
2436				if (ioread32(ioaddr + DownListPtr) ==
2437					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2438					break;			/* It still hasn't been processed. */
2439#else
2440				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2441					break;			/* It still hasn't been processed. */
2442#endif
2443
2444				if (vp->tx_skbuff[entry]) {
2445					struct sk_buff *skb = vp->tx_skbuff[entry];
2446#if DO_ZEROCOPY
2447					int i;
2448					for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2449							pci_unmap_single(VORTEX_PCI(vp),
2450											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2451											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2452											 PCI_DMA_TODEVICE);
2453#else
2454					pci_unmap_single(VORTEX_PCI(vp),
2455						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2456#endif
2457					dev_kfree_skb_irq(skb);
2458					vp->tx_skbuff[entry] = NULL;
2459				} else {
2460					pr_debug("boomerang_interrupt: no skb!\n");
2461				}
2462				/* dev->stats.tx_packets++;  Counted below. */
2463				dirty_tx++;
2464			}
2465			vp->dirty_tx = dirty_tx;
2466			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2467				if (vortex_debug > 6)
2468					pr_debug("boomerang_interrupt: wake queue\n");
2469				netif_wake_queue (dev);
2470			}
2471		}
2472
2473		/* Check for all uncommon interrupts at once. */
2474		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2475			vortex_error(dev, status);
2476
2477		if (--work_done < 0) {
2478			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2479				dev->name, status);
2480			/* Disable all pending interrupts. */
2481			do {
2482				vp->deferred |= status;
2483				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2484					 ioaddr + EL3_CMD);
2485				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2486			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2487			/* The timer will reenable interrupts. */
2488			mod_timer(&vp->timer, jiffies + 1*HZ);
2489			break;
2490		}
2491		/* Acknowledge the IRQ. */
2492		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2493		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2494			iowrite32(0x8000, vp->cb_fn_base + 4);
2495
2496	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2497
2498	if (vortex_debug > 4)
2499		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2500			   dev->name, status);
2501handler_exit:
2502	vp->handling_irq = 0;
2503	spin_unlock(&vp->lock);
2504	return IRQ_HANDLED;
2505}
2506
2507static int vortex_rx(struct net_device *dev)
2508{
2509	struct vortex_private *vp = netdev_priv(dev);
2510	void __iomem *ioaddr = vp->ioaddr;
2511	int i;
2512	short rx_status;
2513
2514	if (vortex_debug > 5)
2515		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2516			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2517	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2518		if (rx_status & 0x4000) { /* Error, update stats. */
2519			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2520			if (vortex_debug > 2)
2521				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2522			dev->stats.rx_errors++;
2523			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2524			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2525			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2526			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2527			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2528		} else {
2529			/* The packet length: up to 4.5K!. */
2530			int pkt_len = rx_status & 0x1fff;
2531			struct sk_buff *skb;
2532
2533			skb = netdev_alloc_skb(dev, pkt_len + 5);
2534			if (vortex_debug > 4)
2535				pr_debug("Receiving packet size %d status %4.4x.\n",
2536					   pkt_len, rx_status);
2537			if (skb != NULL) {
2538				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2539				/* 'skb_put()' points to the start of sk_buff data area. */
2540				if (vp->bus_master &&
2541					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2542					dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2543									   pkt_len, PCI_DMA_FROMDEVICE);
2544					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2545					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2546					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2547					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2548						;
2549					pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2550				} else {
2551					ioread32_rep(ioaddr + RX_FIFO,
