[go: nahoru, domu]

1/*
2 * File Name:
3 *   defxx.c
4 *
5 * Copyright Information:
6 *   Copyright Digital Equipment Corporation 1996.
7 *
8 *   This software may be used and distributed according to the terms of
9 *   the GNU General Public License, incorporated herein by reference.
10 *
11 * Abstract:
12 *   A Linux device driver supporting the Digital Equipment Corporation
13 *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
14 *   adapters include:
15 *
16 *		DEC FDDIcontroller/TURBOchannel (DEFTA)
17 *		DEC FDDIcontroller/EISA         (DEFEA)
18 *		DEC FDDIcontroller/PCI          (DEFPA)
19 *
20 * The original author:
21 *   LVS	Lawrence V. Stefani <lstefani@yahoo.com>
22 *
23 * Maintainers:
24 *   macro	Maciej W. Rozycki <macro@linux-mips.org>
25 *
26 * Credits:
27 *   I'd like to thank Patricia Cross for helping me get started with
28 *   Linux, David Davies for a lot of help upgrading and configuring
29 *   my development system and for answering many OS and driver
30 *   development questions, and Alan Cox for recommendations and
31 *   integration help on getting FDDI support into Linux.  LVS
32 *
33 * Driver Architecture:
34 *   The driver architecture is largely based on previous driver work
35 *   for other operating systems.  The upper edge interface and
36 *   functions were largely taken from existing Linux device drivers
37 *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38 *   driver.
39 *
40 *   Adapter Probe -
41 *		The driver scans for supported EISA adapters by reading the
42 *		SLOT ID register for each EISA slot and making a match
43 *		against the expected value.
44 *
45 *   Bus-Specific Initialization -
46 *		This driver currently supports both EISA and PCI controller
47 *		families.  While the custom DMA chip and FDDI logic is similar
48 *		or identical, the bus logic is very different.  After
49 *		initialization, the	only bus-specific differences is in how the
50 *		driver enables and disables interrupts.  Other than that, the
51 *		run-time critical code behaves the same on both families.
52 *		It's important to note that both adapter families are configured
53 *		to I/O map, rather than memory map, the adapter registers.
54 *
55 *   Driver Open/Close -
56 *		In the driver open routine, the driver ISR (interrupt service
57 *		routine) is registered and the adapter is brought to an
58 *		operational state.  In the driver close routine, the opposite
59 *		occurs; the driver ISR is deregistered and the adapter is
60 *		brought to a safe, but closed state.  Users may use consecutive
61 *		commands to bring the adapter up and down as in the following
62 *		example:
63 *					ifconfig fddi0 up
64 *					ifconfig fddi0 down
65 *					ifconfig fddi0 up
66 *
67 *   Driver Shutdown -
68 *		Apparently, there is no shutdown or halt routine support under
69 *		Linux.  This routine would be called during "reboot" or
70 *		"shutdown" to allow the driver to place the adapter in a safe
71 *		state before a warm reboot occurs.  To be really safe, the user
72 *		should close the adapter before shutdown (eg. ifconfig fddi0 down)
73 *		to ensure that the adapter DMA engine is taken off-line.  However,
74 *		the current driver code anticipates this problem and always issues
75 *		a soft reset of the adapter	at the beginning of driver initialization.
76 *		A future driver enhancement in this area may occur in 2.1.X where
77 *		Alan indicated that a shutdown handler may be implemented.
78 *
79 *   Interrupt Service Routine -
80 *		The driver supports shared interrupts, so the ISR is registered for
81 *		each board with the appropriate flag and the pointer to that board's
82 *		device structure.  This provides the context during interrupt
83 *		processing to support shared interrupts and multiple boards.
84 *
85 *		Interrupt enabling/disabling can occur at many levels.  At the host
86 *		end, you can disable system interrupts, or disable interrupts at the
87 *		PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
88 *		have a bus-logic chip interrupt enable/disable as well as a DMA
89 *		controller interrupt enable/disable.
90 *
91 *		The driver currently enables and disables adapter interrupts at the
92 *		bus-logic chip and assumes that Linux will take care of clearing or
93 *		acknowledging any host-based interrupt chips.
94 *
95 *   Control Functions -
96 *		Control functions are those used to support functions such as adding
97 *		or deleting multicast addresses, enabling or disabling packet
98 *		reception filters, or other custom/proprietary commands.  Presently,
99 *		the driver supports the "get statistics", "set multicast list", and
100 *		"set mac address" functions defined by Linux.  A list of possible
101 *		enhancements include:
102 *
103 *				- Custom ioctl interface for executing port interface commands
104 *				- Custom ioctl interface for adding unicast addresses to
105 *				  adapter CAM (to support bridge functions).
106 *				- Custom ioctl interface for supporting firmware upgrades.
107 *
108 *   Hardware (port interface) Support Routines -
109 *		The driver function names that start with "dfx_hw_" represent
110 *		low-level port interface routines that are called frequently.  They
111 *		include issuing a DMA or port control command to the adapter,
112 *		resetting the adapter, or reading the adapter state.  Since the
113 *		driver initialization and run-time code must make calls into the
114 *		port interface, these routines were written to be as generic and
115 *		usable as possible.
116 *
117 *   Receive Path -
118 *		The adapter DMA engine supports a 256 entry receive descriptor block
119 *		of which up to 255 entries can be used at any given time.  The
120 *		architecture is a standard producer, consumer, completion model in
121 *		which the driver "produces" receive buffers to the adapter, the
122 *		adapter "consumes" the receive buffers by DMAing incoming packet data,
123 *		and the driver "completes" the receive buffers by servicing the
124 *		incoming packet, then "produces" a new buffer and starts the cycle
125 *		again.  Receive buffers can be fragmented in up to 16 fragments
126 *		(descriptor	entries).  For simplicity, this driver posts
127 *		single-fragment receive buffers of 4608 bytes, then allocates a
128 *		sk_buff, copies the data, then reposts the buffer.  To reduce CPU
129 *		utilization, a better approach would be to pass up the receive
130 *		buffer (no extra copy) then allocate and post a replacement buffer.
131 *		This is a performance enhancement that should be looked into at
132 *		some point.
133 *
134 *   Transmit Path -
135 *		Like the receive path, the adapter DMA engine supports a 256 entry
136 *		transmit descriptor block of which up to 255 entries can be used at
137 *		any	given time.  Transmit buffers can be fragmented	in up to 255
138 *		fragments (descriptor entries).  This driver always posts one
139 *		fragment per transmit packet request.
140 *
141 *		The fragment contains the entire packet from FC to end of data.
142 *		Before posting the buffer to the adapter, the driver sets a three-byte
143 *		packet request header (PRH) which is required by the Motorola MAC chip
144 *		used on the adapters.  The PRH tells the MAC the type of token to
145 *		receive/send, whether or not to generate and append the CRC, whether
146 *		synchronous or asynchronous framing is used, etc.  Since the PRH
147 *		definition is not necessarily consistent across all FDDI chipsets,
148 *		the driver, rather than the common FDDI packet handler routines,
149 *		sets these bytes.
150 *
151 *		To reduce the amount of descriptor fetches needed per transmit request,
152 *		the driver takes advantage of the fact that there are at least three
153 *		bytes available before the skb->data field on the outgoing transmit
154 *		request.  This is guaranteed by having fddi_setup() in net_init.c set
155 *		dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
156 *		header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
157 *		bytes which we'll use to store the PRH.
158 *
159 *		There's a subtle advantage to adding these pad bytes to the
160 *		hard_header_len, it ensures that the data portion of the packet for
161 *		an 802.2 SNAP frame is longword aligned.  Other FDDI driver
162 *		implementations may not need the extra padding and can start copying
163 *		or DMAing directly from the FC byte which starts at skb->data.  Should
164 *		another driver implementation need ADDITIONAL padding, the net_init.c
165 *		module should be updated and dev->hard_header_len should be increased.
166 *		NOTE: To maintain the alignment on the data portion of the packet,
167 *		dev->hard_header_len should always be evenly divisible by 4 and at
168 *		least 24 bytes in size.
169 *
170 * Modification History:
171 *		Date		Name	Description
172 *		16-Aug-96	LVS		Created.
173 *		20-Aug-96	LVS		Updated dfx_probe so that version information
174 *							string is only displayed if 1 or more cards are
175 *							found.  Changed dfx_rcv_queue_process to copy
176 *							3 NULL bytes before FC to ensure that data is
177 *							longword aligned in receive buffer.
178 *		09-Sep-96	LVS		Updated dfx_ctl_set_multicast_list to enable
179 *							LLC group promiscuous mode if multicast list
180 *							is too large.  LLC individual/group promiscuous
181 *							mode is now disabled if IFF_PROMISC flag not set.
182 *							dfx_xmt_queue_pkt no longer checks for NULL skb
183 *							on Alan Cox recommendation.  Added node address
184 *							override support.
185 *		12-Sep-96	LVS		Reset current address to factory address during
186 *							device open.  Updated transmit path to post a
187 *							single fragment which includes PRH->end of data.
188 *		Mar 2000	AC		Did various cleanups for 2.3.x
189 *		Jun 2000	jgarzik		PCI and resource alloc cleanups
190 *		Jul 2000	tjeerd		Much cleanup and some bug fixes
191 *		Sep 2000	tjeerd		Fix leak on unload, cosmetic code cleanup
192 *		Feb 2001			Skb allocation fixes
193 *		Feb 2001	davej		PCI enable cleanups.
194 *		04 Aug 2003	macro		Converted to the DMA API.
195 *		14 Aug 2004	macro		Fix device names reported.
196 *		14 Jun 2005	macro		Use irqreturn_t.
197 *		23 Oct 2006	macro		Big-endian host support.
198 *		14 Dec 2006	macro		TURBOchannel support.
199 *		01 Jul 2014	macro		Fixes for DMA on 64-bit hosts.
200 */
201
202/* Include files */
203#include <linux/bitops.h>
204#include <linux/compiler.h>
205#include <linux/delay.h>
206#include <linux/dma-mapping.h>
207#include <linux/eisa.h>
208#include <linux/errno.h>
209#include <linux/fddidevice.h>
210#include <linux/interrupt.h>
211#include <linux/ioport.h>
212#include <linux/kernel.h>
213#include <linux/module.h>
214#include <linux/netdevice.h>
215#include <linux/pci.h>
216#include <linux/skbuff.h>
217#include <linux/slab.h>
218#include <linux/string.h>
219#include <linux/tc.h>
220
221#include <asm/byteorder.h>
222#include <asm/io.h>
223
224#include "defxx.h"
225
226/* Version information string should be updated prior to each new release!  */
227#define DRV_NAME "defxx"
228#define DRV_VERSION "v1.11"
229#define DRV_RELDATE "2014/07/01"
230
231static char version[] =
232	DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233	"  Lawrence V. Stefani and others\n";
234
235#define DYNAMIC_BUFFERS 1
236
237#define SKBUFF_RX_COPYBREAK 200
238/*
239 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240 * alignment for compatibility with old EISA boards.
241 */
242#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243
244#ifdef CONFIG_EISA
245#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
246#else
247#define DFX_BUS_EISA(dev) 0
248#endif
249
250#ifdef CONFIG_TC
251#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
252#else
253#define DFX_BUS_TC(dev) 0
254#endif
255
256#ifdef CONFIG_DEFXX_MMIO
257#define DFX_MMIO 1
258#else
259#define DFX_MMIO 0
260#endif
261
262/* Define module-wide (static) routines */
263
264static void		dfx_bus_init(struct net_device *dev);
265static void		dfx_bus_uninit(struct net_device *dev);
266static void		dfx_bus_config_check(DFX_board_t *bp);
267
268static int		dfx_driver_init(struct net_device *dev,
269					const char *print_name,
270					resource_size_t bar_start);
271static int		dfx_adap_init(DFX_board_t *bp, int get_buffers);
272
273static int		dfx_open(struct net_device *dev);
274static int		dfx_close(struct net_device *dev);
275
276static void		dfx_int_pr_halt_id(DFX_board_t *bp);
277static void		dfx_int_type_0_process(DFX_board_t *bp);
278static void		dfx_int_common(struct net_device *dev);
279static irqreturn_t	dfx_interrupt(int irq, void *dev_id);
280
281static struct		net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
282static void		dfx_ctl_set_multicast_list(struct net_device *dev);
283static int		dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
284static int		dfx_ctl_update_cam(DFX_board_t *bp);
285static int		dfx_ctl_update_filters(DFX_board_t *bp);
286
287static int		dfx_hw_dma_cmd_req(DFX_board_t *bp);
288static int		dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32	command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
289static void		dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
290static int		dfx_hw_adap_state_rd(DFX_board_t *bp);
291static int		dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
292
293static int		dfx_rcv_init(DFX_board_t *bp, int get_buffers);
294static void		dfx_rcv_queue_process(DFX_board_t *bp);
295#ifdef DYNAMIC_BUFFERS
296static void		dfx_rcv_flush(DFX_board_t *bp);
297#else
298static inline void	dfx_rcv_flush(DFX_board_t *bp) {}
299#endif
300
301static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
302				     struct net_device *dev);
303static int		dfx_xmt_done(DFX_board_t *bp);
304static void		dfx_xmt_flush(DFX_board_t *bp);
305
306/* Define module-wide (static) variables */
307
308static struct pci_driver dfx_pci_driver;
309static struct eisa_driver dfx_eisa_driver;
310static struct tc_driver dfx_tc_driver;
311
312
313/*
314 * =======================
315 * = dfx_port_write_long =
316 * = dfx_port_read_long  =
317 * =======================
318 *
319 * Overview:
320 *   Routines for reading and writing values from/to adapter
321 *
322 * Returns:
323 *   None
324 *
325 * Arguments:
326 *   bp		- pointer to board information
327 *   offset	- register offset from base I/O address
328 *   data	- for dfx_port_write_long, this is a value to write;
329 *		  for dfx_port_read_long, this is a pointer to store
330 *		  the read value
331 *
332 * Functional Description:
333 *   These routines perform the correct operation to read or write
334 *   the adapter register.
335 *
336 *   EISA port block base addresses are based on the slot number in which the
337 *   controller is installed.  For example, if the EISA controller is installed
338 *   in slot 4, the port block base address is 0x4000.  If the controller is
339 *   installed in slot 2, the port block base address is 0x2000, and so on.
340 *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
341 *   registers using the register offsets defined in DEFXX.H.
342 *
343 *   PCI port block base addresses are assigned by the PCI BIOS or system
344 *   firmware.  There is one 128 byte port block which can be accessed.  It
345 *   allows for I/O mapping of both PDQ and PFI registers using the register
346 *   offsets defined in DEFXX.H.
347 *
348 * Return Codes:
349 *   None
350 *
351 * Assumptions:
352 *   bp->base is a valid base I/O address for this adapter.
353 *   offset is a valid register offset for this adapter.
354 *
355 * Side Effects:
356 *   Rather than produce macros for these functions, these routines
357 *   are defined using "inline" to ensure that the compiler will
358 *   generate inline code and not waste a procedure call and return.
359 *   This provides all the benefits of macros, but with the
360 *   advantage of strict data type checking.
