[go: nahoru, domu]

1/*
2 * Marvell Wireless LAN device driver: AP specific command handling
3 *
4 * Copyright (C) 2012-2014, Marvell International Ltd.
5 *
6 * This software file (the "File") is distributed by Marvell International
7 * Ltd. under the terms of the GNU General Public License Version 2, June 1991
8 * (the "License").  You may use, redistribute and/or modify this File in
9 * accordance with the terms and conditions of the License, a copy of which
10 * is available by writing to the Free Software Foundation, Inc.,
11 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or on the
12 * worldwide web at http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.
13 *
14 * THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
16 * ARE EXPRESSLY DISCLAIMED.  The License provides additional details about
17 * this warranty disclaimer.
18 */
19
20#include "main.h"
21#include "11ac.h"
22
23/* This function parses security related parameters from cfg80211_ap_settings
24 * and sets into FW understandable bss_config structure.
25 */
26int mwifiex_set_secure_params(struct mwifiex_private *priv,
27			      struct mwifiex_uap_bss_param *bss_config,
28			      struct cfg80211_ap_settings *params) {
29	int i;
30	struct mwifiex_wep_key wep_key;
31
32	if (!params->privacy) {
33		bss_config->protocol = PROTOCOL_NO_SECURITY;
34		bss_config->key_mgmt = KEY_MGMT_NONE;
35		bss_config->wpa_cfg.length = 0;
36		priv->sec_info.wep_enabled = 0;
37		priv->sec_info.wpa_enabled = 0;
38		priv->sec_info.wpa2_enabled = 0;
39
40		return 0;
41	}
42
43	switch (params->auth_type) {
44	case NL80211_AUTHTYPE_OPEN_SYSTEM:
45		bss_config->auth_mode = WLAN_AUTH_OPEN;
46		break;
47	case NL80211_AUTHTYPE_SHARED_KEY:
48		bss_config->auth_mode = WLAN_AUTH_SHARED_KEY;
49		break;
50	case NL80211_AUTHTYPE_NETWORK_EAP:
51		bss_config->auth_mode = WLAN_AUTH_LEAP;
52		break;
53	default:
54		bss_config->auth_mode = MWIFIEX_AUTH_MODE_AUTO;
55		break;
56	}
57
58	bss_config->key_mgmt_operation |= KEY_MGMT_ON_HOST;
59
60	for (i = 0; i < params->crypto.n_akm_suites; i++) {
61		switch (params->crypto.akm_suites[i]) {
62		case WLAN_AKM_SUITE_8021X:
63			if (params->crypto.wpa_versions &
64			    NL80211_WPA_VERSION_1) {
65				bss_config->protocol = PROTOCOL_WPA;
66				bss_config->key_mgmt = KEY_MGMT_EAP;
67			}
68			if (params->crypto.wpa_versions &
69			    NL80211_WPA_VERSION_2) {
70				bss_config->protocol |= PROTOCOL_WPA2;
71				bss_config->key_mgmt = KEY_MGMT_EAP;
72			}
73			break;
74		case WLAN_AKM_SUITE_PSK:
75			if (params->crypto.wpa_versions &
76			    NL80211_WPA_VERSION_1) {
77				bss_config->protocol = PROTOCOL_WPA;
78				bss_config->key_mgmt = KEY_MGMT_PSK;
79			}
80			if (params->crypto.wpa_versions &
81			    NL80211_WPA_VERSION_2) {
82				bss_config->protocol |= PROTOCOL_WPA2;
83				bss_config->key_mgmt = KEY_MGMT_PSK;
84			}
85			break;
86		default:
87			break;
88		}
89	}
90	for (i = 0; i < params->crypto.n_ciphers_pairwise; i++) {
91		switch (params->crypto.ciphers_pairwise[i]) {
92		case WLAN_CIPHER_SUITE_WEP40:
93		case WLAN_CIPHER_SUITE_WEP104:
94			break;
95		case WLAN_CIPHER_SUITE_TKIP:
96			if (params->crypto.wpa_versions & NL80211_WPA_VERSION_1)
97				bss_config->wpa_cfg.pairwise_cipher_wpa |=
98								CIPHER_TKIP;
99			if (params->crypto.wpa_versions & NL80211_WPA_VERSION_2)
100				bss_config->wpa_cfg.pairwise_cipher_wpa2 |=
101								CIPHER_TKIP;
102			break;
103		case WLAN_CIPHER_SUITE_CCMP:
104			if (params->crypto.wpa_versions & NL80211_WPA_VERSION_1)
105				bss_config->wpa_cfg.pairwise_cipher_wpa |=
106								CIPHER_AES_CCMP;
107			if (params->crypto.wpa_versions & NL80211_WPA_VERSION_2)
108				bss_config->wpa_cfg.pairwise_cipher_wpa2 |=
109								CIPHER_AES_CCMP;
110		default:
111			break;
112		}
113	}
114
115	switch (params->crypto.cipher_group) {
116	case WLAN_CIPHER_SUITE_WEP40:
117	case WLAN_CIPHER_SUITE_WEP104:
118		if (priv->sec_info.wep_enabled) {
119			bss_config->protocol = PROTOCOL_STATIC_WEP;
120			bss_config->key_mgmt = KEY_MGMT_NONE;
121			bss_config->wpa_cfg.length = 0;
122
123			for (i = 0; i < NUM_WEP_KEYS; i++) {
124				wep_key = priv->wep_key[i];
125				bss_config->wep_cfg[i].key_index = i;
126
127				if (priv->wep_key_curr_index == i)
128					bss_config->wep_cfg[i].is_default = 1;
129				else
130					bss_config->wep_cfg[i].is_default = 0;
131
132				bss_config->wep_cfg[i].length =
133							     wep_key.key_length;
134				memcpy(&bss_config->wep_cfg[i].key,
135				       &wep_key.key_material,
136				       wep_key.key_length);
137			}
138		}
139		break;
140	case WLAN_CIPHER_SUITE_TKIP:
141		bss_config->wpa_cfg.group_cipher = CIPHER_TKIP;
142		break;
143	case WLAN_CIPHER_SUITE_CCMP:
144		bss_config->wpa_cfg.group_cipher = CIPHER_AES_CCMP;
145		break;
146	default:
147		break;
148	}
149
150	return 0;
151}
152
153/* This function updates 11n related parameters from IE and sets them into
154 * bss_config structure.