2552					             skb_put(skb, pkt_len),
2553						     (pkt_len + 3) >> 2);
2554				}
2555				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2556				skb->protocol = eth_type_trans(skb, dev);
2557				netif_rx(skb);
2558				dev->stats.rx_packets++;
2559				/* Wait a limited time to go to next packet. */
2560				for (i = 200; i >= 0; i--)
2561					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2562						break;
2563				continue;
2564			} else if (vortex_debug > 0)
2565				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2566					dev->name, pkt_len);
2567			dev->stats.rx_dropped++;
2568		}
2569		issue_and_wait(dev, RxDiscard);
2570	}
2571
2572	return 0;
2573}
2574
2575static int
2576boomerang_rx(struct net_device *dev)
2577{
2578	struct vortex_private *vp = netdev_priv(dev);
2579	int entry = vp->cur_rx % RX_RING_SIZE;
2580	void __iomem *ioaddr = vp->ioaddr;
2581	int rx_status;
2582	int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2583
2584	if (vortex_debug > 5)
2585		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2586
2587	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2588		if (--rx_work_limit < 0)
2589			break;
2590		if (rx_status & RxDError) { /* Error, update stats. */
2591			unsigned char rx_error = rx_status >> 16;
2592			if (vortex_debug > 2)
2593				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2594			dev->stats.rx_errors++;
2595			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2596			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2597			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2598			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2599			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2600		} else {
2601			/* The packet length: up to 4.5K!. */
2602			int pkt_len = rx_status & 0x1fff;
2603			struct sk_buff *skb;
2604			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2605
2606			if (vortex_debug > 4)
2607				pr_debug("Receiving packet size %d status %4.4x.\n",
2608					   pkt_len, rx_status);
2609
2610			/* Check if the packet is long enough to just accept without
2611			   copying to a properly sized skbuff. */
2612			if (pkt_len < rx_copybreak &&
2613			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2614				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2615				pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2616				/* 'skb_put()' points to the start of sk_buff data area. */
2617				memcpy(skb_put(skb, pkt_len),
2618					   vp->rx_skbuff[entry]->data,
2619					   pkt_len);
2620				pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2621				vp->rx_copy++;
2622			} else {
2623				/* Pass up the skbuff already on the Rx ring. */
2624				skb = vp->rx_skbuff[entry];
2625				vp->rx_skbuff[entry] = NULL;
2626				skb_put(skb, pkt_len);
2627				pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2628				vp->rx_nocopy++;
2629			}
2630			skb->protocol = eth_type_trans(skb, dev);
2631			{					/* Use hardware checksum info. */
2632				int csum_bits = rx_status & 0xee000000;
2633				if (csum_bits &&
2634					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2635					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2636					skb->ip_summed = CHECKSUM_UNNECESSARY;
2637					vp->rx_csumhits++;
2638				}
2639			}
2640			netif_rx(skb);
2641			dev->stats.rx_packets++;
2642		}
2643		entry = (++vp->cur_rx) % RX_RING_SIZE;
2644	}
2645	/* Refill the Rx ring buffers. */
2646	for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2647		struct sk_buff *skb;
2648		entry = vp->dirty_rx % RX_RING_SIZE;
2649		if (vp->rx_skbuff[entry] == NULL) {
2650			skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2651			if (skb == NULL) {
2652				static unsigned long last_jif;
2653				if (time_after(jiffies, last_jif + 10 * HZ)) {
2654					pr_warn("%s: memory shortage\n",
2655						dev->name);
2656					last_jif = jiffies;
2657				}
2658				if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2659					mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2660				break;			/* Bad news!  */
2661			}
2662
2663			vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2664			vp->rx_skbuff[entry] = skb;
2665		}
2666		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2667		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2668	}
2669	return 0;
2670}
2671
2672/*
2673 * If we've hit a total OOM refilling the Rx ring we poll once a second
2674 * for some memory.  Otherwise there is no way to restart the rx process.
