[go: nahoru, domu]

phy.c revision 28bec7b845e10b68e6ba1ade5de0fc566690fc61
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
24#include <linux/slab.h>
25
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
29#include "rfbuffer.h"
30#include "rfgain.h"
31
32
33/******************\
34* Helper functions *
35\******************/
36
37/*
38 * Get the PHY Chip revision
39 */
40u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
41{
42	unsigned int i;
43	u32 srev;
44	u16 ret;
45
46	/*
47	 * Set the radio chip access register
48	 */
49	switch (chan) {
50	case CHANNEL_2GHZ:
51		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
52		break;
53	case CHANNEL_5GHZ:
54		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
55		break;
56	default:
57		return 0;
58	}
59
60	mdelay(2);
61
62	/* ...wait until PHY is ready and read the selected radio revision */
63	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
64
65	for (i = 0; i < 8; i++)
66		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
67
68	if (ah->ah_version == AR5K_AR5210) {
69		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
70		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
71	} else {
72		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
73		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
74				((srev & 0x0f) << 4), 8);
75	}
76
77	/* Reset to the 5GHz mode */
78	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
79
80	return ret;
81}
82
83/*
84 * Check if a channel is supported
85 */
86bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
87{
88	/* Check if the channel is in our supported range */
89	if (flags & CHANNEL_2GHZ) {
90		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
91		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
92			return true;
93	} else if (flags & CHANNEL_5GHZ)
94		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
95		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
96			return true;
97
98	return false;
99}
100
101bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
102				struct ieee80211_channel *channel)
103{
104	u8 refclk_freq;
105
106	if ((ah->ah_radio == AR5K_RF5112) ||
107	(ah->ah_radio == AR5K_RF5413) ||
108	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
109		refclk_freq = 40;
110	else
111		refclk_freq = 32;
112
113	if ((channel->center_freq % refclk_freq != 0) &&
114	((channel->center_freq % refclk_freq < 10) ||
115	(channel->center_freq % refclk_freq > 22)))
116		return true;
117	else
118		return false;
119}
120
121/*
122 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
123 */
124static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
125					const struct ath5k_rf_reg *rf_regs,
126					u32 val, u8 reg_id, bool set)
127{
128	const struct ath5k_rf_reg *rfreg = NULL;
129	u8 offset, bank, num_bits, col, position;
130	u16 entry;
131	u32 mask, data, last_bit, bits_shifted, first_bit;
132	u32 *rfb;
133	s32 bits_left;
134	int i;
135
136	data = 0;
137	rfb = ah->ah_rf_banks;
138
139	for (i = 0; i < ah->ah_rf_regs_count; i++) {
140		if (rf_regs[i].index == reg_id) {
141			rfreg = &rf_regs[i];
142			break;
143		}
144	}
145
146	if (rfb == NULL || rfreg == NULL) {
147		ATH5K_PRINTF("Rf register not found!\n");
148		/* should not happen */
149		return 0;
150	}
151
152	bank = rfreg->bank;
153	num_bits = rfreg->field.len;
154	first_bit = rfreg->field.pos;
155	col = rfreg->field.col;
156
157	/* first_bit is an offset from bank's
158	 * start. Since we have all banks on
159	 * the same array, we use this offset
160	 * to mark each bank's start */
161	offset = ah->ah_offset[bank];
162
163	/* Boundary check */
164	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
165		ATH5K_PRINTF("invalid values at offset %u\n", offset);
166		return 0;
167	}
168
169	entry = ((first_bit - 1) / 8) + offset;
170	position = (first_bit - 1) % 8;
171
172	if (set)
173		data = ath5k_hw_bitswap(val, num_bits);
174
175	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
176	position = 0, entry++) {
177
178		last_bit = (position + bits_left > 8) ? 8 :
179					position + bits_left;
180
181		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
182								(col * 8);
183
184		if (set) {
185			rfb[entry] &= ~mask;
186			rfb[entry] |= ((data << position) << (col * 8)) & mask;
187			data >>= (8 - position);
188		} else {
189			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
190				<< bits_shifted;
191			bits_shifted += last_bit - position;
192		}
193
194		bits_left -= 8 - position;
195	}
196
197	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
198
199	return data;
200}
201
202/**
203 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
204 *
205 * @ah: the &struct ath5k_hw
206 * @channel: the currently set channel upon reset
207 *
208 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
209 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
210 *
211 * Since delta slope is floating point we split it on its exponent and
212 * mantissa and provide these values on hw.
213 *
214 * For more infos i think this patent is related
215 * http://www.freepatentsonline.com/7184495.html
216 */
217static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
218	struct ieee80211_channel *channel)
219{
220	/* Get exponent and mantissa and set it */
221	u32 coef_scaled, coef_exp, coef_man,
222		ds_coef_exp, ds_coef_man, clock;
223
224	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
225		!(channel->hw_value & CHANNEL_OFDM));
226
227	/* Get coefficient
228	 * ALGO: coef = (5 * clock / carrier_freq) / 2
229	 * we scale coef by shifting clock value by 24 for
230	 * better precision since we use integers */
231	switch (ah->ah_bwmode) {
232	case AR5K_BWMODE_40MHZ:
233		clock = 40 * 2;
234		break;
235	case AR5K_BWMODE_10MHZ:
236		clock = 40 / 2;
237		break;
238	case AR5K_BWMODE_5MHZ:
239		clock = 40 / 4;
240		break;
241	default:
242		clock = 40;
243		break;
244	}
245	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
246
247	/* Get exponent
248	 * ALGO: coef_exp = 14 - highest set bit position */
249	coef_exp = ilog2(coef_scaled);
250
251	/* Doesn't make sense if it's zero*/
252	if (!coef_scaled || !coef_exp)
253		return -EINVAL;
254
255	/* Note: we've shifted coef_scaled by 24 */
256	coef_exp = 14 - (coef_exp - 24);
257
258
259	/* Get mantissa (significant digits)
260	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
261	coef_man = coef_scaled +
262		(1 << (24 - coef_exp - 1));
263
264	/* Calculate delta slope coefficient exponent
265	 * and mantissa (remove scaling) and set them on hw */
266	ds_coef_man = coef_man >> (24 - coef_exp);
267	ds_coef_exp = coef_exp - 16;
268
269	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
270		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
271	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
272		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
273
274	return 0;
275}
276
277int ath5k_hw_phy_disable(struct ath5k_hw *ah)
278{
279	/*Just a try M.F.*/
280	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
281
282	return 0;
283}
284
285
286/**********************\
287* RF Gain optimization *
288\**********************/
289
290/*
291 * This code is used to optimize RF gain on different environments
292 * (temperature mostly) based on feedback from a power detector.
293 *
294 * It's only used on RF5111 and RF5112, later RF chips seem to have
295 * auto adjustment on hw -notice they have a much smaller BANK 7 and
296 * no gain optimization ladder-.
297 *
298 * For more infos check out this patent doc
299 * http://www.freepatentsonline.com/7400691.html
300 *
301 * This paper describes power drops as seen on the receiver due to
302 * probe packets
303 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
304 * %20of%20Power%20Control.pdf
305 *
306 * And this is the MadWiFi bug entry related to the above
307 * http://madwifi-project.org/ticket/1659
308 * with various measurements and diagrams
309 *
310 * TODO: Deal with power drops due to probes by setting an apropriate
311 * tx power on the probe packets ! Make this part of the calibration process.
312 */
313
314/* Initialize ah_gain durring attach */
315int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
316{
317	/* Initialize the gain optimization values */
318	switch (ah->ah_radio) {
319	case AR5K_RF5111:
320		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
321		ah->ah_gain.g_low = 20;
322		ah->ah_gain.g_high = 35;
323		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
324		break;
325	case AR5K_RF5112:
326		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
327		ah->ah_gain.g_low = 20;
328		ah->ah_gain.g_high = 85;
329		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
330		break;
331	default:
332		return -EINVAL;
333	}
334
335	return 0;
336}
337
338/* Schedule a gain probe check on the next transmited packet.
339 * That means our next packet is going to be sent with lower
340 * tx power and a Peak to Average Power Detector (PAPD) will try
341 * to measure the gain.
342 *
343 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
344 * just after we enable the probe so that we don't mess with
345 * standard traffic ? Maybe it's time to use sw interrupts and
346 * a probe tasklet !!!
347 */
348static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
349{
350
351	/* Skip if gain calibration is inactive or
352	 * we already handle a probe request */
353	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
354		return;
355
356	/* Send the packet with 2dB below max power as
357	 * patent doc suggest */
358	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
359			AR5K_PHY_PAPD_PROBE_TXPOWER) |
360			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
361
362	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
363
364}
365
366/* Calculate gain_F measurement correction
367 * based on the current step for RF5112 rev. 2 */
368static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
369{
370	u32 mix, step;
371	u32 *rf;
372	const struct ath5k_gain_opt *go;
373	const struct ath5k_gain_opt_step *g_step;
374	const struct ath5k_rf_reg *rf_regs;
375
376	/* Only RF5112 Rev. 2 supports it */
377	if ((ah->ah_radio != AR5K_RF5112) ||
378	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
379		return 0;
380
381	go = &rfgain_opt_5112;
382	rf_regs = rf_regs_5112a;
383	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
384
385	g_step = &go->go_step[ah->ah_gain.g_step_idx];
386
387	if (ah->ah_rf_banks == NULL)
388		return 0;
389
390	rf = ah->ah_rf_banks;
391	ah->ah_gain.g_f_corr = 0;
392
393	/* No VGA (Variable Gain Amplifier) override, skip */
394	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
395		return 0;
396
397	/* Mix gain stepping */
398	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
399
400	/* Mix gain override */
401	mix = g_step->gos_param[0];
402
403	switch (mix) {
404	case 3:
405		ah->ah_gain.g_f_corr = step * 2;
406		break;
407	case 2:
408		ah->ah_gain.g_f_corr = (step - 5) * 2;
409		break;
410	case 1:
411		ah->ah_gain.g_f_corr = step;
412		break;
413	default:
414		ah->ah_gain.g_f_corr = 0;
415		break;
416	}
417
418	return ah->ah_gain.g_f_corr;
419}
420
421/* Check if current gain_F measurement is in the range of our
422 * power detector windows. If we get a measurement outside range
423 * we know it's not accurate (detectors can't measure anything outside
424 * their detection window) so we must ignore it */
425static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
426{
427	const struct ath5k_rf_reg *rf_regs;
428	u32 step, mix_ovr, level[4];
429	u32 *rf;
430
431	if (ah->ah_rf_banks == NULL)
432		return false;
433
434	rf = ah->ah_rf_banks;
435
436	if (ah->ah_radio == AR5K_RF5111) {
437
438		rf_regs = rf_regs_5111;
439		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
440
441		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
442			false);
443
444		level[0] = 0;
445		level[1] = (step == 63) ? 50 : step + 4;
446		level[2] = (step != 63) ? 64 : level[0];
447		level[3] = level[2] + 50 ;
448
449		ah->ah_gain.g_high = level[3] -
450			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
451		ah->ah_gain.g_low = level[0] +
452			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
453	} else {
454
455		rf_regs = rf_regs_5112;
456		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
457
458		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
459			false);
460
461		level[0] = level[2] = 0;
462
463		if (mix_ovr == 1) {
464			level[1] = level[3] = 83;
465		} else {
466			level[1] = level[3] = 107;
467			ah->ah_gain.g_high = 55;
468		}
469	}
470
471	return (ah->ah_gain.g_current >= level[0] &&
472			ah->ah_gain.g_current <= level[1]) ||
473		(ah->ah_gain.g_current >= level[2] &&
474			ah->ah_gain.g_current <= level[3]);
475}
476
477/* Perform gain_F adjustment by choosing the right set
478 * of parameters from RF gain optimization ladder */
479static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
480{
481	const struct ath5k_gain_opt *go;
482	const struct ath5k_gain_opt_step *g_step;
483	int ret = 0;
484
485	switch (ah->ah_radio) {
486	case AR5K_RF5111:
487		go = &rfgain_opt_5111;
488		break;
489	case AR5K_RF5112:
490		go = &rfgain_opt_5112;
491		break;
492	default:
493		return 0;
494	}
495
496	g_step = &go->go_step[ah->ah_gain.g_step_idx];
497
498	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
499
500		/* Reached maximum */
501		if (ah->ah_gain.g_step_idx == 0)
502			return -1;
503
504		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
505				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
506				ah->ah_gain.g_step_idx > 0;
507				g_step = &go->go_step[ah->ah_gain.g_step_idx])
508			ah->ah_gain.g_target -= 2 *
509			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
510			    g_step->gos_gain);
511
512		ret = 1;
513		goto done;
514	}
515
516	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
517
518		/* Reached minimum */
519		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
520			return -2;
521
522		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
523				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
524				ah->ah_gain.g_step_idx < go->go_steps_count-1;
525				g_step = &go->go_step[ah->ah_gain.g_step_idx])
526			ah->ah_gain.g_target -= 2 *
527			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
528			    g_step->gos_gain);
529
530		ret = 2;
531		goto done;
532	}
533
534done:
535	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
536		"ret %d, gain step %u, current gain %u, target gain %u\n",
537		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
538		ah->ah_gain.g_target);
539
540	return ret;
541}
542
543/* Main callback for thermal RF gain calibration engine
544 * Check for a new gain reading and schedule an adjustment
545 * if needed.