155 */
156void
157mwifiex_set_ht_params(struct mwifiex_private *priv,
158		      struct mwifiex_uap_bss_param *bss_cfg,
159		      struct cfg80211_ap_settings *params)
160{
161	const u8 *ht_ie;
162	u16 cap_info;
163
164	if (!ISSUPP_11NENABLED(priv->adapter->fw_cap_info))
165		return;
166
167	ht_ie = cfg80211_find_ie(WLAN_EID_HT_CAPABILITY, params->beacon.tail,
168				 params->beacon.tail_len);
169	if (ht_ie) {
170		memcpy(&bss_cfg->ht_cap, ht_ie + 2,
171		       sizeof(struct ieee80211_ht_cap));
172		cap_info = le16_to_cpu(bss_cfg->ht_cap.cap_info);
173		memset(&bss_cfg->ht_cap.mcs, 0,
174		       priv->adapter->number_of_antenna);
175		switch (GET_RXSTBC(cap_info)) {
176		case MWIFIEX_RX_STBC1:
177			/* HT_CAP 1X1 mode */
178			bss_cfg->ht_cap.mcs.rx_mask[0] = 0xff;
179			break;
180		case MWIFIEX_RX_STBC12:	/* fall through */
181		case MWIFIEX_RX_STBC123:
182			/* HT_CAP 2X2 mode */
183			bss_cfg->ht_cap.mcs.rx_mask[0] = 0xff;
184			bss_cfg->ht_cap.mcs.rx_mask[1] = 0xff;
185			break;
186		default:
187			dev_warn(priv->adapter->dev,
188				 "Unsupported RX-STBC, default to 2x2\n");
189			bss_cfg->ht_cap.mcs.rx_mask[0] = 0xff;
190			bss_cfg->ht_cap.mcs.rx_mask[1] = 0xff;
191			break;
192		}
193		priv->ap_11n_enabled = 1;
194	} else {
195		memset(&bss_cfg->ht_cap , 0, sizeof(struct ieee80211_ht_cap));
196		bss_cfg->ht_cap.cap_info = cpu_to_le16(MWIFIEX_DEF_HT_CAP);
197		bss_cfg->ht_cap.ampdu_params_info = MWIFIEX_DEF_AMPDU;
198	}
199
200	return;
201}
202
203/* This function updates 11ac related parameters from IE
204 * and sets them into bss_config structure.
205 */
206void mwifiex_set_vht_params(struct mwifiex_private *priv,
207			    struct mwifiex_uap_bss_param *bss_cfg,
208			    struct cfg80211_ap_settings *params)
209{
210	const u8 *vht_ie;
211
212	vht_ie = cfg80211_find_ie(WLAN_EID_VHT_CAPABILITY, params->beacon.tail,
213				  params->beacon.tail_len);
214	if (vht_ie) {
215		memcpy(&bss_cfg->vht_cap, vht_ie + 2,
216		       sizeof(struct ieee80211_vht_cap));
217		priv->ap_11ac_enabled = 1;
218	} else {
219		priv->ap_11ac_enabled = 0;
220	}
221
222	return;
223}
224
225/* Enable VHT only when cfg80211_ap_settings has VHT IE.
226 * Otherwise disable VHT.