361 */
362
363static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
364{
365	writel(data, bp->base.mem + offset);
366	mb();
367}
368
369static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
370{
371	outl(data, bp->base.port + offset);
372}
373
374static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
375{
376	struct device __maybe_unused *bdev = bp->bus_dev;
377	int dfx_bus_tc = DFX_BUS_TC(bdev);
378	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
379
380	if (dfx_use_mmio)
381		dfx_writel(bp, offset, data);
382	else
383		dfx_outl(bp, offset, data);
384}
385
386
387static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
388{
389	mb();
390	*data = readl(bp->base.mem + offset);
391}
392
393static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
394{
395	*data = inl(bp->base.port + offset);
396}
397
398static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
399{
400	struct device __maybe_unused *bdev = bp->bus_dev;
401	int dfx_bus_tc = DFX_BUS_TC(bdev);
402	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
403
404	if (dfx_use_mmio)
405		dfx_readl(bp, offset, data);
406	else
407		dfx_inl(bp, offset, data);
408}
409
410
411/*
412 * ================
413 * = dfx_get_bars =
414 * ================
415 *
416 * Overview:
417 *   Retrieves the address range used to access control and status
418 *   registers.
419 *
420 * Returns:
421 *   None
422 *
423 * Arguments:
424 *   bdev	- pointer to device information
425 *   bar_start	- pointer to store the start address
426 *   bar_len	- pointer to store the length of the area
427 *
428 * Assumptions:
429 *   I am sure there are some.
430 *
431 * Side Effects:
432 *   None
433 */
434static void dfx_get_bars(struct device *bdev,
435			 resource_size_t *bar_start, resource_size_t *bar_len)
436{
437	int dfx_bus_pci = dev_is_pci(bdev);
438	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
439	int dfx_bus_tc = DFX_BUS_TC(bdev);
440	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
441
442	if (dfx_bus_pci) {
443		int num = dfx_use_mmio ? 0 : 1;
444
445		*bar_start = pci_resource_start(to_pci_dev(bdev), num);
446		*bar_len = pci_resource_len(to_pci_dev(bdev), num);
447	}
448	if (dfx_bus_eisa) {
449		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
450		resource_size_t bar;
451
452		if (dfx_use_mmio) {
453			bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
454			bar <<= 8;
455			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
456			bar <<= 8;
457			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
458			bar <<= 16;
459			*bar_start = bar;
460			bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
461			bar <<= 8;
462			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
463			bar <<= 8;
464			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
465			bar <<= 16;
466			*bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
467		} else {
468			*bar_start = base_addr;
469			*bar_len = PI_ESIC_K_CSR_IO_LEN +
470				   PI_ESIC_K_BURST_HOLDOFF_LEN;
471		}
472	}
473	if (dfx_bus_tc) {
474		*bar_start = to_tc_dev(bdev)->resource.start +
475			     PI_TC_K_CSR_OFFSET;
476		*bar_len = PI_TC_K_CSR_LEN;
477	}
478}
479
480static const struct net_device_ops dfx_netdev_ops = {
481	.ndo_open		= dfx_open,
482	.ndo_stop		= dfx_close,
483	.ndo_start_xmit		= dfx_xmt_queue_pkt,
484	.ndo_get_stats		= dfx_ctl_get_stats,
485	.ndo_set_rx_mode	= dfx_ctl_set_multicast_list,
486	.ndo_set_mac_address	= dfx_ctl_set_mac_address,
487};
488
489/*
490 * ================
491 * = dfx_register =
492 * ================
493 *
494 * Overview:
495 *   Initializes a supported FDDI controller
496 *
497 * Returns:
498 *   Condition code
499 *
500 * Arguments:
501 *   bdev - pointer to device information
502 *
503 * Functional Description:
504 *
505 * Return Codes:
506 *   0		 - This device (fddi0, fddi1, etc) configured successfully
507 *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
508 *
509 * Assumptions:
510 *   It compiles so it should work :-( (PCI cards do :-)
511 *
512 * Side Effects:
513 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
514 *   initialized and the board resources are read and stored in
515 *   the device structure.
516 */
517static int dfx_register(struct device *bdev)
518{
519	static int version_disp;
520	int dfx_bus_pci = dev_is_pci(bdev);
521	int dfx_bus_tc = DFX_BUS_TC(bdev);
522	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
523	const char *print_name = dev_name(bdev);
524	struct net_device *dev;
525	DFX_board_t	  *bp;			/* board pointer */
526	resource_size_t bar_start = 0;		/* pointer to port */
527	resource_size_t bar_len = 0;		/* resource length */
528	int alloc_size;				/* total buffer size used */
529	struct resource *region;
530	int err = 0;
531
532	if (!version_disp) {	/* display version info if adapter is found */
533		version_disp = 1;	/* set display flag to TRUE so that */
534		printk(version);	/* we only display this string ONCE */
535	}
536
537	dev = alloc_fddidev(sizeof(*bp));
538	if (!dev) {
539		printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
540		       print_name);
541		return -ENOMEM;
542	}
543
544	/* Enable PCI device. */
545	if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
546		printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
547		       print_name);
548		goto err_out;
549	}
550
551	SET_NETDEV_DEV(dev, bdev);
552
553	bp = netdev_priv(dev);
554	bp->bus_dev = bdev;
555	dev_set_drvdata(bdev, dev);
556
557	dfx_get_bars(bdev, &bar_start, &bar_len);
558
559	if (dfx_use_mmio)
560		region = request_mem_region(bar_start, bar_len, print_name);
561	else
562		region = request_region(bar_start, bar_len, print_name);
563	if (!region) {
564		printk(KERN_ERR "%s: Cannot reserve I/O resource "
565		       "0x%lx @ 0x%lx, aborting\n",
566		       print_name, (long)bar_len, (long)bar_start);
567		err = -EBUSY;
568		goto err_out_disable;
569	}
570
571	/* Set up I/O base address. */
572	if (dfx_use_mmio) {
573		bp->base.mem = ioremap_nocache(bar_start, bar_len);
574		if (!bp->base.mem) {
575			printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
576			err = -ENOMEM;
577			goto err_out_region;
578		}
579	} else {
580		bp->base.port = bar_start;
581		dev->base_addr = bar_start;
582	}
583
584	/* Initialize new device structure */
585	dev->netdev_ops			= &dfx_netdev_ops;
586
587	if (dfx_bus_pci)
588		pci_set_master(to_pci_dev(bdev));
589
590	if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
591		err = -ENODEV;
592		goto err_out_unmap;
593	}
594
595	err = register_netdev(dev);
596	if (err)
597		goto err_out_kfree;
598
599	printk("%s: registered as %s\n", print_name, dev->name);
600	return 0;
601
602err_out_kfree:
603	alloc_size = sizeof(PI_DESCR_BLOCK) +
604		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
605#ifndef DYNAMIC_BUFFERS
606		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
607#endif
608		     sizeof(PI_CONSUMER_BLOCK) +
609		     (PI_ALIGN_K_DESC_BLK - 1);
610	if (bp->kmalloced)
611		dma_free_coherent(bdev, alloc_size,
612				  bp->kmalloced, bp->kmalloced_dma);
613
614err_out_unmap:
615	if (dfx_use_mmio)
616		iounmap(bp->base.mem);
617
618err_out_region:
619	if (dfx_use_mmio)
620		release_mem_region(bar_start, bar_len);
621	else
622		release_region(bar_start, bar_len);
623
624err_out_disable:
625	if (dfx_bus_pci)
626		pci_disable_device(to_pci_dev(bdev));
627
628err_out:
629	free_netdev(dev);
630	return err;
631}
632
633
634/*
635 * ================
636 * = dfx_bus_init =
637 * ================
638 *
639 * Overview:
640 *   Initializes the bus-specific controller logic.
641 *
642 * Returns:
643 *   None
644 *
645 * Arguments:
646 *   dev - pointer to device information
647 *
648 * Functional Description:
649 *   Determine and save adapter IRQ in device table,
650 *   then perform bus-specific logic initialization.
651 *
652 * Return Codes:
653 *   None
654 *
655 * Assumptions:
656 *   bp->base has already been set with the proper
657 *	 base I/O address for this device.
658 *
659 * Side Effects:
660 *   Interrupts are enabled at the adapter bus-specific logic.
661 *   Note:  Interrupts at the DMA engine (PDQ chip) are not
662 *   enabled yet.
663 */
664
665static void dfx_bus_init(struct net_device *dev)
666{
667	DFX_board_t *bp = netdev_priv(dev);
668	struct device *bdev = bp->bus_dev;
669	int dfx_bus_pci = dev_is_pci(bdev);
670	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
671	int dfx_bus_tc = DFX_BUS_TC(bdev);
672	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
673	u8 val;
674
675	DBG_printk("In dfx_bus_init...\n");
676
677	/* Initialize a pointer back to the net_device struct */
678	bp->dev = dev;
679
680	/* Initialize adapter based on bus type */
681
682	if (dfx_bus_tc)
683		dev->irq = to_tc_dev(bdev)->interrupt;
684	if (dfx_bus_eisa) {
685		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
686
687		/* Disable the board before fiddling with the decoders.  */
688		outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
689
690		/* Get the interrupt level from the ESIC chip.  */
691		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
692		val &= PI_CONFIG_STAT_0_M_IRQ;
693		val >>= PI_CONFIG_STAT_0_V_IRQ;
694
695		switch (val) {
696		case PI_CONFIG_STAT_0_IRQ_K_9:
697			dev->irq = 9;
698			break;
699
700		case PI_CONFIG_STAT_0_IRQ_K_10:
701			dev->irq = 10;
702			break;
703
704		case PI_CONFIG_STAT_0_IRQ_K_11:
705			dev->irq = 11;
706			break;
707
708		case PI_CONFIG_STAT_0_IRQ_K_15:
709			dev->irq = 15;
710			break;
711		}
712
713		/*
714		 * Enable memory decoding (MEMCS0) and/or port decoding
715		 * (IOCS1/IOCS0) as appropriate in Function Control
716		 * Register.  IOCS0 is used for PDQ registers, taking 16
717		 * 32-bit words, while IOCS1 is used for the Burst Holdoff
718		 * register, taking a single 32-bit word only.  We use the
719		 * slot-specific I/O range as per the ESIC spec, that is
720		 * set bits 15:12 in the mask registers to mask them out.
721		 */
722
723		/* Set the decode range of the board.  */
724		val = 0;
725		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1);
726		val = PI_DEFEA_K_CSR_IO;
727		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0);
728
729		val = PI_IO_CMP_M_SLOT;
730		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1);
731		val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3;
732		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0);
733
734		val = 0;
735		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1);
736		val = PI_DEFEA_K_BURST_HOLDOFF;
737		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0);
738
739		val = PI_IO_CMP_M_SLOT;
740		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1);
741		val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3;
742		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0);
743
744		/* Enable the decoders.  */
745		val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
746		if (dfx_use_mmio)
747			val |= PI_FUNCTION_CNTRL_M_MEMCS0;
748		outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
749
750		/*
751		 * Enable access to the rest of the module
752		 * (including PDQ and packet memory).
753		 */
754		val = PI_SLOT_CNTRL_M_ENB;
755		outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL);
756
757		/*
758		 * Map PDQ registers into memory or port space.  This is
759		 * done with a bit in the Burst Holdoff register.
760		 */
761		val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
762		if (dfx_use_mmio)
763			val |= PI_BURST_HOLDOFF_M_MEM_MAP;
764		else
765			val &= ~PI_BURST_HOLDOFF_M_MEM_MAP;
766		outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF);
767
768		/* Enable interrupts at EISA bus interface chip (ESIC) */
769		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
770		val |= PI_CONFIG_STAT_0_M_INT_ENB;
771		outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
772	}
773	if (dfx_bus_pci) {
774		struct pci_dev *pdev = to_pci_dev(bdev);
775
776		/* Get the interrupt level from the PCI Configuration Table */
777
778		dev->irq = pdev->irq;
779
780		/* Check Latency Timer and set if less than minimal */
781
782		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
783		if (val < PFI_K_LAT_TIMER_MIN) {
784			val = PFI_K_LAT_TIMER_DEF;
785			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
786		}
787
788		/* Enable interrupts at PCI bus interface chip (PFI) */
789		val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
790		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
791	}
792}
793
794/*
795 * ==================
796 * = dfx_bus_uninit =
797 * ==================
798 *
799 * Overview:
800 *   Uninitializes the bus-specific controller logic.
801 *
802 * Returns:
803 *   None
804 *
805 * Arguments:
806 *   dev - pointer to device information
807 *
808 * Functional Description:
809 *   Perform bus-specific logic uninitialization.
810 *
811 * Return Codes:
812 *   None
813 *
814 * Assumptions:
815 *   bp->base has already been set with the proper
816 *	 base I/O address for this device.
817 *
818 * Side Effects:
819 *   Interrupts are disabled at the adapter bus-specific logic.
820 */
821
822static void dfx_bus_uninit(struct net_device *dev)
823{
824	DFX_board_t *bp = netdev_priv(dev);
825	struct device *bdev = bp->bus_dev;
826	int dfx_bus_pci = dev_is_pci(bdev);
827	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
828	u8 val;
829
830	DBG_printk("In dfx_bus_uninit...\n");
831
832	/* Uninitialize adapter based on bus type */
833
834	if (dfx_bus_eisa) {
835		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
836
837		/* Disable interrupts at EISA bus interface chip (ESIC) */
838		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
839		val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
840		outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
841	}
842	if (dfx_bus_pci) {
843		/* Disable interrupts at PCI bus interface chip (PFI) */
844		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
845	}
846}
847
848
849/*
850 * ========================
851 * = dfx_bus_config_check =
852 * ========================
853 *
854 * Overview:
855 *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
856 *   are illegal, then this routine will set new defaults.
857 *
858 * Returns:
859 *   None
860 *
861 * Arguments:
862 *   bp - pointer to board information
863 *
864 * Functional Description:
865 *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
866 *   PDQ, and all FDDI PCI controllers, all values are legal.
867 *
868 * Return Codes:
869 *   None
870 *
871 * Assumptions:
872 *   dfx_adap_init has NOT been called yet so burst size and other items have
873 *   not been set.
874 *
875 * Side Effects:
876 *   None
877 */
878
879static void dfx_bus_config_check(DFX_board_t *bp)
880{
881	struct device __maybe_unused *bdev = bp->bus_dev;
882	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
883	int	status;				/* return code from adapter port control call */
884	u32	host_data;			/* LW data returned from port control call */
885
886	DBG_printk("In dfx_bus_config_check...\n");
887
888	/* Configuration check only valid for EISA adapter */
889
890	if (dfx_bus_eisa) {
891		/*
892		 * First check if revision 2 EISA controller.  Rev. 1 cards used
893		 * PDQ revision B, so no workaround needed in this case.  Rev. 3
894		 * cards used PDQ revision E, so no workaround needed in this
895		 * case, either.  Only Rev. 2 cards used either Rev. D or E
896		 * chips, so we must verify the chip revision on Rev. 2 cards.
897		 */
898		if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
899			/*
900			 * Revision 2 FDDI EISA controller found,
901			 * so let's check PDQ revision of adapter.