546 *
547 * TODO: Use sw interrupt to schedule reset if gain_F needs
548 * adjustment */
549enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
550{
551	u32 data, type;
552	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
553
554	if (ah->ah_rf_banks == NULL ||
555	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
556		return AR5K_RFGAIN_INACTIVE;
557
558	/* No check requested, either engine is inactive
559	 * or an adjustment is already requested */
560	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
561		goto done;
562
563	/* Read the PAPD (Peak to Average Power Detector)
564	 * register */
565	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
566
567	/* No probe is scheduled, read gain_F measurement */
568	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
569		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
570		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
571
572		/* If tx packet is CCK correct the gain_F measurement
573		 * by cck ofdm gain delta */
574		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
575			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
576				ah->ah_gain.g_current +=
577					ee->ee_cck_ofdm_gain_delta;
578			else
579				ah->ah_gain.g_current +=
580					AR5K_GAIN_CCK_PROBE_CORR;
581		}
582
583		/* Further correct gain_F measurement for
584		 * RF5112A radios */
585		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
586			ath5k_hw_rf_gainf_corr(ah);
587			ah->ah_gain.g_current =
588				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
589				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
590				0;
591		}
592
593		/* Check if measurement is ok and if we need
594		 * to adjust gain, schedule a gain adjustment,
595		 * else switch back to the acive state */
596		if (ath5k_hw_rf_check_gainf_readback(ah) &&
597		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
598		ath5k_hw_rf_gainf_adjust(ah)) {
599			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
600		} else {
601			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
602		}
603	}
604
605done:
606	return ah->ah_gain.g_state;
607}
608
609/* Write initial RF gain table to set the RF sensitivity
610 * this one works on all RF chips and has nothing to do
611 * with gain_F calibration */
612static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
613{
614	const struct ath5k_ini_rfgain *ath5k_rfg;
615	unsigned int i, size, index;
616
617	switch (ah->ah_radio) {
618	case AR5K_RF5111:
619		ath5k_rfg = rfgain_5111;
620		size = ARRAY_SIZE(rfgain_5111);
621		break;
622	case AR5K_RF5112:
623		ath5k_rfg = rfgain_5112;
624		size = ARRAY_SIZE(rfgain_5112);
625		break;
626	case AR5K_RF2413:
627		ath5k_rfg = rfgain_2413;
628		size = ARRAY_SIZE(rfgain_2413);
629		break;
630	case AR5K_RF2316:
631		ath5k_rfg = rfgain_2316;
632		size = ARRAY_SIZE(rfgain_2316);
633		break;
634	case AR5K_RF5413:
635		ath5k_rfg = rfgain_5413;
636		size = ARRAY_SIZE(rfgain_5413);
637		break;
638	case AR5K_RF2317:
639	case AR5K_RF2425:
640		ath5k_rfg = rfgain_2425;
641		size = ARRAY_SIZE(rfgain_2425);
642		break;
643	default:
644		return -EINVAL;
645	}
646
647	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
648
649	for (i = 0; i < size; i++) {
650		AR5K_REG_WAIT(i);
651		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
652			(u32)ath5k_rfg[i].rfg_register);
653	}
654
655	return 0;
656}
657
658
659
660/********************\
661* RF Registers setup *
662\********************/
663
664/*
665 * Setup RF registers by writing RF buffer on hw
666 */
667static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
668	struct ieee80211_channel *channel, unsigned int mode)
669{
670	const struct ath5k_rf_reg *rf_regs;
671	const struct ath5k_ini_rfbuffer *ini_rfb;
672	const struct ath5k_gain_opt *go = NULL;
673	const struct ath5k_gain_opt_step *g_step;
674	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
675	u8 ee_mode = 0;
676	u32 *rfb;
677	int i, obdb = -1, bank = -1;
678
679	switch (ah->ah_radio) {
680	case AR5K_RF5111:
681		rf_regs = rf_regs_5111;
682		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
683		ini_rfb = rfb_5111;
684		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
685		go = &rfgain_opt_5111;
686		break;
687	case AR5K_RF5112:
688		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
689			rf_regs = rf_regs_5112a;
690			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
691			ini_rfb = rfb_5112a;
692			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
693		} else {
694			rf_regs = rf_regs_5112;
695			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
696			ini_rfb = rfb_5112;
697			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
698		}
699		go = &rfgain_opt_5112;
700		break;
701	case AR5K_RF2413:
702		rf_regs = rf_regs_2413;
703		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
704		ini_rfb = rfb_2413;
705		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
706		break;
707	case AR5K_RF2316:
708		rf_regs = rf_regs_2316;
709		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
710		ini_rfb = rfb_2316;
711		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
712		break;
713	case AR5K_RF5413:
714		rf_regs = rf_regs_5413;
715		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
716		ini_rfb = rfb_5413;
717		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
718		break;
719	case AR5K_RF2317:
720		rf_regs = rf_regs_2425;
721		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
722		ini_rfb = rfb_2317;
723		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
724		break;
725	case AR5K_RF2425:
726		rf_regs = rf_regs_2425;
727		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
728		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
729			ini_rfb = rfb_2425;
730			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
731		} else {
732			ini_rfb = rfb_2417;
733			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
734		}
735		break;
736	default:
737		return -EINVAL;
738	}
739
740	/* If it's the first time we set RF buffer, allocate
741	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
742	 * we set above */
743	if (ah->ah_rf_banks == NULL) {
744		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
745								GFP_KERNEL);
746		if (ah->ah_rf_banks == NULL) {
747			ATH5K_ERR(ah->ah_sc, "out of memory\n");
748			return -ENOMEM;
749		}
750	}
751
752	/* Copy values to modify them */
753	rfb = ah->ah_rf_banks;
754
755	for (i = 0; i < ah->ah_rf_banks_size; i++) {
756		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
757			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
758			return -EINVAL;
759		}
760
761		/* Bank changed, write down the offset */
762		if (bank != ini_rfb[i].rfb_bank) {
763			bank = ini_rfb[i].rfb_bank;
764			ah->ah_offset[bank] = i;
765		}
766
767		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
768	}
769
770	/* Set Output and Driver bias current (OB/DB) */
771	if (channel->hw_value & CHANNEL_2GHZ) {
772
773		if (channel->hw_value & CHANNEL_CCK)
774			ee_mode = AR5K_EEPROM_MODE_11B;
775		else
776			ee_mode = AR5K_EEPROM_MODE_11G;
777
778		/* For RF511X/RF211X combination we
779		 * use b_OB and b_DB parameters stored
780		 * in eeprom on ee->ee_ob[ee_mode][0]
781		 *
782		 * For all other chips we use OB/DB for 2Ghz
783		 * stored in the b/g modal section just like
784		 * 802.11a on ee->ee_ob[ee_mode][1] */
785		if ((ah->ah_radio == AR5K_RF5111) ||
786		(ah->ah_radio == AR5K_RF5112))
787			obdb = 0;
788		else
789			obdb = 1;
790
791		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
792						AR5K_RF_OB_2GHZ, true);
793
794		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
795						AR5K_RF_DB_2GHZ, true);
796
797	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
798	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
799			(ah->ah_radio == AR5K_RF5111)) {
800
801		/* For 11a, Turbo and XR we need to choose
802		 * OB/DB based on frequency range */
803		ee_mode = AR5K_EEPROM_MODE_11A;
804		obdb =	 channel->center_freq >= 5725 ? 3 :
805			(channel->center_freq >= 5500 ? 2 :
806			(channel->center_freq >= 5260 ? 1 :
807			 (channel->center_freq > 4000 ? 0 : -1)));
808
809		if (obdb < 0)
810			return -EINVAL;
811
812		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
813						AR5K_RF_OB_5GHZ, true);
814
815		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
816						AR5K_RF_DB_5GHZ, true);
817	}
818
819	g_step = &go->go_step[ah->ah_gain.g_step_idx];
820
821	/* Set turbo mode (N/A on RF5413) */
822	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
823	(ah->ah_radio != AR5K_RF5413))
824		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
825
826	/* Bank Modifications (chip-specific) */
827	if (ah->ah_radio == AR5K_RF5111) {
828
829		/* Set gain_F settings according to current step */
830		if (channel->hw_value & CHANNEL_OFDM) {
831
832			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
833					AR5K_PHY_FRAME_CTL_TX_CLIP,
834					g_step->gos_param[0]);
835
836			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
837							AR5K_RF_PWD_90, true);
838
839			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
840							AR5K_RF_PWD_84, true);
841
842			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
843						AR5K_RF_RFGAIN_SEL, true);
844
845			/* We programmed gain_F parameters, switch back
846			 * to active state */
847			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
848
849		}
850
851		/* Bank 6/7 setup */
852
853		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
854						AR5K_RF_PWD_XPD, true);
855
856		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
857						AR5K_RF_XPD_GAIN, true);
858
859		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
860						AR5K_RF_GAIN_I, true);
861
862		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
863						AR5K_RF_PLO_SEL, true);
864
865		/* Tweak power detectors for half/quarter rate support */
866		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
867		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
868			u8 wait_i;
869
870			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
871						AR5K_RF_WAIT_S, true);
872
873			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
874							0x1f : 0x10;
875
876			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
877						AR5K_RF_WAIT_I, true);
878			ath5k_hw_rfb_op(ah, rf_regs, 3,
879						AR5K_RF_MAX_TIME, true);
880
881		}
882	}
883
884	if (ah->ah_radio == AR5K_RF5112) {
885
886		/* Set gain_F settings according to current step */
887		if (channel->hw_value & CHANNEL_OFDM) {
888
889			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
890						AR5K_RF_MIXGAIN_OVR, true);
891
892			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
893						AR5K_RF_PWD_138, true);
894
895			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
896						AR5K_RF_PWD_137, true);
897
898			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
899						AR5K_RF_PWD_136, true);
900
901			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
902						AR5K_RF_PWD_132, true);
903
904			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
905						AR5K_RF_PWD_131, true);
906
907			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
908						AR5K_RF_PWD_130, true);
909
910			/* We programmed gain_F parameters, switch back
911			 * to active state */
912			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
913		}
914
915		/* Bank 6/7 setup */
916
917		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
918						AR5K_RF_XPD_SEL, true);
919
920		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
921			/* Rev. 1 supports only one xpd */
922			ath5k_hw_rfb_op(ah, rf_regs,
923						ee->ee_x_gain[ee_mode],
924						AR5K_RF_XPD_GAIN, true);
925
926		} else {
927			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