227 */
228void mwifiex_set_vht_width(struct mwifiex_private *priv,
229			   enum nl80211_chan_width width,
230			   bool ap_11ac_enable)
231{
232	struct mwifiex_adapter *adapter = priv->adapter;
233	struct mwifiex_11ac_vht_cfg vht_cfg;
234
235	vht_cfg.band_config = VHT_CFG_5GHZ;
236	vht_cfg.cap_info = adapter->hw_dot_11ac_dev_cap;
237
238	if (!ap_11ac_enable) {
239		vht_cfg.mcs_tx_set = DISABLE_VHT_MCS_SET;
240		vht_cfg.mcs_rx_set = DISABLE_VHT_MCS_SET;
241	} else {
242		vht_cfg.mcs_tx_set = DEFAULT_VHT_MCS_SET;
243		vht_cfg.mcs_rx_set = DEFAULT_VHT_MCS_SET;
244	}
245
246	vht_cfg.misc_config  = VHT_CAP_UAP_ONLY;
247
248	if (ap_11ac_enable && width >= NL80211_CHAN_WIDTH_80)
249		vht_cfg.misc_config |= VHT_BW_80_160_80P80;
250
251	mwifiex_send_cmd(priv, HostCmd_CMD_11AC_CFG,
252			 HostCmd_ACT_GEN_SET, 0, &vht_cfg, true);
253
254	return;
255}
256
257/* This function finds supported rates IE from beacon parameter and sets
258 * these rates into bss_config structure.
259 */
260void
261mwifiex_set_uap_rates(struct mwifiex_uap_bss_param *bss_cfg,
262		      struct cfg80211_ap_settings *params)
263{
264	struct ieee_types_header *rate_ie;
265	int var_offset = offsetof(struct ieee80211_mgmt, u.beacon.variable);
266	const u8 *var_pos = params->beacon.head + var_offset;
267	int len = params->beacon.head_len - var_offset;
268	u8 rate_len = 0;
269
270	rate_ie = (void *)cfg80211_find_ie(WLAN_EID_SUPP_RATES, var_pos, len);
271	if (rate_ie) {
272		memcpy(bss_cfg->rates, rate_ie + 1, rate_ie->len);
273		rate_len = rate_ie->len;
274	}
275
276	rate_ie = (void *)cfg80211_find_ie(WLAN_EID_EXT_SUPP_RATES,
277					   params->beacon.tail,
278					   params->beacon.tail_len);
279	if (rate_ie)
280		memcpy(bss_cfg->rates + rate_len, rate_ie + 1, rate_ie->len);
281
282	return;
283}
284
285/* This function initializes some of mwifiex_uap_bss_param variables.
286 * This helps FW in ignoring invalid values. These values may or may not
287 * be get updated to valid ones at later stage.
288 */
289void mwifiex_set_sys_config_invalid_data(struct mwifiex_uap_bss_param *config)
290{
291	config->bcast_ssid_ctl = 0x7F;
292	config->radio_ctl = 0x7F;
293	config->dtim_period = 0x7F;
294	config->beacon_period = 0x7FFF;
295	config->auth_mode = 0x7F;
296	config->rts_threshold = 0x7FFF;
297	config->frag_threshold = 0x7FFF;
298	config->retry_limit = 0x7F;
299	config->qos_info = 0xFF;
300}
301
302/* This function parses BSS related parameters from structure
303 * and prepares TLVs specific to WPA/WPA2 security.
304 * These TLVs are appended to command buffer.
305 */
306static void
307mwifiex_uap_bss_wpa(u8 **tlv_buf, void *cmd_buf, u16 *param_size)
308{
309	struct host_cmd_tlv_pwk_cipher *pwk_cipher;
310	struct host_cmd_tlv_gwk_cipher *gwk_cipher;
311	struct host_cmd_tlv_passphrase *passphrase;
312	struct host_cmd_tlv_akmp *tlv_akmp;
313	struct mwifiex_uap_bss_param *bss_cfg = cmd_buf;
314	u16 cmd_size = *param_size;
315	u8 *tlv = *tlv_buf;
316
317	tlv_akmp = (struct host_cmd_tlv_akmp *)tlv;
318	tlv_akmp->header.type = cpu_to_le16(TLV_TYPE_UAP_AKMP);
319	tlv_akmp->header.len = cpu_to_le16(sizeof(struct host_cmd_tlv_akmp) -
320					sizeof(struct mwifiex_ie_types_header));
321	tlv_akmp->key_mgmt_operation = cpu_to_le16(bss_cfg->key_mgmt_operation);
322	tlv_akmp->key_mgmt = cpu_to_le16(bss_cfg->key_mgmt);
323	cmd_size += sizeof(struct host_cmd_tlv_akmp);
324	tlv += sizeof(struct host_cmd_tlv_akmp);
325
326	if (bss_cfg->wpa_cfg.pairwise_cipher_wpa & VALID_CIPHER_BITMAP) {