902			 */
903			status = dfx_hw_port_ctrl_req(bp,
904											PI_PCTRL_M_SUB_CMD,
905											PI_SUB_CMD_K_PDQ_REV_GET,
906											0,
907											&host_data);
908			if ((status != DFX_K_SUCCESS) || (host_data == 2))
909				{
910				/*
911				 * Either we couldn't determine the PDQ revision, or
912				 * we determined that it is at revision D.  In either case,
913				 * we need to implement the workaround.
914				 */
915
916				/* Ensure that the burst size is set to 8 longwords or less */
917
918				switch (bp->burst_size)
919					{
920					case PI_PDATA_B_DMA_BURST_SIZE_32:
921					case PI_PDATA_B_DMA_BURST_SIZE_16:
922						bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
923						break;
924
925					default:
926						break;
927					}
928
929				/* Ensure that full-duplex mode is not enabled */
930
931				bp->full_duplex_enb = PI_SNMP_K_FALSE;
932				}
933			}
934		}
935	}
936
937
938/*
939 * ===================
940 * = dfx_driver_init =
941 * ===================
942 *
943 * Overview:
944 *   Initializes remaining adapter board structure information
945 *   and makes sure adapter is in a safe state prior to dfx_open().
946 *
947 * Returns:
948 *   Condition code
949 *
950 * Arguments:
951 *   dev - pointer to device information
952 *   print_name - printable device name
953 *
954 * Functional Description:
955 *   This function allocates additional resources such as the host memory
956 *   blocks needed by the adapter (eg. descriptor and consumer blocks).
957 *	 Remaining bus initialization steps are also completed.  The adapter
958 *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
959 *   must call dfx_open() to open the adapter and bring it on-line.
960 *
961 * Return Codes:
962 *   DFX_K_SUCCESS	- initialization succeeded
963 *   DFX_K_FAILURE	- initialization failed - could not allocate memory
964 *						or read adapter MAC address
965 *
966 * Assumptions:
967 *   Memory allocated from pci_alloc_consistent() call is physically
968 *   contiguous, locked memory.
969 *
970 * Side Effects:
971 *   Adapter is reset and should be in DMA_UNAVAILABLE state before
972 *   returning from this routine.
973 */
974
975static int dfx_driver_init(struct net_device *dev, const char *print_name,
976			   resource_size_t bar_start)
977{
978	DFX_board_t *bp = netdev_priv(dev);
979	struct device *bdev = bp->bus_dev;
980	int dfx_bus_pci = dev_is_pci(bdev);
981	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
982	int dfx_bus_tc = DFX_BUS_TC(bdev);
983	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
984	int alloc_size;			/* total buffer size needed */
985	char *top_v, *curr_v;		/* virtual addrs into memory block */
986	dma_addr_t top_p, curr_p;	/* physical addrs into memory block */
987	u32 data;			/* host data register value */
988	__le32 le32;
989	char *board_name = NULL;
990
991	DBG_printk("In dfx_driver_init...\n");
992
993	/* Initialize bus-specific hardware registers */
994
995	dfx_bus_init(dev);
996
997	/*
998	 * Initialize default values for configurable parameters
999	 *
1000	 * Note: All of these parameters are ones that a user may
1001	 *       want to customize.  It'd be nice to break these
1002	 *		 out into Space.c or someplace else that's more
1003	 *		 accessible/understandable than this file.
1004	 */
1005
1006	bp->full_duplex_enb		= PI_SNMP_K_FALSE;
1007	bp->req_ttrt			= 8 * 12500;		/* 8ms in 80 nanosec units */
1008	bp->burst_size			= PI_PDATA_B_DMA_BURST_SIZE_DEF;
1009	bp->rcv_bufs_to_post	= RCV_BUFS_DEF;
1010
1011	/*
1012	 * Ensure that HW configuration is OK
1013	 *
1014	 * Note: Depending on the hardware revision, we may need to modify
1015	 *       some of the configurable parameters to workaround hardware
1016	 *       limitations.  We'll perform this configuration check AFTER
1017	 *       setting the parameters to their default values.
1018	 */
1019
1020	dfx_bus_config_check(bp);
1021
1022	/* Disable PDQ interrupts first */
1023
1024	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1025
1026	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1027
1028	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1029
1030	/*  Read the factory MAC address from the adapter then save it */
1031
1032	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1033				 &data) != DFX_K_SUCCESS) {
1034		printk("%s: Could not read adapter factory MAC address!\n",
1035		       print_name);
1036		return DFX_K_FAILURE;
1037	}
1038	le32 = cpu_to_le32(data);
1039	memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1040
1041	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1042				 &data) != DFX_K_SUCCESS) {
1043		printk("%s: Could not read adapter factory MAC address!\n",
1044		       print_name);
1045		return DFX_K_FAILURE;
1046	}
1047	le32 = cpu_to_le32(data);
1048	memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1049
1050	/*
1051	 * Set current address to factory address
1052	 *
1053	 * Note: Node address override support is handled through
1054	 *       dfx_ctl_set_mac_address.
1055	 */
1056
1057	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1058	if (dfx_bus_tc)
1059		board_name = "DEFTA";
1060	if (dfx_bus_eisa)
1061		board_name = "DEFEA";
1062	if (dfx_bus_pci)
1063		board_name = "DEFPA";
1064	pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1065		print_name, board_name, dfx_use_mmio ? "" : "I/O ",
1066		(long long)bar_start, dev->irq, dev->dev_addr);
1067
1068	/*
1069	 * Get memory for descriptor block, consumer block, and other buffers
1070	 * that need to be DMA read or written to by the adapter.
1071	 */
1072
1073	alloc_size = sizeof(PI_DESCR_BLOCK) +
1074					PI_CMD_REQ_K_SIZE_MAX +
1075					PI_CMD_RSP_K_SIZE_MAX +
1076#ifndef DYNAMIC_BUFFERS
1077					(bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1078#endif
1079					sizeof(PI_CONSUMER_BLOCK) +
1080					(PI_ALIGN_K_DESC_BLK - 1);
1081	bp->kmalloced = top_v = dma_zalloc_coherent(bp->bus_dev, alloc_size,
1082						    &bp->kmalloced_dma,
1083						    GFP_ATOMIC);
1084	if (top_v == NULL)
1085		return DFX_K_FAILURE;
1086
1087	top_p = bp->kmalloced_dma;	/* get physical address of buffer */
1088
1089	/*
1090	 *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1091	 *  plus the amount of memory needed was allocated.  The physical address
1092	 *	is now 8K aligned.  By carving up the memory in a specific order,
1093	 *  we'll guarantee the alignment requirements for all other structures.
1094	 *
1095	 *  Note: If the assumptions change regarding the non-paged, non-cached,
1096	 *		  physically contiguous nature of the memory block or the address
1097	 *		  alignments, then we'll need to implement a different algorithm
1098	 *		  for allocating the needed memory.
1099	 */
1100
1101	curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1102	curr_v = top_v + (curr_p - top_p);
1103
1104	/* Reserve space for descriptor block */
1105
1106	bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1107	bp->descr_block_phys = curr_p;
1108	curr_v += sizeof(PI_DESCR_BLOCK);
1109	curr_p += sizeof(PI_DESCR_BLOCK);
1110
1111	/* Reserve space for command request buffer */
1112
1113	bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1114	bp->cmd_req_phys = curr_p;
1115	curr_v += PI_CMD_REQ_K_SIZE_MAX;
1116	curr_p += PI_CMD_REQ_K_SIZE_MAX;
1117
1118	/* Reserve space for command response buffer */
1119
1120	bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1121	bp->cmd_rsp_phys = curr_p;
1122	curr_v += PI_CMD_RSP_K_SIZE_MAX;
1123	curr_p += PI_CMD_RSP_K_SIZE_MAX;
1124
1125	/* Reserve space for the LLC host receive queue buffers */
1126
1127	bp->rcv_block_virt = curr_v;
1128	bp->rcv_block_phys = curr_p;
1129
1130#ifndef DYNAMIC_BUFFERS
1131	curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1132	curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1133#endif
1134
1135	/* Reserve space for the consumer block */
1136
1137	bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1138	bp->cons_block_phys = curr_p;
1139
1140	/* Display virtual and physical addresses if debug driver */
1141
1142	DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
1143		   print_name, bp->descr_block_virt, &bp->descr_block_phys);
1144	DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
1145		   print_name, bp->cmd_req_virt, &bp->cmd_req_phys);
1146	DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
1147		   print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys);
1148	DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
1149		   print_name, bp->rcv_block_virt, &bp->rcv_block_phys);
1150	DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
1151		   print_name, bp->cons_block_virt, &bp->cons_block_phys);
1152
1153	return DFX_K_SUCCESS;
1154}
1155
1156
1157/*
1158 * =================
1159 * = dfx_adap_init =
1160 * =================
1161 *
1162 * Overview:
1163 *   Brings the adapter to the link avail/link unavailable state.
1164 *
1165 * Returns:
1166 *   Condition code
1167 *
1168 * Arguments:
1169 *   bp - pointer to board information
1170 *   get_buffers - non-zero if buffers to be allocated
1171 *
1172 * Functional Description:
1173 *   Issues the low-level firmware/hardware calls necessary to bring
1174 *   the adapter up, or to properly reset and restore adapter during
1175 *   run-time.
1176 *
1177 * Return Codes:
1178 *   DFX_K_SUCCESS - Adapter brought up successfully
1179 *   DFX_K_FAILURE - Adapter initialization failed
1180 *
1181 * Assumptions:
1182 *   bp->reset_type should be set to a valid reset type value before
1183 *   calling this routine.
1184 *
1185 * Side Effects:
1186 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1187 *   upon a successful return of this routine.
1188 */
1189
1190static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1191	{
1192	DBG_printk("In dfx_adap_init...\n");
1193
1194	/* Disable PDQ interrupts first */
1195
1196	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1197
1198	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1199
1200	if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1201		{
1202		printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1203		return DFX_K_FAILURE;
1204		}
1205
1206	/*
1207	 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1208	 * so we'll acknowledge all Type 0 interrupts now before continuing.
1209	 */
1210
1211	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1212
1213	/*
1214	 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1215	 *
1216	 * Note: We only need to clear host copies of these registers.  The PDQ reset
1217	 *       takes care of the on-board register values.
1218	 */
1219
1220	bp->cmd_req_reg.lword	= 0;
1221	bp->cmd_rsp_reg.lword	= 0;
1222	bp->rcv_xmt_reg.lword	= 0;
1223
1224	/* Clear consumer block before going to DMA_AVAILABLE state */
1225
1226	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1227
1228	/* Initialize the DMA Burst Size */
1229
1230	if (dfx_hw_port_ctrl_req(bp,
1231							PI_PCTRL_M_SUB_CMD,
1232							PI_SUB_CMD_K_BURST_SIZE_SET,
1233							bp->burst_size,
1234							NULL) != DFX_K_SUCCESS)
1235		{
1236		printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1237		return DFX_K_FAILURE;
1238		}
1239
1240	/*
1241	 * Set base address of Consumer Block
1242	 *
1243	 * Assumption: 32-bit physical address of consumer block is 64 byte
1244	 *			   aligned.  That is, bits 0-5 of the address must be zero.
1245	 */
1246
1247	if (dfx_hw_port_ctrl_req(bp,
1248							PI_PCTRL_M_CONS_BLOCK,
1249							bp->cons_block_phys,
1250							0,
1251							NULL) != DFX_K_SUCCESS)
1252		{
1253		printk("%s: Could not set consumer block address!\n", bp->dev->name);
1254		return DFX_K_FAILURE;
1255		}
1256
1257	/*
1258	 * Set the base address of Descriptor Block and bring adapter
1259	 * to DMA_AVAILABLE state.
1260	 *
1261	 * Note: We also set the literal and data swapping requirements
1262	 *       in this command.
1263	 *
1264	 * Assumption: 32-bit physical address of descriptor block
1265	 *       is 8Kbyte aligned.
1266	 */
1267	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1268				 (u32)(bp->descr_block_phys |
1269				       PI_PDATA_A_INIT_M_BSWAP_INIT),
1270				 0, NULL) != DFX_K_SUCCESS) {
1271		printk("%s: Could not set descriptor block address!\n",
1272		       bp->dev->name);
1273		return DFX_K_FAILURE;
1274	}
1275
1276	/* Set transmit flush timeout value */
1277
1278	bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1279	bp->cmd_req_virt->char_set.item[0].item_code	= PI_ITEM_K_FLUSH_TIME;
1280	bp->cmd_req_virt->char_set.item[0].value		= 3;	/* 3 seconds */
1281	bp->cmd_req_virt->char_set.item[0].item_index	= 0;
1282	bp->cmd_req_virt->char_set.item[1].item_code	= PI_ITEM_K_EOL;
1283	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1284		{
1285		printk("%s: DMA command request failed!\n", bp->dev->name);
1286		return DFX_K_FAILURE;
1287		}
1288
1289	/* Set the initial values for eFDXEnable and MACTReq MIB objects */
1290
1291	bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1292	bp->cmd_req_virt->snmp_set.item[0].item_code	= PI_ITEM_K_FDX_ENB_DIS;
1293	bp->cmd_req_virt->snmp_set.item[0].value		= bp->full_duplex_enb;
1294	bp->cmd_req_virt->snmp_set.item[0].item_index	= 0;
1295	bp->cmd_req_virt->snmp_set.item[1].item_code	= PI_ITEM_K_MAC_T_REQ;
1296	bp->cmd_req_virt->snmp_set.item[1].value		= bp->req_ttrt;
1297	bp->cmd_req_virt->snmp_set.item[1].item_index	= 0;
1298	bp->cmd_req_virt->snmp_set.item[2].item_code	= PI_ITEM_K_EOL;
1299	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1300		{
1301		printk("%s: DMA command request failed!\n", bp->dev->name);
1302		return DFX_K_FAILURE;
1303		}
1304
1305	/* Initialize adapter CAM */
1306
1307	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1308		{
1309		printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1310		return DFX_K_FAILURE;
1311		}
1312
1313	/* Initialize adapter filters */
1314
1315	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1316		{
1317		printk("%s: Adapter filters update failed!\n", bp->dev->name);
1318		return DFX_K_FAILURE;
1319		}
1320
1321	/*
1322	 * Remove any existing dynamic buffers (i.e. if the adapter is being
1323	 * reinitialized)
1324	 */
1325
1326	if (get_buffers)
1327		dfx_rcv_flush(bp);
1328
1329	/* Initialize receive descriptor block and produce buffers */
1330
1331	if (dfx_rcv_init(bp, get_buffers))
1332	        {
1333		printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1334		if (get_buffers)
1335			dfx_rcv_flush(bp);
1336		return DFX_K_FAILURE;
1337		}
1338
1339	/* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1340
1341	bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1342	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1343		{
1344		printk("%s: Start command failed\n", bp->dev->name);
1345		if (get_buffers)
1346			dfx_rcv_flush(bp);
1347		return DFX_K_FAILURE;
1348		}
1349
1350	/* Initialization succeeded, reenable PDQ interrupts */
1351
1352	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1353	return DFX_K_SUCCESS;
1354	}
1355
1356
1357/*
1358 * ============
1359 * = dfx_open =
1360 * ============
1361 *
1362 * Overview:
1363 *   Opens the adapter
1364 *
1365 * Returns:
1366 *   Condition code
1367 *
1368 * Arguments:
1369 *   dev - pointer to device information
1370 *
1371 * Functional Description:
1372 *   This function brings the adapter to an operational state.