928			if (ee->ee_pd_gains[ee_mode] > 1) {
929				ath5k_hw_rfb_op(ah, rf_regs,
930						pdg_curve_to_idx[0],
931						AR5K_RF_PD_GAIN_LO, true);
932				ath5k_hw_rfb_op(ah, rf_regs,
933						pdg_curve_to_idx[1],
934						AR5K_RF_PD_GAIN_HI, true);
935			} else {
936				ath5k_hw_rfb_op(ah, rf_regs,
937						pdg_curve_to_idx[0],
938						AR5K_RF_PD_GAIN_LO, true);
939				ath5k_hw_rfb_op(ah, rf_regs,
940						pdg_curve_to_idx[0],
941						AR5K_RF_PD_GAIN_HI, true);
942			}
943
944			/* Lower synth voltage on Rev 2 */
945			ath5k_hw_rfb_op(ah, rf_regs, 2,
946					AR5K_RF_HIGH_VC_CP, true);
947
948			ath5k_hw_rfb_op(ah, rf_regs, 2,
949					AR5K_RF_MID_VC_CP, true);
950
951			ath5k_hw_rfb_op(ah, rf_regs, 2,
952					AR5K_RF_LOW_VC_CP, true);
953
954			ath5k_hw_rfb_op(ah, rf_regs, 2,
955					AR5K_RF_PUSH_UP, true);
956
957			/* Decrease power consumption on 5213+ BaseBand */
958			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
959				ath5k_hw_rfb_op(ah, rf_regs, 1,
960						AR5K_RF_PAD2GND, true);
961
962				ath5k_hw_rfb_op(ah, rf_regs, 1,
963						AR5K_RF_XB2_LVL, true);
964
965				ath5k_hw_rfb_op(ah, rf_regs, 1,
966						AR5K_RF_XB5_LVL, true);
967
968				ath5k_hw_rfb_op(ah, rf_regs, 1,
969						AR5K_RF_PWD_167, true);
970
971				ath5k_hw_rfb_op(ah, rf_regs, 1,
972						AR5K_RF_PWD_166, true);
973			}
974		}
975
976		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
977						AR5K_RF_GAIN_I, true);
978
979		/* Tweak power detector for half/quarter rates */
980		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
981		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
982			u8 pd_delay;
983
984			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
985							0xf : 0x8;
986
987			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
988						AR5K_RF_PD_PERIOD_A, true);
989			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
990						AR5K_RF_PD_DELAY_A, true);
991
992		}
993	}
994
995	if (ah->ah_radio == AR5K_RF5413 &&
996	channel->hw_value & CHANNEL_2GHZ) {
997
998		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
999									true);
1000
1001		/* Set optimum value for early revisions (on pci-e chips) */
1002		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1003		ah->ah_mac_srev < AR5K_SREV_AR5413)
1004			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1005						AR5K_RF_PWD_ICLOBUF_2G, true);
1006
1007	}
1008
1009	/* Write RF banks on hw */
1010	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1011		AR5K_REG_WAIT(i);
1012		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1013	}
1014
1015	return 0;
1016}
1017
1018
1019/**************************\
1020  PHY/RF channel functions
1021\**************************/
1022
1023/*
1024 * Convertion needed for RF5110
1025 */
1026static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1027{
1028	u32 athchan;
1029
1030	/*
1031	 * Convert IEEE channel/MHz to an internal channel value used
1032	 * by the AR5210 chipset. This has not been verified with
1033	 * newer chipsets like the AR5212A who have a completely
1034	 * different RF/PHY part.
1035	 */
1036	athchan = (ath5k_hw_bitswap(
1037			(ieee80211_frequency_to_channel(
1038				channel->center_freq) - 24) / 2, 5)
1039				<< 1) | (1 << 6) | 0x1;
1040	return athchan;
1041}
1042
1043/*
1044 * Set channel on RF5110
1045 */
1046static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1047		struct ieee80211_channel *channel)
1048{
1049	u32 data;
1050
1051	/*
1052	 * Set the channel and wait
1053	 */
1054	data = ath5k_hw_rf5110_chan2athchan(channel);
1055	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1056	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1057	mdelay(1);
1058
1059	return 0;
1060}
1061
1062/*
1063 * Convertion needed for 5111
1064 */
1065static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1066		struct ath5k_athchan_2ghz *athchan)
1067{
1068	int channel;
1069
1070	/* Cast this value to catch negative channel numbers (>= -19) */
1071	channel = (int)ieee;
1072
1073	/*
1074	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1075	 */
1076	if (channel <= 13) {
1077		athchan->a2_athchan = 115 + channel;
1078		athchan->a2_flags = 0x46;
1079	} else if (channel == 14) {
1080		athchan->a2_athchan = 124;
1081		athchan->a2_flags = 0x44;
1082	} else if (channel >= 15 && channel <= 26) {
1083		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1084		athchan->a2_flags = 0x46;
1085	} else
1086		return -EINVAL;
1087
1088	return 0;
1089}
1090
1091/*
1092 * Set channel on 5111
1093 */
1094static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1095		struct ieee80211_channel *channel)
1096{
1097	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1098	unsigned int ath5k_channel =
1099		ieee80211_frequency_to_channel(channel->center_freq);
1100	u32 data0, data1, clock;
1101	int ret;
1102
1103	/*
1104	 * Set the channel on the RF5111 radio
1105	 */
1106	data0 = data1 = 0;
1107
1108	if (channel->hw_value & CHANNEL_2GHZ) {
1109		/* Map 2GHz channel to 5GHz Atheros channel ID */
1110		ret = ath5k_hw_rf5111_chan2athchan(
1111			ieee80211_frequency_to_channel(channel->center_freq),
1112			&ath5k_channel_2ghz);
1113		if (ret)
1114			return ret;
1115
1116		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1117		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1118		    << 5) | (1 << 4);
1119	}
1120
1121	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1122		clock = 1;
1123		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1124			(clock << 1) | (1 << 10) | 1;
1125	} else {
1126		clock = 0;
1127		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1128			<< 2) | (clock << 1) | (1 << 10) | 1;
1129	}
1130
1131	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1132			AR5K_RF_BUFFER);
1133	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1134			AR5K_RF_BUFFER_CONTROL_3);
1135
1136	return 0;
1137}
1138
1139/*
1140 * Set channel on 5112 and newer
1141 */
1142static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1143		struct ieee80211_channel *channel)
1144{
1145	u32 data, data0, data1, data2;
1146	u16 c;
1147
1148	data = data0 = data1 = data2 = 0;
1149	c = channel->center_freq;
1150
1151	if (c < 4800) {
1152		if (!((c - 2224) % 5)) {
1153			data0 = ((2 * (c - 704)) - 3040) / 10;
1154			data1 = 1;
1155		} else if (!((c - 2192) % 5)) {
1156			data0 = ((2 * (c - 672)) - 3040) / 10;
1157			data1 = 0;
1158		} else
1159			return -EINVAL;
1160
1161		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1162	} else if ((c % 5) != 2 || c > 5435) {
1163		if (!(c % 20) && c >= 5120) {
1164			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1165			data2 = ath5k_hw_bitswap(3, 2);
1166		} else if (!(c % 10)) {
1167			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1168			data2 = ath5k_hw_bitswap(2, 2);
1169		} else if (!(c % 5)) {
1170			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1171			data2 = ath5k_hw_bitswap(1, 2);
1172		} else
1173			return -EINVAL;
1174	} else {
1175		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1176		data2 = ath5k_hw_bitswap(0, 2);
1177	}
1178
1179	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1180
1181	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1182	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1183
1184	return 0;
1185}
1186
1187/*
1188 * Set the channel on the RF2425
1189 */
1190static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1191		struct ieee80211_channel *channel)
1192{
1193	u32 data, data0, data2;
1194	u16 c;
1195
1196	data = data0 = data2 = 0;
1197	c = channel->center_freq;
1198
1199	if (c < 4800) {
1200		data0 = ath5k_hw_bitswap((c - 2272), 8);
1201		data2 = 0;
1202	/* ? 5GHz ? */
1203	} else if ((c % 5) != 2 || c > 5435) {
1204		if (!(c % 20) && c < 5120)
1205			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1206		else if (!(c % 10))
1207			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1208		else if (!(c % 5))
1209			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1210		else
1211			return -EINVAL;
1212		data2 = ath5k_hw_bitswap(1, 2);
1213	} else {
1214		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1215		data2 = ath5k_hw_bitswap(0, 2);
1216	}
1217
1218	data = (data0 << 4) | data2 << 2 | 0x1001;
1219
1220	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1221	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1222
1223	return 0;
1224}
1225
1226/*
1227 * Set a channel on the radio chip
1228 */
1229static int ath5k_hw_channel(struct ath5k_hw *ah,
1230		struct ieee80211_channel *channel)
1231{
1232	int ret;
1233	/*
1234	 * Check bounds supported by the PHY (we don't care about regultory
1235	 * restrictions at this point). Note: hw_value already has the band
1236	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1237	 * of the band by that */
1238	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1239		ATH5K_ERR(ah->ah_sc,
1240			"channel frequency (%u MHz) out of supported "
1241			"band range\n",
1242			channel->center_freq);
1243			return -EINVAL;
1244	}
1245
1246	/*
1247	 * Set the channel and wait
1248	 */
1249	switch (ah->ah_radio) {
1250	case AR5K_RF5110:
1251		ret = ath5k_hw_rf5110_channel(ah, channel);
1252		break;
1253	case AR5K_RF5111:
1254		ret = ath5k_hw_rf5111_channel(ah, channel);
1255		break;
1256	case AR5K_RF2317:
1257	case AR5K_RF2425:
1258		ret = ath5k_hw_rf2425_channel(ah, channel);
1259		break;
1260	default:
1261		ret = ath5k_hw_rf5112_channel(ah, channel);
1262		break;
1263	}
1264
1265	if (ret)
1266		return ret;
1267
1268	/* Set JAPAN setting for channel 14 */
1269	if (channel->center_freq == 2484) {
1270		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1271				AR5K_PHY_CCKTXCTL_JAPAN);
1272	} else {
1273		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1274				AR5K_PHY_CCKTXCTL_WORLD);
1275	}
1276
1277	ah->ah_current_channel = channel;
1278
1279	return 0;
1280}
1281
1282/*****************\
1283  PHY calibration
1284\*****************/
1285
1286static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1287{
1288	s32 val;
1289
1290	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1291	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1292}
1293
1294void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1295{
1296	int i;
1297
1298	ah->ah_nfcal_hist.index = 0;
1299	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1300		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1301}
1302
1303static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1304{
1305	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1306	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1307	hist->nfval[hist->index] = noise_floor;
1308}
1309
1310static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1311{
1312	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1313	s16 tmp;
1314	int i, j;
1315
1316	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1317	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1318		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1319			if (sort[j] > sort[j-1]) {
1320				tmp = sort[j];
1321				sort[j] = sort[j-1];
1322				sort[j-1] = tmp;
1323			}
1324		}
1325	}
1326	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1327		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1328			"cal %d:%d\n", i, sort[i]);
1329	}
1330	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1331}
1332
1333/*
1334 * When we tell the hardware to perform a noise floor calibration
1335 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1336 * sample-and-hold the minimum noise level seen at the antennas.
1337 * This value is then stored in a ring buffer of recently measured
1338 * noise floor values so we have a moving window of the last few
1339 * samples.
1340 *
1341 * The median of the values in the history is then loaded into the
1342 * hardware for its own use for RSSI and CCA measurements.