327		pwk_cipher = (struct host_cmd_tlv_pwk_cipher *)tlv;
328		pwk_cipher->header.type = cpu_to_le16(TLV_TYPE_PWK_CIPHER);
329		pwk_cipher->header.len =
330			cpu_to_le16(sizeof(struct host_cmd_tlv_pwk_cipher) -
331				    sizeof(struct mwifiex_ie_types_header));
332		pwk_cipher->proto = cpu_to_le16(PROTOCOL_WPA);
333		pwk_cipher->cipher = bss_cfg->wpa_cfg.pairwise_cipher_wpa;
334		cmd_size += sizeof(struct host_cmd_tlv_pwk_cipher);
335		tlv += sizeof(struct host_cmd_tlv_pwk_cipher);
336	}
337
338	if (bss_cfg->wpa_cfg.pairwise_cipher_wpa2 & VALID_CIPHER_BITMAP) {
339		pwk_cipher = (struct host_cmd_tlv_pwk_cipher *)tlv;
340		pwk_cipher->header.type = cpu_to_le16(TLV_TYPE_PWK_CIPHER);
341		pwk_cipher->header.len =
342			cpu_to_le16(sizeof(struct host_cmd_tlv_pwk_cipher) -
343				    sizeof(struct mwifiex_ie_types_header));
344		pwk_cipher->proto = cpu_to_le16(PROTOCOL_WPA2);
345		pwk_cipher->cipher = bss_cfg->wpa_cfg.pairwise_cipher_wpa2;
346		cmd_size += sizeof(struct host_cmd_tlv_pwk_cipher);
347		tlv += sizeof(struct host_cmd_tlv_pwk_cipher);
348	}
349
350	if (bss_cfg->wpa_cfg.group_cipher & VALID_CIPHER_BITMAP) {
351		gwk_cipher = (struct host_cmd_tlv_gwk_cipher *)tlv;
352		gwk_cipher->header.type = cpu_to_le16(TLV_TYPE_GWK_CIPHER);
353		gwk_cipher->header.len =
354			cpu_to_le16(sizeof(struct host_cmd_tlv_gwk_cipher) -
355				    sizeof(struct mwifiex_ie_types_header));
356		gwk_cipher->cipher = bss_cfg->wpa_cfg.group_cipher;
357		cmd_size += sizeof(struct host_cmd_tlv_gwk_cipher);
358		tlv += sizeof(struct host_cmd_tlv_gwk_cipher);
359	}
360
361	if (bss_cfg->wpa_cfg.length) {
362		passphrase = (struct host_cmd_tlv_passphrase *)tlv;
363		passphrase->header.type =
364				cpu_to_le16(TLV_TYPE_UAP_WPA_PASSPHRASE);
365		passphrase->header.len = cpu_to_le16(bss_cfg->wpa_cfg.length);
366		memcpy(passphrase->passphrase, bss_cfg->wpa_cfg.passphrase,
367		       bss_cfg->wpa_cfg.length);
368		cmd_size += sizeof(struct mwifiex_ie_types_header) +
369			    bss_cfg->wpa_cfg.length;
370		tlv += sizeof(struct mwifiex_ie_types_header) +
371				bss_cfg->wpa_cfg.length;
372	}
373
374	*param_size = cmd_size;
375	*tlv_buf = tlv;
376
377	return;
378}
379
380/* This function parses WMM related parameters from cfg80211_ap_settings
381 * structure and updates bss_config structure.
382 */
383void
384mwifiex_set_wmm_params(struct mwifiex_private *priv,
385		       struct mwifiex_uap_bss_param *bss_cfg,
386		       struct cfg80211_ap_settings *params)
387{
388	const u8 *vendor_ie;
389	struct ieee_types_header *wmm_ie;
390	u8 wmm_oui[] = {0x00, 0x50, 0xf2, 0x02};
391
392	vendor_ie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT,
393					    WLAN_OUI_TYPE_MICROSOFT_WMM,
394					    params->beacon.tail,
395					    params->beacon.tail_len);
396	if (vendor_ie) {
397		wmm_ie = (struct ieee_types_header *)vendor_ie;
398		memcpy(&bss_cfg->wmm_info, wmm_ie + 1,
399		       sizeof(bss_cfg->wmm_info));
400		priv->wmm_enabled = 1;
401	} else {
402		memset(&bss_cfg->wmm_info, 0, sizeof(bss_cfg->wmm_info));
403		memcpy(&bss_cfg->wmm_info.oui, wmm_oui, sizeof(wmm_oui));
404		bss_cfg->wmm_info.subtype = MWIFIEX_WMM_SUBTYPE;
405		bss_cfg->wmm_info.version = MWIFIEX_WMM_VERSION;
406		priv->wmm_enabled = 0;
407	}
408
409	bss_cfg->qos_info = 0x00;
410	return;
411}
412/* This function parses BSS related parameters from structure
413 * and prepares TLVs specific to WEP encryption.
414 * These TLVs are appended to command buffer.