1373 *
1374 * Return Codes:
1375 *   0		 - Adapter was successfully opened
1376 *   -EAGAIN - Could not register IRQ or adapter initialization failed
1377 *
1378 * Assumptions:
1379 *   This routine should only be called for a device that was
1380 *   initialized successfully.
1381 *
1382 * Side Effects:
1383 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1384 *   if the open is successful.
1385 */
1386
1387static int dfx_open(struct net_device *dev)
1388{
1389	DFX_board_t *bp = netdev_priv(dev);
1390	int ret;
1391
1392	DBG_printk("In dfx_open...\n");
1393
1394	/* Register IRQ - support shared interrupts by passing device ptr */
1395
1396	ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1397			  dev);
1398	if (ret) {
1399		printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1400		return ret;
1401	}
1402
1403	/*
1404	 * Set current address to factory MAC address
1405	 *
1406	 * Note: We've already done this step in dfx_driver_init.
1407	 *       However, it's possible that a user has set a node
1408	 *		 address override, then closed and reopened the
1409	 *		 adapter.  Unless we reset the device address field
1410	 *		 now, we'll continue to use the existing modified
1411	 *		 address.
1412	 */
1413
1414	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1415
1416	/* Clear local unicast/multicast address tables and counts */
1417
1418	memset(bp->uc_table, 0, sizeof(bp->uc_table));
1419	memset(bp->mc_table, 0, sizeof(bp->mc_table));
1420	bp->uc_count = 0;
1421	bp->mc_count = 0;
1422
1423	/* Disable promiscuous filter settings */
1424
1425	bp->ind_group_prom	= PI_FSTATE_K_BLOCK;
1426	bp->group_prom		= PI_FSTATE_K_BLOCK;
1427
1428	spin_lock_init(&bp->lock);
1429
1430	/* Reset and initialize adapter */
1431
1432	bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;	/* skip self-test */
1433	if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1434	{
1435		printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1436		free_irq(dev->irq, dev);
1437		return -EAGAIN;
1438	}
1439
1440	/* Set device structure info */
1441	netif_start_queue(dev);
1442	return 0;
1443}
1444
1445
1446/*
1447 * =============
1448 * = dfx_close =
1449 * =============
1450 *
1451 * Overview:
1452 *   Closes the device/module.
1453 *
1454 * Returns:
1455 *   Condition code
1456 *
1457 * Arguments:
1458 *   dev - pointer to device information
1459 *
1460 * Functional Description:
1461 *   This routine closes the adapter and brings it to a safe state.
1462 *   The interrupt service routine is deregistered with the OS.
1463 *   The adapter can be opened again with another call to dfx_open().
1464 *
1465 * Return Codes:
1466 *   Always return 0.
1467 *
1468 * Assumptions:
1469 *   No further requests for this adapter are made after this routine is
1470 *   called.  dfx_open() can be called to reset and reinitialize the
1471 *   adapter.
1472 *
1473 * Side Effects:
1474 *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1475 *   routine.
1476 */
1477
1478static int dfx_close(struct net_device *dev)
1479{
1480	DFX_board_t *bp = netdev_priv(dev);
1481
1482	DBG_printk("In dfx_close...\n");
1483
1484	/* Disable PDQ interrupts first */
1485
1486	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1487
1488	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1489
1490	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1491
1492	/*
1493	 * Flush any pending transmit buffers
1494	 *
1495	 * Note: It's important that we flush the transmit buffers
1496	 *		 BEFORE we clear our copy of the Type 2 register.
1497	 *		 Otherwise, we'll have no idea how many buffers
1498	 *		 we need to free.
1499	 */
1500
1501	dfx_xmt_flush(bp);
1502
1503	/*
1504	 * Clear Type 1 and Type 2 registers after adapter reset
1505	 *
1506	 * Note: Even though we're closing the adapter, it's
1507	 *       possible that an interrupt will occur after
1508	 *		 dfx_close is called.  Without some assurance to
1509	 *		 the contrary we want to make sure that we don't
1510	 *		 process receive and transmit LLC frames and update
1511	 *		 the Type 2 register with bad information.
1512	 */
1513
1514	bp->cmd_req_reg.lword	= 0;
1515	bp->cmd_rsp_reg.lword	= 0;
1516	bp->rcv_xmt_reg.lword	= 0;
1517
1518	/* Clear consumer block for the same reason given above */
1519
1520	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1521
1522	/* Release all dynamically allocate skb in the receive ring. */
1523
1524	dfx_rcv_flush(bp);
1525
1526	/* Clear device structure flags */
1527
1528	netif_stop_queue(dev);
1529
1530	/* Deregister (free) IRQ */
1531
1532	free_irq(dev->irq, dev);
1533
1534	return 0;
1535}
1536
1537
1538/*
1539 * ======================
1540 * = dfx_int_pr_halt_id =
1541 * ======================
1542 *
1543 * Overview:
1544 *   Displays halt id's in string form.
1545 *
1546 * Returns:
1547 *   None
1548 *
1549 * Arguments:
1550 *   bp - pointer to board information
1551 *
1552 * Functional Description:
1553 *   Determine current halt id and display appropriate string.
1554 *
1555 * Return Codes:
1556 *   None
1557 *
1558 * Assumptions:
1559 *   None
1560 *
1561 * Side Effects:
1562 *   None
1563 */
1564
1565static void dfx_int_pr_halt_id(DFX_board_t	*bp)
1566	{
1567	PI_UINT32	port_status;			/* PDQ port status register value */
1568	PI_UINT32	halt_id;				/* PDQ port status halt ID */
1569
1570	/* Read the latest port status */
1571
1572	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1573
1574	/* Display halt state transition information */
1575
1576	halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1577	switch (halt_id)
1578		{
1579		case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1580			printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1581			break;
1582
1583		case PI_HALT_ID_K_PARITY_ERROR:
1584			printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1585			break;
1586
1587		case PI_HALT_ID_K_HOST_DIR_HALT:
1588			printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1589			break;
1590
1591		case PI_HALT_ID_K_SW_FAULT:
1592			printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1593			break;
1594
1595		case PI_HALT_ID_K_HW_FAULT:
1596			printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1597			break;
1598
1599		case PI_HALT_ID_K_PC_TRACE:
1600			printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1601			break;
1602
1603		case PI_HALT_ID_K_DMA_ERROR:
1604			printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1605			break;
1606
1607		case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1608			printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1609			break;
1610
1611		case PI_HALT_ID_K_BUS_EXCEPTION:
1612			printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1613			break;
1614
1615		default:
1616			printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1617			break;
1618		}
1619	}
1620
1621
1622/*
1623 * ==========================
1624 * = dfx_int_type_0_process =
1625 * ==========================
1626 *
1627 * Overview:
1628 *   Processes Type 0 interrupts.
1629 *
1630 * Returns:
1631 *   None
1632 *
1633 * Arguments:
1634 *   bp - pointer to board information
1635 *
1636 * Functional Description:
1637 *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1638 *   is a serious fault on the adapter, then an error message is displayed
1639 *   and the adapter is reset.
1640 *
1641 *   One tricky potential timing window is the rapid succession of "link avail"
1642 *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1643 *   interrupt must be done before reading the state from the Port Status
1644 *   register.  This is true because a state change could occur after reading
1645 *   the data, but before acknowledging the interrupt.  If this state change
1646 *   does happen, it would be lost because the driver is using the old state,
1647 *   and it will never know about the new state because it subsequently
1648 *   acknowledges the state change interrupt.
1649 *
1650 *          INCORRECT                                      CORRECT
1651 *      read type 0 int reasons                   read type 0 int reasons
1652 *      read adapter state                        ack type 0 interrupts
1653 *      ack type 0 interrupts                     read adapter state
1654 *      ... process interrupt ...                 ... process interrupt ...
1655 *
1656 * Return Codes:
1657 *   None
1658 *
1659 * Assumptions:
1660 *   None
1661 *
1662 * Side Effects:
1663 *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1664 *   or if the port status indicates that the adapter is halted.  The driver
1665 *   is responsible for reinitializing the adapter with the current CAM
1666 *   contents and adapter filter settings.
1667 */
1668
1669static void dfx_int_type_0_process(DFX_board_t	*bp)
1670
1671	{
1672	PI_UINT32	type_0_status;		/* Host Interrupt Type 0 register */
1673	PI_UINT32	state;				/* current adap state (from port status) */
1674
1675	/*
1676	 * Read host interrupt Type 0 register to determine which Type 0
1677	 * interrupts are pending.  Immediately write it back out to clear
1678	 * those interrupts.
1679	 */
1680
1681	dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1682	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1683
1684	/* Check for Type 0 error interrupts */
1685
1686	if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1687							PI_TYPE_0_STAT_M_PM_PAR_ERR |
1688							PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1689		{
1690		/* Check for Non-Existent Memory error */
1691
1692		if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1693			printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1694
1695		/* Check for Packet Memory Parity error */
1696
1697		if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1698			printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1699
1700		/* Check for Host Bus Parity error */
1701
1702		if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1703			printk("%s: Host Bus Parity Error\n", bp->dev->name);
1704
1705		/* Reset adapter and bring it back on-line */
1706
1707		bp->link_available = PI_K_FALSE;	/* link is no longer available */
1708		bp->reset_type = 0;					/* rerun on-board diagnostics */
1709		printk("%s: Resetting adapter...\n", bp->dev->name);
1710		if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1711			{
1712			printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1713			dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1714			return;
1715			}
1716		printk("%s: Adapter reset successful!\n", bp->dev->name);
1717		return;
1718		}
1719
1720	/* Check for transmit flush interrupt */
1721
1722	if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1723		{
1724		/* Flush any pending xmt's and acknowledge the flush interrupt */
1725
1726		bp->link_available = PI_K_FALSE;		/* link is no longer available */
1727		dfx_xmt_flush(bp);						/* flush any outstanding packets */
1728		(void) dfx_hw_port_ctrl_req(bp,
1729									PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1730									0,
1731									0,
1732									NULL);
1733		}
1734
1735	/* Check for adapter state change */
1736
1737	if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1738		{
1739		/* Get latest adapter state */
1740
1741		state = dfx_hw_adap_state_rd(bp);	/* get adapter state */
1742		if (state == PI_STATE_K_HALTED)
1743			{
1744			/*
1745			 * Adapter has transitioned to HALTED state, try to reset
1746			 * adapter to bring it back on-line.  If reset fails,
1747			 * leave the adapter in the broken state.
1748			 */
1749
1750			printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1751			dfx_int_pr_halt_id(bp);			/* display halt id as string */
1752
1753			/* Reset adapter and bring it back on-line */
1754
1755			bp->link_available = PI_K_FALSE;	/* link is no longer available */
1756			bp->reset_type = 0;					/* rerun on-board diagnostics */
1757			printk("%s: Resetting adapter...\n", bp->dev->name);
1758			if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1759				{
1760				printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1761				dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1762				return;
1763				}
1764			printk("%s: Adapter reset successful!\n", bp->dev->name);
1765			}
1766		else if (state == PI_STATE_K_LINK_AVAIL)
1767			{
1768			bp->link_available = PI_K_TRUE;		/* set link available flag */
1769			}
1770		}
1771	}
1772
1773
1774/*
1775 * ==================
1776 * = dfx_int_common =
1777 * ==================
1778 *
1779 * Overview:
1780 *   Interrupt service routine (ISR)
1781 *
1782 * Returns:
1783 *   None
1784 *
1785 * Arguments:
1786 *   bp - pointer to board information
1787 *
1788 * Functional Description:
1789 *   This is the ISR which processes incoming adapter interrupts.
1790 *
1791 * Return Codes:
1792 *   None
1793 *
1794 * Assumptions:
1795 *   This routine assumes PDQ interrupts have not been disabled.
1796 *   When interrupts are disabled at the PDQ, the Port Status register
1797 *   is automatically cleared.  This routine uses the Port Status
1798 *   register value to determine whether a Type 0 interrupt occurred,
1799 *   so it's important that adapter interrupts are not normally
1800 *   enabled/disabled at the PDQ.
1801 *
1802 *   It's vital that this routine is NOT reentered for the
1803 *   same board and that the OS is not in another section of
1804 *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1805 *   different thread.
1806 *
1807 * Side Effects:
1808 *   Pending interrupts are serviced.  Depending on the type of
1809 *   interrupt, acknowledging and clearing the interrupt at the
1810 *   PDQ involves writing a register to clear the interrupt bit
1811 *   or updating completion indices.
1812 */
1813
1814static void dfx_int_common(struct net_device *dev)
1815{
1816	DFX_board_t *bp = netdev_priv(dev);
1817	PI_UINT32	port_status;		/* Port Status register */
1818
1819	/* Process xmt interrupts - frequent case, so always call this routine */
1820
1821	if(dfx_xmt_done(bp))				/* free consumed xmt packets */
1822		netif_wake_queue(dev);
1823
1824	/* Process rcv interrupts - frequent case, so always call this routine */
1825
1826	dfx_rcv_queue_process(bp);		/* service received LLC frames */
1827
1828	/*
1829	 * Transmit and receive producer and completion indices are updated on the
1830	 * adapter by writing to the Type 2 Producer register.  Since the frequent
1831	 * case is that we'll be processing either LLC transmit or receive buffers,
1832	 * we'll optimize I/O writes by doing a single register write here.
1833	 */
1834
1835	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1836
1837	/* Read PDQ Port Status register to find out which interrupts need processing */
1838
1839	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1840
1841	/* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1842
1843	if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1844		dfx_int_type_0_process(bp);	/* process Type 0 interrupts */
1845	}
1846
1847
1848/*
1849 * =================
1850 * = dfx_interrupt =
1851 * =================
1852 *
1853 * Overview:
1854 *   Interrupt processing routine
1855 *
1856 * Returns:
1857 *   Whether a valid interrupt was seen.
1858 *
1859 * Arguments:
1860 *   irq	- interrupt vector
1861 *   dev_id	- pointer to device information
1862 *
1863 * Functional Description:
1864 *   This routine calls the interrupt processing routine for this adapter.  It
1865 *   disables and reenables adapter interrupts, as appropriate.  We can support
1866 *   shared interrupts since the incoming dev_id pointer provides our device
1867 *   structure context.
1868 *
1869 * Return Codes:
1870 *   IRQ_HANDLED - an IRQ was handled.
1871 *   IRQ_NONE    - no IRQ was handled.
1872 *
1873 * Assumptions:
1874 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1875 *   on Intel-based systems) is done by the operating system outside this
1876 *   routine.
1877 *
1878 *	 System interrupts are enabled through this call.
1879 *
1880 * Side Effects:
1881 *   Interrupts are disabled, then reenabled at the adapter.