1343 */
1344void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1345{
1346	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1347	u32 val;
1348	s16 nf, threshold;
1349	u8 ee_mode;
1350
1351	/* keep last value if calibration hasn't completed */
1352	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1353		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1354			"NF did not complete in calibration window\n");
1355
1356		return;
1357	}
1358
1359	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1360
1361	/* completed NF calibration, test threshold */
1362	nf = ath5k_hw_read_measured_noise_floor(ah);
1363	threshold = ee->ee_noise_floor_thr[ee_mode];
1364
1365	if (nf > threshold) {
1366		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1367			"noise floor failure detected; "
1368			"read %d, threshold %d\n",
1369			nf, threshold);
1370
1371		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1372	}
1373
1374	ath5k_hw_update_nfcal_hist(ah, nf);
1375	nf = ath5k_hw_get_median_noise_floor(ah);
1376
1377	/* load noise floor (in .5 dBm) so the hardware will use it */
1378	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1379	val |= (nf * 2) & AR5K_PHY_NF_M;
1380	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1381
1382	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1383		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1384
1385	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1386		0, false);
1387
1388	/*
1389	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1390	 * so that we're not capped by the median we just loaded.
1391	 * This will be used as the initial value for the next noise
1392	 * floor calibration.
1393	 */
1394	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1395	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1396	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1397		AR5K_PHY_AGCCTL_NF_EN |
1398		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1399		AR5K_PHY_AGCCTL_NF);
1400
1401	ah->ah_noise_floor = nf;
1402
1403	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1404		"noise floor calibrated: %d\n", nf);
1405}
1406
1407/*
1408 * Perform a PHY calibration on RF5110
1409 * -Fix BPSK/QAM Constellation (I/Q correction)
1410 */
1411static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1412		struct ieee80211_channel *channel)
1413{
1414	u32 phy_sig, phy_agc, phy_sat, beacon;
1415	int ret;
1416
1417	/*
1418	 * Disable beacons and RX/TX queues, wait
1419	 */
1420	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1421		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1422	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1423	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1424
1425	mdelay(2);
1426
1427	/*
1428	 * Set the channel (with AGC turned off)
1429	 */
1430	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1431	udelay(10);
1432	ret = ath5k_hw_channel(ah, channel);
1433
1434	/*
1435	 * Activate PHY and wait
1436	 */
1437	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1438	mdelay(1);
1439
1440	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1441
1442	if (ret)
1443		return ret;
1444
1445	/*
1446	 * Calibrate the radio chip
1447	 */
1448
1449	/* Remember normal state */
1450	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1451	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1452	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1453
1454	/* Update radio registers */
1455	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1456		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1457
1458	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1459			AR5K_PHY_AGCCOARSE_LO)) |
1460		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1461		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1462
1463	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1464			AR5K_PHY_ADCSAT_THR)) |
1465		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1466		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1467
1468	udelay(20);
1469
1470	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1471	udelay(10);
1472	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1473	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1474
1475	mdelay(1);
1476
1477	/*
1478	 * Enable calibration and wait until completion
1479	 */
1480	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1481
1482	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1483			AR5K_PHY_AGCCTL_CAL, 0, false);
1484
1485	/* Reset to normal state */
1486	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1487	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1488	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1489
1490	if (ret) {
1491		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1492				channel->center_freq);
1493		return ret;
1494	}
1495
1496	/*
1497	 * Re-enable RX/TX and beacons
1498	 */
1499	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1500		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1501	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1502
1503	return 0;
1504}
1505
1506/*
1507 * Perform I/Q calibration on RF5111/5112 and newer chips
1508 */
1509static int
1510ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1511{
1512	u32 i_pwr, q_pwr;
1513	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1514	int i;
1515
1516	if (!ah->ah_calibration ||
1517		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1518		return 0;
1519
1520	/* Calibration has finished, get the results and re-run */
1521	/* work around empty results which can apparently happen on 5212 */
1522	for (i = 0; i <= 10; i++) {
1523		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1524		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1525		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1526		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1527			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1528		if (i_pwr && q_pwr)
1529			break;
1530	}
1531
1532	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1533
1534	if (ah->ah_version == AR5K_AR5211)
1535		q_coffd = q_pwr >> 6;
1536	else
1537		q_coffd = q_pwr >> 7;
1538
1539	/* protect against divide by 0 and loss of sign bits */
1540	if (i_coffd == 0 || q_coffd < 2)
1541		return 0;
1542
1543	i_coff = (-iq_corr) / i_coffd;
1544	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1545
1546	if (ah->ah_version == AR5K_AR5211)
1547		q_coff = (i_pwr / q_coffd) - 64;
1548	else
1549		q_coff = (i_pwr / q_coffd) - 128;
1550	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1551
1552	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1553			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1554			i_coff, q_coff, i_coffd, q_coffd);
1555
1556	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1557	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1558	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1559	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1560
1561	/* Re-enable calibration -if we don't we'll commit
1562	 * the same values again and again */
1563	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1564			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1565	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1566
1567	return 0;
1568}
1569
1570/*
1571 * Perform a PHY calibration
1572 */
1573int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1574		struct ieee80211_channel *channel)
1575{
1576	int ret;
1577
1578	if (ah->ah_radio == AR5K_RF5110)
1579		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1580	else {
1581		ret = ath5k_hw_rf511x_iq_calibrate(ah);
1582		ath5k_hw_request_rfgain_probe(ah);
1583	}
1584
1585	return ret;
1586}
1587
1588
1589/***************************\
1590* Spur mitigation functions *
1591\***************************/
1592
1593static void
1594ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1595				struct ieee80211_channel *channel)
1596{
1597	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1598	u32 mag_mask[4] = {0, 0, 0, 0};
1599	u32 pilot_mask[2] = {0, 0};
1600	/* Note: fbin values are scaled up by 2 */
1601	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1602	s32 spur_delta_phase, spur_freq_sigma_delta;
1603	s32 spur_offset, num_symbols_x16;
1604	u8 num_symbol_offsets, i, freq_band;
1605
1606	/* Convert current frequency to fbin value (the same way channels
1607	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1608	 * up by 2 so we can compare it later */
1609	if (channel->hw_value & CHANNEL_2GHZ) {
1610		chan_fbin = (channel->center_freq - 2300) * 10;
1611		freq_band = AR5K_EEPROM_BAND_2GHZ;
1612	} else {
1613		chan_fbin = (channel->center_freq - 4900) * 10;
1614		freq_band = AR5K_EEPROM_BAND_5GHZ;
1615	}
1616
1617	/* Check if any spur_chan_fbin from EEPROM is
1618	 * within our current channel's spur detection range */
1619	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1620	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1621	/* XXX: Half/Quarter channels ?*/
1622	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1623		spur_detection_window *= 2;
1624
1625	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1626		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1627
1628		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1629		 * so it's zero if we got nothing from EEPROM */
1630		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1631			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1632			break;
1633		}
1634
1635		if ((chan_fbin - spur_detection_window <=
1636		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1637		(chan_fbin + spur_detection_window >=
1638		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1639			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1640			break;
1641		}
1642	}
1643
1644	/* We need to enable spur filter for this channel */
1645	if (spur_chan_fbin) {
1646		spur_offset = spur_chan_fbin - chan_fbin;
1647		/*
1648		 * Calculate deltas:
1649		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1650		 * spur_delta_phase -> spur_offset / chip_freq << 11
1651		 * Note: Both values have 100Hz resolution
1652		 */
1653		switch (ah->ah_bwmode) {
1654		case AR5K_BWMODE_40MHZ:
1655			/* Both sample_freq and chip_freq are 80MHz */
1656			spur_delta_phase = (spur_offset << 16) / 25;
1657			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1658			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1659			break;
1660		case AR5K_BWMODE_10MHZ:
1661			/* Both sample_freq and chip_freq are 20MHz (?) */
1662			spur_delta_phase = (spur_offset << 18) / 25;
1663			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1664			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1665		case AR5K_BWMODE_5MHZ:
1666			/* Both sample_freq and chip_freq are 10MHz (?) */
1667			spur_delta_phase = (spur_offset << 19) / 25;
1668			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1669			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1670		default:
1671			if (channel->hw_value == CHANNEL_A) {
1672				/* Both sample_freq and chip_freq are 40MHz */
1673				spur_delta_phase = (spur_offset << 17) / 25;
1674				spur_freq_sigma_delta =
1675						(spur_delta_phase >> 10);
1676				symbol_width =
1677					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1678			} else {
1679				/* sample_freq -> 40MHz chip_freq -> 44MHz
1680				 * (for b compatibility) */
1681				spur_delta_phase = (spur_offset << 17) / 25;
1682				spur_freq_sigma_delta =
1683						(spur_offset << 8) / 55;
1684				symbol_width =
1685					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1686			}
1687			break;
1688		}
1689
1690		/* Calculate pilot and magnitude masks */
1691
1692		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1693		 * and divide by symbol_width to find how many symbols we have
1694		 * Note: number of symbols is scaled up by 16 */
1695		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1696
1697		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1698		if (!(num_symbols_x16 & 0xF))
1699			/* _X_ */
1700			num_symbol_offsets = 3;
1701		else
1702			/* _xx_ */
1703			num_symbol_offsets = 4;
1704
1705		for (i = 0; i < num_symbol_offsets; i++) {
1706
1707			/* Calculate pilot mask */
1708			s32 curr_sym_off =
1709				(num_symbols_x16 / 16) + i + 25;
1710
1711			/* Pilot magnitude mask seems to be a way to
1712			 * declare the boundaries for our detection
1713			 * window or something, it's 2 for the middle
1714			 * value(s) where the symbol is expected to be
1715			 * and 1 on the boundary values */
1716			u8 plt_mag_map =
1717				(i == 0 || i == (num_symbol_offsets - 1))
1718								? 1 : 2;
1719
1720			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1721				if (curr_sym_off <= 25)
1722					pilot_mask[0] |= 1 << curr_sym_off;
1723				else if (curr_sym_off >= 27)
1724					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1725			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1726				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1727
1728			/* Calculate magnitude mask (for viterbi decoder) */
1729			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1730				mag_mask[0] |=
1731					plt_mag_map << (curr_sym_off + 1) * 2;
1732			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1733				mag_mask[1] |=
1734					plt_mag_map << (curr_sym_off - 15) * 2;
1735			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1736				mag_mask[2] |=
1737					plt_mag_map << (curr_sym_off - 31) * 2;
1738			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1739				mag_mask[3] |=
1740					plt_mag_map << (curr_sym_off - 47) * 2;
1741
1742		}
1743
1744		/* Write settings on hw to enable spur filter */
1745		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1746					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1747		/* XXX: Self correlator also ? */
1748		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1749					AR5K_PHY_IQ_PILOT_MASK_EN |
1750					AR5K_PHY_IQ_CHAN_MASK_EN |
1751					AR5K_PHY_IQ_SPUR_FILT_EN);
1752
1753		/* Set delta phase and freq sigma delta */
1754		ath5k_hw_reg_write(ah,
1755				AR5K_REG_SM(spur_delta_phase,
1756					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1757				AR5K_REG_SM(spur_freq_sigma_delta,
1758				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1759				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1760				AR5K_PHY_TIMING_11);
1761
1762		/* Write pilot masks */
1763		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1764		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1765					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1766					pilot_mask[1]);
1767
1768		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1769		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1770					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1771					pilot_mask[1]);
1772
1773		/* Write magnitude masks */
1774		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1775		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1776		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1777		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1778					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1779					mag_mask[3]);
1780
1781		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1782		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1783		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1784		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1785					AR5K_PHY_BIN_MASK2_4_MASK_4,
1786					mag_mask[3]);
1787
1788	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1789	AR5K_PHY_IQ_SPUR_FILT_EN) {
1790		/* Clean up spur mitigation settings and disable fliter */
1791		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1792					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1793		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1794					AR5K_PHY_IQ_PILOT_MASK_EN |
1795					AR5K_PHY_IQ_CHAN_MASK_EN |
1796					AR5K_PHY_IQ_SPUR_FILT_EN);
1797		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1798
1799		/* Clear pilot masks */
1800		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1801		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1802					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1803					0);
1804
1805		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1806		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1807					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1808					0);
1809
1810		/* Clear magnitude masks */
1811		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1812		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1813		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1814		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1815					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1816					0);
1817
1818		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1819		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1820		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1821		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1822					AR5K_PHY_BIN_MASK2_4_MASK_4,
1823					0);
1824	}
1825}
1826
1827
1828/*****************\
1829* Antenna control *
1830\*****************/
1831
1832static void /*TODO:Boundary check*/
1833ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1834{
1835	if (ah->ah_version != AR5K_AR5210)
1836		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1837}
1838
1839/*
1840 * Enable/disable fast rx antenna diversity
1841 */
1842static void
1843ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1844{
1845	switch (ee_mode) {
1846	case AR5K_EEPROM_MODE_11G:
1847		/* XXX: This is set to
1848		 * disabled on initvals !!! */
1849	case AR5K_EEPROM_MODE_11A:
1850		if (enable)
1851			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1852					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1853		else
1854			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1855					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1856		break;
1857	case AR5K_EEPROM_MODE_11B:
1858		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1859					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1860		break;
1861	default:
1862		return;
1863	}
1864
1865	if (enable) {
1866		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1867				AR5K_PHY_RESTART_DIV_GC, 4);
1868
1869		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1870					AR5K_PHY_FAST_ANT_DIV_EN);
1871	} else {
1872		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1873				AR5K_PHY_RESTART_DIV_GC, 0);
1874
1875		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1876					AR5K_PHY_FAST_ANT_DIV_EN);
1877	}
1878}
1879
1880void
1881ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1882{
1883	u8 ant0, ant1;
1884
1885	/*
1886	 * In case a fixed antenna was set as default
1887	 * use the same switch table twice.