415 */
416static void
417mwifiex_uap_bss_wep(u8 **tlv_buf, void *cmd_buf, u16 *param_size)
418{
419	struct host_cmd_tlv_wep_key *wep_key;
420	u16 cmd_size = *param_size;
421	int i;
422	u8 *tlv = *tlv_buf;
423	struct mwifiex_uap_bss_param *bss_cfg = cmd_buf;
424
425	for (i = 0; i < NUM_WEP_KEYS; i++) {
426		if (bss_cfg->wep_cfg[i].length &&
427		    (bss_cfg->wep_cfg[i].length == WLAN_KEY_LEN_WEP40 ||
428		     bss_cfg->wep_cfg[i].length == WLAN_KEY_LEN_WEP104)) {
429			wep_key = (struct host_cmd_tlv_wep_key *)tlv;
430			wep_key->header.type =
431				cpu_to_le16(TLV_TYPE_UAP_WEP_KEY);
432			wep_key->header.len =
433				cpu_to_le16(bss_cfg->wep_cfg[i].length + 2);
434			wep_key->key_index = bss_cfg->wep_cfg[i].key_index;
435			wep_key->is_default = bss_cfg->wep_cfg[i].is_default;
436			memcpy(wep_key->key, bss_cfg->wep_cfg[i].key,
437			       bss_cfg->wep_cfg[i].length);
438			cmd_size += sizeof(struct mwifiex_ie_types_header) + 2 +
439				    bss_cfg->wep_cfg[i].length;
440			tlv += sizeof(struct mwifiex_ie_types_header) + 2 +
441				    bss_cfg->wep_cfg[i].length;
442		}
443	}
444
445	*param_size = cmd_size;
446	*tlv_buf = tlv;
447
448	return;
449}
450
451/* This function parses BSS related parameters from structure
452 * and prepares TLVs. These TLVs are appended to command buffer.
453*/
454static int
455mwifiex_uap_bss_param_prepare(u8 *tlv, void *cmd_buf, u16 *param_size)
456{
457	struct host_cmd_tlv_dtim_period *dtim_period;
458	struct host_cmd_tlv_beacon_period *beacon_period;
459	struct host_cmd_tlv_ssid *ssid;
460	struct host_cmd_tlv_bcast_ssid *bcast_ssid;
461	struct host_cmd_tlv_channel_band *chan_band;
462	struct host_cmd_tlv_frag_threshold *frag_threshold;
463	struct host_cmd_tlv_rts_threshold *rts_threshold;
464	struct host_cmd_tlv_retry_limit *retry_limit;
465	struct host_cmd_tlv_encrypt_protocol *encrypt_protocol;
466	struct host_cmd_tlv_auth_type *auth_type;
467	struct host_cmd_tlv_rates *tlv_rates;
468	struct host_cmd_tlv_ageout_timer *ao_timer, *ps_ao_timer;
469	struct mwifiex_ie_types_htcap *htcap;
470	struct mwifiex_ie_types_wmmcap *wmm_cap;
471	struct mwifiex_uap_bss_param *bss_cfg = cmd_buf;
472	int i;
473	u16 cmd_size = *param_size;
474
475	if (bss_cfg->ssid.ssid_len) {
476		ssid = (struct host_cmd_tlv_ssid *)tlv;
477		ssid->header.type = cpu_to_le16(TLV_TYPE_UAP_SSID);
478		ssid->header.len = cpu_to_le16((u16)bss_cfg->ssid.ssid_len);
479		memcpy(ssid->ssid, bss_cfg->ssid.ssid, bss_cfg->ssid.ssid_len);
480		cmd_size += sizeof(struct mwifiex_ie_types_header) +
481			    bss_cfg->ssid.ssid_len;
482		tlv += sizeof(struct mwifiex_ie_types_header) +
483				bss_cfg->ssid.ssid_len;
484
485		bcast_ssid = (struct host_cmd_tlv_bcast_ssid *)tlv;
486		bcast_ssid->header.type = cpu_to_le16(TLV_TYPE_UAP_BCAST_SSID);
487		bcast_ssid->header.len =
488				cpu_to_le16(sizeof(bcast_ssid->bcast_ctl));
489		bcast_ssid->bcast_ctl = bss_cfg->bcast_ssid_ctl;
490		cmd_size += sizeof(struct host_cmd_tlv_bcast_ssid);
491		tlv += sizeof(struct host_cmd_tlv_bcast_ssid);
492	}
493	if (bss_cfg->rates[0]) {
494		tlv_rates = (struct host_cmd_tlv_rates *)tlv;
495		tlv_rates->header.type = cpu_to_le16(TLV_TYPE_UAP_RATES);
496
497		for (i = 0; i < MWIFIEX_SUPPORTED_RATES && bss_cfg->rates[i];
498		     i++)
499			tlv_rates->rates[i] = bss_cfg->rates[i];
500
501		tlv_rates->header.len = cpu_to_le16(i);
502		cmd_size += sizeof(struct host_cmd_tlv_rates) + i;
503		tlv += sizeof(struct host_cmd_tlv_rates) + i;
504	}