1882 */
1883
1884static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1885{
1886	struct net_device *dev = dev_id;
1887	DFX_board_t *bp = netdev_priv(dev);
1888	struct device *bdev = bp->bus_dev;
1889	int dfx_bus_pci = dev_is_pci(bdev);
1890	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1891	int dfx_bus_tc = DFX_BUS_TC(bdev);
1892
1893	/* Service adapter interrupts */
1894
1895	if (dfx_bus_pci) {
1896		u32 status;
1897
1898		dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1899		if (!(status & PFI_STATUS_M_PDQ_INT))
1900			return IRQ_NONE;
1901
1902		spin_lock(&bp->lock);
1903
1904		/* Disable PDQ-PFI interrupts at PFI */
1905		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1906				    PFI_MODE_M_DMA_ENB);
1907
1908		/* Call interrupt service routine for this adapter */
1909		dfx_int_common(dev);
1910
1911		/* Clear PDQ interrupt status bit and reenable interrupts */
1912		dfx_port_write_long(bp, PFI_K_REG_STATUS,
1913				    PFI_STATUS_M_PDQ_INT);
1914		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1915				    (PFI_MODE_M_PDQ_INT_ENB |
1916				     PFI_MODE_M_DMA_ENB));
1917
1918		spin_unlock(&bp->lock);
1919	}
1920	if (dfx_bus_eisa) {
1921		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1922		u8 status;
1923
1924		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1925		if (!(status & PI_CONFIG_STAT_0_M_PEND))
1926			return IRQ_NONE;
1927
1928		spin_lock(&bp->lock);
1929
1930		/* Disable interrupts at the ESIC */
1931		status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1932		outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1933
1934		/* Call interrupt service routine for this adapter */
1935		dfx_int_common(dev);
1936
1937		/* Reenable interrupts at the ESIC */
1938		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1939		status |= PI_CONFIG_STAT_0_M_INT_ENB;
1940		outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1941
1942		spin_unlock(&bp->lock);
1943	}
1944	if (dfx_bus_tc) {
1945		u32 status;
1946
1947		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1948		if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1949				PI_PSTATUS_M_XMT_DATA_PENDING |
1950				PI_PSTATUS_M_SMT_HOST_PENDING |
1951				PI_PSTATUS_M_UNSOL_PENDING |
1952				PI_PSTATUS_M_CMD_RSP_PENDING |
1953				PI_PSTATUS_M_CMD_REQ_PENDING |
1954				PI_PSTATUS_M_TYPE_0_PENDING)))
1955			return IRQ_NONE;
1956
1957		spin_lock(&bp->lock);
1958
1959		/* Call interrupt service routine for this adapter */
1960		dfx_int_common(dev);
1961
1962		spin_unlock(&bp->lock);
1963	}
1964
1965	return IRQ_HANDLED;
1966}
1967
1968
1969/*
1970 * =====================
1971 * = dfx_ctl_get_stats =
1972 * =====================
1973 *
1974 * Overview:
1975 *   Get statistics for FDDI adapter
1976 *
1977 * Returns:
1978 *   Pointer to FDDI statistics structure
1979 *
1980 * Arguments:
1981 *   dev - pointer to device information
1982 *
1983 * Functional Description:
1984 *   Gets current MIB objects from adapter, then
1985 *   returns FDDI statistics structure as defined
1986 *   in if_fddi.h.
1987 *
1988 *   Note: Since the FDDI statistics structure is
1989 *   still new and the device structure doesn't
1990 *   have an FDDI-specific get statistics handler,
1991 *   we'll return the FDDI statistics structure as
1992 *   a pointer to an Ethernet statistics structure.
1993 *   That way, at least the first part of the statistics
1994 *   structure can be decoded properly, and it allows
1995 *   "smart" applications to perform a second cast to
1996 *   decode the FDDI-specific statistics.
1997 *
1998 *   We'll have to pay attention to this routine as the
1999 *   device structure becomes more mature and LAN media
2000 *   independent.
2001 *
2002 * Return Codes:
2003 *   None
2004 *
2005 * Assumptions:
2006 *   None
2007 *
2008 * Side Effects:
2009 *   None
2010 */
2011
2012static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2013	{
2014	DFX_board_t *bp = netdev_priv(dev);
2015
2016	/* Fill the bp->stats structure with driver-maintained counters */
2017
2018	bp->stats.gen.rx_packets = bp->rcv_total_frames;
2019	bp->stats.gen.tx_packets = bp->xmt_total_frames;
2020	bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2021	bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2022	bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2023				   bp->rcv_frame_status_errors +
2024				   bp->rcv_length_errors;
2025	bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2026	bp->stats.gen.rx_dropped = bp->rcv_discards;
2027	bp->stats.gen.tx_dropped = bp->xmt_discards;
2028	bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2029	bp->stats.gen.collisions = 0;		/* always zero (0) for FDDI */
2030
2031	/* Get FDDI SMT MIB objects */
2032
2033	bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2034	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2035		return (struct net_device_stats *)&bp->stats;
2036
2037	/* Fill the bp->stats structure with the SMT MIB object values */
2038
2039	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2040	bp->stats.smt_op_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2041	bp->stats.smt_hi_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2042	bp->stats.smt_lo_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2043	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2044	bp->stats.smt_mib_version_id				= bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2045	bp->stats.smt_mac_cts						= bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2046	bp->stats.smt_non_master_cts				= bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2047	bp->stats.smt_master_cts					= bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2048	bp->stats.smt_available_paths				= bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2049	bp->stats.smt_config_capabilities			= bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2050	bp->stats.smt_config_policy					= bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2051	bp->stats.smt_connection_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2052	bp->stats.smt_t_notify						= bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2053	bp->stats.smt_stat_rpt_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2054	bp->stats.smt_trace_max_expiration			= bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2055	bp->stats.smt_bypass_present				= bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2056	bp->stats.smt_ecm_state						= bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2057	bp->stats.smt_cf_state						= bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2058	bp->stats.smt_remote_disconnect_flag		= bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2059	bp->stats.smt_station_status				= bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2060	bp->stats.smt_peer_wrap_flag				= bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2061	bp->stats.smt_time_stamp					= bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2062	bp->stats.smt_transition_time_stamp			= bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2063	bp->stats.mac_frame_status_functions		= bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2064	bp->stats.mac_t_max_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2065	bp->stats.mac_tvx_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2066	bp->stats.mac_available_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2067	bp->stats.mac_current_path					= bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2068	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2069	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2070	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2071	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2072	bp->stats.mac_dup_address_test				= bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2073	bp->stats.mac_requested_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2074	bp->stats.mac_downstream_port_type			= bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2075	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2076	bp->stats.mac_t_req							= bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2077	bp->stats.mac_t_neg							= bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2078	bp->stats.mac_t_max							= bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2079	bp->stats.mac_tvx_value						= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2080	bp->stats.mac_frame_error_threshold			= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2081	bp->stats.mac_frame_error_ratio				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2082	bp->stats.mac_rmt_state						= bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2083	bp->stats.mac_da_flag						= bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2084	bp->stats.mac_una_da_flag					= bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2085	bp->stats.mac_frame_error_flag				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2086	bp->stats.mac_ma_unitdata_available			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2087	bp->stats.mac_hardware_present				= bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2088	bp->stats.mac_ma_unitdata_enable			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2089	bp->stats.path_tvx_lower_bound				= bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2090	bp->stats.path_t_max_lower_bound			= bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2091	bp->stats.path_max_t_req					= bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2092	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2093	bp->stats.port_my_type[0]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2094	bp->stats.port_my_type[1]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2095	bp->stats.port_neighbor_type[0]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2096	bp->stats.port_neighbor_type[1]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2097	bp->stats.port_connection_policies[0]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2098	bp->stats.port_connection_policies[1]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2099	bp->stats.port_mac_indicated[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2100	bp->stats.port_mac_indicated[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2101	bp->stats.port_current_path[0]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2102	bp->stats.port_current_path[1]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2103	memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2104	memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2105	bp->stats.port_mac_placement[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2106	bp->stats.port_mac_placement[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2107	bp->stats.port_available_paths[0]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2108	bp->stats.port_available_paths[1]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2109	bp->stats.port_pmd_class[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2110	bp->stats.port_pmd_class[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2111	bp->stats.port_connection_capabilities[0]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2112	bp->stats.port_connection_capabilities[1]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2113	bp->stats.port_bs_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2114	bp->stats.port_bs_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2115	bp->stats.port_ler_estimate[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2116	bp->stats.port_ler_estimate[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2117	bp->stats.port_ler_cutoff[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2118	bp->stats.port_ler_cutoff[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2119	bp->stats.port_ler_alarm[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2120	bp->stats.port_ler_alarm[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2121	bp->stats.port_connect_state[0]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2122	bp->stats.port_connect_state[1]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2123	bp->stats.port_pcm_state[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2124	bp->stats.port_pcm_state[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2125	bp->stats.port_pc_withhold[0]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2126	bp->stats.port_pc_withhold[1]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2127	bp->stats.port_ler_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2128	bp->stats.port_ler_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2129	bp->stats.port_hardware_present[0]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2130	bp->stats.port_hardware_present[1]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2131
2132	/* Get FDDI counters */
2133
2134	bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2135	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2136		return (struct net_device_stats *)&bp->stats;
2137
2138	/* Fill the bp->stats structure with the FDDI counter values */
2139
2140	bp->stats.mac_frame_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2141	bp->stats.mac_copied_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2142	bp->stats.mac_transmit_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2143	bp->stats.mac_error_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2144	bp->stats.mac_lost_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2145	bp->stats.port_lct_fail_cts[0]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2146	bp->stats.port_lct_fail_cts[1]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2147	bp->stats.port_lem_reject_cts[0]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2148	bp->stats.port_lem_reject_cts[1]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2149	bp->stats.port_lem_cts[0]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2150	bp->stats.port_lem_cts[1]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2151
2152	return (struct net_device_stats *)&bp->stats;
2153	}
2154
2155
2156/*
2157 * ==============================
2158 * = dfx_ctl_set_multicast_list =
2159 * ==============================
2160 *
2161 * Overview:
2162 *   Enable/Disable LLC frame promiscuous mode reception
2163 *   on the adapter and/or update multicast address table.
2164 *
2165 * Returns:
2166 *   None
2167 *
2168 * Arguments:
2169 *   dev - pointer to device information
2170 *
2171 * Functional Description:
2172 *   This routine follows a fairly simple algorithm for setting the
2173 *   adapter filters and CAM:
2174 *
2175 *		if IFF_PROMISC flag is set
2176 *			enable LLC individual/group promiscuous mode
2177 *		else
2178 *			disable LLC individual/group promiscuous mode
2179 *			if number of incoming multicast addresses >
2180 *					(CAM max size - number of unicast addresses in CAM)
2181 *				enable LLC group promiscuous mode
2182 *				set driver-maintained multicast address count to zero
2183 *			else
2184 *				disable LLC group promiscuous mode
2185 *				set driver-maintained multicast address count to incoming count
2186 *			update adapter CAM
2187 *		update adapter filters
2188 *
2189 * Return Codes:
2190 *   None
2191 *
2192 * Assumptions:
2193 *   Multicast addresses are presented in canonical (LSB) format.
2194 *
2195 * Side Effects:
2196 *   On-board adapter CAM and filters are updated.
2197 */
2198
2199static void dfx_ctl_set_multicast_list(struct net_device *dev)
2200{
2201	DFX_board_t *bp = netdev_priv(dev);
2202	int					i;			/* used as index in for loop */
2203	struct netdev_hw_addr *ha;
2204
2205	/* Enable LLC frame promiscuous mode, if necessary */
2206
2207	if (dev->flags & IFF_PROMISC)
2208		bp->ind_group_prom = PI_FSTATE_K_PASS;		/* Enable LLC ind/group prom mode */
2209
2210	/* Else, update multicast address table */
2211
2212	else
2213		{
2214		bp->ind_group_prom = PI_FSTATE_K_BLOCK;		/* Disable LLC ind/group prom mode */
2215		/*
2216		 * Check whether incoming multicast address count exceeds table size
2217		 *
2218		 * Note: The adapters utilize an on-board 64 entry CAM for
2219		 *       supporting perfect filtering of multicast packets
2220		 *		 and bridge functions when adding unicast addresses.
2221		 *		 There is no hash function available.  To support
2222		 *		 additional multicast addresses, the all multicast
2223		 *		 filter (LLC group promiscuous mode) must be enabled.
2224		 *
2225		 *		 The firmware reserves two CAM entries for SMT-related
2226		 *		 multicast addresses, which leaves 62 entries available.
2227		 *		 The following code ensures that we're not being asked
2228		 *		 to add more than 62 addresses to the CAM.  If we are,
2229		 *		 the driver will enable the all multicast filter.
2230		 *		 Should the number of multicast addresses drop below
2231		 *		 the high water mark, the filter will be disabled and
2232		 *		 perfect filtering will be used.
2233		 */
2234
2235		if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2236			{
2237			bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2238			bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2239			}
2240		else
2241			{
2242			bp->group_prom	= PI_FSTATE_K_BLOCK;	/* Disable LLC group prom mode */
2243			bp->mc_count	= netdev_mc_count(dev);		/* Add mc addrs to CAM */
2244			}
2245
2246		/* Copy addresses to multicast address table, then update adapter CAM */
2247
2248		i = 0;
2249		netdev_for_each_mc_addr(ha, dev)
2250			memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2251			       ha->addr, FDDI_K_ALEN);
2252
2253		if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2254			{
2255			DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2256			}
2257		else
2258			{
2259			DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2260			}
2261		}
2262
2263	/* Update adapter filters */
2264
2265	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2266		{
2267		DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2268		}
2269	else
2270		{
2271		DBG_printk("%s: Adapter filters updated!\n", dev->name);
2272		}
2273	}
2274
2275
2276/*
2277 * ===========================
2278 * = dfx_ctl_set_mac_address =
2279 * ===========================
2280 *
2281 * Overview:
2282 *   Add node address override (unicast address) to adapter
2283 *   CAM and update dev_addr field in device table.
2284 *
2285 * Returns:
2286 *   None
2287 *
2288 * Arguments:
2289 *   dev  - pointer to device information
2290 *   addr - pointer to sockaddr structure containing unicast address to add
2291 *
2292 * Functional Description:
2293 *   The adapter supports node address overrides by adding one or more
2294 *   unicast addresses to the adapter CAM.  This is similar to adding
2295 *   multicast addresses.  In this routine we'll update the driver and
2296 *   device structures with the new address, then update the adapter CAM
2297 *   to ensure that the adapter will copy and strip frames destined and
2298 *   sourced by that address.
2299 *
2300 * Return Codes:
2301 *   Always returns zero.
2302 *
2303 * Assumptions:
2304 *   The address pointed to by addr->sa_data is a valid unicast
2305 *   address and is presented in canonical (LSB) format.
2306 *
2307 * Side Effects:
2308 *   On-board adapter CAM is updated.  On-board adapter filters
2309 *   may be updated.
2310 */
2311
2312static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2313	{
2314	struct sockaddr	*p_sockaddr = (struct sockaddr *)addr;
2315	DFX_board_t *bp = netdev_priv(dev);
2316
2317	/* Copy unicast address to driver-maintained structs and update count */
2318
2319	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);	/* update device struct */
2320	memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);	/* update driver struct */
2321	bp->uc_count = 1;
2322
2323	/*
2324	 * Verify we're not exceeding the CAM size by adding unicast address
2325	 *
2326	 * Note: It's possible that before entering this routine we've
2327	 *       already filled the CAM with 62 multicast addresses.