2675 */
2676static void
2677rx_oom_timer(unsigned long arg)
2678{
2679	struct net_device *dev = (struct net_device *)arg;
2680	struct vortex_private *vp = netdev_priv(dev);
2681
2682	spin_lock_irq(&vp->lock);
2683	if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)	/* This test is redundant, but makes me feel good */
2684		boomerang_rx(dev);
2685	if (vortex_debug > 1) {
2686		pr_debug("%s: rx_oom_timer %s\n", dev->name,
2687			((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2688	}
2689	spin_unlock_irq(&vp->lock);
2690}
2691
2692static void
2693vortex_down(struct net_device *dev, int final_down)
2694{
2695	struct vortex_private *vp = netdev_priv(dev);
2696	void __iomem *ioaddr = vp->ioaddr;
2697
2698	netif_stop_queue (dev);
2699
2700	del_timer_sync(&vp->rx_oom_timer);
2701	del_timer_sync(&vp->timer);
2702
2703	/* Turn off statistics ASAP.  We update dev->stats below. */
2704	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2705
2706	/* Disable the receiver and transmitter. */
2707	iowrite16(RxDisable, ioaddr + EL3_CMD);
2708	iowrite16(TxDisable, ioaddr + EL3_CMD);
2709
2710	/* Disable receiving 802.1q tagged frames */
2711	set_8021q_mode(dev, 0);
2712
2713	if (dev->if_port == XCVR_10base2)
2714		/* Turn off thinnet power.  Green! */
2715		iowrite16(StopCoax, ioaddr + EL3_CMD);
2716
2717	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2718
2719	update_stats(ioaddr, dev);
2720	if (vp->full_bus_master_rx)
2721		iowrite32(0, ioaddr + UpListPtr);
2722	if (vp->full_bus_master_tx)
2723		iowrite32(0, ioaddr + DownListPtr);
2724
2725	if (final_down && VORTEX_PCI(vp)) {
2726		vp->pm_state_valid = 1;
2727		pci_save_state(VORTEX_PCI(vp));
2728		acpi_set_WOL(dev);
2729	}
2730}
2731
2732static int
2733vortex_close(struct net_device *dev)
2734{
2735	struct vortex_private *vp = netdev_priv(dev);
2736	void __iomem *ioaddr = vp->ioaddr;
2737	int i;
2738
2739	if (netif_device_present(dev))
2740		vortex_down(dev, 1);
2741
2742	if (vortex_debug > 1) {
2743		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2744			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2745		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2746			   " tx_queued %d Rx pre-checksummed %d.\n",
2747			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2748	}
2749
2750#if DO_ZEROCOPY
2751	if (vp->rx_csumhits &&
2752	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2753	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2754		pr_warn("%s supports hardware checksums, and we're not using them!\n",
2755			dev->name);
2756	}
2757#endif
2758
2759	free_irq(dev->irq, dev);
2760
2761	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2762		for (i = 0; i < RX_RING_SIZE; i++)
2763			if (vp->rx_skbuff[i]) {
2764				pci_unmap_single(	VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2765									PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2766				dev_kfree_skb(vp->rx_skbuff[i]);
2767				vp->rx_skbuff[i] = NULL;
2768			}
2769	}
2770	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2771		for (i = 0; i < TX_RING_SIZE; i++) {
2772			if (vp->tx_skbuff[i]) {
2773				struct sk_buff *skb = vp->tx_skbuff[i];
2774#if DO_ZEROCOPY
2775				int k;
2776
2777				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2778						pci_unmap_single(VORTEX_PCI(vp),
2779										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2780										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2781										 PCI_DMA_TODEVICE);
2782#else
2783				pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2784#endif
2785				dev_kfree_skb(skb);
2786				vp->tx_skbuff[i] = NULL;
2787			}
2788		}
2789	}
2790
2791	return 0;
2792}
2793
2794static void
2795dump_tx_ring(struct net_device *dev)
2796{
2797	if (vortex_debug > 0) {
2798	struct vortex_private *vp = netdev_priv(dev);
2799		void __iomem *ioaddr = vp->ioaddr;
2800
2801		if (vp->full_bus_master_tx) {
2802			int i;
2803			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2804
2805			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2806					vp->full_bus_master_tx,
2807					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2808					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2809			pr_err("  Transmit list %8.8x vs. %p.\n",
2810				   ioread32(ioaddr + DownListPtr),
2811				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2812			issue_and_wait(dev, DownStall);
2813			for (i = 0; i < TX_RING_SIZE; i++) {
2814				unsigned int length;
2815
2816#if DO_ZEROCOPY
2817				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2818#else
2819				length = le32_to_cpu(vp->tx_ring[i].length);
2820#endif
2821				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2822					   i, &vp->tx_ring[i], length,
2823					   le32_to_cpu(vp->tx_ring[i].status));
2824			}
2825			if (!stalled)
2826				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2827		}
2828	}
2829}
2830
2831static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2832{
2833	struct vortex_private *vp = netdev_priv(dev);
2834	void __iomem *ioaddr = vp->ioaddr;
2835	unsigned long flags;
2836
2837	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2838		spin_lock_irqsave (&vp->lock, flags);
2839		update_stats(ioaddr, dev);
2840		spin_unlock_irqrestore (&vp->lock, flags);
2841	}
2842	return &dev->stats;
2843}
2844
2845/*  Update statistics.