505	if (bss_cfg->channel &&
506	    ((bss_cfg->band_cfg == BAND_CONFIG_BG &&
507	      bss_cfg->channel <= MAX_CHANNEL_BAND_BG) ||
508	    (bss_cfg->band_cfg == BAND_CONFIG_A &&
509	     bss_cfg->channel <= MAX_CHANNEL_BAND_A))) {
510		chan_band = (struct host_cmd_tlv_channel_band *)tlv;
511		chan_band->header.type = cpu_to_le16(TLV_TYPE_CHANNELBANDLIST);
512		chan_band->header.len =
513			cpu_to_le16(sizeof(struct host_cmd_tlv_channel_band) -
514				    sizeof(struct mwifiex_ie_types_header));
515		chan_band->band_config = bss_cfg->band_cfg;
516		chan_band->channel = bss_cfg->channel;
517		cmd_size += sizeof(struct host_cmd_tlv_channel_band);
518		tlv += sizeof(struct host_cmd_tlv_channel_band);
519	}
520	if (bss_cfg->beacon_period >= MIN_BEACON_PERIOD &&
521	    bss_cfg->beacon_period <= MAX_BEACON_PERIOD) {
522		beacon_period = (struct host_cmd_tlv_beacon_period *)tlv;
523		beacon_period->header.type =
524					cpu_to_le16(TLV_TYPE_UAP_BEACON_PERIOD);
525		beacon_period->header.len =
526			cpu_to_le16(sizeof(struct host_cmd_tlv_beacon_period) -
527				    sizeof(struct mwifiex_ie_types_header));
528		beacon_period->period = cpu_to_le16(bss_cfg->beacon_period);
529		cmd_size += sizeof(struct host_cmd_tlv_beacon_period);
530		tlv += sizeof(struct host_cmd_tlv_beacon_period);
531	}
532	if (bss_cfg->dtim_period >= MIN_DTIM_PERIOD &&
533	    bss_cfg->dtim_period <= MAX_DTIM_PERIOD) {
534		dtim_period = (struct host_cmd_tlv_dtim_period *)tlv;
535		dtim_period->header.type =
536			cpu_to_le16(TLV_TYPE_UAP_DTIM_PERIOD);
537		dtim_period->header.len =
538			cpu_to_le16(sizeof(struct host_cmd_tlv_dtim_period) -
539				    sizeof(struct mwifiex_ie_types_header));
540		dtim_period->period = bss_cfg->dtim_period;
541		cmd_size += sizeof(struct host_cmd_tlv_dtim_period);
542		tlv += sizeof(struct host_cmd_tlv_dtim_period);
543	}
544	if (bss_cfg->rts_threshold <= MWIFIEX_RTS_MAX_VALUE) {
545		rts_threshold = (struct host_cmd_tlv_rts_threshold *)tlv;
546		rts_threshold->header.type =
547					cpu_to_le16(TLV_TYPE_UAP_RTS_THRESHOLD);
548		rts_threshold->header.len =
549			cpu_to_le16(sizeof(struct host_cmd_tlv_rts_threshold) -
550				    sizeof(struct mwifiex_ie_types_header));
551		rts_threshold->rts_thr = cpu_to_le16(bss_cfg->rts_threshold);
552		cmd_size += sizeof(struct host_cmd_tlv_frag_threshold);
553		tlv += sizeof(struct host_cmd_tlv_frag_threshold);
554	}
555	if ((bss_cfg->frag_threshold >= MWIFIEX_FRAG_MIN_VALUE) &&
556	    (bss_cfg->frag_threshold <= MWIFIEX_FRAG_MAX_VALUE)) {
557		frag_threshold = (struct host_cmd_tlv_frag_threshold *)tlv;
558		frag_threshold->header.type =
559				cpu_to_le16(TLV_TYPE_UAP_FRAG_THRESHOLD);
560		frag_threshold->header.len =
561			cpu_to_le16(sizeof(struct host_cmd_tlv_frag_threshold) -
562				    sizeof(struct mwifiex_ie_types_header));
563		frag_threshold->frag_thr = cpu_to_le16(bss_cfg->frag_threshold);
564		cmd_size += sizeof(struct host_cmd_tlv_frag_threshold);
565		tlv += sizeof(struct host_cmd_tlv_frag_threshold);
566	}
567	if (bss_cfg->retry_limit <= MWIFIEX_RETRY_LIMIT) {
568		retry_limit = (struct host_cmd_tlv_retry_limit *)tlv;
569		retry_limit->header.type =
570			cpu_to_le16(TLV_TYPE_UAP_RETRY_LIMIT);
571		retry_limit->header.len =
572			cpu_to_le16(sizeof(struct host_cmd_tlv_retry_limit) -
573				    sizeof(struct mwifiex_ie_types_header));
574		retry_limit->limit = (u8)bss_cfg->retry_limit;
575		cmd_size += sizeof(struct host_cmd_tlv_retry_limit);