1888	 */
1889	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1890		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1891	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1892		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1893	else {
1894		ant0 = AR5K_ANT_SWTABLE_A;
1895		ant1 = AR5K_ANT_SWTABLE_B;
1896	}
1897
1898	/* Set antenna idle switch table */
1899	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1900			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1901			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1902			AR5K_PHY_ANT_CTL_TXRX_EN));
1903
1904	/* Set antenna switch tables */
1905	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1906		AR5K_PHY_ANT_SWITCH_TABLE_0);
1907	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1908		AR5K_PHY_ANT_SWITCH_TABLE_1);
1909}
1910
1911/*
1912 * Set antenna operating mode
1913 */
1914void
1915ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1916{
1917	struct ieee80211_channel *channel = ah->ah_current_channel;
1918	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1919	bool use_def_for_sg;
1920	int ee_mode;
1921	u8 def_ant, tx_ant;
1922	u32 sta_id1 = 0;
1923
1924	/* if channel is not initialized yet we can't set the antennas
1925	 * so just store the mode. it will be set on the next reset */
1926	if (channel == NULL) {
1927		ah->ah_ant_mode = ant_mode;
1928		return;
1929	}
1930
1931	def_ant = ah->ah_def_ant;
1932
1933	ee_mode = ath5k_eeprom_mode_from_channel(channel);
1934	if (ee_mode < 0) {
1935		ATH5K_ERR(ah->ah_sc,
1936			"invalid channel: %d\n", channel->center_freq);
1937		return;
1938	}
1939
1940	switch (ant_mode) {
1941	case AR5K_ANTMODE_DEFAULT:
1942		tx_ant = 0;
1943		use_def_for_tx = false;
1944		update_def_on_tx = false;
1945		use_def_for_rts = false;
1946		use_def_for_sg = false;
1947		fast_div = true;
1948		break;
1949	case AR5K_ANTMODE_FIXED_A:
1950		def_ant = 1;
1951		tx_ant = 1;
1952		use_def_for_tx = true;
1953		update_def_on_tx = false;
1954		use_def_for_rts = true;
1955		use_def_for_sg = true;
1956		fast_div = false;
1957		break;
1958	case AR5K_ANTMODE_FIXED_B:
1959		def_ant = 2;
1960		tx_ant = 2;
1961		use_def_for_tx = true;
1962		update_def_on_tx = false;
1963		use_def_for_rts = true;
1964		use_def_for_sg = true;
1965		fast_div = false;
1966		break;
1967	case AR5K_ANTMODE_SINGLE_AP:
1968		def_ant = 1;	/* updated on tx */
1969		tx_ant = 0;
1970		use_def_for_tx = true;
1971		update_def_on_tx = true;
1972		use_def_for_rts = true;
1973		use_def_for_sg = true;
1974		fast_div = true;
1975		break;
1976	case AR5K_ANTMODE_SECTOR_AP:
1977		tx_ant = 1;	/* variable */
1978		use_def_for_tx = false;
1979		update_def_on_tx = false;
1980		use_def_for_rts = true;
1981		use_def_for_sg = false;
1982		fast_div = false;
1983		break;
1984	case AR5K_ANTMODE_SECTOR_STA:
1985		tx_ant = 1;	/* variable */
1986		use_def_for_tx = true;
1987		update_def_on_tx = false;
1988		use_def_for_rts = true;
1989		use_def_for_sg = false;
1990		fast_div = true;
1991		break;
1992	case AR5K_ANTMODE_DEBUG:
1993		def_ant = 1;
1994		tx_ant = 2;
1995		use_def_for_tx = false;
1996		update_def_on_tx = false;
1997		use_def_for_rts = false;
1998		use_def_for_sg = false;
1999		fast_div = false;
2000		break;
2001	default:
2002		return;
2003	}
2004
2005	ah->ah_tx_ant = tx_ant;
2006	ah->ah_ant_mode = ant_mode;
2007	ah->ah_def_ant = def_ant;
2008
2009	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2010	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2011	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2012	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2013
2014	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2015
2016	if (sta_id1)
2017		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2018
2019	ath5k_hw_set_antenna_switch(ah, ee_mode);
2020	/* Note: set diversity before default antenna
2021	 * because it won't work correctly */
2022	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2023	ath5k_hw_set_def_antenna(ah, def_ant);
2024}
2025
2026
2027/****************\
2028* TX power setup *
2029\****************/
2030
2031/*
2032 * Helper functions
2033 */
2034
2035/*
2036 * Do linear interpolation between two given (x, y) points
2037 */
2038static s16
2039ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2040					s16 y_left, s16 y_right)
2041{
2042	s16 ratio, result;
2043
2044	/* Avoid divide by zero and skip interpolation
2045	 * if we have the same point */
2046	if ((x_left == x_right) || (y_left == y_right))
2047		return y_left;
2048
2049	/*
2050	 * Since we use ints and not fps, we need to scale up in
2051	 * order to get a sane ratio value (or else we 'll eg. get
2052	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2053	 * to have some accuracy both for 0.5 and 0.25 steps.
2054	 */
2055	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
2056
2057	/* Now scale down to be in range */
2058	result = y_left + (ratio * (target - x_left) / 100);
2059
2060	return result;
2061}
2062
2063/*
2064 * Find vertical boundary (min pwr) for the linear PCDAC curve.
2065 *
2066 * Since we have the top of the curve and we draw the line below
2067 * until we reach 1 (1 pcdac step) we need to know which point
2068 * (x value) that is so that we don't go below y axis and have negative
2069 * pcdac values when creating the curve, or fill the table with zeroes.
2070 */
2071static s16
2072ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2073				const s16 *pwrL, const s16 *pwrR)
2074{
2075	s8 tmp;
2076	s16 min_pwrL, min_pwrR;
2077	s16 pwr_i;
2078
2079	/* Some vendors write the same pcdac value twice !!! */
2080	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2081		return max(pwrL[0], pwrR[0]);
2082
2083	if (pwrL[0] == pwrL[1])
2084		min_pwrL = pwrL[0];
2085	else {
2086		pwr_i = pwrL[0];
2087		do {
2088			pwr_i--;
2089			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2090							pwrL[0], pwrL[1],
2091							stepL[0], stepL[1]);
2092		} while (tmp > 1);
2093
2094		min_pwrL = pwr_i;
2095	}
2096
2097	if (pwrR[0] == pwrR[1])
2098		min_pwrR = pwrR[0];
2099	else {
2100		pwr_i = pwrR[0];
2101		do {
2102			pwr_i--;
2103			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2104							pwrR[0], pwrR[1],
2105							stepR[0], stepR[1]);
2106		} while (tmp > 1);
2107
2108		min_pwrR = pwr_i;
2109	}
2110
2111	/* Keep the right boundary so that it works for both curves */
2112	return max(min_pwrL, min_pwrR);
2113}
2114
2115/*
2116 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2117 * Power to PCDAC curve.
2118 *
2119 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2120 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2121 * PCDAC/PDADC step for each curve is 64 but we can write more than
2122 * one curves on hw so we can go up to 128 (which is the max step we
2123 * can write on the final table).
2124 *
2125 * We write y values (PCDAC/PDADC steps) on hw.
2126 */
2127static void
2128ath5k_create_power_curve(s16 pmin, s16 pmax,
2129			const s16 *pwr, const u8 *vpd,
2130			u8 num_points,
2131			u8 *vpd_table, u8 type)
2132{
2133	u8 idx[2] = { 0, 1 };
2134	s16 pwr_i = 2*pmin;
2135	int i;
2136
2137	if (num_points < 2)
2138		return;
2139
2140	/* We want the whole line, so adjust boundaries
2141	 * to cover the entire power range. Note that
2142	 * power values are already 0.25dB so no need
2143	 * to multiply pwr_i by 2 */
2144	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2145		pwr_i = pmin;
2146		pmin = 0;
2147		pmax = 63;
2148	}
2149
2150	/* Find surrounding turning points (TPs)
2151	 * and interpolate between them */
2152	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2153	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2154
2155		/* We passed the right TP, move to the next set of TPs
2156		 * if we pass the last TP, extrapolate above using the last
2157		 * two TPs for ratio */
2158		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2159			idx[0]++;
2160			idx[1]++;
2161		}
2162
2163		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2164						pwr[idx[0]], pwr[idx[1]],
2165						vpd[idx[0]], vpd[idx[1]]);
2166
2167		/* Increase by 0.5dB
2168		 * (0.25 dB units) */
2169		pwr_i += 2;
2170	}
2171}
2172
2173/*
2174 * Get the surrounding per-channel power calibration piers
2175 * for a given frequency so that we can interpolate between
2176 * them and come up with an apropriate dataset for our current
2177 * channel.