2328	 *		 Since we need to place the node address override into
2329	 *		 the CAM, we have to check to see that we're not
2330	 *		 exceeding the CAM size.  If we are, we have to enable
2331	 *		 the LLC group (multicast) promiscuous mode filter as
2332	 *		 in dfx_ctl_set_multicast_list.
2333	 */
2334
2335	if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2336		{
2337		bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2338		bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2339
2340		/* Update adapter filters */
2341
2342		if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2343			{
2344			DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2345			}
2346		else
2347			{
2348			DBG_printk("%s: Adapter filters updated!\n", dev->name);
2349			}
2350		}
2351
2352	/* Update adapter CAM with new unicast address */
2353
2354	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2355		{
2356		DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2357		}
2358	else
2359		{
2360		DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2361		}
2362	return 0;			/* always return zero */
2363	}
2364
2365
2366/*
2367 * ======================
2368 * = dfx_ctl_update_cam =
2369 * ======================
2370 *
2371 * Overview:
2372 *   Procedure to update adapter CAM (Content Addressable Memory)
2373 *   with desired unicast and multicast address entries.
2374 *
2375 * Returns:
2376 *   Condition code
2377 *
2378 * Arguments:
2379 *   bp - pointer to board information
2380 *
2381 * Functional Description:
2382 *   Updates adapter CAM with current contents of board structure
2383 *   unicast and multicast address tables.  Since there are only 62
2384 *   free entries in CAM, this routine ensures that the command
2385 *   request buffer is not overrun.
2386 *
2387 * Return Codes:
2388 *   DFX_K_SUCCESS - Request succeeded
2389 *   DFX_K_FAILURE - Request failed
2390 *
2391 * Assumptions:
2392 *   All addresses being added (unicast and multicast) are in canonical
2393 *   order.
2394 *
2395 * Side Effects:
2396 *   On-board adapter CAM is updated.
2397 */
2398
2399static int dfx_ctl_update_cam(DFX_board_t *bp)
2400	{
2401	int			i;				/* used as index */
2402	PI_LAN_ADDR	*p_addr;		/* pointer to CAM entry */
2403
2404	/*
2405	 * Fill in command request information
2406	 *
2407	 * Note: Even though both the unicast and multicast address
2408	 *       table entries are stored as contiguous 6 byte entries,
2409	 *		 the firmware address filter set command expects each
2410	 *		 entry to be two longwords (8 bytes total).  We must be
2411	 *		 careful to only copy the six bytes of each unicast and
2412	 *		 multicast table entry into each command entry.  This
2413	 *		 is also why we must first clear the entire command
2414	 *		 request buffer.
2415	 */
2416
2417	memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);	/* first clear buffer */
2418	bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2419	p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2420
2421	/* Now add unicast addresses to command request buffer, if any */
2422
2423	for (i=0; i < (int)bp->uc_count; i++)
2424		{
2425		if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2426			{
2427			memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2428			p_addr++;			/* point to next command entry */
2429			}
2430		}
2431
2432	/* Now add multicast addresses to command request buffer, if any */
2433
2434	for (i=0; i < (int)bp->mc_count; i++)
2435		{
2436		if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2437			{
2438			memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2439			p_addr++;			/* point to next command entry */
2440			}
2441		}
2442
2443	/* Issue command to update adapter CAM, then return */
2444
2445	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2446		return DFX_K_FAILURE;
2447	return DFX_K_SUCCESS;
2448	}
2449
2450
2451/*
2452 * ==========================
2453 * = dfx_ctl_update_filters =
2454 * ==========================
2455 *
2456 * Overview:
2457 *   Procedure to update adapter filters with desired
2458 *   filter settings.
2459 *
2460 * Returns:
2461 *   Condition code
2462 *
2463 * Arguments:
2464 *   bp - pointer to board information
2465 *
2466 * Functional Description:
2467 *   Enables or disables filter using current filter settings.
2468 *
2469 * Return Codes:
2470 *   DFX_K_SUCCESS - Request succeeded.
2471 *   DFX_K_FAILURE - Request failed.
2472 *
2473 * Assumptions:
2474 *   We must always pass up packets destined to the broadcast
2475 *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2476 *   broadcast filter enabled.
2477 *
2478 * Side Effects:
2479 *   On-board adapter filters are updated.
2480 */
2481
2482static int dfx_ctl_update_filters(DFX_board_t *bp)
2483	{
2484	int	i = 0;					/* used as index */
2485
2486	/* Fill in command request information */
2487
2488	bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2489
2490	/* Initialize Broadcast filter - * ALWAYS ENABLED * */
2491
2492	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_BROADCAST;
2493	bp->cmd_req_virt->filter_set.item[i++].value	= PI_FSTATE_K_PASS;
2494
2495	/* Initialize LLC Individual/Group Promiscuous filter */
2496
2497	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_IND_GROUP_PROM;
2498	bp->cmd_req_virt->filter_set.item[i++].value	= bp->ind_group_prom;
2499
2500	/* Initialize LLC Group Promiscuous filter */
2501
2502	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_GROUP_PROM;
2503	bp->cmd_req_virt->filter_set.item[i++].value	= bp->group_prom;
2504
2505	/* Terminate the item code list */
2506
2507	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_EOL;
2508
2509	/* Issue command to update adapter filters, then return */
2510
2511	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2512		return DFX_K_FAILURE;
2513	return DFX_K_SUCCESS;
2514	}
2515
2516
2517/*
2518 * ======================
2519 * = dfx_hw_dma_cmd_req =
2520 * ======================
2521 *
2522 * Overview:
2523 *   Sends PDQ DMA command to adapter firmware
2524 *
2525 * Returns:
2526 *   Condition code
2527 *
2528 * Arguments:
2529 *   bp - pointer to board information
2530 *
2531 * Functional Description:
2532 *   The command request and response buffers are posted to the adapter in the manner
2533 *   described in the PDQ Port Specification:
2534 *
2535 *		1. Command Response Buffer is posted to adapter.
2536 *		2. Command Request Buffer is posted to adapter.
2537 *		3. Command Request consumer index is polled until it indicates that request
2538 *         buffer has been DMA'd to adapter.
2539 *		4. Command Response consumer index is polled until it indicates that response
2540 *         buffer has been DMA'd from adapter.
2541 *
2542 *   This ordering ensures that a response buffer is already available for the firmware
2543 *   to use once it's done processing the request buffer.
2544 *
2545 * Return Codes:
2546 *   DFX_K_SUCCESS	  - DMA command succeeded
2547 * 	 DFX_K_OUTSTATE   - Adapter is NOT in proper state
2548 *   DFX_K_HW_TIMEOUT - DMA command timed out
2549 *
2550 * Assumptions:
2551 *   Command request buffer has already been filled with desired DMA command.
2552 *
2553 * Side Effects:
2554 *   None
2555 */
2556
2557static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2558	{
2559	int status;			/* adapter status */
2560	int timeout_cnt;	/* used in for loops */
2561
2562	/* Make sure the adapter is in a state that we can issue the DMA command in */
2563
2564	status = dfx_hw_adap_state_rd(bp);
2565	if ((status == PI_STATE_K_RESET)		||
2566		(status == PI_STATE_K_HALTED)		||
2567		(status == PI_STATE_K_DMA_UNAVAIL)	||
2568		(status == PI_STATE_K_UPGRADE))
2569		return DFX_K_OUTSTATE;
2570
2571	/* Put response buffer on the command response queue */
2572
2573	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2574			((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2575	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2576
2577	/* Bump (and wrap) the producer index and write out to register */
2578
2579	bp->cmd_rsp_reg.index.prod += 1;
2580	bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2581	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2582
2583	/* Put request buffer on the command request queue */
2584
2585	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2586			PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2587	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2588
2589	/* Bump (and wrap) the producer index and write out to register */
2590
2591	bp->cmd_req_reg.index.prod += 1;
2592	bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2593	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2594
2595	/*
2596	 * Here we wait for the command request consumer index to be equal
2597	 * to the producer, indicating that the adapter has DMAed the request.
2598	 */
2599
2600	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2601		{
2602		if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2603			break;
2604		udelay(100);			/* wait for 100 microseconds */
2605		}
2606	if (timeout_cnt == 0)
2607		return DFX_K_HW_TIMEOUT;
2608
2609	/* Bump (and wrap) the completion index and write out to register */
2610
2611	bp->cmd_req_reg.index.comp += 1;
2612	bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2613	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2614
2615	/*
2616	 * Here we wait for the command response consumer index to be equal
2617	 * to the producer, indicating that the adapter has DMAed the response.
2618	 */
2619
2620	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2621		{
2622		if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2623			break;
2624		udelay(100);			/* wait for 100 microseconds */
2625		}
2626	if (timeout_cnt == 0)
2627		return DFX_K_HW_TIMEOUT;
2628
2629	/* Bump (and wrap) the completion index and write out to register */
2630
2631	bp->cmd_rsp_reg.index.comp += 1;
2632	bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2633	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2634	return DFX_K_SUCCESS;
2635	}
2636
2637
2638/*
2639 * ========================
2640 * = dfx_hw_port_ctrl_req =
2641 * ========================
2642 *
2643 * Overview:
2644 *   Sends PDQ port control command to adapter firmware
2645 *
2646 * Returns:
2647 *   Host data register value in host_data if ptr is not NULL
2648 *
2649 * Arguments:
2650 *   bp			- pointer to board information
2651 *	 command	- port control command
2652 *	 data_a		- port data A register value
2653 *	 data_b		- port data B register value
2654 *	 host_data	- ptr to host data register value
2655 *
2656 * Functional Description:
2657 *   Send generic port control command to adapter by writing
2658 *   to various PDQ port registers, then polling for completion.
2659 *
2660 * Return Codes:
2661 *   DFX_K_SUCCESS	  - port control command succeeded
2662 *   DFX_K_HW_TIMEOUT - port control command timed out
2663 *
2664 * Assumptions:
2665 *   None
2666 *
2667 * Side Effects:
2668 *   None
2669 */
2670
2671static int dfx_hw_port_ctrl_req(
2672	DFX_board_t	*bp,
2673	PI_UINT32	command,
2674	PI_UINT32	data_a,
2675	PI_UINT32	data_b,
2676	PI_UINT32	*host_data
2677	)
2678
2679	{
2680	PI_UINT32	port_cmd;		/* Port Control command register value */
2681	int			timeout_cnt;	/* used in for loops */
2682
2683	/* Set Command Error bit in command longword */
2684
2685	port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2686
2687	/* Issue port command to the adapter */
2688
2689	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2690	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2691	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2692
2693	/* Now wait for command to complete */
2694
2695	if (command == PI_PCTRL_M_BLAST_FLASH)
2696		timeout_cnt = 600000;	/* set command timeout count to 60 seconds */
2697	else
2698		timeout_cnt = 20000;	/* set command timeout count to 2 seconds */
2699
2700	for (; timeout_cnt > 0; timeout_cnt--)
2701		{
2702		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2703		if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2704			break;
2705		udelay(100);			/* wait for 100 microseconds */
2706		}
2707	if (timeout_cnt == 0)
2708		return DFX_K_HW_TIMEOUT;
2709
2710	/*
2711	 * If the address of host_data is non-zero, assume caller has supplied a
2712	 * non NULL pointer, and return the contents of the HOST_DATA register in
2713	 * it.
2714	 */
2715
2716	if (host_data != NULL)
2717		dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2718	return DFX_K_SUCCESS;
2719	}
2720
2721
2722/*
2723 * =====================
2724 * = dfx_hw_adap_reset =
2725 * =====================
2726 *
2727 * Overview:
2728 *   Resets adapter
2729 *
2730 * Returns:
2731 *   None
2732 *
2733 * Arguments:
2734 *   bp   - pointer to board information
2735 *   type - type of reset to perform
2736 *
2737 * Functional Description:
2738 *   Issue soft reset to adapter by writing to PDQ Port Reset
2739 *   register.  Use incoming reset type to tell adapter what
2740 *   kind of reset operation to perform.
2741 *
2742 * Return Codes:
2743 *   None
2744 *
2745 * Assumptions:
2746 *   This routine merely issues a soft reset to the adapter.
2747 *   It is expected that after this routine returns, the caller
2748 *   will appropriately poll the Port Status register for the
2749 *   adapter to enter the proper state.
2750 *
2751 * Side Effects:
2752 *   Internal adapter registers are cleared.
2753 */
2754
2755static void dfx_hw_adap_reset(
2756	DFX_board_t	*bp,
2757	PI_UINT32	type
2758	)
2759
2760	{
2761	/* Set Reset type and assert reset */
2762
2763	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);	/* tell adapter type of reset */
2764	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2765
2766	/* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2767
2768	udelay(20);
2769
2770	/* Deassert reset */
2771
2772	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2773	}
2774
2775
2776/*
2777 * ========================
2778 * = dfx_hw_adap_state_rd =
2779 * ========================
2780 *
2781 * Overview:
2782 *   Returns current adapter state
2783 *
2784 * Returns:
2785 *   Adapter state per PDQ Port Specification
2786 *
2787 * Arguments:
2788 *   bp - pointer to board information
2789 *
2790 * Functional Description:
2791 *   Reads PDQ Port Status register and returns adapter state.
2792 *
2793 * Return Codes:
2794 *   None
2795 *
2796 * Assumptions:
2797 *   None
2798 *
2799 * Side Effects:
2800 *   None
2801 */
2802
2803static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2804	{
2805	PI_UINT32 port_status;		/* Port Status register value */
2806
2807	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2808	return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2809	}
2810
2811
2812/*
2813 * =====================
2814 * = dfx_hw_dma_uninit =
2815 * =====================
2816 *
2817 * Overview:
2818 *   Brings adapter to DMA_UNAVAILABLE state
2819 *
2820 * Returns:
2821 *   Condition code
2822 *
2823 * Arguments:
2824 *   bp   - pointer to board information
2825 *   type - type of reset to perform
2826 *
2827 * Functional Description:
2828 *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2829 *		1. Set reset type bit in Port Data A Register then reset adapter.
2830 *		2. Check that adapter is in DMA_UNAVAILABLE state.
2831 *
2832 * Return Codes:
2833 *   DFX_K_SUCCESS	  - adapter is in DMA_UNAVAILABLE state
2834 *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2835 *
2836 * Assumptions:
2837 *   None
2838 *
2839 * Side Effects:
2840 *   Internal adapter registers are cleared.