576		tlv += sizeof(struct host_cmd_tlv_retry_limit);
577	}
578	if ((bss_cfg->protocol & PROTOCOL_WPA) ||
579	    (bss_cfg->protocol & PROTOCOL_WPA2) ||
580	    (bss_cfg->protocol & PROTOCOL_EAP))
581		mwifiex_uap_bss_wpa(&tlv, cmd_buf, &cmd_size);
582	else
583		mwifiex_uap_bss_wep(&tlv, cmd_buf, &cmd_size);
584
585	if ((bss_cfg->auth_mode <= WLAN_AUTH_SHARED_KEY) ||
586	    (bss_cfg->auth_mode == MWIFIEX_AUTH_MODE_AUTO)) {
587		auth_type = (struct host_cmd_tlv_auth_type *)tlv;
588		auth_type->header.type = cpu_to_le16(TLV_TYPE_AUTH_TYPE);
589		auth_type->header.len =
590			cpu_to_le16(sizeof(struct host_cmd_tlv_auth_type) -
591			sizeof(struct mwifiex_ie_types_header));
592		auth_type->auth_type = (u8)bss_cfg->auth_mode;
593		cmd_size += sizeof(struct host_cmd_tlv_auth_type);
594		tlv += sizeof(struct host_cmd_tlv_auth_type);
595	}
596	if (bss_cfg->protocol) {
597		encrypt_protocol = (struct host_cmd_tlv_encrypt_protocol *)tlv;
598		encrypt_protocol->header.type =
599			cpu_to_le16(TLV_TYPE_UAP_ENCRY_PROTOCOL);
600		encrypt_protocol->header.len =
601			cpu_to_le16(sizeof(struct host_cmd_tlv_encrypt_protocol)
602			- sizeof(struct mwifiex_ie_types_header));
603		encrypt_protocol->proto = cpu_to_le16(bss_cfg->protocol);
604		cmd_size += sizeof(struct host_cmd_tlv_encrypt_protocol);
605		tlv += sizeof(struct host_cmd_tlv_encrypt_protocol);
606	}
607
608	if (bss_cfg->ht_cap.cap_info) {
609		htcap = (struct mwifiex_ie_types_htcap *)tlv;
610		htcap->header.type = cpu_to_le16(WLAN_EID_HT_CAPABILITY);
611		htcap->header.len =
612				cpu_to_le16(sizeof(struct ieee80211_ht_cap));
613		htcap->ht_cap.cap_info = bss_cfg->ht_cap.cap_info;
614		htcap->ht_cap.ampdu_params_info =
615					     bss_cfg->ht_cap.ampdu_params_info;
616		memcpy(&htcap->ht_cap.mcs, &bss_cfg->ht_cap.mcs,
617		       sizeof(struct ieee80211_mcs_info));
618		htcap->ht_cap.extended_ht_cap_info =
619					bss_cfg->ht_cap.extended_ht_cap_info;
620		htcap->ht_cap.tx_BF_cap_info = bss_cfg->ht_cap.tx_BF_cap_info;
621		htcap->ht_cap.antenna_selection_info =
622					bss_cfg->ht_cap.antenna_selection_info;
623		cmd_size += sizeof(struct mwifiex_ie_types_htcap);
624		tlv += sizeof(struct mwifiex_ie_types_htcap);
625	}
626
627	if (bss_cfg->wmm_info.qos_info != 0xFF) {
628		wmm_cap = (struct mwifiex_ie_types_wmmcap *)tlv;
629		wmm_cap->header.type = cpu_to_le16(WLAN_EID_VENDOR_SPECIFIC);
630		wmm_cap->header.len = cpu_to_le16(sizeof(wmm_cap->wmm_info));
631		memcpy(&wmm_cap->wmm_info, &bss_cfg->wmm_info,
632		       sizeof(wmm_cap->wmm_info));
633		cmd_size += sizeof(struct mwifiex_ie_types_wmmcap);
634		tlv += sizeof(struct mwifiex_ie_types_wmmcap);
635	}
636
637	if (bss_cfg->sta_ao_timer) {
638		ao_timer = (struct host_cmd_tlv_ageout_timer *)tlv;
639		ao_timer->header.type = cpu_to_le16(TLV_TYPE_UAP_AO_TIMER);
640		ao_timer->header.len = cpu_to_le16(sizeof(*ao_timer) -
641					sizeof(struct mwifiex_ie_types_header));
642		ao_timer->sta_ao_timer = cpu_to_le32(bss_cfg->sta_ao_timer);
643		cmd_size += sizeof(*ao_timer);
644		tlv += sizeof(*ao_timer);
645	}
646
647	if (bss_cfg->ps_sta_ao_timer) {
648		ps_ao_timer = (struct host_cmd_tlv_ageout_timer *)tlv;
649		ps_ao_timer->header.type =
650				cpu_to_le16(TLV_TYPE_UAP_PS_AO_TIMER);
651		ps_ao_timer->header.len = cpu_to_le16(sizeof(*ps_ao_timer) -
652				sizeof(struct mwifiex_ie_types_header));
653		ps_ao_timer->sta_ao_timer =
654					cpu_to_le32(bss_cfg->ps_sta_ao_timer);
655		cmd_size += sizeof(*ps_ao_timer);