2178 */
2179static void
2180ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2181			struct ieee80211_channel *channel,
2182			struct ath5k_chan_pcal_info **pcinfo_l,
2183			struct ath5k_chan_pcal_info **pcinfo_r)
2184{
2185	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2186	struct ath5k_chan_pcal_info *pcinfo;
2187	u8 idx_l, idx_r;
2188	u8 mode, max, i;
2189	u32 target = channel->center_freq;
2190
2191	idx_l = 0;
2192	idx_r = 0;
2193
2194	if (!(channel->hw_value & CHANNEL_OFDM)) {
2195		pcinfo = ee->ee_pwr_cal_b;
2196		mode = AR5K_EEPROM_MODE_11B;
2197	} else if (channel->hw_value & CHANNEL_2GHZ) {
2198		pcinfo = ee->ee_pwr_cal_g;
2199		mode = AR5K_EEPROM_MODE_11G;
2200	} else {
2201		pcinfo = ee->ee_pwr_cal_a;
2202		mode = AR5K_EEPROM_MODE_11A;
2203	}
2204	max = ee->ee_n_piers[mode] - 1;
2205
2206	/* Frequency is below our calibrated
2207	 * range. Use the lowest power curve
2208	 * we have */
2209	if (target < pcinfo[0].freq) {
2210		idx_l = idx_r = 0;
2211		goto done;
2212	}
2213
2214	/* Frequency is above our calibrated
2215	 * range. Use the highest power curve
2216	 * we have */
2217	if (target > pcinfo[max].freq) {
2218		idx_l = idx_r = max;
2219		goto done;
2220	}
2221
2222	/* Frequency is inside our calibrated
2223	 * channel range. Pick the surrounding
2224	 * calibration piers so that we can
2225	 * interpolate */
2226	for (i = 0; i <= max; i++) {
2227
2228		/* Frequency matches one of our calibration
2229		 * piers, no need to interpolate, just use
2230		 * that calibration pier */
2231		if (pcinfo[i].freq == target) {
2232			idx_l = idx_r = i;
2233			goto done;
2234		}
2235
2236		/* We found a calibration pier that's above
2237		 * frequency, use this pier and the previous
2238		 * one to interpolate */
2239		if (target < pcinfo[i].freq) {
2240			idx_r = i;
2241			idx_l = idx_r - 1;
2242			goto done;
2243		}
2244	}
2245
2246done:
2247	*pcinfo_l = &pcinfo[idx_l];
2248	*pcinfo_r = &pcinfo[idx_r];
2249}
2250
2251/*
2252 * Get the surrounding per-rate power calibration data
2253 * for a given frequency and interpolate between power
2254 * values to set max target power supported by hw for
2255 * each rate.
2256 */
2257static void
2258ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2259			struct ieee80211_channel *channel,
2260			struct ath5k_rate_pcal_info *rates)
2261{
2262	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2263	struct ath5k_rate_pcal_info *rpinfo;
2264	u8 idx_l, idx_r;
2265	u8 mode, max, i;
2266	u32 target = channel->center_freq;
2267
2268	idx_l = 0;
2269	idx_r = 0;
2270
2271	if (!(channel->hw_value & CHANNEL_OFDM)) {
2272		rpinfo = ee->ee_rate_tpwr_b;
2273		mode = AR5K_EEPROM_MODE_11B;
2274	} else if (channel->hw_value & CHANNEL_2GHZ) {
2275		rpinfo = ee->ee_rate_tpwr_g;
2276		mode = AR5K_EEPROM_MODE_11G;
2277	} else {
2278		rpinfo = ee->ee_rate_tpwr_a;
2279		mode = AR5K_EEPROM_MODE_11A;
2280	}
2281	max = ee->ee_rate_target_pwr_num[mode] - 1;
2282
2283	/* Get the surrounding calibration
2284	 * piers - same as above */
2285	if (target < rpinfo[0].freq) {
2286		idx_l = idx_r = 0;
2287		goto done;
2288	}
2289
2290	if (target > rpinfo[max].freq) {
2291		idx_l = idx_r = max;
2292		goto done;
2293	}
2294
2295	for (i = 0; i <= max; i++) {
2296
2297		if (rpinfo[i].freq == target) {
2298			idx_l = idx_r = i;
2299			goto done;
2300		}
2301
2302		if (target < rpinfo[i].freq) {
2303			idx_r = i;
2304			idx_l = idx_r - 1;
2305			goto done;
2306		}
2307	}
2308
2309done:
2310	/* Now interpolate power value, based on the frequency */
2311	rates->freq = target;
2312
2313	rates->target_power_6to24 =
2314		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2315					rpinfo[idx_r].freq,
2316					rpinfo[idx_l].target_power_6to24,
2317					rpinfo[idx_r].target_power_6to24);
2318
2319	rates->target_power_36 =
2320		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2321					rpinfo[idx_r].freq,
2322					rpinfo[idx_l].target_power_36,
2323					rpinfo[idx_r].target_power_36);
2324
2325	rates->target_power_48 =
2326		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2327					rpinfo[idx_r].freq,
2328					rpinfo[idx_l].target_power_48,
2329					rpinfo[idx_r].target_power_48);
2330
2331	rates->target_power_54 =
2332		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2333					rpinfo[idx_r].freq,
2334					rpinfo[idx_l].target_power_54,
2335					rpinfo[idx_r].target_power_54);
2336}
2337
2338/*
2339 * Get the max edge power for this channel if
2340 * we have such data from EEPROM's Conformance Test
2341 * Limits (CTL), and limit max power if needed.
2342 */
2343static void
2344ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2345			struct ieee80211_channel *channel)
2346{
2347	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2348	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2349	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2350	u8 *ctl_val = ee->ee_ctl;
2351	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2352	s16 edge_pwr = 0;
2353	u8 rep_idx;
2354	u8 i, ctl_mode;
2355	u8 ctl_idx = 0xFF;
2356	u32 target = channel->center_freq;
2357
2358	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2359
2360	switch (channel->hw_value & CHANNEL_MODES) {
2361	case CHANNEL_A:
2362		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2363			ctl_mode |= AR5K_CTL_TURBO;
2364		else
2365			ctl_mode |= AR5K_CTL_11A;
2366		break;
2367	case CHANNEL_G:
2368		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2369			ctl_mode |= AR5K_CTL_TURBOG;
2370		else
2371			ctl_mode |= AR5K_CTL_11G;
2372		break;
2373	case CHANNEL_B:
2374		ctl_mode |= AR5K_CTL_11B;
2375		break;
2376	case CHANNEL_XR:
2377		/* Fall through */
2378	default:
2379		return;
2380	}
2381
2382	for (i = 0; i < ee->ee_ctls; i++) {
2383		if (ctl_val[i] == ctl_mode) {
2384			ctl_idx = i;
2385			break;
2386		}
2387	}
2388
2389	/* If we have a CTL dataset available grab it and find the
2390	 * edge power for our frequency */
2391	if (ctl_idx == 0xFF)
2392		return;
2393
2394	/* Edge powers are sorted by frequency from lower
2395	 * to higher. Each CTL corresponds to 8 edge power
2396	 * measurements. */
2397	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2398
2399	/* Don't do boundaries check because we
2400	 * might have more that one bands defined
2401	 * for this mode */
2402
2403	/* Get the edge power that's closer to our
2404	 * frequency */
2405	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2406		rep_idx += i;
2407		if (target <= rep[rep_idx].freq)
2408			edge_pwr = (s16) rep[rep_idx].edge;
2409	}
2410
2411	if (edge_pwr)
2412		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2413}
2414
2415
2416/*
2417 * Power to PCDAC table functions
2418 */
2419
2420/*
2421 * Fill Power to PCDAC table on RF5111
2422 *
2423 * No further processing is needed for RF5111, the only thing we have to
2424 * do is fill the values below and above calibration range since eeprom data
2425 * may not cover the entire PCDAC table.
2426 */
2427static void
2428ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2429							s16 *table_max)
2430{
2431	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2432	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2433	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2434	s16	min_pwr, max_pwr;
2435
2436	/* Get table boundaries */
2437	min_pwr = table_min[0];
2438	pcdac_0 = pcdac_tmp[0];
2439
2440	max_pwr = table_max[0];
2441	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2442
2443	/* Extrapolate below minimum using pcdac_0 */
2444	pcdac_i = 0;
2445	for (i = 0; i < min_pwr; i++)
2446		pcdac_out[pcdac_i++] = pcdac_0;
2447
2448	/* Copy values from pcdac_tmp */
2449	pwr_idx = min_pwr;
2450	for (i = 0 ; pwr_idx <= max_pwr &&
2451	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2452		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2453		pwr_idx++;
2454	}
2455
2456	/* Extrapolate above maximum */
2457	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2458		pcdac_out[pcdac_i++] = pcdac_n;
2459
2460}
2461
2462/*
2463 * Combine available XPD Curves and fill Linear Power to PCDAC table
2464 * on RF5112
2465 *
2466 * RFX112 can have up to 2 curves (one for low txpower range and one for
2467 * higher txpower range). We need to put them both on pcdac_out and place
2468 * them in the correct location. In case we only have one curve available
2469 * just fit it on pcdac_out (it's supposed to cover the entire range of
2470 * available pwr levels since it's always the higher power curve). Extrapolate
2471 * below and above final table if needed.
2472 */
2473static void
2474ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2475						s16 *table_max, u8 pdcurves)
2476{
2477	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2478	u8	*pcdac_low_pwr;
2479	u8	*pcdac_high_pwr;
2480	u8	*pcdac_tmp;
2481	u8	pwr;
2482	s16	max_pwr_idx;
2483	s16	min_pwr_idx;
2484	s16	mid_pwr_idx = 0;
2485	/* Edge flag turs on the 7nth bit on the PCDAC
2486	 * to delcare the higher power curve (force values
2487	 * to be greater than 64). If we only have one curve
2488	 * we don't need to set this, if we have 2 curves and
2489	 * fill the table backwards this can also be used to
2490	 * switch from higher power curve to lower power curve */
2491	u8	edge_flag;
2492	int	i;
2493
2494	/* When we have only one curve available
2495	 * that's the higher power curve. If we have
2496	 * two curves the first is the high power curve
2497	 * and the next is the low power curve. */
2498	if (pdcurves > 1) {
2499		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2500		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2501		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2502		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2503
2504		/* If table size goes beyond 31.5dB, keep the
2505		 * upper 31.5dB range when setting tx power.
2506		 * Note: 126 = 31.5 dB in quarter dB steps */
2507		if (table_max[0] - table_min[1] > 126)
2508			min_pwr_idx = table_max[0] - 126;
2509		else
2510			min_pwr_idx = table_min[1];
2511
2512		/* Since we fill table backwards
2513		 * start from high power curve */
2514		pcdac_tmp = pcdac_high_pwr;
2515
2516		edge_flag = 0x40;
2517	} else {
2518		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2519		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2520		min_pwr_idx = table_min[0];
2521		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2522		pcdac_tmp = pcdac_high_pwr;
2523		edge_flag = 0;
2524	}
2525
2526	/* This is used when setting tx power*/
2527	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2528
2529	/* Fill Power to PCDAC table backwards */
2530	pwr = max_pwr_idx;
2531	for (i = 63; i >= 0; i--) {
2532		/* Entering lower power range, reset
2533		 * edge flag and set pcdac_tmp to lower
2534		 * power curve.*/
2535		if (edge_flag == 0x40 &&
2536		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2537			edge_flag = 0x00;
2538			pcdac_tmp = pcdac_low_pwr;
2539			pwr = mid_pwr_idx/2;
2540		}
2541
2542		/* Don't go below 1, extrapolate below if we have
2543		 * already swithced to the lower power curve -or
2544		 * we only have one curve and edge_flag is zero
2545		 * anyway */
2546		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2547			while (i >= 0) {
2548				pcdac_out[i] = pcdac_out[i + 1];
2549				i--;
2550			}
2551			break;
2552		}
2553
2554		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2555
2556		/* Extrapolate above if pcdac is greater than
2557		 * 126 -this can happen because we OR pcdac_out
2558		 * value with edge_flag on high power curve */
2559		if (pcdac_out[i] > 126)
2560			pcdac_out[i] = 126;
2561
2562		/* Decrease by a 0.5dB step */
2563		pwr--;
2564	}
2565}
2566
2567/* Write PCDAC values on hw */
2568static void
2569ath5k_write_pcdac_table(struct ath5k_hw *ah)
2570{
2571	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2572	int	i;
2573
2574	/*
2575	 * Write TX power values
2576	 */
2577	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2578		ath5k_hw_reg_write(ah,
2579			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2580			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2581			AR5K_PHY_PCDAC_TXPOWER(i));
2582	}
2583}
2584
2585
2586/*
2587 * Power to PDADC table functions
2588 */
2589
2590/*
2591 * Set the gain boundaries and create final Power to PDADC table
2592 *
2593 * We can have up to 4 pd curves, we need to do a simmilar process
2594 * as we do for RF5112. This time we don't have an edge_flag but we
2595 * set the gain boundaries on a separate register.
