[go: nahoru, domu]

1/*
2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 */
20
21/***********************\
22* PHY related functions *
23\***********************/
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <linux/delay.h>
28#include <linux/slab.h>
29#include <asm/unaligned.h>
30
31#include "ath5k.h"
32#include "reg.h"
33#include "rfbuffer.h"
34#include "rfgain.h"
35#include "../regd.h"
36
37
38/**
39 * DOC: PHY related functions
40 *
41 * Here we handle the low-level functions related to baseband
42 * and analog frontend (RF) parts. This is by far the most complex
43 * part of the hw code so make sure you know what you are doing.
44 *
45 * Here is a list of what this is all about:
46 *
47 * - Channel setting/switching
48 *
49 * - Automatic Gain Control (AGC) calibration
50 *
51 * - Noise Floor calibration
52 *
53 * - I/Q imbalance calibration (QAM correction)
54 *
55 * - Calibration due to thermal changes (gain_F)
56 *
57 * - Spur noise mitigation
58 *
59 * - RF/PHY initialization for the various operating modes and bwmodes
60 *
61 * - Antenna control
62 *
63 * - TX power control per channel/rate/packet type
64 *
65 * Also have in mind we never got documentation for most of these
66 * functions, what we have comes mostly from Atheros's code, reverse
67 * engineering and patent docs/presentations etc.
68 */
69
70
71/******************\
72* Helper functions *
73\******************/
74
75/**
76 * ath5k_hw_radio_revision() - Get the PHY Chip revision
77 * @ah: The &struct ath5k_hw
78 * @band: One of enum ieee80211_band
79 *
80 * Returns the revision number of a 2GHz, 5GHz or single chip
81 * radio.
82 */
83u16
84ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band)
85{
86	unsigned int i;
87	u32 srev;
88	u16 ret;
89
90	/*
91	 * Set the radio chip access register
92	 */
93	switch (band) {
94	case IEEE80211_BAND_2GHZ:
95		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
96		break;
97	case IEEE80211_BAND_5GHZ:
98		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
99		break;
100	default:
101		return 0;
102	}
103
104	usleep_range(2000, 2500);
105
106	/* ...wait until PHY is ready and read the selected radio revision */
107	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
108
109	for (i = 0; i < 8; i++)
110		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
111
112	if (ah->ah_version == AR5K_AR5210) {
113		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
114		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
115	} else {
116		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
117		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
118				((srev & 0x0f) << 4), 8);
119	}
120
121	/* Reset to the 5GHz mode */
122	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
123
124	return ret;
125}
126
127/**
128 * ath5k_channel_ok() - Check if a channel is supported by the hw
129 * @ah: The &struct ath5k_hw
130 * @channel: The &struct ieee80211_channel
131 *
132 * Note: We don't do any regulatory domain checks here, it's just
133 * a sanity check.
134 */
135bool
136ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
137{
138	u16 freq = channel->center_freq;
139
140	/* Check if the channel is in our supported range */
141	if (channel->band == IEEE80211_BAND_2GHZ) {
142		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
143		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
144			return true;
145	} else if (channel->band == IEEE80211_BAND_5GHZ)
146		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
147		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
148			return true;
149
150	return false;
151}
152
153/**
154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
155 * @ah: The &struct ath5k_hw
156 * @channel: The &struct ieee80211_channel
157 */
158bool
159ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
160				struct ieee80211_channel *channel)
161{
162	u8 refclk_freq;
163
164	if ((ah->ah_radio == AR5K_RF5112) ||
165	(ah->ah_radio == AR5K_RF5413) ||
166	(ah->ah_radio == AR5K_RF2413) ||
167	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
168		refclk_freq = 40;
169	else
170		refclk_freq = 32;
171
172	if ((channel->center_freq % refclk_freq != 0) &&
173	((channel->center_freq % refclk_freq < 10) ||
174	(channel->center_freq % refclk_freq > 22)))
175		return true;
176	else
177		return false;
178}
179
180/**
181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
182 * @ah: The &struct ath5k_hw
183 * @rf_regs: The struct ath5k_rf_reg
184 * @val: New value
185 * @reg_id: RF register ID
186 * @set: Indicate we need to swap data
187 *
188 * This is an internal function used to modify RF Banks before
189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
190 * infos.
191 */
192static unsigned int
193ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
194					u32 val, u8 reg_id, bool set)
195{
196	const struct ath5k_rf_reg *rfreg = NULL;
197	u8 offset, bank, num_bits, col, position;
198	u16 entry;
199	u32 mask, data, last_bit, bits_shifted, first_bit;
200	u32 *rfb;
201	s32 bits_left;
202	int i;
203
204	data = 0;
205	rfb = ah->ah_rf_banks;
206
207	for (i = 0; i < ah->ah_rf_regs_count; i++) {
208		if (rf_regs[i].index == reg_id) {
209			rfreg = &rf_regs[i];
210			break;
211		}
212	}
213
214	if (rfb == NULL || rfreg == NULL) {
215		ATH5K_PRINTF("Rf register not found!\n");
216		/* should not happen */
217		return 0;
218	}
219
220	bank = rfreg->bank;
221	num_bits = rfreg->field.len;
222	first_bit = rfreg->field.pos;
223	col = rfreg->field.col;
224
225	/* first_bit is an offset from bank's
226	 * start. Since we have all banks on
227	 * the same array, we use this offset
228	 * to mark each bank's start */
229	offset = ah->ah_offset[bank];
230
231	/* Boundary check */
232	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
233		ATH5K_PRINTF("invalid values at offset %u\n", offset);
234		return 0;
235	}
236
237	entry = ((first_bit - 1) / 8) + offset;
238	position = (first_bit - 1) % 8;
239
240	if (set)
241		data = ath5k_hw_bitswap(val, num_bits);
242
243	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
244	     position = 0, entry++) {
245
246		last_bit = (position + bits_left > 8) ? 8 :
247					position + bits_left;
248
249		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
250								(col * 8);
251
252		if (set) {
253			rfb[entry] &= ~mask;
254			rfb[entry] |= ((data << position) << (col * 8)) & mask;
255			data >>= (8 - position);
256		} else {
257			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
258				<< bits_shifted;
259			bits_shifted += last_bit - position;
260		}
261
262		bits_left -= 8 - position;
263	}
264
265	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
266
267	return data;
268}
269
270/**
271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
272 * @ah: the &struct ath5k_hw
273 * @channel: the currently set channel upon reset
274 *
275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
277 *
278 * Since delta slope is floating point we split it on its exponent and
279 * mantissa and provide these values on hw.
280 *
281 * For more infos i think this patent is related
282 * "http://www.freepatentsonline.com/7184495.html"
283 */
284static inline int
285ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
286				struct ieee80211_channel *channel)
287{
288	/* Get exponent and mantissa and set it */
289	u32 coef_scaled, coef_exp, coef_man,
290		ds_coef_exp, ds_coef_man, clock;
291
292	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
293		(channel->hw_value == AR5K_MODE_11B));
294
295	/* Get coefficient
296	 * ALGO: coef = (5 * clock / carrier_freq) / 2
297	 * we scale coef by shifting clock value by 24 for
298	 * better precision since we use integers */
299	switch (ah->ah_bwmode) {
300	case AR5K_BWMODE_40MHZ:
301		clock = 40 * 2;
302		break;
303	case AR5K_BWMODE_10MHZ:
304		clock = 40 / 2;
305		break;
306	case AR5K_BWMODE_5MHZ:
307		clock = 40 / 4;
308		break;
309	default:
310		clock = 40;
311		break;
312	}
313	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
314
315	/* Get exponent
316	 * ALGO: coef_exp = 14 - highest set bit position */
317	coef_exp = ilog2(coef_scaled);
318
319	/* Doesn't make sense if it's zero*/
320	if (!coef_scaled || !coef_exp)
321		return -EINVAL;
322
323	/* Note: we've shifted coef_scaled by 24 */
324	coef_exp = 14 - (coef_exp - 24);
325
326
327	/* Get mantissa (significant digits)
328	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
329	coef_man = coef_scaled +
330		(1 << (24 - coef_exp - 1));
331
332	/* Calculate delta slope coefficient exponent
333	 * and mantissa (remove scaling) and set them on hw */
334	ds_coef_man = coef_man >> (24 - coef_exp);
335	ds_coef_exp = coef_exp - 16;
336
337	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
338		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
339	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
340		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
341
342	return 0;
343}
344
345/**
346 * ath5k_hw_phy_disable() - Disable PHY
347 * @ah: The &struct ath5k_hw
348 */
349int ath5k_hw_phy_disable(struct ath5k_hw *ah)
350{
351	/*Just a try M.F.*/
352	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
353
354	return 0;
355}
356
357/**
358 * ath5k_hw_wait_for_synth() - Wait for synth to settle
359 * @ah: The &struct ath5k_hw
360 * @channel: The &struct ieee80211_channel
361 */
362static void
363ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
364			struct ieee80211_channel *channel)
365{
366	/*
367	 * On 5211+ read activation -> rx delay
368	 * and use it (100ns steps).
369	 */
370	if (ah->ah_version != AR5K_AR5210) {
371		u32 delay;
372		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
373			AR5K_PHY_RX_DELAY_M;
374		delay = (channel->hw_value == AR5K_MODE_11B) ?
375			((delay << 2) / 22) : (delay / 10);
376		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
377			delay = delay << 1;
378		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
379			delay = delay << 2;
380		/* XXX: /2 on turbo ? Let's be safe
381		 * for now */
382		usleep_range(100 + delay, 100 + (2 * delay));
383	} else {
384		usleep_range(1000, 1500);
385	}
386}
387
388
389/**********************\
390* RF Gain optimization *
391\**********************/
392
393/**
394 * DOC: RF Gain optimization
395 *
396 * This code is used to optimize RF gain on different environments
397 * (temperature mostly) based on feedback from a power detector.
398 *
399 * It's only used on RF5111 and RF5112, later RF chips seem to have
400 * auto adjustment on hw -notice they have a much smaller BANK 7 and
401 * no gain optimization ladder-.
402 *
403 * For more infos check out this patent doc
404 * "http://www.freepatentsonline.com/7400691.html"
405 *
406 * This paper describes power drops as seen on the receiver due to
407 * probe packets
408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
409 * %20of%20Power%20Control.pdf"
410 *
411 * And this is the MadWiFi bug entry related to the above
412 * "http://madwifi-project.org/ticket/1659"
413 * with various measurements and diagrams
414 */
415
416/**
417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
418 * @ah: The &struct ath5k_hw
419 */
420int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
421{
422	/* Initialize the gain optimization values */
423	switch (ah->ah_radio) {
424	case AR5K_RF5111:
425		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
426		ah->ah_gain.g_low = 20;
427		ah->ah_gain.g_high = 35;
428		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
429		break;
430	case AR5K_RF5112:
431		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
432		ah->ah_gain.g_low = 20;
433		ah->ah_gain.g_high = 85;
434		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
435		break;
436	default:
437		return -EINVAL;
438	}
439
440	return 0;
441}
442
443/**
444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
445 * @ah: The &struct ath5k_hw
446 *
447 * Schedules a gain probe check on the next transmitted packet.
448 * That means our next packet is going to be sent with lower
449 * tx power and a Peak to Average Power Detector (PAPD) will try
450 * to measure the gain.
451 *
452 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
453 * just after we enable the probe so that we don't mess with
454 * standard traffic.
455 */
456static void
457ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
458{
459
460	/* Skip if gain calibration is inactive or
461	 * we already handle a probe request */
462	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
463		return;
464
465	/* Send the packet with 2dB below max power as
466	 * patent doc suggest */
467	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
468			AR5K_PHY_PAPD_PROBE_TXPOWER) |
469			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
470
471	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
472
473}
474
475/**
476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
477 * @ah: The &struct ath5k_hw
478 *
479 * Calculate Gain_F measurement correction
480 * based on the current step for RF5112 rev. 2
481 */
482static u32
483ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
484{
485	u32 mix, step;
486	u32 *rf;
487	const struct ath5k_gain_opt *go;
488	const struct ath5k_gain_opt_step *g_step;
489	const struct ath5k_rf_reg *rf_regs;
490
491	/* Only RF5112 Rev. 2 supports it */
492	if ((ah->ah_radio != AR5K_RF5112) ||
493	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
494		return 0;
495
496	go = &rfgain_opt_5112;
497	rf_regs = rf_regs_5112a;
498	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
499
500	g_step = &go->go_step[ah->ah_gain.g_step_idx];
501
502	if (ah->ah_rf_banks == NULL)
503		return 0;
504
505	rf = ah->ah_rf_banks;
506	ah->ah_gain.g_f_corr = 0;
507
508	/* No VGA (Variable Gain Amplifier) override, skip */
509	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
510		return 0;
511
512	/* Mix gain stepping */
513	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
514
515	/* Mix gain override */
516	mix = g_step->gos_param[0];
517
518	switch (mix) {
519	case 3:
520		ah->ah_gain.g_f_corr = step * 2;
521		break;
522	case 2:
523		ah->ah_gain.g_f_corr = (step - 5) * 2;
524		break;
525	case 1:
526		ah->ah_gain.g_f_corr = step;
527		break;
528	default:
529		ah->ah_gain.g_f_corr = 0;
530		break;
531	}
532
533	return ah->ah_gain.g_f_corr;
534}
535
536/**
537 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
538 * @ah: The &struct ath5k_hw
539 *
540 * Check if current gain_F measurement is in the range of our
541 * power detector windows. If we get a measurement outside range
542 * we know it's not accurate (detectors can't measure anything outside
543 * their detection window) so we must ignore it.