656		tlv += sizeof(*ps_ao_timer);
657	}
658
659	*param_size = cmd_size;
660
661	return 0;
662}
663
664/* This function parses custom IEs from IE list and prepares command buffer */
665static int mwifiex_uap_custom_ie_prepare(u8 *tlv, void *cmd_buf, u16 *ie_size)
666{
667	struct mwifiex_ie_list *ap_ie = cmd_buf;
668	struct mwifiex_ie_types_header *tlv_ie = (void *)tlv;
669
670	if (!ap_ie || !ap_ie->len || !ap_ie->ie_list)
671		return -1;
672
673	*ie_size += le16_to_cpu(ap_ie->len) +
674			sizeof(struct mwifiex_ie_types_header);
675
676	tlv_ie->type = cpu_to_le16(TLV_TYPE_MGMT_IE);
677	tlv_ie->len = ap_ie->len;
678	tlv += sizeof(struct mwifiex_ie_types_header);
679
680	memcpy(tlv, ap_ie->ie_list, le16_to_cpu(ap_ie->len));
681
682	return 0;
683}
684
685/* Parse AP config structure and prepare TLV based command structure
686 * to be sent to FW for uAP configuration
687 */
688static int
689mwifiex_cmd_uap_sys_config(struct host_cmd_ds_command *cmd, u16 cmd_action,
690			   u32 type, void *cmd_buf)
691{
692	u8 *tlv;
693	u16 cmd_size, param_size, ie_size;
694	struct host_cmd_ds_sys_config *sys_cfg;
695
696	cmd->command = cpu_to_le16(HostCmd_CMD_UAP_SYS_CONFIG);
697	cmd_size = (u16)(sizeof(struct host_cmd_ds_sys_config) + S_DS_GEN);
698	sys_cfg = (struct host_cmd_ds_sys_config *)&cmd->params.uap_sys_config;
699	sys_cfg->action = cpu_to_le16(cmd_action);
700	tlv = sys_cfg->tlv;
701
702	switch (type) {
703	case UAP_BSS_PARAMS_I:
704		param_size = cmd_size;
705		if (mwifiex_uap_bss_param_prepare(tlv, cmd_buf, &param_size))
706			return -1;
707		cmd->size = cpu_to_le16(param_size);
708		break;
709	case UAP_CUSTOM_IE_I:
710		ie_size = cmd_size;
711		if (mwifiex_uap_custom_ie_prepare(tlv, cmd_buf, &ie_size))
712			return -1;
713		cmd->size = cpu_to_le16(ie_size);
714		break;
715	default:
716		return -1;
717	}
718
719	return 0;
720}
721
722/* This function prepares AP specific deauth command with mac supplied in
723 * function parameter.
724 */
725static int mwifiex_cmd_uap_sta_deauth(struct mwifiex_private *priv,
726				      struct host_cmd_ds_command *cmd, u8 *mac)
727{
728	struct host_cmd_ds_sta_deauth *sta_deauth = &cmd->params.sta_deauth;
729
730	cmd->command = cpu_to_le16(HostCmd_CMD_UAP_STA_DEAUTH);
731	memcpy(sta_deauth->mac, mac, ETH_ALEN);
732	sta_deauth->reason = cpu_to_le16(WLAN_REASON_DEAUTH_LEAVING);
733
734	cmd->size = cpu_to_le16(sizeof(struct host_cmd_ds_sta_deauth) +
735				S_DS_GEN);
736	return 0;
737}
738
739/* This function prepares the AP specific commands before sending them
740 * to the firmware.
741 * This is a generic function which calls specific command preparation
742 * routines based upon the command number.
743 */
744int mwifiex_uap_prepare_cmd(struct mwifiex_private *priv, u16 cmd_no,
745			    u16 cmd_action, u32 type,
746			    void *data_buf, void *cmd_buf)
747{
748	struct host_cmd_ds_command *cmd = cmd_buf;
749
750	switch (cmd_no) {
751	case HostCmd_CMD_UAP_SYS_CONFIG:
752		if (mwifiex_cmd_uap_sys_config(cmd, cmd_action, type, data_buf))
753			return -1;
754		break;
755	case HostCmd_CMD_UAP_BSS_START:
756	case HostCmd_CMD_UAP_BSS_STOP:
757		cmd->command = cpu_to_le16(cmd_no);
758		cmd->size = cpu_to_le16(S_DS_GEN);
759		break;
760	case HostCmd_CMD_UAP_STA_DEAUTH:
761		if (mwifiex_cmd_uap_sta_deauth(priv, cmd, data_buf))
762			return -1;
763		break;
764	default:
765		dev_err(priv->adapter->dev,
766			"PREP_CMD: unknown cmd %#x\n", cmd_no);
767		return -1;
768	}
769
770	return 0;
771}
772