2596 */
2597static void
2598ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2599			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2600{
2601	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2602	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2603	u8 *pdadc_tmp;
2604	s16 pdadc_0;
2605	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2606	u8 pd_gain_overlap;
2607
2608	/* Note: Register value is initialized on initvals
2609	 * there is no feedback from hw.
2610	 * XXX: What about pd_gain_overlap from EEPROM ? */
2611	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2612		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2613
2614	/* Create final PDADC table */
2615	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2616		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2617
2618		if (pdg == pdcurves - 1)
2619			/* 2 dB boundary stretch for last
2620			 * (higher power) curve */
2621			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2622		else
2623			/* Set gain boundary in the middle
2624			 * between this curve and the next one */
2625			gain_boundaries[pdg] =
2626				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2627
2628		/* Sanity check in case our 2 db stretch got out of
2629		 * range. */
2630		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2631			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2632
2633		/* For the first curve (lower power)
2634		 * start from 0 dB */
2635		if (pdg == 0)
2636			pdadc_0 = 0;
2637		else
2638			/* For the other curves use the gain overlap */
2639			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2640							pd_gain_overlap;
2641
2642		/* Force each power step to be at least 0.5 dB */
2643		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2644			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2645		else
2646			pwr_step = 1;
2647
2648		/* If pdadc_0 is negative, we need to extrapolate
2649		 * below this pdgain by a number of pwr_steps */
2650		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2651			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2652			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2653			pdadc_0++;
2654		}
2655
2656		/* Set last pwr level, using gain boundaries */
2657		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2658		/* Limit it to be inside pwr range */
2659		table_size = pwr_max[pdg] - pwr_min[pdg];
2660		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2661
2662		/* Fill pdadc_out table */
2663		while (pdadc_0 < max_idx && pdadc_i < 128)
2664			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2665
2666		/* Need to extrapolate above this pdgain? */
2667		if (pdadc_n <= max_idx)
2668			continue;
2669
2670		/* Force each power step to be at least 0.5 dB */
2671		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2672			pwr_step = pdadc_tmp[table_size - 1] -
2673						pdadc_tmp[table_size - 2];
2674		else
2675			pwr_step = 1;
2676
2677		/* Extrapolate above */
2678		while ((pdadc_0 < (s16) pdadc_n) &&
2679		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2680			s16 tmp = pdadc_tmp[table_size - 1] +
2681					(pdadc_0 - max_idx) * pwr_step;
2682			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2683			pdadc_0++;
2684		}
2685	}
2686
2687	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2688		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2689		pdg++;
2690	}
2691
2692	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2693		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2694		pdadc_i++;
2695	}
2696
2697	/* Set gain boundaries */
2698	ath5k_hw_reg_write(ah,
2699		AR5K_REG_SM(pd_gain_overlap,
2700			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2701		AR5K_REG_SM(gain_boundaries[0],
2702			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2703		AR5K_REG_SM(gain_boundaries[1],
2704			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2705		AR5K_REG_SM(gain_boundaries[2],
2706			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2707		AR5K_REG_SM(gain_boundaries[3],
2708			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2709		AR5K_PHY_TPC_RG5);
2710
2711	/* Used for setting rate power table */
2712	ah->ah_txpower.txp_min_idx = pwr_min[0];
2713
2714}
2715
2716/* Write PDADC values on hw */
2717static void
2718ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
2719{
2720	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2721	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2722	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
2723	u8 pdcurves = ee->ee_pd_gains[ee_mode];
2724	u32 reg;
2725	u8 i;
2726
2727	/* Select the right pdgain curves */
2728
2729	/* Clear current settings */
2730	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2731	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2732		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2733		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2734		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2735
2736	/*
2737	 * Use pd_gains curve from eeprom
2738	 *
2739	 * This overrides the default setting from initvals
2740	 * in case some vendors (e.g. Zcomax) don't use the default
2741	 * curves. If we don't honor their settings we 'll get a
2742	 * 5dB (1 * gain overlap ?) drop.
2743	 */
2744	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2745
2746	switch (pdcurves) {
2747	case 3:
2748		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2749		/* Fall through */
2750	case 2:
2751		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2752		/* Fall through */
2753	case 1:
2754		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2755		break;
2756	}
2757	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2758
2759	/*
2760	 * Write TX power values
2761	 */
2762	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2763		ath5k_hw_reg_write(ah,
2764			((pdadc_out[4*i + 0] & 0xff) << 0) |
2765			((pdadc_out[4*i + 1] & 0xff) << 8) |
2766			((pdadc_out[4*i + 2] & 0xff) << 16) |
2767			((pdadc_out[4*i + 3] & 0xff) << 24),
2768			AR5K_PHY_PDADC_TXPOWER(i));
2769	}
2770}
2771
2772
2773/*
2774 * Common code for PCDAC/PDADC tables
2775 */
2776
2777/*
2778 * This is the main function that uses all of the above
2779 * to set PCDAC/PDADC table on hw for the current channel.
2780 * This table is used for tx power calibration on the basband,
2781 * without it we get weird tx power levels and in some cases
2782 * distorted spectral mask
2783 */
2784static int
2785ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2786			struct ieee80211_channel *channel,
2787			u8 ee_mode, u8 type)
2788{
2789	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2790	struct ath5k_chan_pcal_info *pcinfo_L;
2791	struct ath5k_chan_pcal_info *pcinfo_R;
2792	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2793	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2794	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2795	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2796	u8 *tmpL;
2797	u8 *tmpR;
2798	u32 target = channel->center_freq;
2799	int pdg, i;
2800
2801	/* Get surounding freq piers for this channel */
2802	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2803						&pcinfo_L,
2804						&pcinfo_R);
2805
2806	/* Loop over pd gain curves on
2807	 * surounding freq piers by index */
2808	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2809
2810		/* Fill curves in reverse order
2811		 * from lower power (max gain)
2812		 * to higher power. Use curve -> idx
2813		 * backmapping we did on eeprom init */
2814		u8 idx = pdg_curve_to_idx[pdg];
2815
2816		/* Grab the needed curves by index */
2817		pdg_L = &pcinfo_L->pd_curves[idx];
2818		pdg_R = &pcinfo_R->pd_curves[idx];
2819
2820		/* Initialize the temp tables */
2821		tmpL = ah->ah_txpower.tmpL[pdg];
2822		tmpR = ah->ah_txpower.tmpR[pdg];
2823
2824		/* Set curve's x boundaries and create
2825		 * curves so that they cover the same
2826		 * range (if we don't do that one table
2827		 * will have values on some range and the
2828		 * other one won't have any so interpolation
2829		 * will fail) */
2830		table_min[pdg] = min(pdg_L->pd_pwr[0],
2831					pdg_R->pd_pwr[0]) / 2;
2832
2833		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2834				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2835
2836		/* Now create the curves on surrounding channels
2837		 * and interpolate if needed to get the final
2838		 * curve for this gain on this channel */
2839		switch (type) {
2840		case AR5K_PWRTABLE_LINEAR_PCDAC:
2841			/* Override min/max so that we don't loose
2842			 * accuracy (don't divide by 2) */
2843			table_min[pdg] = min(pdg_L->pd_pwr[0],
2844						pdg_R->pd_pwr[0]);
2845
2846			table_max[pdg] =
2847				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2848					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2849
2850			/* Override minimum so that we don't get
2851			 * out of bounds while extrapolating
2852			 * below. Don't do this when we have 2
2853			 * curves and we are on the high power curve
2854			 * because table_min is ok in this case */
2855			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2856
2857				table_min[pdg] =
2858					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2859								pdg_R->pd_step,
2860								pdg_L->pd_pwr,
2861								pdg_R->pd_pwr);
2862
2863				/* Don't go too low because we will
2864				 * miss the upper part of the curve.
2865				 * Note: 126 = 31.5dB (max power supported)
2866				 * in 0.25dB units */
2867				if (table_max[pdg] - table_min[pdg] > 126)
2868					table_min[pdg] = table_max[pdg] - 126;
2869			}
2870
2871			/* Fall through */
2872		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2873		case AR5K_PWRTABLE_PWR_TO_PDADC:
2874
2875			ath5k_create_power_curve(table_min[pdg],
2876						table_max[pdg],
2877						pdg_L->pd_pwr,
2878						pdg_L->pd_step,
2879						pdg_L->pd_points, tmpL, type);
2880
2881			/* We are in a calibration
2882			 * pier, no need to interpolate
2883			 * between freq piers */
2884			if (pcinfo_L == pcinfo_R)
2885				continue;
2886
2887			ath5k_create_power_curve(table_min[pdg],
2888						table_max[pdg],
2889						pdg_R->pd_pwr,
2890						pdg_R->pd_step,
2891						pdg_R->pd_points, tmpR, type);
2892			break;
2893		default:
2894			return -EINVAL;
2895		}
2896
2897		/* Interpolate between curves
2898		 * of surounding freq piers to
2899		 * get the final curve for this
2900		 * pd gain. Re-use tmpL for interpolation
2901		 * output */
2902		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2903		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2904			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2905							(s16) pcinfo_L->freq,
2906							(s16) pcinfo_R->freq,
2907							(s16) tmpL[i],
2908							(s16) tmpR[i]);
2909		}
2910	}
2911
2912	/* Now we have a set of curves for this
2913	 * channel on tmpL (x range is table_max - table_min
2914	 * and y values are tmpL[pdg][]) sorted in the same
2915	 * order as EEPROM (because we've used the backmapping).
2916	 * So for RF5112 it's from higher power to lower power
2917	 * and for RF2413 it's from lower power to higher power.
2918	 * For RF5111 we only have one curve. */
2919
2920	/* Fill min and max power levels for this
2921	 * channel by interpolating the values on
2922	 * surounding channels to complete the dataset */
2923	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2924					(s16) pcinfo_L->freq,
2925					(s16) pcinfo_R->freq,
2926					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2927
2928	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2929					(s16) pcinfo_L->freq,
2930					(s16) pcinfo_R->freq,
2931					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2932
2933	/* Fill PCDAC/PDADC table */
2934	switch (type) {
2935	case AR5K_PWRTABLE_LINEAR_PCDAC:
2936		/* For RF5112 we can have one or two curves
2937		 * and each curve covers a certain power lvl
2938		 * range so we need to do some more processing */
2939		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2940						ee->ee_pd_gains[ee_mode]);
2941
2942		/* Set txp.offset so that we can
2943		 * match max power value with max
2944		 * table index */
2945		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2946		break;
2947	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2948		/* We are done for RF5111 since it has only
2949		 * one curve, just fit the curve on the table */
2950		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2951
2952		/* No rate powertable adjustment for RF5111 */
2953		ah->ah_txpower.txp_min_idx = 0;
2954		ah->ah_txpower.txp_offset = 0;
2955		break;
2956	case AR5K_PWRTABLE_PWR_TO_PDADC:
2957		/* Set PDADC boundaries and fill
2958		 * final PDADC table */
2959		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2960						ee->ee_pd_gains[ee_mode]);
2961
2962		/* Set txp.offset, note that table_min
2963		 * can be negative */
2964		ah->ah_txpower.txp_offset = table_min[0];
2965		break;
2966	default:
2967		return -EINVAL;
2968	}
2969
2970	ah->ah_txpower.txp_setup = true;
2971
2972	return 0;
2973}
2974
2975/* Write power table for current channel to hw */
2976static void
2977ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
2978{
2979	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
2980		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
2981	else
2982		ath5k_write_pcdac_table(ah);
2983}
2984
2985/*
2986 * Per-rate tx power setting
2987 *
2988 * This is the code that sets the desired tx power (below
2989 * maximum) on hw for each rate (we also have TPC that sets
2990 * power per packet). We do that by providing an index on the
2991 * PCDAC/PDADC table we set up.