2846	Unlike with the EL3 we need not worry about interrupts changing
2847	the window setting from underneath us, but we must still guard
2848	against a race condition with a StatsUpdate interrupt updating the
2849	table.  This is done by checking that the ASM (!) code generated uses
2850	atomic updates with '+='.
2851	*/
2852static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2853{
2854	struct vortex_private *vp = netdev_priv(dev);
2855
2856	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2857	/* Switch to the stats window, and read everything. */
2858	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2859	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2860	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2861	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2862	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2863	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2864						    0x30) << 4;
2865	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2866	/* Don't bother with register 9, an extension of registers 6&7.
2867	   If we do use the 6&7 values the atomic update assumption above
2868	   is invalid. */
2869	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2870	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2871	/* Extra stats for get_ethtool_stats() */
2872	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2873	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2874	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2875	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2876
2877	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2878		+ vp->xstats.tx_single_collisions
2879		+ vp->xstats.tx_max_collisions;
2880
2881	{
2882		u8 up = window_read8(vp, 4, 13);
2883		dev->stats.rx_bytes += (up & 0x0f) << 16;
2884		dev->stats.tx_bytes += (up & 0xf0) << 12;
2885	}
2886}
2887
2888static int vortex_nway_reset(struct net_device *dev)
2889{
2890	struct vortex_private *vp = netdev_priv(dev);
2891
2892	return mii_nway_restart(&vp->mii);
2893}
2894
2895static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2896{
2897	struct vortex_private *vp = netdev_priv(dev);
2898
2899	return mii_ethtool_gset(&vp->mii, cmd);
2900}
2901
2902static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2903{
2904	struct vortex_private *vp = netdev_priv(dev);
2905
2906	return mii_ethtool_sset(&vp->mii, cmd);
2907}
2908
2909static u32 vortex_get_msglevel(struct net_device *dev)
2910{
2911	return vortex_debug;
2912}
2913
2914static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2915{
2916	vortex_debug = dbg;
2917}
2918
2919static int vortex_get_sset_count(struct net_device *dev, int sset)
2920{
2921	switch (sset) {
2922	case ETH_SS_STATS:
2923		return VORTEX_NUM_STATS;
2924	default:
2925		return -EOPNOTSUPP;
2926	}
2927}
2928
2929static void vortex_get_ethtool_stats(struct net_device *dev,
2930	struct ethtool_stats *stats, u64 *data)
2931{
2932	struct vortex_private *vp = netdev_priv(dev);
2933	void __iomem *ioaddr = vp->ioaddr;
2934	unsigned long flags;
2935
2936	spin_lock_irqsave(&vp->lock, flags);
2937	update_stats(ioaddr, dev);
2938	spin_unlock_irqrestore(&vp->lock, flags);
2939
2940	data[0] = vp->xstats.tx_deferred;
2941	data[1] = vp->xstats.tx_max_collisions;
2942	data[2] = vp->xstats.tx_multiple_collisions;
2943	data[3] = vp->xstats.tx_single_collisions;
2944	data[4] = vp->xstats.rx_bad_ssd;
2945}
2946
2947
2948static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2949{
2950	switch (stringset) {
2951	case ETH_SS_STATS:
2952		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2953		break;
2954	default:
2955		WARN_ON(1);
2956		break;
2957	}
2958}
2959
2960static void vortex_get_drvinfo(struct net_device *dev,
2961					struct ethtool_drvinfo *info)
2962{
2963	struct vortex_private *vp = netdev_priv(dev);
2964
2965	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2966	if (VORTEX_PCI(vp)) {
2967		strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2968			sizeof(info->bus_info));
2969	} else {
2970		if (VORTEX_EISA(vp))
2971			strlcpy(info->bus_info, dev_name(vp->gendev),
2972				sizeof(info->bus_info));
2973		else
2974			snprintf(info->bus_info, sizeof(info->bus_info),
2975				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2976	}
2977}
2978
2979static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2980{