544 *
545 * Returns true if readback was O.K. or false on failure
546 */
547static bool
548ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
549{
550	const struct ath5k_rf_reg *rf_regs;
551	u32 step, mix_ovr, level[4];
552	u32 *rf;
553
554	if (ah->ah_rf_banks == NULL)
555		return false;
556
557	rf = ah->ah_rf_banks;
558
559	if (ah->ah_radio == AR5K_RF5111) {
560
561		rf_regs = rf_regs_5111;
562		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
563
564		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
565			false);
566
567		level[0] = 0;
568		level[1] = (step == 63) ? 50 : step + 4;
569		level[2] = (step != 63) ? 64 : level[0];
570		level[3] = level[2] + 50;
571
572		ah->ah_gain.g_high = level[3] -
573			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
574		ah->ah_gain.g_low = level[0] +
575			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
576	} else {
577
578		rf_regs = rf_regs_5112;
579		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
580
581		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
582			false);
583
584		level[0] = level[2] = 0;
585
586		if (mix_ovr == 1) {
587			level[1] = level[3] = 83;
588		} else {
589			level[1] = level[3] = 107;
590			ah->ah_gain.g_high = 55;
591		}
592	}
593
594	return (ah->ah_gain.g_current >= level[0] &&
595			ah->ah_gain.g_current <= level[1]) ||
596		(ah->ah_gain.g_current >= level[2] &&
597			ah->ah_gain.g_current <= level[3]);
598}
599
600/**
601 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
602 * @ah: The &struct ath5k_hw
603 *
604 * Choose the right target gain based on current gain
605 * and RF gain optimization ladder
606 */
607static s8
608ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
609{
610	const struct ath5k_gain_opt *go;
611	const struct ath5k_gain_opt_step *g_step;
612	int ret = 0;
613
614	switch (ah->ah_radio) {
615	case AR5K_RF5111:
616		go = &rfgain_opt_5111;
617		break;
618	case AR5K_RF5112:
619		go = &rfgain_opt_5112;
620		break;
621	default:
622		return 0;
623	}
624
625	g_step = &go->go_step[ah->ah_gain.g_step_idx];
626
627	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
628
629		/* Reached maximum */
630		if (ah->ah_gain.g_step_idx == 0)
631			return -1;
632
633		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
634				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
635				ah->ah_gain.g_step_idx > 0;
636				g_step = &go->go_step[ah->ah_gain.g_step_idx])
637			ah->ah_gain.g_target -= 2 *
638			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
639			    g_step->gos_gain);
640
641		ret = 1;
642		goto done;
643	}
644
645	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
646
647		/* Reached minimum */
648		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
649			return -2;
650
651		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
652				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
653				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
654				g_step = &go->go_step[ah->ah_gain.g_step_idx])
655			ah->ah_gain.g_target -= 2 *
656			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
657			    g_step->gos_gain);
658
659		ret = 2;
660		goto done;
661	}
662
663done:
664	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
665		"ret %d, gain step %u, current gain %u, target gain %u\n",
666		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
667		ah->ah_gain.g_target);
668
669	return ret;
670}
671
672/**
673 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
674 * @ah: The &struct ath5k_hw
675 *
676 * Main callback for thermal RF gain calibration engine
677 * Check for a new gain reading and schedule an adjustment
678 * if needed.
679 *
680 * Returns one of enum ath5k_rfgain codes
681 */
682enum ath5k_rfgain
683ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
684{
685	u32 data, type;
686	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
687
688	if (ah->ah_rf_banks == NULL ||
689	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
690		return AR5K_RFGAIN_INACTIVE;
691
692	/* No check requested, either engine is inactive
693	 * or an adjustment is already requested */
694	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
695		goto done;
696
697	/* Read the PAPD (Peak to Average Power Detector)
698	 * register */
699	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
700
701	/* No probe is scheduled, read gain_F measurement */
702	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
703		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
704		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
705
706		/* If tx packet is CCK correct the gain_F measurement
707		 * by cck ofdm gain delta */
708		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
709			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
710				ah->ah_gain.g_current +=
711					ee->ee_cck_ofdm_gain_delta;
712			else
713				ah->ah_gain.g_current +=
714					AR5K_GAIN_CCK_PROBE_CORR;
715		}
716
717		/* Further correct gain_F measurement for
718		 * RF5112A radios */
719		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
720			ath5k_hw_rf_gainf_corr(ah);
721			ah->ah_gain.g_current =
722				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
723				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
724				0;
725		}
726
727		/* Check if measurement is ok and if we need
728		 * to adjust gain, schedule a gain adjustment,
729		 * else switch back to the active state */
730		if (ath5k_hw_rf_check_gainf_readback(ah) &&
731		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
732		ath5k_hw_rf_gainf_adjust(ah)) {
733			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
734		} else {
735			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
736		}
737	}
738
739done:
740	return ah->ah_gain.g_state;
741}
742
743/**
744 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
745 * @ah: The &struct ath5k_hw
746 * @band: One of enum ieee80211_band
747 *
748 * Write initial RF gain table to set the RF sensitivity.
749 *
750 * NOTE: This one works on all RF chips and has nothing to do
751 * with Gain_F calibration
752 */
753static int
754ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
755{
756	const struct ath5k_ini_rfgain *ath5k_rfg;
757	unsigned int i, size, index;
758
759	switch (ah->ah_radio) {
760	case AR5K_RF5111:
761		ath5k_rfg = rfgain_5111;
762		size = ARRAY_SIZE(rfgain_5111);
763		break;
764	case AR5K_RF5112:
765		ath5k_rfg = rfgain_5112;
766		size = ARRAY_SIZE(rfgain_5112);
767		break;
768	case AR5K_RF2413:
769		ath5k_rfg = rfgain_2413;
770		size = ARRAY_SIZE(rfgain_2413);
771		break;
772	case AR5K_RF2316:
773		ath5k_rfg = rfgain_2316;
774		size = ARRAY_SIZE(rfgain_2316);
775		break;
776	case AR5K_RF5413:
777		ath5k_rfg = rfgain_5413;
778		size = ARRAY_SIZE(rfgain_5413);
779		break;
780	case AR5K_RF2317:
781	case AR5K_RF2425:
782		ath5k_rfg = rfgain_2425;
783		size = ARRAY_SIZE(rfgain_2425);
784		break;
785	default:
786		return -EINVAL;
787	}
788
789	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
790
791	for (i = 0; i < size; i++) {
792		AR5K_REG_WAIT(i);
793		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
794			(u32)ath5k_rfg[i].rfg_register);
795	}
796
797	return 0;
798}
799
800
801/********************\
802* RF Registers setup *
803\********************/
804
805/**
806 * ath5k_hw_rfregs_init() - Initialize RF register settings
807 * @ah: The &struct ath5k_hw
808 * @channel: The &struct ieee80211_channel
809 * @mode: One of enum ath5k_driver_mode
810 *
811 * Setup RF registers by writing RF buffer on hw. For
812 * more infos on this, check out rfbuffer.h
813 */
814static int
815ath5k_hw_rfregs_init(struct ath5k_hw *ah,
816			struct ieee80211_channel *channel,
817			unsigned int mode)
818{
819	const struct ath5k_rf_reg *rf_regs;
820	const struct ath5k_ini_rfbuffer *ini_rfb;
821	const struct ath5k_gain_opt *go = NULL;
822	const struct ath5k_gain_opt_step *g_step;
823	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
824	u8 ee_mode = 0;
825	u32 *rfb;
826	int i, obdb = -1, bank = -1;
827
828	switch (ah->ah_radio) {
829	case AR5K_RF5111:
830		rf_regs = rf_regs_5111;
831		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
832		ini_rfb = rfb_5111;
833		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
834		go = &rfgain_opt_5111;
835		break;
836	case AR5K_RF5112:
837		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
838			rf_regs = rf_regs_5112a;
839			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
840			ini_rfb = rfb_5112a;
841			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
842		} else {
843			rf_regs = rf_regs_5112;
844			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
845			ini_rfb = rfb_5112;
846			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
847		}
848		go = &rfgain_opt_5112;
849		break;
850	case AR5K_RF2413:
851		rf_regs = rf_regs_2413;
852		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
853		ini_rfb = rfb_2413;
854		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
855		break;
856	case AR5K_RF2316:
857		rf_regs = rf_regs_2316;
858		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
859		ini_rfb = rfb_2316;
860		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
861		break;
862	case AR5K_RF5413:
863		rf_regs = rf_regs_5413;
864		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
865		ini_rfb = rfb_5413;
866		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
867		break;
868	case AR5K_RF2317:
869		rf_regs = rf_regs_2425;
870		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
871		ini_rfb = rfb_2317;
872		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
873		break;
874	case AR5K_RF2425:
875		rf_regs = rf_regs_2425;
876		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
877		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
878			ini_rfb = rfb_2425;
879			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
880		} else {
881			ini_rfb = rfb_2417;
882			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
883		}
884		break;
885	default:
886		return -EINVAL;
887	}
888
889	/* If it's the first time we set RF buffer, allocate
890	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
891	 * we set above */
892	if (ah->ah_rf_banks == NULL) {
893		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
894								GFP_KERNEL);
895		if (ah->ah_rf_banks == NULL) {
896			ATH5K_ERR(ah, "out of memory\n");
897			return -ENOMEM;
898		}
899	}
900
901	/* Copy values to modify them */
902	rfb = ah->ah_rf_banks;
903
904	for (i = 0; i < ah->ah_rf_banks_size; i++) {
905		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
906			ATH5K_ERR(ah, "invalid bank\n");
907			return -EINVAL;
908		}
909
910		/* Bank changed, write down the offset */
911		if (bank != ini_rfb[i].rfb_bank) {
912			bank = ini_rfb[i].rfb_bank;
913			ah->ah_offset[bank] = i;
914		}
915
916		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
917	}
918
919	/* Set Output and Driver bias current (OB/DB) */
920	if (channel->band == IEEE80211_BAND_2GHZ) {
921
922		if (channel->hw_value == AR5K_MODE_11B)
923			ee_mode = AR5K_EEPROM_MODE_11B;
924		else
925			ee_mode = AR5K_EEPROM_MODE_11G;
926
927		/* For RF511X/RF211X combination we
928		 * use b_OB and b_DB parameters stored
929		 * in eeprom on ee->ee_ob[ee_mode][0]
930		 *
931		 * For all other chips we use OB/DB for 2GHz
932		 * stored in the b/g modal section just like
933		 * 802.11a on ee->ee_ob[ee_mode][1] */
934		if ((ah->ah_radio == AR5K_RF5111) ||
935		(ah->ah_radio == AR5K_RF5112))
936			obdb = 0;
937		else
938			obdb = 1;
939
940		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
941						AR5K_RF_OB_2GHZ, true);
942
943		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
944						AR5K_RF_DB_2GHZ, true);
945
946	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
947	} else if ((channel->band == IEEE80211_BAND_5GHZ) ||
948			(ah->ah_radio == AR5K_RF5111)) {
949
950		/* For 11a, Turbo and XR we need to choose
951		 * OB/DB based on frequency range */
952		ee_mode = AR5K_EEPROM_MODE_11A;
953		obdb =	 channel->center_freq >= 5725 ? 3 :
954			(channel->center_freq >= 5500 ? 2 :
955			(channel->center_freq >= 5260 ? 1 :
956			 (channel->center_freq > 4000 ? 0 : -1)));
957
958		if (obdb < 0)
959			return -EINVAL;
960
961		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
962						AR5K_RF_OB_5GHZ, true);
963
964		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
965						AR5K_RF_DB_5GHZ, true);
966	}
967
968	g_step = &go->go_step[ah->ah_gain.g_step_idx];
969
970	/* Set turbo mode (N/A on RF5413) */
971	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
972	(ah->ah_radio != AR5K_RF5413))
973		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
974
975	/* Bank Modifications (chip-specific) */
976	if (ah->ah_radio == AR5K_RF5111) {
977
978		/* Set gain_F settings according to current step */
979		if (channel->hw_value != AR5K_MODE_11B) {
980
981			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
982					AR5K_PHY_FRAME_CTL_TX_CLIP,
983					g_step->gos_param[0]);
984
985			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
986							AR5K_RF_PWD_90, true);
987
988			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
989							AR5K_RF_PWD_84, true);
990
991			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
992						AR5K_RF_RFGAIN_SEL, true);
993
994			/* We programmed gain_F parameters, switch back
995			 * to active state */
996			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
997
998		}
999
1000		/* Bank 6/7 setup */
1001
1002		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
1003						AR5K_RF_PWD_XPD, true);
1004
1005		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1006						AR5K_RF_XPD_GAIN, true);
1007
1008		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1009						AR5K_RF_GAIN_I, true);
1010
1011		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1012						AR5K_RF_PLO_SEL, true);
1013
1014		/* Tweak power detectors for half/quarter rate support */
1015		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1016		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1017			u8 wait_i;
1018
1019			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1020						AR5K_RF_WAIT_S, true);
1021
1022			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1023							0x1f : 0x10;
1024
1025			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1026						AR5K_RF_WAIT_I, true);
1027			ath5k_hw_rfb_op(ah, rf_regs, 3,
1028						AR5K_RF_MAX_TIME, true);
1029
1030		}
1031	}
1032
1033	if (ah->ah_radio == AR5K_RF5112) {
1034
1035		/* Set gain_F settings according to current step */
1036		if (channel->hw_value != AR5K_MODE_11B) {
1037
1038			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1039						AR5K_RF_MIXGAIN_OVR, true);
1040
1041			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1042						AR5K_RF_PWD_138, true);
1043
1044			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1045						AR5K_RF_PWD_137, true);
1046
1047			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1048						AR5K_RF_PWD_136, true);
1049
1050			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1051						AR5K_RF_PWD_132, true);
1052
1053			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1054						AR5K_RF_PWD_131, true);
1055
1056			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1057						AR5K_RF_PWD_130, true);
1058
1059			/* We programmed gain_F parameters, switch back
1060			 * to active state */
1061			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1062		}
1063
1064		/* Bank 6/7 setup */
1065
1066		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1067						AR5K_RF_XPD_SEL, true);
1068
1069		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1070			/* Rev. 1 supports only one xpd */
1071			ath5k_hw_rfb_op(ah, rf_regs,
1072						ee->ee_x_gain[ee_mode],
1073						AR5K_RF_XPD_GAIN, true);
1074
1075		} else {
1076			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1077			if (ee->ee_pd_gains[ee_mode] > 1) {
1078				ath5k_hw_rfb_op(ah, rf_regs,
1079						pdg_curve_to_idx[0],
1080						AR5K_RF_PD_GAIN_LO, true);
1081				ath5k_hw_rfb_op(ah, rf_regs,
1082						pdg_curve_to_idx[1],
1083						AR5K_RF_PD_GAIN_HI, true);
1084			} else {
1085				ath5k_hw_rfb_op(ah, rf_regs,
1086						pdg_curve_to_idx[0],
1087						AR5K_RF_PD_GAIN_LO, true);
1088				ath5k_hw_rfb_op(ah, rf_regs,
1089						pdg_curve_to_idx[0],
1090						AR5K_RF_PD_GAIN_HI, true);
1091			}
1092
1093			/* Lower synth voltage on Rev 2 */
1094			if (ah->ah_radio == AR5K_RF5112 &&
1095			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1096				ath5k_hw_rfb_op(ah, rf_regs, 2,
1097						AR5K_RF_HIGH_VC_CP, true);
1098
1099				ath5k_hw_rfb_op(ah, rf_regs, 2,
1100						AR5K_RF_MID_VC_CP, true);
1101
1102				ath5k_hw_rfb_op(ah, rf_regs, 2,
1103						AR5K_RF_LOW_VC_CP, true);
1104
1105				ath5k_hw_rfb_op(ah, rf_regs, 2,
1106						AR5K_RF_PUSH_UP, true);
1107			}
1108
1109			/* Decrease power consumption on 5213+ BaseBand */
1110			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1111				ath5k_hw_rfb_op(ah, rf_regs, 1,
1112						AR5K_RF_PAD2GND, true);
1113
1114				ath5k_hw_rfb_op(ah, rf_regs, 1,
1115						AR5K_RF_XB2_LVL, true);
1116
1117				ath5k_hw_rfb_op(ah, rf_regs, 1,
1118						AR5K_RF_XB5_LVL, true);
1119
1120				ath5k_hw_rfb_op(ah, rf_regs, 1,
1121						AR5K_RF_PWD_167, true);
1122
1123				ath5k_hw_rfb_op(ah, rf_regs, 1,
1124						AR5K_RF_PWD_166, true);
1125			}
1126		}
1127
1128		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1129						AR5K_RF_GAIN_I, true);
1130
1131		/* Tweak power detector for half/quarter rates */
1132		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1133		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1134			u8 pd_delay;
1135
1136			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1137							0xf : 0x8;
1138
1139			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1140						AR5K_RF_PD_PERIOD_A, true);
1141			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1142						AR5K_RF_PD_DELAY_A, true);
1143
1144		}
1145	}
1146
1147	if (ah->ah_radio == AR5K_RF5413 &&
1148	channel->band == IEEE80211_BAND_2GHZ) {
1149
1150		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1151									true);
1152
1153		/* Set optimum value for early revisions (on pci-e chips) */
1154		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1155		ah->ah_mac_srev < AR5K_SREV_AR5413)
1156			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1157						AR5K_RF_PWD_ICLOBUF_2G, true);
1158
1159	}
1160
1161	/* Write RF banks on hw */
1162	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1163		AR5K_REG_WAIT(i);
1164		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1165	}
1166
1167	return 0;
1168}
1169
1170
1171/**************************\
1172  PHY/RF channel functions
1173\**************************/
1174
1175/**
1176 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1177 * @channel: The &struct ieee80211_channel
1178 *
1179 * Map channel frequency to IEEE channel number and convert it
1180 * to an internal channel value used by the RF5110 chipset.