2841 */
2842
2843static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2844	{
2845	int timeout_cnt;	/* used in for loops */
2846
2847	/* Set reset type bit and reset adapter */
2848
2849	dfx_hw_adap_reset(bp, type);
2850
2851	/* Now wait for adapter to enter DMA_UNAVAILABLE state */
2852
2853	for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2854		{
2855		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2856			break;
2857		udelay(100);					/* wait for 100 microseconds */
2858		}
2859	if (timeout_cnt == 0)
2860		return DFX_K_HW_TIMEOUT;
2861	return DFX_K_SUCCESS;
2862	}
2863
2864/*
2865 *	Align an sk_buff to a boundary power of 2
2866 *
2867 */
2868#ifdef DYNAMIC_BUFFERS
2869static void my_skb_align(struct sk_buff *skb, int n)
2870{
2871	unsigned long x = (unsigned long)skb->data;
2872	unsigned long v;
2873
2874	v = ALIGN(x, n);	/* Where we want to be */
2875
2876	skb_reserve(skb, v - x);
2877}
2878#endif
2879
2880/*
2881 * ================
2882 * = dfx_rcv_init =
2883 * ================
2884 *
2885 * Overview:
2886 *   Produces buffers to adapter LLC Host receive descriptor block
2887 *
2888 * Returns:
2889 *   None
2890 *
2891 * Arguments:
2892 *   bp - pointer to board information
2893 *   get_buffers - non-zero if buffers to be allocated
2894 *
2895 * Functional Description:
2896 *   This routine can be called during dfx_adap_init() or during an adapter
2897 *	 reset.  It initializes the descriptor block and produces all allocated
2898 *   LLC Host queue receive buffers.
2899 *
2900 * Return Codes:
2901 *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2902 *   dynamic buffer allocation). If the buffer allocation failed, the
2903 *   already allocated buffers will not be released and the caller should do
2904 *   this.
2905 *
2906 * Assumptions:
2907 *   The PDQ has been reset and the adapter and driver maintained Type 2
2908 *   register indices are cleared.
2909 *
2910 * Side Effects:
2911 *   Receive buffers are posted to the adapter LLC queue and the adapter
2912 *   is notified.
2913 */
2914
2915static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2916	{
2917	int	i, j;					/* used in for loop */
2918
2919	/*
2920	 *  Since each receive buffer is a single fragment of same length, initialize
2921	 *  first longword in each receive descriptor for entire LLC Host descriptor
2922	 *  block.  Also initialize second longword in each receive descriptor with
2923	 *  physical address of receive buffer.  We'll always allocate receive
2924	 *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2925	 *  block and produce new receive buffers by simply updating the receive
2926	 *  producer index.
2927	 *
2928	 * 	Assumptions:
2929	 *		To support all shipping versions of PDQ, the receive buffer size
2930	 *		must be mod 128 in length and the physical address must be 128 byte
2931	 *		aligned.  In other words, bits 0-6 of the length and address must
2932	 *		be zero for the following descriptor field entries to be correct on
2933	 *		all PDQ-based boards.  We guaranteed both requirements during
2934	 *		driver initialization when we allocated memory for the receive buffers.
2935	 */
2936
2937	if (get_buffers) {
2938#ifdef DYNAMIC_BUFFERS
2939	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2940		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2941		{
2942			struct sk_buff *newskb;
2943			dma_addr_t dma_addr;
2944
2945			newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE,
2946						    GFP_NOIO);
2947			if (!newskb)
2948				return -ENOMEM;
2949			/*
2950			 * align to 128 bytes for compatibility with
2951			 * the old EISA boards.
2952			 */
2953
2954			my_skb_align(newskb, 128);
2955			dma_addr = dma_map_single(bp->bus_dev,
2956						  newskb->data,
2957						  PI_RCV_DATA_K_SIZE_MAX,
2958						  DMA_FROM_DEVICE);
2959			if (dma_mapping_error(bp->bus_dev, dma_addr)) {
2960				dev_kfree_skb(newskb);
2961				return -ENOMEM;
2962			}
2963			bp->descr_block_virt->rcv_data[i + j].long_0 =
2964				(u32)(PI_RCV_DESCR_M_SOP |
2965				      ((PI_RCV_DATA_K_SIZE_MAX /
2966					PI_ALIGN_K_RCV_DATA_BUFF) <<
2967				       PI_RCV_DESCR_V_SEG_LEN));
2968			bp->descr_block_virt->rcv_data[i + j].long_1 =
2969				(u32)dma_addr;
2970
2971			/*
2972			 * p_rcv_buff_va is only used inside the
2973			 * kernel so we put the skb pointer here.
2974			 */
2975			bp->p_rcv_buff_va[i+j] = (char *) newskb;
2976		}
2977#else
2978	for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2979		for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2980			{
2981			bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2982				((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2983			bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2984			bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2985			}
2986#endif
2987	}
2988
2989	/* Update receive producer and Type 2 register */
2990
2991	bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2992	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2993	return 0;
2994	}
2995
2996
2997/*
2998 * =========================
2999 * = dfx_rcv_queue_process =
3000 * =========================
3001 *
3002 * Overview:
3003 *   Process received LLC frames.
3004 *
3005 * Returns:
3006 *   None
3007 *
3008 * Arguments:
3009 *   bp - pointer to board information
3010 *
3011 * Functional Description:
3012 *   Received LLC frames are processed until there are no more consumed frames.
3013 *   Once all frames are processed, the receive buffers are returned to the
3014 *   adapter.  Note that this algorithm fixes the length of time that can be spent
3015 *   in this routine, because there are a fixed number of receive buffers to
3016 *   process and buffers are not produced until this routine exits and returns
3017 *   to the ISR.
3018 *
3019 * Return Codes:
3020 *   None
3021 *
3022 * Assumptions:
3023 *   None
3024 *
3025 * Side Effects:
3026 *   None
3027 */
3028
3029static void dfx_rcv_queue_process(
3030	DFX_board_t *bp
3031	)
3032
3033	{
3034	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3035	char				*p_buff;			/* ptr to start of packet receive buffer (FMC descriptor) */
3036	u32					descr, pkt_len;		/* FMC descriptor field and packet length */
3037	struct sk_buff		*skb = NULL;			/* pointer to a sk_buff to hold incoming packet data */
3038
3039	/* Service all consumed LLC receive frames */
3040
3041	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3042	while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3043		{
3044		/* Process any errors */
3045		dma_addr_t dma_addr;
3046		int entry;
3047
3048		entry = bp->rcv_xmt_reg.index.rcv_comp;
3049#ifdef DYNAMIC_BUFFERS
3050		p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3051#else
3052		p_buff = bp->p_rcv_buff_va[entry];
3053#endif
3054		dma_addr = bp->descr_block_virt->rcv_data[entry].long_1;
3055		dma_sync_single_for_cpu(bp->bus_dev,
3056					dma_addr + RCV_BUFF_K_DESCR,
3057					sizeof(u32),
3058					DMA_FROM_DEVICE);
3059		memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3060
3061		if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3062			{
3063			if (descr & PI_FMC_DESCR_M_RCC_CRC)
3064				bp->rcv_crc_errors++;
3065			else
3066				bp->rcv_frame_status_errors++;
3067			}
3068		else
3069		{
3070			int rx_in_place = 0;
3071
3072			/* The frame was received without errors - verify packet length */
3073
3074			pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3075			pkt_len -= 4;				/* subtract 4 byte CRC */
3076			if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3077				bp->rcv_length_errors++;
3078			else{
3079#ifdef DYNAMIC_BUFFERS
3080				struct sk_buff *newskb = NULL;
3081
3082				if (pkt_len > SKBUFF_RX_COPYBREAK) {
3083					dma_addr_t new_dma_addr;
3084
3085					newskb = netdev_alloc_skb(bp->dev,
3086								  NEW_SKB_SIZE);
3087					if (newskb){
3088						my_skb_align(newskb, 128);
3089						new_dma_addr = dma_map_single(
3090								bp->bus_dev,
3091								newskb->data,
3092								PI_RCV_DATA_K_SIZE_MAX,
3093								DMA_FROM_DEVICE);
3094						if (dma_mapping_error(
3095								bp->bus_dev,
3096								new_dma_addr)) {
3097							dev_kfree_skb(newskb);
3098							newskb = NULL;
3099						}
3100					}
3101					if (newskb) {
3102						rx_in_place = 1;
3103
3104						skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3105						dma_unmap_single(bp->bus_dev,
3106							dma_addr,
3107							PI_RCV_DATA_K_SIZE_MAX,
3108							DMA_FROM_DEVICE);
3109						skb_reserve(skb, RCV_BUFF_K_PADDING);
3110						bp->p_rcv_buff_va[entry] = (char *)newskb;
3111						bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr;
3112					}
3113				}
3114				if (!newskb)
3115#endif
3116					/* Alloc new buffer to pass up,
3117					 * add room for PRH. */
3118					skb = netdev_alloc_skb(bp->dev,
3119							       pkt_len + 3);
3120				if (skb == NULL)
3121					{
3122					printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3123					bp->rcv_discards++;
3124					break;
3125					}
3126				else {
3127					if (!rx_in_place) {
3128						/* Receive buffer allocated, pass receive packet up */
3129						dma_sync_single_for_cpu(
3130							bp->bus_dev,
3131							dma_addr +
3132							RCV_BUFF_K_PADDING,
3133							pkt_len + 3,
3134							DMA_FROM_DEVICE);
3135
3136						skb_copy_to_linear_data(skb,
3137							       p_buff + RCV_BUFF_K_PADDING,
3138							       pkt_len + 3);
3139					}
3140
3141					skb_reserve(skb,3);		/* adjust data field so that it points to FC byte */
3142					skb_put(skb, pkt_len);		/* pass up packet length, NOT including CRC */
3143					skb->protocol = fddi_type_trans(skb, bp->dev);
3144					bp->rcv_total_bytes += skb->len;
3145					netif_rx(skb);
3146
3147					/* Update the rcv counters */
3148					bp->rcv_total_frames++;
3149					if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3150						bp->rcv_multicast_frames++;
3151				}
3152			}
3153			}
3154
3155		/*
3156		 * Advance the producer (for recycling) and advance the completion
3157		 * (for servicing received frames).  Note that it is okay to
3158		 * advance the producer without checking that it passes the
3159		 * completion index because they are both advanced at the same
3160		 * rate.
3161		 */
3162
3163		bp->rcv_xmt_reg.index.rcv_prod += 1;
3164		bp->rcv_xmt_reg.index.rcv_comp += 1;
3165		}
3166	}
3167
3168
3169/*
3170 * =====================
3171 * = dfx_xmt_queue_pkt =
3172 * =====================
3173 *
3174 * Overview:
3175 *   Queues packets for transmission
3176 *
3177 * Returns:
3178 *   Condition code
3179 *
3180 * Arguments:
3181 *   skb - pointer to sk_buff to queue for transmission
3182 *   dev - pointer to device information
3183 *
3184 * Functional Description:
3185 *   Here we assume that an incoming skb transmit request
3186 *   is contained in a single physically contiguous buffer
3187 *   in which the virtual address of the start of packet
3188 *   (skb->data) can be converted to a physical address
3189 *   by using pci_map_single().
3190 *
3191 *   Since the adapter architecture requires a three byte
3192 *   packet request header to prepend the start of packet,
3193 *   we'll write the three byte field immediately prior to
3194 *   the FC byte.  This assumption is valid because we've
3195 *   ensured that dev->hard_header_len includes three pad
3196 *   bytes.  By posting a single fragment to the adapter,
3197 *   we'll reduce the number of descriptor fetches and
3198 *   bus traffic needed to send the request.
3199 *
3200 *   Also, we can't free the skb until after it's been DMA'd
3201 *   out by the adapter, so we'll queue it in the driver and
3202 *   return it in dfx_xmt_done.
3203 *
3204 * Return Codes:
3205 *   0 - driver queued packet, link is unavailable, or skbuff was bad
3206 *	 1 - caller should requeue the sk_buff for later transmission
3207 *
3208 * Assumptions:
3209 *	 First and foremost, we assume the incoming skb pointer
3210 *   is NOT NULL and is pointing to a valid sk_buff structure.
3211 *
3212 *   The outgoing packet is complete, starting with the
3213 *   frame control byte including the last byte of data,
3214 *   but NOT including the 4 byte CRC.  We'll let the
3215 *   adapter hardware generate and append the CRC.
3216 *
3217 *   The entire packet is stored in one physically
3218 *   contiguous buffer which is not cached and whose
3219 *   32-bit physical address can be determined.
3220 *
3221 *   It's vital that this routine is NOT reentered for the
3222 *   same board and that the OS is not in another section of
3223 *   code (eg. dfx_int_common) for the same board on a
3224 *   different thread.
3225 *
3226 * Side Effects:
3227 *   None
3228 */
3229
3230static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3231				     struct net_device *dev)
3232	{
3233	DFX_board_t		*bp = netdev_priv(dev);
3234	u8			prod;				/* local transmit producer index */
3235	PI_XMT_DESCR		*p_xmt_descr;		/* ptr to transmit descriptor block entry */
3236	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3237	dma_addr_t		dma_addr;
3238	unsigned long		flags;
3239
3240	netif_stop_queue(dev);
3241
3242	/*
3243	 * Verify that incoming transmit request is OK
3244	 *
3245	 * Note: The packet size check is consistent with other
3246	 *		 Linux device drivers, although the correct packet
3247	 *		 size should be verified before calling the
3248	 *		 transmit routine.
3249	 */
3250
3251	if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3252	{
3253		printk("%s: Invalid packet length - %u bytes\n",
3254			dev->name, skb->len);
3255		bp->xmt_length_errors++;		/* bump error counter */
3256		netif_wake_queue(dev);
3257		dev_kfree_skb(skb);
3258		return NETDEV_TX_OK;			/* return "success" */
3259	}
3260	/*
3261	 * See if adapter link is available, if not, free buffer
3262	 *
3263	 * Note: If the link isn't available, free buffer and return 0
3264	 *		 rather than tell the upper layer to requeue the packet.
3265	 *		 The methodology here is that by the time the link
3266	 *		 becomes available, the packet to be sent will be
3267	 *		 fairly stale.  By simply dropping the packet, the
3268	 *		 higher layer protocols will eventually time out
3269	 *		 waiting for response packets which it won't receive.
3270	 */
3271
3272	if (bp->link_available == PI_K_FALSE)
3273		{
3274		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)	/* is link really available? */
3275			bp->link_available = PI_K_TRUE;		/* if so, set flag and continue */
3276		else
3277			{
3278			bp->xmt_discards++;					/* bump error counter */
3279			dev_kfree_skb(skb);		/* free sk_buff now */
3280			netif_wake_queue(dev);
3281			return NETDEV_TX_OK;		/* return "success" */
3282			}
3283		}
3284
3285	/* Write the three PRH bytes immediately before the FC byte */
3286
3287	skb_push(skb, 3);
3288	skb->data[0] = DFX_PRH0_BYTE;	/* these byte values are defined */
3289	skb->data[1] = DFX_PRH1_BYTE;	/* in the Motorola FDDI MAC chip */
3290	skb->data[2] = DFX_PRH2_BYTE;	/* specification */
3291
3292	dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len,
3293				  DMA_TO_DEVICE);
3294	if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3295		skb_pull(skb, 3);
3296		return NETDEV_TX_BUSY;
3297	}
3298
3299	spin_lock_irqsave(&bp->lock, flags);
3300
3301	/* Get the current producer and the next free xmt data descriptor */
3302
3303	prod		= bp->rcv_xmt_reg.index.xmt_prod;
3304	p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3305
3306	/*
3307	 * Get pointer to auxiliary queue entry to contain information
3308	 * for this packet.
3309	 *
3310	 * Note: The current xmt producer index will become the
3311	 *	 current xmt completion index when we complete this
3312	 *	 packet later on.  So, we'll get the pointer to the
3313	 *	 next auxiliary queue entry now before we bump the
3314	 *	 producer index.