2981	struct vortex_private *vp = netdev_priv(dev);
2982
2983	if (!VORTEX_PCI(vp))
2984		return;
2985
2986	wol->supported = WAKE_MAGIC;
2987
2988	wol->wolopts = 0;
2989	if (vp->enable_wol)
2990		wol->wolopts |= WAKE_MAGIC;
2991}
2992
2993static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2994{
2995	struct vortex_private *vp = netdev_priv(dev);
2996
2997	if (!VORTEX_PCI(vp))
2998		return -EOPNOTSUPP;
2999
3000	if (wol->wolopts & ~WAKE_MAGIC)
3001		return -EINVAL;
3002
3003	if (wol->wolopts & WAKE_MAGIC)
3004		vp->enable_wol = 1;
3005	else
3006		vp->enable_wol = 0;
3007	acpi_set_WOL(dev);
3008
3009	return 0;
3010}
3011
3012static const struct ethtool_ops vortex_ethtool_ops = {
3013	.get_drvinfo		= vortex_get_drvinfo,
3014	.get_strings            = vortex_get_strings,
3015	.get_msglevel           = vortex_get_msglevel,
3016	.set_msglevel           = vortex_set_msglevel,
3017	.get_ethtool_stats      = vortex_get_ethtool_stats,
3018	.get_sset_count		= vortex_get_sset_count,
3019	.get_settings           = vortex_get_settings,
3020	.set_settings           = vortex_set_settings,
3021	.get_link               = ethtool_op_get_link,
3022	.nway_reset             = vortex_nway_reset,
3023	.get_wol                = vortex_get_wol,
3024	.set_wol                = vortex_set_wol,
3025	.get_ts_info		= ethtool_op_get_ts_info,
3026};
3027
3028#ifdef CONFIG_PCI
3029/*
3030 *	Must power the device up to do MDIO operations
3031 */
3032static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3033{
3034	int err;
3035	struct vortex_private *vp = netdev_priv(dev);
3036	pci_power_t state = 0;
3037
3038	if(VORTEX_PCI(vp))
3039		state = VORTEX_PCI(vp)->current_state;
3040
3041	/* The kernel core really should have pci_get_power_state() */
3042
3043	if(state != 0)
3044		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3045	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3046	if(state != 0)
3047		pci_set_power_state(VORTEX_PCI(vp), state);
3048
3049	return err;
3050}
3051#endif
3052
3053
3054/* Pre-Cyclone chips have no documented multicast filter, so the only
3055   multicast setting is to receive all multicast frames.  At least
3056   the chip has a very clean way to set the mode, unlike many others. */
3057static void set_rx_mode(struct net_device *dev)
3058{
3059	struct vortex_private *vp = netdev_priv(dev);
3060	void __iomem *ioaddr = vp->ioaddr;
3061	int new_mode;
3062
3063	if (dev->flags & IFF_PROMISC) {
3064		if (vortex_debug > 3)
3065			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3066		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3067	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3068		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3069	} else
3070		new_mode = SetRxFilter | RxStation | RxBroadcast;
3071
3072	iowrite16(new_mode, ioaddr + EL3_CMD);
3073}
3074
3075#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3076/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3077   Note that this must be done after each RxReset due to some backwards
3078   compatibility logic in the Cyclone and Tornado ASICs */
3079
3080/* The Ethernet Type used for 802.1q tagged frames */
3081#define VLAN_ETHER_TYPE 0x8100
3082
3083static void set_8021q_mode(struct net_device *dev, int enable)
3084{
3085	struct vortex_private *vp = netdev_priv(dev);
3086	int mac_ctrl;
3087
3088	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3089		/* cyclone and tornado chipsets can recognize 802.1q
3090		 * tagged frames and treat them correctly */
3091
3092		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3093		if (enable)
3094			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3095
3096		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3097
3098		/* set VlanEtherType to let the hardware checksumming
3099		   treat tagged frames correctly */
3100		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3101	} else {
3102		/* on older cards we have to enable large frames */
3103
3104		vp->large_frames = dev->mtu > 1500 || enable;
3105
3106		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3107		if (vp->large_frames)
3108			mac_ctrl |= 0x40;
3109		else
3110			mac_ctrl &= ~0x40;
3111		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3112	}
3113}
3114#else
3115
3116static void set_8021q_mode(struct net_device *dev, int enable)
3117{
3118}
3119
3120
3121#endif
3122
3123/* MII transceiver control section.