1181 */
1182static u32
1183ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1184{
1185	u32 athchan;
1186
1187	athchan = (ath5k_hw_bitswap(
1188			(ieee80211_frequency_to_channel(
1189				channel->center_freq) - 24) / 2, 5)
1190				<< 1) | (1 << 6) | 0x1;
1191	return athchan;
1192}
1193
1194/**
1195 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1196 * @ah: The &struct ath5k_hw
1197 * @channel: The &struct ieee80211_channel
1198 */
1199static int
1200ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1201		struct ieee80211_channel *channel)
1202{
1203	u32 data;
1204
1205	/*
1206	 * Set the channel and wait
1207	 */
1208	data = ath5k_hw_rf5110_chan2athchan(channel);
1209	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1210	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1211	usleep_range(1000, 1500);
1212
1213	return 0;
1214}
1215
1216/**
1217 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1218 * @ieee: IEEE channel number
1219 * @athchan: The &struct ath5k_athchan_2ghz
1220 *
1221 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1222 * we need to add some offsets and extra flags to the data values we pass
1223 * on to the PHY. So for every 2GHz channel this function gets called
1224 * to do the conversion.
1225 */
1226static int
1227ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1228		struct ath5k_athchan_2ghz *athchan)
1229{
1230	int channel;
1231
1232	/* Cast this value to catch negative channel numbers (>= -19) */
1233	channel = (int)ieee;
1234
1235	/*
1236	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1237	 */
1238	if (channel <= 13) {
1239		athchan->a2_athchan = 115 + channel;
1240		athchan->a2_flags = 0x46;
1241	} else if (channel == 14) {
1242		athchan->a2_athchan = 124;
1243		athchan->a2_flags = 0x44;
1244	} else if (channel >= 15 && channel <= 26) {
1245		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1246		athchan->a2_flags = 0x46;
1247	} else
1248		return -EINVAL;
1249
1250	return 0;
1251}
1252
1253/**
1254 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1255 * @ah: The &struct ath5k_hw
1256 * @channel: The &struct ieee80211_channel
1257 */
1258static int
1259ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1260		struct ieee80211_channel *channel)
1261{
1262	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1263	unsigned int ath5k_channel =
1264		ieee80211_frequency_to_channel(channel->center_freq);
1265	u32 data0, data1, clock;
1266	int ret;
1267
1268	/*
1269	 * Set the channel on the RF5111 radio
1270	 */
1271	data0 = data1 = 0;
1272
1273	if (channel->band == IEEE80211_BAND_2GHZ) {
1274		/* Map 2GHz channel to 5GHz Atheros channel ID */
1275		ret = ath5k_hw_rf5111_chan2athchan(
1276			ieee80211_frequency_to_channel(channel->center_freq),
1277			&ath5k_channel_2ghz);
1278		if (ret)
1279			return ret;
1280
1281		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1282		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1283		    << 5) | (1 << 4);
1284	}
1285
1286	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1287		clock = 1;
1288		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1289			(clock << 1) | (1 << 10) | 1;
1290	} else {
1291		clock = 0;
1292		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1293			<< 2) | (clock << 1) | (1 << 10) | 1;
1294	}
1295
1296	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1297			AR5K_RF_BUFFER);
1298	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1299			AR5K_RF_BUFFER_CONTROL_3);
1300
1301	return 0;
1302}
1303
1304/**
1305 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1306 * @ah: The &struct ath5k_hw
1307 * @channel: The &struct ieee80211_channel
1308 *
1309 * On RF5112/2112 and newer we don't need to do any conversion.
1310 * We pass the frequency value after a few modifications to the
1311 * chip directly.
1312 *
1313 * NOTE: Make sure channel frequency given is within our range or else
1314 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1315 */
1316static int
1317ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1318		struct ieee80211_channel *channel)
1319{
1320	u32 data, data0, data1, data2;
1321	u16 c;
1322
1323	data = data0 = data1 = data2 = 0;
1324	c = channel->center_freq;
1325
1326	/* My guess based on code:
1327	 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1328	 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1329	 * (3040/2). data0 is used to set the PLL divider and data1
1330	 * selects synth mode. */
1331	if (c < 4800) {
1332		/* Channel 14 and all frequencies with 2Hz spacing
1333		 * below/above (non-standard channels) */
1334		if (!((c - 2224) % 5)) {
1335			/* Same as (c - 2224) / 5 */
1336			data0 = ((2 * (c - 704)) - 3040) / 10;
1337			data1 = 1;
1338		/* Channel 1 and all frequencies with 5Hz spacing
1339		 * below/above (standard channels without channel 14) */
1340		} else if (!((c - 2192) % 5)) {
1341			/* Same as (c - 2192) / 5 */
1342			data0 = ((2 * (c - 672)) - 3040) / 10;
1343			data1 = 0;
1344		} else
1345			return -EINVAL;
1346
1347		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1348	/* This is more complex, we have a single synthesizer with
1349	 * 4 reference clock settings (?) based on frequency spacing
1350	 * and set using data2. LO is at 4800Hz and data0 is again used
1351	 * to set some divider.
1352	 *
1353	 * NOTE: There is an old atheros presentation at Stanford
1354	 * that mentions a method called dual direct conversion
1355	 * with 1GHz sliding IF for RF5110. Maybe that's what we
1356	 * have here, or an updated version. */
1357	} else if ((c % 5) != 2 || c > 5435) {
1358		if (!(c % 20) && c >= 5120) {
1359			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1360			data2 = ath5k_hw_bitswap(3, 2);
1361		} else if (!(c % 10)) {
1362			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1363			data2 = ath5k_hw_bitswap(2, 2);
1364		} else if (!(c % 5)) {
1365			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1366			data2 = ath5k_hw_bitswap(1, 2);
1367		} else
1368			return -EINVAL;
1369	} else {
1370		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1371		data2 = ath5k_hw_bitswap(0, 2);
1372	}
1373
1374	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1375
1376	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1377	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1378
1379	return 0;
1380}
1381
1382/**
1383 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1384 * @ah: The &struct ath5k_hw
1385 * @channel: The &struct ieee80211_channel
1386 *
1387 * AR2425/2417 have a different 2GHz RF so code changes
1388 * a little bit from RF5112.
1389 */
1390static int
1391ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1392		struct ieee80211_channel *channel)
1393{
1394	u32 data, data0, data2;
1395	u16 c;
1396
1397	data = data0 = data2 = 0;
1398	c = channel->center_freq;
1399
1400	if (c < 4800) {
1401		data0 = ath5k_hw_bitswap((c - 2272), 8);
1402		data2 = 0;
1403	/* ? 5GHz ? */
1404	} else if ((c % 5) != 2 || c > 5435) {
1405		if (!(c % 20) && c < 5120)
1406			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1407		else if (!(c % 10))
1408			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1409		else if (!(c % 5))
1410			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1411		else
1412			return -EINVAL;
1413		data2 = ath5k_hw_bitswap(1, 2);
1414	} else {
1415		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1416		data2 = ath5k_hw_bitswap(0, 2);
1417	}
1418
1419	data = (data0 << 4) | data2 << 2 | 0x1001;
1420
1421	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1422	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1423
1424	return 0;
1425}
1426
1427/**
1428 * ath5k_hw_channel() - Set a channel on the radio chip
1429 * @ah: The &struct ath5k_hw
1430 * @channel: The &struct ieee80211_channel
1431 *
1432 * This is the main function called to set a channel on the
1433 * radio chip based on the radio chip version.
1434 */
1435static int
1436ath5k_hw_channel(struct ath5k_hw *ah,
1437		struct ieee80211_channel *channel)
1438{
1439	int ret;
1440	/*
1441	 * Check bounds supported by the PHY (we don't care about regulatory
1442	 * restrictions at this point).
1443	 */
1444	if (!ath5k_channel_ok(ah, channel)) {
1445		ATH5K_ERR(ah,
1446			"channel frequency (%u MHz) out of supported "
1447			"band range\n",
1448			channel->center_freq);
1449			return -EINVAL;
1450	}
1451
1452	/*
1453	 * Set the channel and wait
1454	 */
1455	switch (ah->ah_radio) {
1456	case AR5K_RF5110:
1457		ret = ath5k_hw_rf5110_channel(ah, channel);
1458		break;
1459	case AR5K_RF5111:
1460		ret = ath5k_hw_rf5111_channel(ah, channel);
1461		break;
1462	case AR5K_RF2317:
1463	case AR5K_RF2425:
1464		ret = ath5k_hw_rf2425_channel(ah, channel);
1465		break;
1466	default:
1467		ret = ath5k_hw_rf5112_channel(ah, channel);
1468		break;
1469	}
1470
1471	if (ret)
1472		return ret;
1473
1474	/* Set JAPAN setting for channel 14 */
1475	if (channel->center_freq == 2484) {
1476		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1477				AR5K_PHY_CCKTXCTL_JAPAN);
1478	} else {
1479		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1480				AR5K_PHY_CCKTXCTL_WORLD);
1481	}
1482
1483	ah->ah_current_channel = channel;
1484
1485	return 0;
1486}
1487
1488
1489/*****************\
1490  PHY calibration
1491\*****************/
1492
1493/**
1494 * DOC: PHY Calibration routines
1495 *
1496 * Noise floor calibration: When we tell the hardware to
1497 * perform a noise floor calibration by setting the
1498 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1499 * sample-and-hold the minimum noise level seen at the antennas.
1500 * This value is then stored in a ring buffer of recently measured
1501 * noise floor values so we have a moving window of the last few
1502 * samples. The median of the values in the history is then loaded
1503 * into the hardware for its own use for RSSI and CCA measurements.
1504 * This type of calibration doesn't interfere with traffic.
1505 *
1506 * AGC calibration: When we tell the hardware to perform
1507 * an AGC (Automatic Gain Control) calibration by setting the
1508 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1509 * a calibration on the DC offsets of ADCs. During this period
1510 * rx/tx gets disabled so we have to deal with it on the driver
1511 * part.
1512 *
1513 * I/Q calibration: When we tell the hardware to perform
1514 * an I/Q calibration, it tries to correct I/Q imbalance and
1515 * fix QAM constellation by sampling data from rxed frames.
1516 * It doesn't interfere with traffic.
1517 *
1518 * For more infos on AGC and I/Q calibration check out patent doc
1519 * #03/094463.