2992 */
2993
2994/*
2995 * Set rate power table
2996 *
2997 * For now we only limit txpower based on maximum tx power
2998 * supported by hw (what's inside rate_info). We need to limit
2999 * this even more, based on regulatory domain etc.
3000 *
3001 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3002 * and is indexed as follows:
3003 * rates[0] - rates[7] -> OFDM rates
3004 * rates[8] - rates[14] -> CCK rates
3005 * rates[15] -> XR rates (they all have the same power)
3006 */
3007static void
3008ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3009			struct ath5k_rate_pcal_info *rate_info,
3010			u8 ee_mode)
3011{
3012	unsigned int i;
3013	u16 *rates;
3014
3015	/* max_pwr is power level we got from driver/user in 0.5dB
3016	 * units, switch to 0.25dB units so we can compare */
3017	max_pwr *= 2;
3018	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3019
3020	/* apply rate limits */
3021	rates = ah->ah_txpower.txp_rates_power_table;
3022
3023	/* OFDM rates 6 to 24Mb/s */
3024	for (i = 0; i < 5; i++)
3025		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3026
3027	/* Rest OFDM rates */
3028	rates[5] = min(rates[0], rate_info->target_power_36);
3029	rates[6] = min(rates[0], rate_info->target_power_48);
3030	rates[7] = min(rates[0], rate_info->target_power_54);
3031
3032	/* CCK rates */
3033	/* 1L */
3034	rates[8] = min(rates[0], rate_info->target_power_6to24);
3035	/* 2L */
3036	rates[9] = min(rates[0], rate_info->target_power_36);
3037	/* 2S */
3038	rates[10] = min(rates[0], rate_info->target_power_36);
3039	/* 5L */
3040	rates[11] = min(rates[0], rate_info->target_power_48);
3041	/* 5S */
3042	rates[12] = min(rates[0], rate_info->target_power_48);
3043	/* 11L */
3044	rates[13] = min(rates[0], rate_info->target_power_54);
3045	/* 11S */
3046	rates[14] = min(rates[0], rate_info->target_power_54);
3047
3048	/* XR rates */
3049	rates[15] = min(rates[0], rate_info->target_power_6to24);
3050
3051	/* CCK rates have different peak to average ratio
3052	 * so we have to tweak their power so that gainf
3053	 * correction works ok. For this we use OFDM to
3054	 * CCK delta from eeprom */
3055	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3056	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3057		for (i = 8; i <= 15; i++)
3058			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3059
3060	/* Now that we have all rates setup use table offset to
3061	 * match the power range set by user with the power indices
3062	 * on PCDAC/PDADC table */
3063	for (i = 0; i < 16; i++) {
3064		rates[i] += ah->ah_txpower.txp_offset;
3065		/* Don't get out of bounds */
3066		if (rates[i] > 63)
3067			rates[i] = 63;
3068	}
3069
3070	/* Min/max in 0.25dB units */
3071	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3072	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3073	ah->ah_txpower.txp_ofdm = rates[7];
3074}
3075
3076
3077/*
3078 * Set transmission power
3079 */
3080static int
3081ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3082		 u8 txpower)
3083{
3084	struct ath5k_rate_pcal_info rate_info;
3085	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3086	int ee_mode;
3087	u8 type;
3088	int ret;
3089
3090	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3091		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3092		return -EINVAL;
3093	}
3094
3095	ee_mode = ath5k_eeprom_mode_from_channel(channel);
3096	if (ee_mode < 0) {
3097		ATH5K_ERR(ah->ah_sc,
3098			"invalid channel: %d\n", channel->center_freq);
3099		return -EINVAL;
3100	}
3101
3102	/* Initialize TX power table */
3103	switch (ah->ah_radio) {
3104	case AR5K_RF5110:
3105		/* TODO */
3106		return 0;
3107	case AR5K_RF5111:
3108		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3109		break;
3110	case AR5K_RF5112:
3111		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3112		break;
3113	case AR5K_RF2413:
3114	case AR5K_RF5413:
3115	case AR5K_RF2316:
3116	case AR5K_RF2317:
3117	case AR5K_RF2425:
3118		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3119		break;
3120	default:
3121		return -EINVAL;
3122	}
3123
3124	/*
3125	 * If we don't change channel/mode skip tx powertable calculation
3126	 * and use the cached one.
3127	 */
3128	if (!ah->ah_txpower.txp_setup ||
3129	    (channel->hw_value != curr_channel->hw_value) ||
3130	    (channel->center_freq != curr_channel->center_freq)) {
3131		/* Reset TX power values */
3132		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3133		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3134
3135		/* Calculate the powertable */
3136		ret = ath5k_setup_channel_powertable(ah, channel,
3137							ee_mode, type);
3138		if (ret)
3139			return ret;
3140	}
3141
3142	/* Write table on hw */
3143	ath5k_write_channel_powertable(ah, ee_mode, type);
3144
3145	/* Limit max power if we have a CTL available */
3146	ath5k_get_max_ctl_power(ah, channel);
3147
3148	/* FIXME: Antenna reduction stuff */
3149
3150	/* FIXME: Limit power on turbo modes */
3151
3152	/* FIXME: TPC scale reduction */
3153
3154	/* Get surounding channels for per-rate power table
3155	 * calibration */
3156	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3157
3158	/* Setup rate power table */
3159	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3160
3161	/* Write rate power table on hw */
3162	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3163		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3164		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3165
3166	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3167		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3168		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3169
3170	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3171		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3172		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3173
3174	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3175		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3176		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3177
3178	/* FIXME: TPC support */
3179	if (ah->ah_txpower.txp_tpc) {
3180		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3181			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3182
3183		ath5k_hw_reg_write(ah,
3184			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3185			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3186			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3187			AR5K_TPC);
3188	} else {
3189		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3190			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3191	}
3192
3193	return 0;
3194}
3195
3196int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3197{
3198	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3199		"changing txpower to %d\n", txpower);
3200
3201	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3202}
3203
3204/*************\
3205 Init function
3206\*************/
3207
3208int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3209		      u8 mode, bool fast)
3210{
3211	struct ieee80211_channel *curr_channel;
3212	int ret, i;
3213	u32 phy_tst1;
3214	ret = 0;
3215
3216	/*
3217	 * Sanity check for fast flag
3218	 * Don't try fast channel change when changing modulation
3219	 * mode/band. We check for chip compatibility on
3220	 * ath5k_hw_reset.
3221	 */
3222	curr_channel = ah->ah_current_channel;
3223	if (fast && (channel->hw_value != curr_channel->hw_value))
3224		return -EINVAL;
3225
3226	/*
3227	 * On fast channel change we only set the synth parameters
3228	 * while PHY is running, enable calibration and skip the rest.
3229	 */
3230	if (fast) {
3231		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3232				    AR5K_PHY_RFBUS_REQ_REQUEST);
3233		for (i = 0; i < 100; i++) {
3234			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3235				break;
3236			udelay(5);
3237		}
3238		/* Failed */
3239		if (i >= 100)
3240			return -EIO;
3241	}
3242
3243	/*
3244	 * Set TX power
3245	 *
3246	 * Note: We need to do that before we set
3247	 * RF buffer settings on 5211/5212+ so that we
3248	 * properly set curve indices.
3249	 */
3250	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3251			ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3252	if (ret)
3253		return ret;
3254
3255	/*
3256	 * For 5210 we do all initialization using
3257	 * initvals, so we don't have to modify
3258	 * any settings (5210 also only supports
3259	 * a/aturbo modes)
3260	 */
3261	if ((ah->ah_version != AR5K_AR5210) && !fast) {
3262
3263		/*
3264		 * Write initial RF gain settings
3265		 * This should work for both 5111/5112
3266		 */
3267		ret = ath5k_hw_rfgain_init(ah, channel->band);
3268		if (ret)
3269			return ret;
3270
3271		mdelay(1);
3272
3273		/*
3274		 * Write RF buffer
3275		 */
3276		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3277		if (ret)
3278			return ret;
3279
3280		/* Write OFDM timings on 5212*/
3281		if (ah->ah_version == AR5K_AR5212 &&
3282			channel->hw_value & CHANNEL_OFDM) {
3283
3284			ret = ath5k_hw_write_ofdm_timings(ah, channel);
3285			if (ret)
3286				return ret;
3287
3288			/* Spur info is available only from EEPROM versions
3289			 * greater than 5.3, but the EEPROM routines will use
3290			 * static values for older versions */
3291			if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3292				ath5k_hw_set_spur_mitigation_filter(ah,
3293								    channel);
3294		}
3295
3296		/*Enable/disable 802.11b mode on 5111
3297		(enable 2111 frequency converter + CCK)*/
3298		if (ah->ah_radio == AR5K_RF5111) {
3299			if (mode == AR5K_MODE_11B)
3300				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3301				    AR5K_TXCFG_B_MODE);
3302			else
3303				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3304				    AR5K_TXCFG_B_MODE);
3305		}
3306
3307	} else if (ah->ah_version == AR5K_AR5210) {
3308		mdelay(1);
3309		/* Disable phy and wait */
3310		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3311		mdelay(1);
3312	}
3313
3314	/* Set channel on PHY */
3315	ret = ath5k_hw_channel(ah, channel);
3316	if (ret)
3317		return ret;
3318
3319	/*
3320	 * Enable the PHY and wait until completion
3321	 * This includes BaseBand and Synthesizer
3322	 * activation.
3323	 */
3324	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3325
3326	/*
3327	 * On 5211+ read activation -> rx delay
3328	 * and use it.
3329	 */
3330	if (ah->ah_version != AR5K_AR5210) {
3331		u32 delay;
3332		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
3333			AR5K_PHY_RX_DELAY_M;
3334		delay = (channel->hw_value & CHANNEL_CCK) ?
3335			((delay << 2) / 22) : (delay / 10);
3336		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
3337			delay = delay << 1;
3338		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
3339			delay = delay << 2;
3340		/* XXX: /2 on turbo ? Let's be safe
3341		 * for now */
3342		udelay(100 + delay);
3343	} else {
3344		mdelay(1);
3345	}
3346
3347	if (fast)
3348		/*
3349		 * Release RF Bus grant
3350		 */
3351		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3352				    AR5K_PHY_RFBUS_REQ_REQUEST);
3353	else {
3354		/*
3355		 * Perform ADC test to see if baseband is ready
3356		 * Set tx hold and check adc test register
3357		 */
3358		phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3359		ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3360		for (i = 0; i <= 20; i++) {
3361			if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3362				break;
3363			udelay(200);
3364		}
3365		ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3366	}
3367
3368	/*
3369	 * Start automatic gain control calibration
3370	 *
3371	 * During AGC calibration RX path is re-routed to
3372	 * a power detector so we don't receive anything.
3373	 *
3374	 * This method is used to calibrate some static offsets
3375	 * used together with on-the fly I/Q calibration (the
3376	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3377	 * interrupt rx path.
3378	 *
3379	 * While rx path is re-routed to the power detector we also
3380	 * start a noise floor calibration to measure the
3381	 * card's noise floor (the noise we measure when we are not
3382	 * transmitting or receiving anything).
3383	 *
3384	 * If we are in a noisy environment, AGC calibration may time
3385	 * out and/or noise floor calibration might timeout.
3386	 */
3387	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3388				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3389
3390	/* At the same time start I/Q calibration for QAM constellation
3391	 * -no need for CCK- */
3392	ah->ah_calibration = false;
3393	if (!(mode == AR5K_MODE_11B)) {
3394		ah->ah_calibration = true;
3395		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3396				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3397		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3398				AR5K_PHY_IQ_RUN);
3399	}
3400
3401	/* Wait for gain calibration to finish (we check for I/Q calibration
3402	 * during ath5k_phy_calibrate) */
3403	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3404			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3405		ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
3406			channel->center_freq);
3407	}
3408
3409	/* Restore antenna mode */
3410	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3411
3412	return ret;
3413}
3414