3124   Read and write the MII registers using software-generated serial
3125   MDIO protocol.  See the MII specifications or DP83840A data sheet
3126   for details. */
3127
3128/* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3129   met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3130   "overclocking" issues. */
3131static void mdio_delay(struct vortex_private *vp)
3132{
3133	window_read32(vp, 4, Wn4_PhysicalMgmt);
3134}
3135
3136#define MDIO_SHIFT_CLK	0x01
3137#define MDIO_DIR_WRITE	0x04
3138#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3139#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3140#define MDIO_DATA_READ	0x02
3141#define MDIO_ENB_IN		0x00
3142
3143/* Generate the preamble required for initial synchronization and
3144   a few older transceivers. */
3145static void mdio_sync(struct vortex_private *vp, int bits)
3146{
3147	/* Establish sync by sending at least 32 logic ones. */
3148	while (-- bits >= 0) {
3149		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3150		mdio_delay(vp);
3151		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3152			       4, Wn4_PhysicalMgmt);
3153		mdio_delay(vp);
3154	}
3155}
3156
3157static int mdio_read(struct net_device *dev, int phy_id, int location)
3158{
3159	int i;
3160	struct vortex_private *vp = netdev_priv(dev);
3161	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3162	unsigned int retval = 0;
3163
3164	spin_lock_bh(&vp->mii_lock);
3165
3166	if (mii_preamble_required)
3167		mdio_sync(vp, 32);
3168
3169	/* Shift the read command bits out. */
3170	for (i = 14; i >= 0; i--) {
3171		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3172		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3173		mdio_delay(vp);
3174		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3175			       4, Wn4_PhysicalMgmt);
3176		mdio_delay(vp);
3177	}
3178	/* Read the two transition, 16 data, and wire-idle bits. */
3179	for (i = 19; i > 0; i--) {
3180		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3181		mdio_delay(vp);
3182		retval = (retval << 1) |
3183			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3184			  MDIO_DATA_READ) ? 1 : 0);
3185		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3186			       4, Wn4_PhysicalMgmt);
3187		mdio_delay(vp);
3188	}
3189
3190	spin_unlock_bh(&vp->mii_lock);
3191
3192	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3193}
3194
3195static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3196{
3197	struct vortex_private *vp = netdev_priv(dev);
3198	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3199	int i;
3200
3201	spin_lock_bh(&vp->mii_lock);
3202
3203	if (mii_preamble_required)
3204		mdio_sync(vp, 32);
3205
3206	/* Shift the command bits out. */
3207	for (i = 31; i >= 0; i--) {
3208		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3209		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3210		mdio_delay(vp);
3211		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3212			       4, Wn4_PhysicalMgmt);
3213		mdio_delay(vp);
3214	}
3215	/* Leave the interface idle. */
3216	for (i = 1; i >= 0; i--) {
3217		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3218		mdio_delay(vp);
3219		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3220			       4, Wn4_PhysicalMgmt);
3221		mdio_delay(vp);
3222	}
3223
3224	spin_unlock_bh(&vp->mii_lock);
3225}
3226
3227/* ACPI: Advanced Configuration and Power Interface. */