1520 */
1521
1522/**
1523 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1524 * @ah: The &struct ath5k_hw
1525 */
1526static s32
1527ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1528{
1529	s32 val;
1530
1531	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1532	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1533}
1534
1535/**
1536 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1537 * @ah: The &struct ath5k_hw
1538 */
1539void
1540ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1541{
1542	int i;
1543
1544	ah->ah_nfcal_hist.index = 0;
1545	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1546		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1547}
1548
1549/**
1550 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1551 * @ah: The &struct ath5k_hw
1552 * @noise_floor: The NF we got from hw
1553 */
1554static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1555{
1556	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1557	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1558	hist->nfval[hist->index] = noise_floor;
1559}
1560
1561/**
1562 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1563 * @ah: The &struct ath5k_hw
1564 */
1565static s16
1566ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1567{
1568	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1569	s16 tmp;
1570	int i, j;
1571
1572	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1573	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1574		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1575			if (sort[j] > sort[j - 1]) {
1576				tmp = sort[j];
1577				sort[j] = sort[j - 1];
1578				sort[j - 1] = tmp;
1579			}
1580		}
1581	}
1582	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1583		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1584			"cal %d:%d\n", i, sort[i]);
1585	}
1586	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1587}
1588
1589/**
1590 * ath5k_hw_update_noise_floor() - Update NF on hardware
1591 * @ah: The &struct ath5k_hw
1592 *
1593 * This is the main function we call to perform a NF calibration,
1594 * it reads NF from hardware, calculates the median and updates
1595 * NF on hw.
1596 */
1597void
1598ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1599{
1600	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1601	u32 val;
1602	s16 nf, threshold;
1603	u8 ee_mode;
1604
1605	/* keep last value if calibration hasn't completed */
1606	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1607		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1608			"NF did not complete in calibration window\n");
1609
1610		return;
1611	}
1612
1613	ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1614
1615	ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
1616
1617	/* completed NF calibration, test threshold */
1618	nf = ath5k_hw_read_measured_noise_floor(ah);
1619	threshold = ee->ee_noise_floor_thr[ee_mode];
1620
1621	if (nf > threshold) {
1622		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1623			"noise floor failure detected; "
1624			"read %d, threshold %d\n",
1625			nf, threshold);
1626
1627		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1628	}
1629
1630	ath5k_hw_update_nfcal_hist(ah, nf);
1631	nf = ath5k_hw_get_median_noise_floor(ah);
1632
1633	/* load noise floor (in .5 dBm) so the hardware will use it */
1634	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1635	val |= (nf * 2) & AR5K_PHY_NF_M;
1636	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1637
1638	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1639		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1640
1641	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1642		0, false);
1643
1644	/*
1645	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1646	 * so that we're not capped by the median we just loaded.
1647	 * This will be used as the initial value for the next noise
1648	 * floor calibration.
1649	 */
1650	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1651	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1652	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1653		AR5K_PHY_AGCCTL_NF_EN |
1654		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1655		AR5K_PHY_AGCCTL_NF);
1656
1657	ah->ah_noise_floor = nf;
1658
1659	ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1660
1661	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1662		"noise floor calibrated: %d\n", nf);
1663}
1664
1665/**
1666 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1667 * @ah: The &struct ath5k_hw
1668 * @channel: The &struct ieee80211_channel
1669 *
1670 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1671 */
1672static int
1673ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1674		struct ieee80211_channel *channel)
1675{
1676	u32 phy_sig, phy_agc, phy_sat, beacon;
1677	int ret;
1678
1679	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1680		return 0;
1681
1682	/*
1683	 * Disable beacons and RX/TX queues, wait
1684	 */
1685	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1686		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1687	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1688	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1689
1690	usleep_range(2000, 2500);
1691
1692	/*
1693	 * Set the channel (with AGC turned off)
1694	 */
1695	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1696	udelay(10);
1697	ret = ath5k_hw_channel(ah, channel);
1698
1699	/*
1700	 * Activate PHY and wait
1701	 */
1702	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1703	usleep_range(1000, 1500);
1704
1705	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1706
1707	if (ret)
1708		return ret;
1709
1710	/*
1711	 * Calibrate the radio chip
1712	 */
1713
1714	/* Remember normal state */
1715	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1716	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1717	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1718
1719	/* Update radio registers */
1720	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1721		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1722
1723	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1724			AR5K_PHY_AGCCOARSE_LO)) |
1725		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1726		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1727
1728	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1729			AR5K_PHY_ADCSAT_THR)) |
1730		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1731		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1732
1733	udelay(20);
1734
1735	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1736	udelay(10);
1737	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1738	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1739
1740	usleep_range(1000, 1500);
1741
1742	/*
1743	 * Enable calibration and wait until completion
1744	 */
1745	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1746
1747	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1748			AR5K_PHY_AGCCTL_CAL, 0, false);
1749
1750	/* Reset to normal state */
1751	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1752	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1753	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1754
1755	if (ret) {
1756		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1757				channel->center_freq);
1758		return ret;
1759	}
1760
1761	/*
1762	 * Re-enable RX/TX and beacons
1763	 */
1764	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1765		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1766	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1767
1768	return 0;
1769}
1770
1771/**
1772 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1773 * @ah: The &struct ath5k_hw
1774 */
1775static int
1776ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1777{
1778	u32 i_pwr, q_pwr;
1779	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1780	int i;
1781
1782	/* Skip if I/Q calibration is not needed or if it's still running */
1783	if (!ah->ah_iq_cal_needed)
1784		return -EINVAL;
1785	else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1786		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1787				"I/Q calibration still running");
1788		return -EBUSY;
1789	}
1790
1791	/* Calibration has finished, get the results and re-run */
1792
1793	/* Work around for empty results which can apparently happen on 5212:
1794	 * Read registers up to 10 times until we get both i_pr and q_pwr */
1795	for (i = 0; i <= 10; i++) {
1796		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1797		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1798		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1799		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1800			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1801		if (i_pwr && q_pwr)
1802			break;
1803	}
1804
1805	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1806
1807	if (ah->ah_version == AR5K_AR5211)
1808		q_coffd = q_pwr >> 6;
1809	else
1810		q_coffd = q_pwr >> 7;
1811
1812	/* In case i_coffd became zero, cancel calibration
1813	 * not only it's too small, it'll also result a divide
1814	 * by zero later on. */
1815	if (i_coffd == 0 || q_coffd < 2)
1816		return -ECANCELED;
1817
1818	/* Protect against loss of sign bits */
1819
1820	i_coff = (-iq_corr) / i_coffd;
1821	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1822
1823	if (ah->ah_version == AR5K_AR5211)
1824		q_coff = (i_pwr / q_coffd) - 64;
1825	else
1826		q_coff = (i_pwr / q_coffd) - 128;
1827	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1828
1829	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1830			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1831			i_coff, q_coff, i_coffd, q_coffd);
1832
1833	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1834	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1835	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1836	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1837
1838	/* Re-enable calibration -if we don't we'll commit
1839	 * the same values again and again */
1840	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1841			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1842	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1843
1844	return 0;
1845}
1846
1847/**
1848 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1849 * @ah: The &struct ath5k_hw
1850 * @channel: The &struct ieee80211_channel
1851 *
1852 * The main function we call from above to perform
1853 * a short or full PHY calibration based on RF chip
1854 * and current channel
1855 */
1856int
1857ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1858		struct ieee80211_channel *channel)
1859{
1860	int ret;
1861
1862	if (ah->ah_radio == AR5K_RF5110)
1863		return ath5k_hw_rf5110_calibrate(ah, channel);
1864
1865	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1866	if (ret) {
1867		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1868			"No I/Q correction performed (%uMHz)\n",
1869			channel->center_freq);
1870
1871		/* Happens all the time if there is not much
1872		 * traffic, consider it normal behaviour. */
1873		ret = 0;
1874	}
1875
1876	/* On full calibration request a PAPD probe for
1877	 * gainf calibration if needed */
1878	if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1879	    (ah->ah_radio == AR5K_RF5111 ||
1880	     ah->ah_radio == AR5K_RF5112) &&
1881	    channel->hw_value != AR5K_MODE_11B)
1882		ath5k_hw_request_rfgain_probe(ah);
1883
1884	/* Update noise floor */
1885	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1886		ath5k_hw_update_noise_floor(ah);
1887
1888	return ret;
1889}
1890
1891
1892/***************************\
1893* Spur mitigation functions *
1894\***************************/
1895
1896/**
1897 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1898 * @ah: The &struct ath5k_hw
1899 * @channel: The &struct ieee80211_channel
1900 *
1901 * This function gets called during PHY initialization to
1902 * configure the spur filter for the given channel. Spur is noise
1903 * generated due to "reflection" effects, for more information on this
1904 * method check out patent US7643810
1905 */
1906static void
1907ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1908				struct ieee80211_channel *channel)
1909{
1910	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1911	u32 mag_mask[4] = {0, 0, 0, 0};
1912	u32 pilot_mask[2] = {0, 0};
1913	/* Note: fbin values are scaled up by 2 */
1914	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1915	s32 spur_delta_phase, spur_freq_sigma_delta;
1916	s32 spur_offset, num_symbols_x16;
1917	u8 num_symbol_offsets, i, freq_band;
1918
1919	/* Convert current frequency to fbin value (the same way channels
1920	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1921	 * up by 2 so we can compare it later */
1922	if (channel->band == IEEE80211_BAND_2GHZ) {
1923		chan_fbin = (channel->center_freq - 2300) * 10;
1924		freq_band = AR5K_EEPROM_BAND_2GHZ;
1925	} else {
1926		chan_fbin = (channel->center_freq - 4900) * 10;
1927		freq_band = AR5K_EEPROM_BAND_5GHZ;
1928	}
1929
1930	/* Check if any spur_chan_fbin from EEPROM is
1931	 * within our current channel's spur detection range */
1932	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1933	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1934	/* XXX: Half/Quarter channels ?*/
1935	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1936		spur_detection_window *= 2;
1937
1938	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1939		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1940
1941		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1942		 * so it's zero if we got nothing from EEPROM */
1943		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1944			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1945			break;
1946		}
1947
1948		if ((chan_fbin - spur_detection_window <=
1949		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1950		(chan_fbin + spur_detection_window >=
1951		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1952			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1953			break;
1954		}
1955	}
1956
1957	/* We need to enable spur filter for this channel */
1958	if (spur_chan_fbin) {
1959		spur_offset = spur_chan_fbin - chan_fbin;
1960		/*
1961		 * Calculate deltas:
1962		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1963		 * spur_delta_phase -> spur_offset / chip_freq << 11
1964		 * Note: Both values have 100Hz resolution
1965		 */
1966		switch (ah->ah_bwmode) {
1967		case AR5K_BWMODE_40MHZ:
1968			/* Both sample_freq and chip_freq are 80MHz */
1969			spur_delta_phase = (spur_offset << 16) / 25;
1970			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1971			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1972			break;
1973		case AR5K_BWMODE_10MHZ:
1974			/* Both sample_freq and chip_freq are 20MHz (?) */
1975			spur_delta_phase = (spur_offset << 18) / 25;
1976			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1977			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1978			break;
1979		case AR5K_BWMODE_5MHZ:
1980			/* Both sample_freq and chip_freq are 10MHz (?) */
1981			spur_delta_phase = (spur_offset << 19) / 25;
1982			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1983			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1984			break;
1985		default:
1986			if (channel->band == IEEE80211_BAND_5GHZ) {
1987				/* Both sample_freq and chip_freq are 40MHz */
1988				spur_delta_phase = (spur_offset << 17) / 25;
1989				spur_freq_sigma_delta =
1990						(spur_delta_phase >> 10);
1991				symbol_width =
1992					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1993			} else {
1994				/* sample_freq -> 40MHz chip_freq -> 44MHz
1995				 * (for b compatibility) */
1996				spur_delta_phase = (spur_offset << 17) / 25;
1997				spur_freq_sigma_delta =
1998						(spur_offset << 8) / 55;
1999				symbol_width =
2000					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
2001			}
2002			break;
2003		}
2004
2005		/* Calculate pilot and magnitude masks */
2006
2007		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
2008		 * and divide by symbol_width to find how many symbols we have
2009		 * Note: number of symbols is scaled up by 16 */
2010		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2011
2012		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2013		if (!(num_symbols_x16 & 0xF))
2014			/* _X_ */
2015			num_symbol_offsets = 3;
2016		else
2017			/* _xx_ */
2018			num_symbol_offsets = 4;
2019
2020		for (i = 0; i < num_symbol_offsets; i++) {
2021
2022			/* Calculate pilot mask */
2023			s32 curr_sym_off =
2024				(num_symbols_x16 / 16) + i + 25;
2025
2026			/* Pilot magnitude mask seems to be a way to
2027			 * declare the boundaries for our detection
2028			 * window or something, it's 2 for the middle
2029			 * value(s) where the symbol is expected to be
2030			 * and 1 on the boundary values */
2031			u8 plt_mag_map =
2032				(i == 0 || i == (num_symbol_offsets - 1))
2033								? 1 : 2;
2034
2035			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2036				if (curr_sym_off <= 25)
2037					pilot_mask[0] |= 1 << curr_sym_off;
2038				else if (curr_sym_off >= 27)
2039					pilot_mask[0] |= 1 << (curr_sym_off - 1);
2040			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2041				pilot_mask[1] |= 1 << (curr_sym_off - 33);
2042
2043			/* Calculate magnitude mask (for viterbi decoder) */
2044			if (curr_sym_off >= -1 && curr_sym_off <= 14)
2045				mag_mask[0] |=
2046					plt_mag_map << (curr_sym_off + 1) * 2;
2047			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2048				mag_mask[1] |=
2049					plt_mag_map << (curr_sym_off - 15) * 2;
2050			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2051				mag_mask[2] |=
2052					plt_mag_map << (curr_sym_off - 31) * 2;
2053			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2054				mag_mask[3] |=
2055					plt_mag_map << (curr_sym_off - 47) * 2;
2056
2057		}
2058
2059		/* Write settings on hw to enable spur filter */
2060		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2061					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2062		/* XXX: Self correlator also ? */
2063		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2064					AR5K_PHY_IQ_PILOT_MASK_EN |
2065					AR5K_PHY_IQ_CHAN_MASK_EN |
2066					AR5K_PHY_IQ_SPUR_FILT_EN);
2067
2068		/* Set delta phase and freq sigma delta */
2069		ath5k_hw_reg_write(ah,
2070				AR5K_REG_SM(spur_delta_phase,
2071					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2072				AR5K_REG_SM(spur_freq_sigma_delta,
2073				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2074				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2075				AR5K_PHY_TIMING_11);
2076
2077		/* Write pilot masks */
2078		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2079		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2080					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2081					pilot_mask[1]);
2082
2083		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2084		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2085					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2086					pilot_mask[1]);
2087
2088		/* Write magnitude masks */
2089		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2090		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2091		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2092		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2093					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2094					mag_mask[3]);
2095
2096		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2097		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2098		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2099		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2100					AR5K_PHY_BIN_MASK2_4_MASK_4,
2101					mag_mask[3]);
2102
2103	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2104	AR5K_PHY_IQ_SPUR_FILT_EN) {
2105		/* Clean up spur mitigation settings and disable filter */
2106		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2107					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2108		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2109					AR5K_PHY_IQ_PILOT_MASK_EN |
2110					AR5K_PHY_IQ_CHAN_MASK_EN |
2111					AR5K_PHY_IQ_SPUR_FILT_EN);
2112		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2113
2114		/* Clear pilot masks */
2115		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2116		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2117					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2118					0);
2119
2120		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2121		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2122					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2123					0);
2124
2125		/* Clear magnitude masks */
2126		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2127		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2128		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2129		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2130					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2131					0);
2132
2133		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2134		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2135		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2136		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2137					AR5K_PHY_BIN_MASK2_4_MASK_4,
2138					0);
2139	}
2140}
2141
2142
2143/*****************\
2144* Antenna control *
2145\*****************/
2146
2147/**
2148 * DOC: Antenna control
2149 *
2150 * Hw supports up to 14 antennas ! I haven't found any card that implements
2151 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2152 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2153 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2154 *
2155 * We can have a single antenna for RX and multiple antennas for TX.