3315	 */
3316
3317	p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);	/* also bump producer index */
3318
3319	/*
3320	 * Write the descriptor with buffer info and bump producer
3321	 *
3322	 * Note: Since we need to start DMA from the packet request
3323	 *		 header, we'll add 3 bytes to the DMA buffer length,
3324	 *		 and we'll determine the physical address of the
3325	 *		 buffer from the PRH, not skb->data.
3326	 *
3327	 * Assumptions:
3328	 *		 1. Packet starts with the frame control (FC) byte
3329	 *		    at skb->data.
3330	 *		 2. The 4-byte CRC is not appended to the buffer or
3331	 *			included in the length.
3332	 *		 3. Packet length (skb->len) is from FC to end of
3333	 *			data, inclusive.
3334	 *		 4. The packet length does not exceed the maximum
3335	 *			FDDI LLC frame length of 4491 bytes.
3336	 *		 5. The entire packet is contained in a physically
3337	 *			contiguous, non-cached, locked memory space
3338	 *			comprised of a single buffer pointed to by
3339	 *			skb->data.
3340	 *		 6. The physical address of the start of packet
3341	 *			can be determined from the virtual address
3342	 *			by using pci_map_single() and is only 32-bits
3343	 *			wide.
3344	 */
3345
3346	p_xmt_descr->long_0	= (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3347	p_xmt_descr->long_1 = (u32)dma_addr;
3348
3349	/*
3350	 * Verify that descriptor is actually available
3351	 *
3352	 * Note: If descriptor isn't available, return 1 which tells
3353	 *	 the upper layer to requeue the packet for later
3354	 *	 transmission.
3355	 *
3356	 *       We need to ensure that the producer never reaches the
3357	 *	 completion, except to indicate that the queue is empty.
3358	 */
3359
3360	if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3361	{
3362		skb_pull(skb,3);
3363		spin_unlock_irqrestore(&bp->lock, flags);
3364		return NETDEV_TX_BUSY;	/* requeue packet for later */
3365	}
3366
3367	/*
3368	 * Save info for this packet for xmt done indication routine
3369	 *
3370	 * Normally, we'd save the producer index in the p_xmt_drv_descr
3371	 * structure so that we'd have it handy when we complete this
3372	 * packet later (in dfx_xmt_done).  However, since the current
3373	 * transmit architecture guarantees a single fragment for the
3374	 * entire packet, we can simply bump the completion index by
3375	 * one (1) for each completed packet.
3376	 *
3377	 * Note: If this assumption changes and we're presented with
3378	 *	 an inconsistent number of transmit fragments for packet
3379	 *	 data, we'll need to modify this code to save the current
3380	 *	 transmit producer index.
3381	 */
3382
3383	p_xmt_drv_descr->p_skb = skb;
3384
3385	/* Update Type 2 register */
3386
3387	bp->rcv_xmt_reg.index.xmt_prod = prod;
3388	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3389	spin_unlock_irqrestore(&bp->lock, flags);
3390	netif_wake_queue(dev);
3391	return NETDEV_TX_OK;	/* packet queued to adapter */
3392	}
3393
3394
3395/*
3396 * ================
3397 * = dfx_xmt_done =
3398 * ================
3399 *
3400 * Overview:
3401 *   Processes all frames that have been transmitted.
3402 *
3403 * Returns:
3404 *   None
3405 *
3406 * Arguments:
3407 *   bp - pointer to board information
3408 *
3409 * Functional Description:
3410 *   For all consumed transmit descriptors that have not
3411 *   yet been completed, we'll free the skb we were holding
3412 *   onto using dev_kfree_skb and bump the appropriate
3413 *   counters.
3414 *
3415 * Return Codes:
3416 *   None
3417 *
3418 * Assumptions:
3419 *   The Type 2 register is not updated in this routine.  It is
3420 *   assumed that it will be updated in the ISR when dfx_xmt_done
3421 *   returns.
3422 *
3423 * Side Effects:
3424 *   None
3425 */
3426
3427static int dfx_xmt_done(DFX_board_t *bp)
3428	{
3429	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3430	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3431	u8			comp;			/* local transmit completion index */
3432	int 			freed = 0;		/* buffers freed */
3433
3434	/* Service all consumed transmit frames */
3435
3436	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3437	while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3438		{
3439		/* Get pointer to the transmit driver descriptor block information */
3440
3441		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3442
3443		/* Increment transmit counters */
3444
3445		bp->xmt_total_frames++;
3446		bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3447
3448		/* Return skb to operating system */
3449		comp = bp->rcv_xmt_reg.index.xmt_comp;
3450		dma_unmap_single(bp->bus_dev,
3451				 bp->descr_block_virt->xmt_data[comp].long_1,
3452				 p_xmt_drv_descr->p_skb->len,
3453				 DMA_TO_DEVICE);
3454		dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3455
3456		/*
3457		 * Move to start of next packet by updating completion index
3458		 *
3459		 * Here we assume that a transmit packet request is always
3460		 * serviced by posting one fragment.  We can therefore
3461		 * simplify the completion code by incrementing the
3462		 * completion index by one.  This code will need to be
3463		 * modified if this assumption changes.  See comments
3464		 * in dfx_xmt_queue_pkt for more details.
3465		 */
3466
3467		bp->rcv_xmt_reg.index.xmt_comp += 1;
3468		freed++;
3469		}
3470	return freed;
3471	}
3472
3473
3474/*
3475 * =================
3476 * = dfx_rcv_flush =
3477 * =================
3478 *
3479 * Overview:
3480 *   Remove all skb's in the receive ring.
3481 *
3482 * Returns:
3483 *   None
3484 *
3485 * Arguments:
3486 *   bp - pointer to board information
3487 *
3488 * Functional Description:
3489 *   Free's all the dynamically allocated skb's that are
3490 *   currently attached to the device receive ring. This
3491 *   function is typically only used when the device is
3492 *   initialized or reinitialized.
3493 *
3494 * Return Codes:
3495 *   None
3496 *
3497 * Side Effects:
3498 *   None
3499 */
3500#ifdef DYNAMIC_BUFFERS
3501static void dfx_rcv_flush( DFX_board_t *bp )
3502	{
3503	int i, j;
3504
3505	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3506		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3507		{
3508			struct sk_buff *skb;
3509			skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3510			if (skb) {
3511				dma_unmap_single(bp->bus_dev,
3512						 bp->descr_block_virt->rcv_data[i+j].long_1,
3513						 PI_RCV_DATA_K_SIZE_MAX,
3514						 DMA_FROM_DEVICE);
3515				dev_kfree_skb(skb);
3516			}
3517			bp->p_rcv_buff_va[i+j] = NULL;
3518		}
3519
3520	}
3521#endif /* DYNAMIC_BUFFERS */
3522
3523/*
3524 * =================
3525 * = dfx_xmt_flush =
3526 * =================
3527 *
3528 * Overview:
3529 *   Processes all frames whether they've been transmitted
3530 *   or not.
3531 *
3532 * Returns:
3533 *   None
3534 *
3535 * Arguments:
3536 *   bp - pointer to board information
3537 *
3538 * Functional Description:
3539 *   For all produced transmit descriptors that have not
3540 *   yet been completed, we'll free the skb we were holding
3541 *   onto using dev_kfree_skb and bump the appropriate
3542 *   counters.  Of course, it's possible that some of
3543 *   these transmit requests actually did go out, but we
3544 *   won't make that distinction here.  Finally, we'll
3545 *   update the consumer index to match the producer.
3546 *
3547 * Return Codes:
3548 *   None
3549 *
3550 * Assumptions:
3551 *   This routine does NOT update the Type 2 register.  It
3552 *   is assumed that this routine is being called during a
3553 *   transmit flush interrupt, or a shutdown or close routine.
3554 *
3555 * Side Effects:
3556 *   None
3557 */
3558
3559static void dfx_xmt_flush( DFX_board_t *bp )
3560	{
3561	u32			prod_cons;		/* rcv/xmt consumer block longword */
3562	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3563	u8			comp;			/* local transmit completion index */
3564
3565	/* Flush all outstanding transmit frames */
3566
3567	while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3568		{
3569		/* Get pointer to the transmit driver descriptor block information */
3570
3571		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3572
3573		/* Return skb to operating system */
3574		comp = bp->rcv_xmt_reg.index.xmt_comp;
3575		dma_unmap_single(bp->bus_dev,
3576				 bp->descr_block_virt->xmt_data[comp].long_1,
3577				 p_xmt_drv_descr->p_skb->len,
3578				 DMA_TO_DEVICE);
3579		dev_kfree_skb(p_xmt_drv_descr->p_skb);
3580
3581		/* Increment transmit error counter */
3582
3583		bp->xmt_discards++;
3584
3585		/*
3586		 * Move to start of next packet by updating completion index
3587		 *
3588		 * Here we assume that a transmit packet request is always
3589		 * serviced by posting one fragment.  We can therefore
3590		 * simplify the completion code by incrementing the
3591		 * completion index by one.  This code will need to be
3592		 * modified if this assumption changes.  See comments
3593		 * in dfx_xmt_queue_pkt for more details.
3594		 */
3595
3596		bp->rcv_xmt_reg.index.xmt_comp += 1;
3597		}
3598
3599	/* Update the transmit consumer index in the consumer block */
3600
3601	prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3602	prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3603	bp->cons_block_virt->xmt_rcv_data = prod_cons;
3604	}
3605
3606/*
3607 * ==================
3608 * = dfx_unregister =
3609 * ==================
3610 *
3611 * Overview:
3612 *   Shuts down an FDDI controller
3613 *
3614 * Returns:
3615 *   Condition code
3616 *
3617 * Arguments:
3618 *   bdev - pointer to device information
3619 *
3620 * Functional Description:
3621 *
3622 * Return Codes:
3623 *   None
3624 *
3625 * Assumptions:
3626 *   It compiles so it should work :-( (PCI cards do :-)
3627 *
3628 * Side Effects:
3629 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3630 *   freed.
3631 */
3632static void dfx_unregister(struct device *bdev)
3633{
3634	struct net_device *dev = dev_get_drvdata(bdev);
3635	DFX_board_t *bp = netdev_priv(dev);
3636	int dfx_bus_pci = dev_is_pci(bdev);
3637	int dfx_bus_tc = DFX_BUS_TC(bdev);
3638	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3639	resource_size_t bar_start = 0;		/* pointer to port */
3640	resource_size_t bar_len = 0;		/* resource length */
3641	int		alloc_size;		/* total buffer size used */
3642
3643	unregister_netdev(dev);
3644
3645	alloc_size = sizeof(PI_DESCR_BLOCK) +
3646		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3647#ifndef DYNAMIC_BUFFERS
3648		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3649#endif
3650		     sizeof(PI_CONSUMER_BLOCK) +
3651		     (PI_ALIGN_K_DESC_BLK - 1);
3652	if (bp->kmalloced)
3653		dma_free_coherent(bdev, alloc_size,
3654				  bp->kmalloced, bp->kmalloced_dma);
3655
3656	dfx_bus_uninit(dev);
3657
3658	dfx_get_bars(bdev, &bar_start, &bar_len);
3659	if (dfx_use_mmio) {
3660		iounmap(bp->base.mem);
3661		release_mem_region(bar_start, bar_len);
3662	} else
3663		release_region(bar_start, bar_len);
3664
3665	if (dfx_bus_pci)
3666		pci_disable_device(to_pci_dev(bdev));
3667
3668	free_netdev(dev);
3669}
3670
3671
3672static int __maybe_unused dfx_dev_register(struct device *);
3673static int __maybe_unused dfx_dev_unregister(struct device *);
3674
3675#ifdef CONFIG_PCI
3676static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3677static void dfx_pci_unregister(struct pci_dev *);
3678
3679static const struct pci_device_id dfx_pci_table[] = {
3680	{ PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3681	{ }
3682};
3683MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3684
3685static struct pci_driver dfx_pci_driver = {
3686	.name		= "defxx",
3687	.id_table	= dfx_pci_table,
3688	.probe		= dfx_pci_register,
3689	.remove		= dfx_pci_unregister,
3690};
3691
3692static int dfx_pci_register(struct pci_dev *pdev,
3693			    const struct pci_device_id *ent)
3694{
3695	return dfx_register(&pdev->dev);
3696}
3697
3698static void dfx_pci_unregister(struct pci_dev *pdev)
3699{
3700	dfx_unregister(&pdev->dev);
3701}
3702#endif /* CONFIG_PCI */
3703
3704#ifdef CONFIG_EISA
3705static struct eisa_device_id dfx_eisa_table[] = {
3706        { "DEC3001", DEFEA_PROD_ID_1 },
3707        { "DEC3002", DEFEA_PROD_ID_2 },
3708        { "DEC3003", DEFEA_PROD_ID_3 },
3709        { "DEC3004", DEFEA_PROD_ID_4 },
3710        { }
3711};
3712MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3713
3714static struct eisa_driver dfx_eisa_driver = {
3715	.id_table	= dfx_eisa_table,
3716	.driver		= {
3717		.name	= "defxx",
3718		.bus	= &eisa_bus_type,
3719		.probe	= dfx_dev_register,
3720		.remove	= dfx_dev_unregister,
3721	},
3722};
3723#endif /* CONFIG_EISA */
3724
3725#ifdef CONFIG_TC
3726static struct tc_device_id const dfx_tc_table[] = {
3727	{ "DEC     ", "PMAF-FA " },
3728	{ "DEC     ", "PMAF-FD " },
3729	{ "DEC     ", "PMAF-FS " },
3730	{ "DEC     ", "PMAF-FU " },
3731	{ }
3732};
3733MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3734
3735static struct tc_driver dfx_tc_driver = {
3736	.id_table	= dfx_tc_table,
3737	.driver		= {
3738		.name	= "defxx",
3739		.bus	= &tc_bus_type,
3740		.probe	= dfx_dev_register,
3741		.remove	= dfx_dev_unregister,
3742	},
3743};
3744#endif /* CONFIG_TC */
3745
3746static int __maybe_unused dfx_dev_register(struct device *dev)
3747{
3748	int status;
3749
3750	status = dfx_register(dev);
3751	if (!status)
3752		get_device(dev);
3753	return status;
3754}
3755
3756static int __maybe_unused dfx_dev_unregister(struct device *dev)
3757{
3758	put_device(dev);
3759	dfx_unregister(dev);
3760	return 0;
3761}
3762
3763
3764static int dfx_init(void)
3765{
3766	int status;
3767
3768	status = pci_register_driver(&dfx_pci_driver);
3769	if (!status)
3770		status = eisa_driver_register(&dfx_eisa_driver);
3771	if (!status)
3772		status = tc_register_driver(&dfx_tc_driver);
3773	return status;
3774}
3775
3776static void dfx_cleanup(void)
3777{
3778	tc_unregister_driver(&dfx_tc_driver);
3779	eisa_driver_unregister(&dfx_eisa_driver);
3780	pci_unregister_driver(&dfx_pci_driver);
3781}
3782
3783module_init(dfx_init);
3784module_exit(dfx_cleanup);
3785MODULE_AUTHOR("Lawrence V. Stefani");
3786MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3787		   DRV_VERSION " " DRV_RELDATE);
3788MODULE_LICENSE("GPL");
3789