3228/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3229static void acpi_set_WOL(struct net_device *dev)
3230{
3231	struct vortex_private *vp = netdev_priv(dev);
3232	void __iomem *ioaddr = vp->ioaddr;
3233
3234	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3235
3236	if (vp->enable_wol) {
3237		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3238		window_write16(vp, 2, 7, 0x0c);
3239		/* The RxFilter must accept the WOL frames. */
3240		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3241		iowrite16(RxEnable, ioaddr + EL3_CMD);
3242
3243		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3244			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3245
3246			vp->enable_wol = 0;
3247			return;
3248		}
3249
3250		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3251			return;
3252
3253		/* Change the power state to D3; RxEnable doesn't take effect. */
3254		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3255	}
3256}
3257
3258
3259static void vortex_remove_one(struct pci_dev *pdev)
3260{
3261	struct net_device *dev = pci_get_drvdata(pdev);
3262	struct vortex_private *vp;
3263
3264	if (!dev) {
3265		pr_err("vortex_remove_one called for Compaq device!\n");
3266		BUG();
3267	}
3268
3269	vp = netdev_priv(dev);
3270
3271	if (vp->cb_fn_base)
3272		pci_iounmap(pdev, vp->cb_fn_base);
3273
3274	unregister_netdev(dev);
3275
3276	pci_set_power_state(pdev, PCI_D0);	/* Go active */
3277	if (vp->pm_state_valid)
3278		pci_restore_state(pdev);
3279	pci_disable_device(pdev);
3280
3281	/* Should really use issue_and_wait() here */
3282	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3283	     vp->ioaddr + EL3_CMD);
3284
3285	pci_iounmap(pdev, vp->ioaddr);
3286
3287	pci_free_consistent(pdev,
3288						sizeof(struct boom_rx_desc) * RX_RING_SIZE
3289							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3290						vp->rx_ring,
3291						vp->rx_ring_dma);
3292
3293	pci_release_regions(pdev);
3294
3295	free_netdev(dev);
3296}
3297
3298
3299static struct pci_driver vortex_driver = {
3300	.name		= "3c59x",
3301	.probe		= vortex_init_one,
3302	.remove		= vortex_remove_one,
3303	.id_table	= vortex_pci_tbl,
3304	.driver.pm	= VORTEX_PM_OPS,
3305};
3306
3307
3308static int vortex_have_pci;
3309static int vortex_have_eisa;
3310
3311
3312static int __init vortex_init(void)
3313{
3314	int pci_rc, eisa_rc;
3315
3316	pci_rc = pci_register_driver(&vortex_driver);
3317	eisa_rc = vortex_eisa_init();
3318
3319	if (pci_rc == 0)
3320		vortex_have_pci = 1;
3321	if (eisa_rc > 0)
3322		vortex_have_eisa = 1;
3323
3324	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3325}
3326
3327
3328static void __exit vortex_eisa_cleanup(void)
3329{
3330	void __iomem *ioaddr;
3331
3332#ifdef CONFIG_EISA
3333	/* Take care of the EISA devices */
3334	eisa_driver_unregister(&vortex_eisa_driver);
3335#endif
3336
3337	if (compaq_net_device) {
3338		ioaddr = ioport_map(compaq_net_device->base_addr,
3339		                    VORTEX_TOTAL_SIZE);
3340
3341		unregister_netdev(compaq_net_device);
3342		iowrite16(TotalReset, ioaddr + EL3_CMD);
3343		release_region(compaq_net_device->base_addr,
3344		               VORTEX_TOTAL_SIZE);
3345
3346		free_netdev(compaq_net_device);
3347	}
3348}
3349
3350
3351static void __exit vortex_cleanup(void)
3352{
3353	if (vortex_have_pci)
3354		pci_unregister_driver(&vortex_driver);
3355	if (vortex_have_eisa)
3356		vortex_eisa_cleanup();
3357}
3358
3359
3360module_init(vortex_init);
3361module_exit(vortex_cleanup);
3362