2156 * RX antenna is our "default" antenna (usually antenna 1) set on
2157 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2158 * (0 for automatic selection, 1 - 14 antenna number).
2159 *
2160 * We can let hw do all the work doing fast antenna diversity for both
2161 * tx and rx or we can do things manually. Here are the options we have
2162 * (all are bits of STA_ID1 register):
2163 *
2164 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2165 * control descriptor, use the default antenna to transmit or else use the last
2166 * antenna on which we received an ACK.
2167 *
2168 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2169 * the antenna on which we got the ACK for that frame.
2170 *
2171 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2172 * one on the TX descriptor.
2173 *
2174 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2175 * (ACKs etc), or else use current antenna (the one we just used for TX).
2176 *
2177 * Using the above we support the following scenarios:
2178 *
2179 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2180 *
2181 * AR5K_ANTMODE_FIXED_A	-> Only antenna A (MAIN) is present
2182 *
2183 * AR5K_ANTMODE_FIXED_B	-> Only antenna B (AUX) is present
2184 *
2185 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2186 *
2187 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2188 *
2189 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2190 *
2191 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2192 *
2193 * Also note that when setting antenna to F on tx descriptor card inverts
2194 * current tx antenna.
2195 */
2196
2197/**
2198 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2199 * @ah: The &struct ath5k_hw
2200 * @ant: Antenna number
2201 */
2202static void
2203ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2204{
2205	if (ah->ah_version != AR5K_AR5210)
2206		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2207}
2208
2209/**
2210 * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2211 * @ah: The &struct ath5k_hw
2212 * @ee_mode: One of enum ath5k_driver_mode
2213 * @enable: True to enable, false to disable
2214 */
2215static void
2216ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2217{
2218	switch (ee_mode) {
2219	case AR5K_EEPROM_MODE_11G:
2220		/* XXX: This is set to
2221		 * disabled on initvals !!! */
2222	case AR5K_EEPROM_MODE_11A:
2223		if (enable)
2224			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2225					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2226		else
2227			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2228					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2229		break;
2230	case AR5K_EEPROM_MODE_11B:
2231		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2232					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2233		break;
2234	default:
2235		return;
2236	}
2237
2238	if (enable) {
2239		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2240				AR5K_PHY_RESTART_DIV_GC, 4);
2241
2242		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2243					AR5K_PHY_FAST_ANT_DIV_EN);
2244	} else {
2245		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2246				AR5K_PHY_RESTART_DIV_GC, 0);
2247
2248		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2249					AR5K_PHY_FAST_ANT_DIV_EN);
2250	}
2251}
2252
2253/**
2254 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2255 * @ah: The &struct ath5k_hw
2256 * @ee_mode: One of enum ath5k_driver_mode
2257 *
2258 * Switch table comes from EEPROM and includes information on controlling
2259 * the 2 antenna RX attenuators
2260 */
2261void
2262ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2263{
2264	u8 ant0, ant1;
2265
2266	/*
2267	 * In case a fixed antenna was set as default
2268	 * use the same switch table twice.
2269	 */
2270	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2271		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2272	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2273		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2274	else {
2275		ant0 = AR5K_ANT_SWTABLE_A;
2276		ant1 = AR5K_ANT_SWTABLE_B;
2277	}
2278
2279	/* Set antenna idle switch table */
2280	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2281			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2282			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2283			AR5K_PHY_ANT_CTL_TXRX_EN));
2284
2285	/* Set antenna switch tables */
2286	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2287		AR5K_PHY_ANT_SWITCH_TABLE_0);
2288	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2289		AR5K_PHY_ANT_SWITCH_TABLE_1);
2290}
2291
2292/**
2293 * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2294 * @ah: The &struct ath5k_hw
2295 * @ant_mode: One of enum ath5k_ant_mode
2296 */
2297void
2298ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2299{
2300	struct ieee80211_channel *channel = ah->ah_current_channel;
2301	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2302	bool use_def_for_sg;
2303	int ee_mode;
2304	u8 def_ant, tx_ant;
2305	u32 sta_id1 = 0;
2306
2307	/* if channel is not initialized yet we can't set the antennas
2308	 * so just store the mode. it will be set on the next reset */
2309	if (channel == NULL) {
2310		ah->ah_ant_mode = ant_mode;
2311		return;
2312	}
2313
2314	def_ant = ah->ah_def_ant;
2315
2316	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
2317
2318	switch (ant_mode) {
2319	case AR5K_ANTMODE_DEFAULT:
2320		tx_ant = 0;
2321		use_def_for_tx = false;
2322		update_def_on_tx = false;
2323		use_def_for_rts = false;
2324		use_def_for_sg = false;
2325		fast_div = true;
2326		break;
2327	case AR5K_ANTMODE_FIXED_A:
2328		def_ant = 1;
2329		tx_ant = 1;
2330		use_def_for_tx = true;
2331		update_def_on_tx = false;
2332		use_def_for_rts = true;
2333		use_def_for_sg = true;
2334		fast_div = false;
2335		break;
2336	case AR5K_ANTMODE_FIXED_B:
2337		def_ant = 2;
2338		tx_ant = 2;
2339		use_def_for_tx = true;
2340		update_def_on_tx = false;
2341		use_def_for_rts = true;
2342		use_def_for_sg = true;
2343		fast_div = false;
2344		break;
2345	case AR5K_ANTMODE_SINGLE_AP:
2346		def_ant = 1;	/* updated on tx */
2347		tx_ant = 0;
2348		use_def_for_tx = true;
2349		update_def_on_tx = true;
2350		use_def_for_rts = true;
2351		use_def_for_sg = true;
2352		fast_div = true;
2353		break;
2354	case AR5K_ANTMODE_SECTOR_AP:
2355		tx_ant = 1;	/* variable */
2356		use_def_for_tx = false;
2357		update_def_on_tx = false;
2358		use_def_for_rts = true;
2359		use_def_for_sg = false;
2360		fast_div = false;
2361		break;
2362	case AR5K_ANTMODE_SECTOR_STA:
2363		tx_ant = 1;	/* variable */
2364		use_def_for_tx = true;
2365		update_def_on_tx = false;
2366		use_def_for_rts = true;
2367		use_def_for_sg = false;
2368		fast_div = true;
2369		break;
2370	case AR5K_ANTMODE_DEBUG:
2371		def_ant = 1;
2372		tx_ant = 2;
2373		use_def_for_tx = false;
2374		update_def_on_tx = false;
2375		use_def_for_rts = false;
2376		use_def_for_sg = false;
2377		fast_div = false;
2378		break;
2379	default:
2380		return;
2381	}
2382
2383	ah->ah_tx_ant = tx_ant;
2384	ah->ah_ant_mode = ant_mode;
2385	ah->ah_def_ant = def_ant;
2386
2387	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2388	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2389	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2390	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2391
2392	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2393
2394	if (sta_id1)
2395		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2396
2397	ath5k_hw_set_antenna_switch(ah, ee_mode);
2398	/* Note: set diversity before default antenna
2399	 * because it won't work correctly */
2400	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2401	ath5k_hw_set_def_antenna(ah, def_ant);
2402}
2403
2404
2405/****************\
2406* TX power setup *
2407\****************/
2408
2409/*
2410 * Helper functions
2411 */
2412
2413/**
2414 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2415 * @target: X value of the middle point
2416 * @x_left: X value of the left point
2417 * @x_right: X value of the right point
2418 * @y_left: Y value of the left point
2419 * @y_right: Y value of the right point
2420 */
2421static s16
2422ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2423					s16 y_left, s16 y_right)
2424{
2425	s16 ratio, result;
2426
2427	/* Avoid divide by zero and skip interpolation
2428	 * if we have the same point */
2429	if ((x_left == x_right) || (y_left == y_right))
2430		return y_left;
2431
2432	/*
2433	 * Since we use ints and not fps, we need to scale up in
2434	 * order to get a sane ratio value (or else we 'll eg. get
2435	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2436	 * to have some accuracy both for 0.5 and 0.25 steps.
2437	 */
2438	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2439
2440	/* Now scale down to be in range */
2441	result = y_left + (ratio * (target - x_left) / 100);
2442
2443	return result;
2444}
2445
2446/**
2447 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2448 * linear PCDAC curve
2449 * @stepL: Left array with y values (pcdac steps)
2450 * @stepR: Right array with y values (pcdac steps)
2451 * @pwrL: Left array with x values (power steps)
2452 * @pwrR: Right array with x values (power steps)
2453 *
2454 * Since we have the top of the curve and we draw the line below
2455 * until we reach 1 (1 pcdac step) we need to know which point
2456 * (x value) that is so that we don't go below x axis and have negative
2457 * pcdac values when creating the curve, or fill the table with zeros.
2458 */
2459static s16
2460ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2461				const s16 *pwrL, const s16 *pwrR)
2462{
2463	s8 tmp;
2464	s16 min_pwrL, min_pwrR;
2465	s16 pwr_i;
2466
2467	/* Some vendors write the same pcdac value twice !!! */
2468	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2469		return max(pwrL[0], pwrR[0]);
2470
2471	if (pwrL[0] == pwrL[1])
2472		min_pwrL = pwrL[0];
2473	else {
2474		pwr_i = pwrL[0];
2475		do {
2476			pwr_i--;
2477			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2478							pwrL[0], pwrL[1],
2479							stepL[0], stepL[1]);
2480		} while (tmp > 1);
2481
2482		min_pwrL = pwr_i;
2483	}
2484
2485	if (pwrR[0] == pwrR[1])
2486		min_pwrR = pwrR[0];
2487	else {
2488		pwr_i = pwrR[0];
2489		do {
2490			pwr_i--;
2491			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2492							pwrR[0], pwrR[1],
2493							stepR[0], stepR[1]);
2494		} while (tmp > 1);
2495
2496		min_pwrR = pwr_i;
2497	}
2498
2499	/* Keep the right boundary so that it works for both curves */
2500	return max(min_pwrL, min_pwrR);
2501}
2502
2503/**
2504 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2505 * @pmin: Minimum power value (xmin)
2506 * @pmax: Maximum power value (xmax)
2507 * @pwr: Array of power steps (x values)
2508 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2509 * @num_points: Number of provided points
2510 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2511 * @type: One of enum ath5k_powertable_type (eeprom.h)
2512 *
2513 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2514 * Power to PCDAC curve.
2515 *
2516 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2517 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2518 * PCDAC/PDADC step for each curve is 64 but we can write more than
2519 * one curves on hw so we can go up to 128 (which is the max step we
2520 * can write on the final table).
2521 *
2522 * We write y values (PCDAC/PDADC steps) on hw.
2523 */
2524static void
2525ath5k_create_power_curve(s16 pmin, s16 pmax,
2526			const s16 *pwr, const u8 *vpd,
2527			u8 num_points,
2528			u8 *vpd_table, u8 type)
2529{
2530	u8 idx[2] = { 0, 1 };
2531	s16 pwr_i = 2 * pmin;
2532	int i;
2533
2534	if (num_points < 2)
2535		return;
2536
2537	/* We want the whole line, so adjust boundaries
2538	 * to cover the entire power range. Note that
2539	 * power values are already 0.25dB so no need
2540	 * to multiply pwr_i by 2 */
2541	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2542		pwr_i = pmin;
2543		pmin = 0;
2544		pmax = 63;
2545	}
2546
2547	/* Find surrounding turning points (TPs)
2548	 * and interpolate between them */
2549	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2550	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2551
2552		/* We passed the right TP, move to the next set of TPs
2553		 * if we pass the last TP, extrapolate above using the last
2554		 * two TPs for ratio */
2555		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2556			idx[0]++;
2557			idx[1]++;
2558		}
2559
2560		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2561						pwr[idx[0]], pwr[idx[1]],
2562						vpd[idx[0]], vpd[idx[1]]);
2563
2564		/* Increase by 0.5dB
2565		 * (0.25 dB units) */
2566		pwr_i += 2;
2567	}
2568}
2569
2570/**
2571 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2572 * for a given channel.
2573 * @ah: The &struct ath5k_hw
2574 * @channel: The &struct ieee80211_channel
2575 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2576 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2577 *
2578 * Get the surrounding per-channel power calibration piers
2579 * for a given frequency so that we can interpolate between
2580 * them and come up with an appropriate dataset for our current
2581 * channel.
2582 */
2583static void
2584ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2585			struct ieee80211_channel *channel,
2586			struct ath5k_chan_pcal_info **pcinfo_l,
2587			struct ath5k_chan_pcal_info **pcinfo_r)
2588{
2589	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2590	struct ath5k_chan_pcal_info *pcinfo;
2591	u8 idx_l, idx_r;
2592	u8 mode, max, i;
2593	u32 target = channel->center_freq;
2594
2595	idx_l = 0;
2596	idx_r = 0;
2597
2598	switch (channel->hw_value) {
2599	case AR5K_EEPROM_MODE_11A:
2600		pcinfo = ee->ee_pwr_cal_a;
2601		mode = AR5K_EEPROM_MODE_11A;
2602		break;
2603	case AR5K_EEPROM_MODE_11B:
2604		pcinfo = ee->ee_pwr_cal_b;
2605		mode = AR5K_EEPROM_MODE_11B;
2606		break;
2607	case AR5K_EEPROM_MODE_11G:
2608	default:
2609		pcinfo = ee->ee_pwr_cal_g;
2610		mode = AR5K_EEPROM_MODE_11G;
2611		break;
2612	}
2613	max = ee->ee_n_piers[mode] - 1;
2614
2615	/* Frequency is below our calibrated
2616	 * range. Use the lowest power curve
2617	 * we have */
2618	if (target < pcinfo[0].freq) {
2619		idx_l = idx_r = 0;
2620		goto done;
2621	}
2622
2623	/* Frequency is above our calibrated
2624	 * range. Use the highest power curve
2625	 * we have */
2626	if (target > pcinfo[max].freq) {
2627		idx_l = idx_r = max;
2628		goto done;
2629	}
2630
2631	/* Frequency is inside our calibrated
2632	 * channel range. Pick the surrounding
2633	 * calibration piers so that we can
2634	 * interpolate */
2635	for (i = 0; i <= max; i++) {
2636
2637		/* Frequency matches one of our calibration
2638		 * piers, no need to interpolate, just use
2639		 * that calibration pier */
2640		if (pcinfo[i].freq == target) {
2641			idx_l = idx_r = i;
2642			goto done;
2643		}
2644
2645		/* We found a calibration pier that's above
2646		 * frequency, use this pier and the previous
2647		 * one to interpolate */
2648		if (target < pcinfo[i].freq) {
2649			idx_r = i;
2650			idx_l = idx_r - 1;
2651			goto done;
2652		}
2653	}
2654
2655done:
2656	*pcinfo_l = &pcinfo[idx_l];
2657	*pcinfo_r = &pcinfo[idx_r];
2658}
2659
2660/**
2661 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2662 * calibration data
2663 * @ah: The &struct ath5k_hw *ah,
2664 * @channel: The &struct ieee80211_channel
2665 * @rates: The &struct ath5k_rate_pcal_info to fill
2666 *
2667 * Get the surrounding per-rate power calibration data
2668 * for a given frequency and interpolate between power
2669 * values to set max target power supported by hw for
2670 * each rate on this frequency.
2671 */
2672static void
2673ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2674			struct ieee80211_channel *channel,
2675			struct ath5k_rate_pcal_info *rates)
2676{
2677	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2678	struct ath5k_rate_pcal_info *rpinfo;
2679	u8 idx_l, idx_r;
2680	u8 mode, max, i;
2681	u32 target = channel->center_freq;
2682
2683	idx_l = 0;
2684	idx_r = 0;
2685
2686	switch (channel->hw_value) {
2687	case AR5K_MODE_11A:
2688		rpinfo = ee->ee_rate_tpwr_a;
2689		mode = AR5K_EEPROM_MODE_11A;
2690		break;
2691	case AR5K_MODE_11B:
2692		rpinfo = ee->ee_rate_tpwr_b;
2693		mode = AR5K_EEPROM_MODE_11B;
2694		break;
2695	case AR5K_MODE_11G:
2696	default:
2697		rpinfo = ee->ee_rate_tpwr_g;
2698		mode = AR5K_EEPROM_MODE_11G;
2699		break;
2700	}
2701	max = ee->ee_rate_target_pwr_num[mode] - 1;
2702
2703	/* Get the surrounding calibration
2704	 * piers - same as above */
2705	if (target < rpinfo[0].freq) {
2706		idx_l = idx_r = 0;
2707		goto done;
2708	}
2709
2710	if (target > rpinfo[max].freq) {
2711		idx_l = idx_r = max;
2712		goto done;
2713	}
2714
2715	for (i = 0; i <= max; i++) {
2716
2717		if (rpinfo[i].freq == target) {
2718			idx_l = idx_r = i;
2719			goto done;
2720		}
2721
2722		if (target < rpinfo[i].freq) {
2723			idx_r = i;
2724			idx_l = idx_r - 1;
2725			goto done;
2726		}
2727	}
2728
2729done:
2730	/* Now interpolate power value, based on the frequency */
2731	rates->freq = target;
2732
2733	rates->target_power_6to24 =
2734		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2735					rpinfo[idx_r].freq,
2736					rpinfo[idx_l].target_power_6to24,
2737					rpinfo[idx_r].target_power_6to24);
2738
2739	rates->target_power_36 =
2740		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2741					rpinfo[idx_r].freq,
2742					rpinfo[idx_l].target_power_36,
2743					rpinfo[idx_r].target_power_36);
2744
2745	rates->target_power_48 =
2746		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2747					rpinfo[idx_r].freq,
2748					rpinfo[idx_l].target_power_48,
2749					rpinfo[idx_r].target_power_48);
2750
2751	rates->target_power_54 =
2752		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2753					rpinfo[idx_r].freq,
2754					rpinfo[idx_l].target_power_54,
2755					rpinfo[idx_r].target_power_54);
2756}
2757
2758/**
2759 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2760 * @ah: the &struct ath5k_hw
2761 * @channel: The &struct ieee80211_channel
2762 *
2763 * Get the max edge power for this channel if
2764 * we have such data from EEPROM's Conformance Test
2765 * Limits (CTL), and limit max power if needed.
2766 */
2767static void
2768ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2769			struct ieee80211_channel *channel)
2770{
2771	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2772	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2773	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2774	u8 *ctl_val = ee->ee_ctl;
2775	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2776	s16 edge_pwr = 0;
2777	u8 rep_idx;
2778	u8 i, ctl_mode;
2779	u8 ctl_idx = 0xFF;
2780	u32 target = channel->center_freq;
2781
2782	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2783
2784	switch (channel->hw_value) {
2785	case AR5K_MODE_11A:
2786		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2787			ctl_mode |= AR5K_CTL_TURBO;
2788		else
2789			ctl_mode |= AR5K_CTL_11A;
2790		break;
2791	case AR5K_MODE_11G:
2792		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2793			ctl_mode |= AR5K_CTL_TURBOG;
2794		else
2795			ctl_mode |= AR5K_CTL_11G;
2796		break;
2797	case AR5K_MODE_11B:
2798		ctl_mode |= AR5K_CTL_11B;
2799		break;
2800	default:
2801		return;
2802	}
2803
2804	for (i = 0; i < ee->ee_ctls; i++) {
2805		if (ctl_val[i] == ctl_mode) {
2806			ctl_idx = i;
2807			break;
2808		}
2809	}
2810
2811	/* If we have a CTL dataset available grab it and find the
2812	 * edge power for our frequency */
2813	if (ctl_idx == 0xFF)
2814		return;
2815
2816	/* Edge powers are sorted by frequency from lower
2817	 * to higher. Each CTL corresponds to 8 edge power
2818	 * measurements. */
2819	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2820
2821	/* Don't do boundaries check because we
2822	 * might have more that one bands defined
2823	 * for this mode */
2824
2825	/* Get the edge power that's closer to our
2826	 * frequency */
2827	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2828		rep_idx += i;
2829		if (target <= rep[rep_idx].freq)
2830			edge_pwr = (s16) rep[rep_idx].edge;
2831	}
2832
2833	if (edge_pwr)
2834		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2835}
2836
2837
2838/*
2839 * Power to PCDAC table functions
2840 */
2841
2842/**
2843 * DOC: Power to PCDAC table functions
2844 *
2845 * For RF5111 we have an XPD -eXternal Power Detector- curve
2846 * for each calibrated channel. Each curve has 0,5dB Power steps
2847 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2848 * exponential function. To recreate the curve we read 11 points
2849 * from eeprom (eeprom.c) and interpolate here.
2850 *
2851 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2852 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2853 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2854 * power steps on x axis and PCDAC steps on y axis and looks like a
2855 * linear function. To recreate the curve and pass the power values
2856 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2857 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2858 * and interpolate here.
2859 *
2860 * For a given channel we get the calibrated points (piers) for it or
2861 * -if we don't have calibration data for this specific channel- from the
2862 * available surrounding channels we have calibration data for, after we do a
2863 * linear interpolation between them. Then since we have our calibrated points
2864 * for this channel, we do again a linear interpolation between them to get the
2865 * whole curve.
2866 *
2867 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2868 */
2869
2870/**
2871 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2872 * @ah: The &struct ath5k_hw
2873 * @table_min: Minimum power (x min)
2874 * @table_max: Maximum power (x max)
2875 *
2876 * No further processing is needed for RF5111, the only thing we have to
2877 * do is fill the values below and above calibration range since eeprom data
2878 * may not cover the entire PCDAC table.
2879 */
2880static void
2881ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2882							s16 *table_max)
2883{
2884	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2885	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2886	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2887	s16	min_pwr, max_pwr;
2888
2889	/* Get table boundaries */
2890	min_pwr = table_min[0];
2891	pcdac_0 = pcdac_tmp[0];
2892
2893	max_pwr = table_max[0];
2894	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2895
2896	/* Extrapolate below minimum using pcdac_0 */
2897	pcdac_i = 0;
2898	for (i = 0; i < min_pwr; i++)
2899		pcdac_out[pcdac_i++] = pcdac_0;
2900
2901	/* Copy values from pcdac_tmp */
2902	pwr_idx = min_pwr;
2903	for (i = 0; pwr_idx <= max_pwr &&
2904		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2905		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2906		pwr_idx++;
2907	}
2908
2909	/* Extrapolate above maximum */
2910	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2911		pcdac_out[pcdac_i++] = pcdac_n;
2912
2913}
2914
2915/**
2916 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2917 * @ah: The &struct ath5k_hw
2918 * @table_min: Minimum power (x min)
2919 * @table_max: Maximum power (x max)
2920 * @pdcurves: Number of pd curves
2921 *
2922 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2923 * RFX112 can have up to 2 curves (one for low txpower range and one for
2924 * higher txpower range). We need to put them both on pcdac_out and place
2925 * them in the correct location. In case we only have one curve available
2926 * just fit it on pcdac_out (it's supposed to cover the entire range of
2927 * available pwr levels since it's always the higher power curve). Extrapolate
2928 * below and above final table if needed.
2929 */
2930static void
2931ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2932						s16 *table_max, u8 pdcurves)
2933{
2934	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2935	u8	*pcdac_low_pwr;
2936	u8	*pcdac_high_pwr;
2937	u8	*pcdac_tmp;
2938	u8	pwr;
2939	s16	max_pwr_idx;
2940	s16	min_pwr_idx;
2941	s16	mid_pwr_idx = 0;
2942	/* Edge flag turns on the 7nth bit on the PCDAC
2943	 * to declare the higher power curve (force values
2944	 * to be greater than 64). If we only have one curve
2945	 * we don't need to set this, if we have 2 curves and
2946	 * fill the table backwards this can also be used to
2947	 * switch from higher power curve to lower power curve */
2948	u8	edge_flag;
2949	int	i;
2950
2951	/* When we have only one curve available
2952	 * that's the higher power curve. If we have
2953	 * two curves the first is the high power curve
2954	 * and the next is the low power curve. */
2955	if (pdcurves > 1) {
2956		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2957		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2958		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2959		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2960
2961		/* If table size goes beyond 31.5dB, keep the
2962		 * upper 31.5dB range when setting tx power.
2963		 * Note: 126 = 31.5 dB in quarter dB steps */
2964		if (table_max[0] - table_min[1] > 126)
2965			min_pwr_idx = table_max[0] - 126;
2966		else
2967			min_pwr_idx = table_min[1];
2968
2969		/* Since we fill table backwards
2970		 * start from high power curve */
2971		pcdac_tmp = pcdac_high_pwr;
2972
2973		edge_flag = 0x40;
2974	} else {
2975		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2976		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2977		min_pwr_idx = table_min[0];
2978		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2979		pcdac_tmp = pcdac_high_pwr;
2980		edge_flag = 0;
2981	}
2982
2983	/* This is used when setting tx power*/
2984	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2985
2986	/* Fill Power to PCDAC table backwards */
2987	pwr = max_pwr_idx;
2988	for (i = 63; i >= 0; i--) {
2989		/* Entering lower power range, reset
2990		 * edge flag and set pcdac_tmp to lower
2991		 * power curve.*/
2992		if (edge_flag == 0x40 &&
2993		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2994			edge_flag = 0x00;
2995			pcdac_tmp = pcdac_low_pwr;
2996			pwr = mid_pwr_idx / 2;
2997		}
2998
2999		/* Don't go below 1, extrapolate below if we have
3000		 * already switched to the lower power curve -or
3001		 * we only have one curve and edge_flag is zero
3002		 * anyway */
3003		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3004			while (i >= 0) {
3005				pcdac_out[i] = pcdac_out[i + 1];
3006				i--;
3007			}
3008			break;
3009		}
3010
3011		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3012
3013		/* Extrapolate above if pcdac is greater than
3014		 * 126 -this can happen because we OR pcdac_out
3015		 * value with edge_flag on high power curve */
3016		if (pcdac_out[i] > 126)
3017			pcdac_out[i] = 126;
3018
3019		/* Decrease by a 0.5dB step */
3020		pwr--;
3021	}
3022}
3023
3024/**
3025 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3026 * @ah: The &struct ath5k_hw
3027 */
3028static void
3029ath5k_write_pcdac_table(struct ath5k_hw *ah)
3030{
3031	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
3032	int	i;
3033
3034	/*
3035	 * Write TX power values
3036	 */
3037	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3038		ath5k_hw_reg_write(ah,
3039			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3040			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3041			AR5K_PHY_PCDAC_TXPOWER(i));
3042	}
3043}
3044
3045
3046/*
3047 * Power to PDADC table functions
3048 */
3049
3050/**
3051 * DOC: Power to PDADC table functions
3052 *
3053 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3054 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3055 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3056 * PDADC steps on y axis and looks like an exponential function like the
3057 * RF5111 curve.
3058 *
3059 * To recreate the curves we read the points from eeprom (eeprom.c)
3060 * and interpolate here. Note that in most cases only 2 (higher and lower)
3061 * curves are used (like RF5112) but vendors have the opportunity to include
3062 * all 4 curves on eeprom. The final curve (higher power) has an extra
3063 * point for better accuracy like RF5112.
3064 *
3065 * The process is similar to what we do above for RF5111/5112
3066 */
3067
3068/**
3069 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3070 * @ah: The &struct ath5k_hw
3071 * @pwr_min: Minimum power (x min)
3072 * @pwr_max: Maximum power (x max)
3073 * @pdcurves: Number of available curves
3074 *
3075 * Combine the various pd curves and create the final Power to PDADC table
3076 * We can have up to 4 pd curves, we need to do a similar process
3077 * as we do for RF5112. This time we don't have an edge_flag but we
3078 * set the gain boundaries on a separate register.
3079 */
3080static void
3081ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3082			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3083{
3084	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3085	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3086	u8 *pdadc_tmp;
3087	s16 pdadc_0;
3088	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3089	u8 pd_gain_overlap;
3090
3091	/* Note: Register value is initialized on initvals
3092	 * there is no feedback from hw.
3093	 * XXX: What about pd_gain_overlap from EEPROM ? */
3094	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3095		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3096
3097	/* Create final PDADC table */
3098	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3099		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3100
3101		if (pdg == pdcurves - 1)
3102			/* 2 dB boundary stretch for last
3103			 * (higher power) curve */
3104			gain_boundaries[pdg] = pwr_max[pdg] + 4;
3105		else
3106			/* Set gain boundary in the middle
3107			 * between this curve and the next one */
3108			gain_boundaries[pdg] =
3109				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3110
3111		/* Sanity check in case our 2 db stretch got out of
3112		 * range. */
3113		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3114			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3115
3116		/* For the first curve (lower power)
3117		 * start from 0 dB */
3118		if (pdg == 0)
3119			pdadc_0 = 0;
3120		else
3121			/* For the other curves use the gain overlap */
3122			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3123							pd_gain_overlap;
3124
3125		/* Force each power step to be at least 0.5 dB */
3126		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3127			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3128		else
3129			pwr_step = 1;
3130
3131		/* If pdadc_0 is negative, we need to extrapolate
3132		 * below this pdgain by a number of pwr_steps */
3133		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3134			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3135			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3136			pdadc_0++;
3137		}
3138
3139		/* Set last pwr level, using gain boundaries */
3140		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3141		/* Limit it to be inside pwr range */
3142		table_size = pwr_max[pdg] - pwr_min[pdg];
3143		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
3144
3145		/* Fill pdadc_out table */
3146		while (pdadc_0 < max_idx && pdadc_i < 128)
3147			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3148
3149		/* Need to extrapolate above this pdgain? */
3150		if (pdadc_n <= max_idx)
3151			continue;
3152
3153		/* Force each power step to be at least 0.5 dB */
3154		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3155			pwr_step = pdadc_tmp[table_size - 1] -
3156						pdadc_tmp[table_size - 2];
3157		else
3158			pwr_step = 1;
3159
3160		/* Extrapolate above */
3161		while ((pdadc_0 < (s16) pdadc_n) &&
3162		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3163			s16 tmp = pdadc_tmp[table_size - 1] +
3164					(pdadc_0 - max_idx) * pwr_step;
3165			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3166			pdadc_0++;
3167		}
3168	}
3169
3170	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3171		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3172		pdg++;
3173	}
3174
3175	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3176		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3177		pdadc_i++;
3178	}
3179
3180	/* Set gain boundaries */
3181	ath5k_hw_reg_write(ah,
3182		AR5K_REG_SM(pd_gain_overlap,
3183			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3184		AR5K_REG_SM(gain_boundaries[0],
3185			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3186		AR5K_REG_SM(gain_boundaries[1],
3187			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3188		AR5K_REG_SM(gain_boundaries[2],
3189			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3190		AR5K_REG_SM(gain_boundaries[3],
3191			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3192		AR5K_PHY_TPC_RG5);
3193
3194	/* Used for setting rate power table */
3195	ah->ah_txpower.txp_min_idx = pwr_min[0];
3196
3197}
3198
3199/**
3200 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3201 * @ah: The &struct ath5k_hw
3202 * @ee_mode: One of enum ath5k_driver_mode
3203 */
3204static void
3205ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3206{
3207	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3208	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3209	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3210	u8 pdcurves = ee->ee_pd_gains[ee_mode];
3211	u32 reg;
3212	u8 i;
3213
3214	/* Select the right pdgain curves */
3215
3216	/* Clear current settings */
3217	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3218	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3219		AR5K_PHY_TPC_RG1_PDGAIN_2 |
3220		AR5K_PHY_TPC_RG1_PDGAIN_3 |
3221		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3222
3223	/*
3224	 * Use pd_gains curve from eeprom
3225	 *
3226	 * This overrides the default setting from initvals
3227	 * in case some vendors (e.g. Zcomax) don't use the default
3228	 * curves. If we don't honor their settings we 'll get a
3229	 * 5dB (1 * gain overlap ?) drop.
3230	 */
3231	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3232
3233	switch (pdcurves) {
3234	case 3:
3235		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3236		/* Fall through */
3237	case 2:
3238		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3239		/* Fall through */
3240	case 1:
3241		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3242		break;
3243	}
3244	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3245
3246	/*
3247	 * Write TX power values
3248	 */
3249	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3250		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3251		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3252	}
3253}
3254
3255
3256/*
3257 * Common code for PCDAC/PDADC tables
3258 */
3259
3260/**
3261 * ath5k_setup_channel_powertable() - Set up power table for this channel
3262 * @ah: The &struct ath5k_hw
3263 * @channel: The &struct ieee80211_channel
3264 * @ee_mode: One of enum ath5k_driver_mode
3265 * @type: One of enum ath5k_powertable_type (eeprom.h)
3266 *
3267 * This is the main function that uses all of the above
3268 * to set PCDAC/PDADC table on hw for the current channel.
3269 * This table is used for tx power calibration on the baseband,
3270 * without it we get weird tx power levels and in some cases
3271 * distorted spectral mask
3272 */
3273static int
3274ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3275			struct ieee80211_channel *channel,
3276			u8 ee_mode, u8 type)
3277{
3278	struct ath5k_pdgain_info *pdg_L, *pdg_R;
3279	struct ath5k_chan_pcal_info *pcinfo_L;
3280	struct ath5k_chan_pcal_info *pcinfo_R;
3281	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3282	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3283	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3284	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3285	u8 *tmpL;
3286	u8 *tmpR;
3287	u32 target = channel->center_freq;
3288	int pdg, i;
3289
3290	/* Get surrounding freq piers for this channel */
3291	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3292						&pcinfo_L,
3293						&pcinfo_R);
3294
3295	/* Loop over pd gain curves on
3296	 * surrounding freq piers by index */
3297	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3298
3299		/* Fill curves in reverse order
3300		 * from lower power (max gain)
3301		 * to higher power. Use curve -> idx
3302		 * backmapping we did on eeprom init */
3303		u8 idx = pdg_curve_to_idx[pdg];
3304
3305		/* Grab the needed curves by index */
3306		pdg_L = &pcinfo_L->pd_curves[idx];
3307		pdg_R = &pcinfo_R->pd_curves[idx];
3308
3309		/* Initialize the temp tables */
3310		tmpL = ah->ah_txpower.tmpL[pdg];
3311		tmpR = ah->ah_txpower.tmpR[pdg];
3312
3313		/* Set curve's x boundaries and create
3314		 * curves so that they cover the same
3315		 * range (if we don't do that one table
3316		 * will have values on some range and the
3317		 * other one won't have any so interpolation
3318		 * will fail) */
3319		table_min[pdg] = min(pdg_L->pd_pwr[0],
3320					pdg_R->pd_pwr[0]) / 2;
3321
3322		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3323				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3324
3325		/* Now create the curves on surrounding channels
3326		 * and interpolate if needed to get the final
3327		 * curve for this gain on this channel */
3328		switch (type) {
3329		case AR5K_PWRTABLE_LINEAR_PCDAC:
3330			/* Override min/max so that we don't loose
3331			 * accuracy (don't divide by 2) */
3332			table_min[pdg] = min(pdg_L->pd_pwr[0],
3333						pdg_R->pd_pwr[0]);
3334
3335			table_max[pdg] =
3336				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3337					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3338
3339			/* Override minimum so that we don't get
3340			 * out of bounds while extrapolating
3341			 * below. Don't do this when we have 2
3342			 * curves and we are on the high power curve
3343			 * because table_min is ok in this case */
3344			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3345
3346				table_min[pdg] =
3347					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3348								pdg_R->pd_step,
3349								pdg_L->pd_pwr,
3350								pdg_R->pd_pwr);
3351
3352				/* Don't go too low because we will
3353				 * miss the upper part of the curve.
3354				 * Note: 126 = 31.5dB (max power supported)
3355				 * in 0.25dB units */
3356				if (table_max[pdg] - table_min[pdg] > 126)
3357					table_min[pdg] = table_max[pdg] - 126;
3358			}
3359
3360			/* Fall through */
3361		case AR5K_PWRTABLE_PWR_TO_PCDAC:
3362		case AR5K_PWRTABLE_PWR_TO_PDADC:
3363
3364			ath5k_create_power_curve(table_min[pdg],
3365						table_max[pdg],
3366						pdg_L->pd_pwr,
3367						pdg_L->pd_step,
3368						pdg_L->pd_points, tmpL, type);
3369
3370			/* We are in a calibration
3371			 * pier, no need to interpolate
3372			 * between freq piers */
3373			if (pcinfo_L == pcinfo_R)
3374				continue;
3375
3376			ath5k_create_power_curve(table_min[pdg],
3377						table_max[pdg],
3378						pdg_R->pd_pwr,
3379						pdg_R->pd_step,
3380						pdg_R->pd_points, tmpR, type);
3381			break;
3382		default:
3383			return -EINVAL;
3384		}
3385
3386		/* Interpolate between curves
3387		 * of surrounding freq piers to
3388		 * get the final curve for this
3389		 * pd gain. Re-use tmpL for interpolation
3390		 * output */
3391		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3392		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3393			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3394							(s16) pcinfo_L->freq,
3395							(s16) pcinfo_R->freq,
3396							(s16) tmpL[i],
3397							(s16) tmpR[i]);
3398		}
3399	}
3400
3401	/* Now we have a set of curves for this
3402	 * channel on tmpL (x range is table_max - table_min
3403	 * and y values are tmpL[pdg][]) sorted in the same
3404	 * order as EEPROM (because we've used the backmapping).
3405	 * So for RF5112 it's from higher power to lower power
3406	 * and for RF2413 it's from lower power to higher power.
3407	 * For RF5111 we only have one curve. */
3408
3409	/* Fill min and max power levels for this
3410	 * channel by interpolating the values on
3411	 * surrounding channels to complete the dataset */
3412	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3413					(s16) pcinfo_L->freq,
3414					(s16) pcinfo_R->freq,
3415					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3416
3417	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3418					(s16) pcinfo_L->freq,
3419					(s16) pcinfo_R->freq,
3420					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3421
3422	/* Fill PCDAC/PDADC table */
3423	switch (type) {
3424	case AR5K_PWRTABLE_LINEAR_PCDAC:
3425		/* For RF5112 we can have one or two curves
3426		 * and each curve covers a certain power lvl
3427		 * range so we need to do some more processing */
3428		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3429						ee->ee_pd_gains[ee_mode]);
3430
3431		/* Set txp.offset so that we can
3432		 * match max power value with max
3433		 * table index */
3434		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3435		break;
3436	case AR5K_PWRTABLE_PWR_TO_PCDAC:
3437		/* We are done for RF5111 since it has only
3438		 * one curve, just fit the curve on the table */
3439		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3440
3441		/* No rate powertable adjustment for RF5111 */
3442		ah->ah_txpower.txp_min_idx = 0;
3443		ah->ah_txpower.txp_offset = 0;
3444		break;
3445	case AR5K_PWRTABLE_PWR_TO_PDADC:
3446		/* Set PDADC boundaries and fill
3447		 * final PDADC table */
3448		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3449						ee->ee_pd_gains[ee_mode]);
3450
3451		/* Set txp.offset, note that table_min
3452		 * can be negative */
3453		ah->ah_txpower.txp_offset = table_min[0];
3454		break;
3455	default:
3456		return -EINVAL;
3457	}
3458
3459	ah->ah_txpower.txp_setup = true;
3460
3461	return 0;
3462}
3463
3464/**
3465 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3466 * @ah: The &struct ath5k_hw
3467 * @ee_mode: One of enum ath5k_driver_mode
3468 * @type: One of enum ath5k_powertable_type (eeprom.h)
3469 */
3470static void
3471ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3472{
3473	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3474		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3475	else
3476		ath5k_write_pcdac_table(ah);
3477}
3478
3479
3480/**
3481 * DOC: Per-rate tx power setting
3482 *
3483 * This is the code that sets the desired tx power limit (below
3484 * maximum) on hw for each rate (we also have TPC that sets
3485 * power per packet type). We do that by providing an index on the
3486 * PCDAC/PDADC table we set up above, for each rate.
3487 *
3488 * For now we only limit txpower based on maximum tx power
3489 * supported by hw (what's inside rate_info) + conformance test
3490 * limits. We need to limit this even more, based on regulatory domain
3491 * etc to be safe. Normally this is done from above so we don't care
3492 * here, all we care is that the tx power we set will be O.K.
3493 * for the hw (e.g. won't create noise on PA etc).
3494 *
3495 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3496 * x values) and is indexed as follows:
3497 * rates[0] - rates[7] -> OFDM rates
3498 * rates[8] - rates[14] -> CCK rates
3499 * rates[15] -> XR rates (they all have the same power)
3500 */
3501
3502/**
3503 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3504 * @ah: The &struct ath5k_hw
3505 * @max_pwr: The maximum tx power requested in 0.5dB steps
3506 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3507 * @ee_mode: One of enum ath5k_driver_mode
3508 */
3509static void
3510ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3511			struct ath5k_rate_pcal_info *rate_info,
3512			u8 ee_mode)
3513{
3514	unsigned int i;
3515	u16 *rates;
3516	s16 rate_idx_scaled = 0;
3517
3518	/* max_pwr is power level we got from driver/user in 0.5dB
3519	 * units, switch to 0.25dB units so we can compare */
3520	max_pwr *= 2;
3521	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3522
3523	/* apply rate limits */
3524	rates = ah->ah_txpower.txp_rates_power_table;
3525
3526	/* OFDM rates 6 to 24Mb/s */
3527	for (i = 0; i < 5; i++)
3528		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3529
3530	/* Rest OFDM rates */
3531	rates[5] = min(rates[0], rate_info->target_power_36);
3532	rates[6] = min(rates[0], rate_info->target_power_48);
3533	rates[7] = min(rates[0], rate_info->target_power_54);
3534
3535	/* CCK rates */
3536	/* 1L */
3537	rates[8] = min(rates[0], rate_info->target_power_6to24);
3538	/* 2L */
3539	rates[9] = min(rates[0], rate_info->target_power_36);
3540	/* 2S */
3541	rates[10] = min(rates[0], rate_info->target_power_36);
3542	/* 5L */
3543	rates[11] = min(rates[0], rate_info->target_power_48);
3544	/* 5S */
3545	rates[12] = min(rates[0], rate_info->target_power_48);
3546	/* 11L */
3547	rates[13] = min(rates[0], rate_info->target_power_54);
3548	/* 11S */
3549	rates[14] = min(rates[0], rate_info->target_power_54);
3550
3551	/* XR rates */
3552	rates[15] = min(rates[0], rate_info->target_power_6to24);
3553
3554	/* CCK rates have different peak to average ratio
3555	 * so we have to tweak their power so that gainf
3556	 * correction works ok. For this we use OFDM to
3557	 * CCK delta from eeprom */
3558	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3559	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3560		for (i = 8; i <= 15; i++)
3561			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3562
3563	/* Save min/max and current tx power for this channel
3564	 * in 0.25dB units.
3565	 *
3566	 * Note: We use rates[0] for current tx power because
3567	 * it covers most of the rates, in most cases. It's our
3568	 * tx power limit and what the user expects to see. */
3569	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3570	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3571
3572	/* Set max txpower for correct OFDM operation on all rates
3573	 * -that is the txpower for 54Mbit-, it's used for the PAPD
3574	 * gain probe and it's in 0.5dB units */
3575	ah->ah_txpower.txp_ofdm = rates[7];
3576
3577	/* Now that we have all rates setup use table offset to
3578	 * match the power range set by user with the power indices
3579	 * on PCDAC/PDADC table */
3580	for (i = 0; i < 16; i++) {
3581		rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3582		/* Don't get out of bounds */
3583		if (rate_idx_scaled > 63)
3584			rate_idx_scaled = 63;
3585		if (rate_idx_scaled < 0)
3586			rate_idx_scaled = 0;
3587		rates[i] = rate_idx_scaled;
3588	}
3589}
3590
3591
3592/**
3593 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3594 * @ah: The &struct ath5k_hw
3595 * @channel: The &struct ieee80211_channel
3596 * @txpower: Requested tx power in 0.5dB steps
3597 *
3598 * Combines all of the above to set the requested tx power limit
3599 * on hw.
3600 */
3601static int
3602ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3603		 u8 txpower)
3604{
3605	struct ath5k_rate_pcal_info rate_info;
3606	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3607	int ee_mode;
3608	u8 type;
3609	int ret;
3610
3611	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3612		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3613		return -EINVAL;
3614	}
3615
3616	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
3617
3618	/* Initialize TX power table */
3619	switch (ah->ah_radio) {
3620	case AR5K_RF5110:
3621		/* TODO */
3622		return 0;
3623	case AR5K_RF5111:
3624		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3625		break;
3626	case AR5K_RF5112:
3627		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3628		break;
3629	case AR5K_RF2413:
3630	case AR5K_RF5413:
3631	case AR5K_RF2316:
3632	case AR5K_RF2317:
3633	case AR5K_RF2425:
3634		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3635		break;
3636	default:
3637		return -EINVAL;
3638	}
3639
3640	/*
3641	 * If we don't change channel/mode skip tx powertable calculation
3642	 * and use the cached one.
3643	 */
3644	if (!ah->ah_txpower.txp_setup ||
3645	    (channel->hw_value != curr_channel->hw_value) ||
3646	    (channel->center_freq != curr_channel->center_freq)) {
3647		/* Reset TX power values but preserve requested
3648		 * tx power from above */
3649		int requested_txpower = ah->ah_txpower.txp_requested;
3650
3651		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3652
3653		/* Restore TPC setting and requested tx power */
3654		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3655
3656		ah->ah_txpower.txp_requested = requested_txpower;
3657
3658		/* Calculate the powertable */
3659		ret = ath5k_setup_channel_powertable(ah, channel,
3660							ee_mode, type);
3661		if (ret)
3662			return ret;
3663	}
3664
3665	/* Write table on hw */
3666	ath5k_write_channel_powertable(ah, ee_mode, type);
3667
3668	/* Limit max power if we have a CTL available */
3669	ath5k_get_max_ctl_power(ah, channel);
3670
3671	/* FIXME: Antenna reduction stuff */
3672
3673	/* FIXME: Limit power on turbo modes */
3674
3675	/* FIXME: TPC scale reduction */
3676
3677	/* Get surrounding channels for per-rate power table
3678	 * calibration */
3679	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3680
3681	/* Setup rate power table */
3682	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3683
3684	/* Write rate power table on hw */
3685	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3686		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3687		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3688
3689	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3690		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3691		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3692
3693	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3694		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3695		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3696
3697	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3698		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3699		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3700
3701	/* FIXME: TPC support */
3702	if (ah->ah_txpower.txp_tpc) {
3703		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3704			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3705
3706		ath5k_hw_reg_write(ah,
3707			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3708			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3709			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3710			AR5K_TPC);
3711	} else {
3712		ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
3713			AR5K_PHY_TXPOWER_RATE_MAX);
3714	}
3715
3716	return 0;
3717}
3718
3719/**
3720 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3721 * @ah: The &struct ath5k_hw
3722 * @txpower: The requested tx power limit in 0.5dB steps
3723 *
3724 * This function provides access to ath5k_hw_txpower to the driver in
3725 * case user or an application changes it while PHY is running.
3726 */
3727int
3728ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3729{
3730	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3731		"changing txpower to %d\n", txpower);
3732
3733	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3734}
3735
3736
3737/*************\
3738 Init function
3739\*************/
3740
3741/**
3742 * ath5k_hw_phy_init() - Initialize PHY
3743 * @ah: The &struct ath5k_hw
3744 * @channel: The @struct ieee80211_channel
3745 * @mode: One of enum ath5k_driver_mode
3746 * @fast: Try a fast channel switch instead
3747 *
3748 * This is the main function used during reset to initialize PHY
3749 * or do a fast channel change if possible.
3750 *
3751 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3752 * warm reset state !
3753 */
3754int
3755ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3756		      u8 mode, bool fast)
3757{
3758	struct ieee80211_channel *curr_channel;
3759	int ret, i;
3760	u32 phy_tst1;
3761	ret = 0;
3762
3763	/*
3764	 * Sanity check for fast flag
3765	 * Don't try fast channel change when changing modulation
3766	 * mode/band. We check for chip compatibility on
3767	 * ath5k_hw_reset.
3768	 */
3769	curr_channel = ah->ah_current_channel;
3770	if (fast && (channel->hw_value != curr_channel->hw_value))
3771		return -EINVAL;
3772
3773	/*
3774	 * On fast channel change we only set the synth parameters
3775	 * while PHY is running, enable calibration and skip the rest.
3776	 */
3777	if (fast) {
3778		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3779				    AR5K_PHY_RFBUS_REQ_REQUEST);
3780		for (i = 0; i < 100; i++) {
3781			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3782				break;
3783			udelay(5);
3784		}
3785		/* Failed */
3786		if (i >= 100)
3787			return -EIO;
3788
3789		/* Set channel and wait for synth */
3790		ret = ath5k_hw_channel(ah, channel);
3791		if (ret)
3792			return ret;
3793
3794		ath5k_hw_wait_for_synth(ah, channel);
3795	}
3796
3797	/*
3798	 * Set TX power
3799	 *
3800	 * Note: We need to do that before we set
3801	 * RF buffer settings on 5211/5212+ so that we
3802	 * properly set curve indices.
3803	 */
3804	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3805					ah->ah_txpower.txp_requested * 2 :
3806					AR5K_TUNE_MAX_TXPOWER);
3807	if (ret)
3808		return ret;
3809
3810	/* Write OFDM timings on 5212*/
3811	if (ah->ah_version == AR5K_AR5212 &&
3812		channel->hw_value != AR5K_MODE_11B) {
3813
3814		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3815		if (ret)
3816			return ret;
3817
3818		/* Spur info is available only from EEPROM versions
3819		 * greater than 5.3, but the EEPROM routines will use
3820		 * static values for older versions */
3821		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3822			ath5k_hw_set_spur_mitigation_filter(ah,
3823							    channel);
3824	}
3825
3826	/* If we used fast channel switching
3827	 * we are done, release RF bus and
3828	 * fire up NF calibration.
3829	 *
3830	 * Note: Only NF calibration due to
3831	 * channel change, not AGC calibration
3832	 * since AGC is still running !
3833	 */
3834	if (fast) {
3835		/*
3836		 * Release RF Bus grant
3837		 */
3838		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3839				    AR5K_PHY_RFBUS_REQ_REQUEST);
3840
3841		/*
3842		 * Start NF calibration
3843		 */
3844		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3845					AR5K_PHY_AGCCTL_NF);
3846
3847		return ret;
3848	}
3849
3850	/*
3851	 * For 5210 we do all initialization using
3852	 * initvals, so we don't have to modify
3853	 * any settings (5210 also only supports
3854	 * a/aturbo modes)
3855	 */
3856	if (ah->ah_version != AR5K_AR5210) {
3857
3858		/*
3859		 * Write initial RF gain settings
3860		 * This should work for both 5111/5112
3861		 */
3862		ret = ath5k_hw_rfgain_init(ah, channel->band);
3863		if (ret)
3864			return ret;
3865
3866		usleep_range(1000, 1500);
3867
3868		/*
3869		 * Write RF buffer
3870		 */
3871		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3872		if (ret)
3873			return ret;
3874
3875		/*Enable/disable 802.11b mode on 5111
3876		(enable 2111 frequency converter + CCK)*/
3877		if (ah->ah_radio == AR5K_RF5111) {
3878			if (mode == AR5K_MODE_11B)
3879				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3880				    AR5K_TXCFG_B_MODE);
3881			else
3882				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3883				    AR5K_TXCFG_B_MODE);
3884		}
3885
3886	} else if (ah->ah_version == AR5K_AR5210) {
3887		usleep_range(1000, 1500);
3888		/* Disable phy and wait */
3889		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3890		usleep_range(1000, 1500);
3891	}
3892
3893	/* Set channel on PHY */
3894	ret = ath5k_hw_channel(ah, channel);
3895	if (ret)
3896		return ret;
3897
3898	/*
3899	 * Enable the PHY and wait until completion
3900	 * This includes BaseBand and Synthesizer
3901	 * activation.
3902	 */
3903	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3904
3905	ath5k_hw_wait_for_synth(ah, channel);
3906
3907	/*
3908	 * Perform ADC test to see if baseband is ready
3909	 * Set tx hold and check adc test register
3910	 */
3911	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3912	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3913	for (i = 0; i <= 20; i++) {
3914		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3915			break;
3916		usleep_range(200, 250);
3917	}
3918	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3919
3920	/*
3921	 * Start automatic gain control calibration
3922	 *
3923	 * During AGC calibration RX path is re-routed to
3924	 * a power detector so we don't receive anything.
3925	 *
3926	 * This method is used to calibrate some static offsets
3927	 * used together with on-the fly I/Q calibration (the
3928	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3929	 * interrupt rx path.
3930	 *
3931	 * While rx path is re-routed to the power detector we also
3932	 * start a noise floor calibration to measure the
3933	 * card's noise floor (the noise we measure when we are not
3934	 * transmitting or receiving anything).
3935	 *
3936	 * If we are in a noisy environment, AGC calibration may time
3937	 * out and/or noise floor calibration might timeout.
3938	 */
3939	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3940				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3941
3942	/* At the same time start I/Q calibration for QAM constellation
3943	 * -no need for CCK- */
3944	ah->ah_iq_cal_needed = false;
3945	if (!(mode == AR5K_MODE_11B)) {
3946		ah->ah_iq_cal_needed = true;
3947		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3948				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3949		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3950				AR5K_PHY_IQ_RUN);
3951	}
3952
3953	/* Wait for gain calibration to finish (we check for I/Q calibration
3954	 * during ath5k_phy_calibrate) */
3955	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3956			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3957		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3958			channel->center_freq);
3959	}
3960
3961	/* Restore antenna mode */
3962	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3963
3964	return ret;
3965}
3966