[go: nahoru, domu]

phy.c revision 203c4805e91786f9a010bc7945a0fde70c9da28e
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#define _ATH5K_PHY
24
25#include <linux/delay.h>
26
27#include "ath5k.h"
28#include "reg.h"
29#include "base.h"
30#include "rfbuffer.h"
31#include "rfgain.h"
32
33/*
34 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
35 */
36static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
37					const struct ath5k_rf_reg *rf_regs,
38					u32 val, u8 reg_id, bool set)
39{
40	const struct ath5k_rf_reg *rfreg = NULL;
41	u8 offset, bank, num_bits, col, position;
42	u16 entry;
43	u32 mask, data, last_bit, bits_shifted, first_bit;
44	u32 *rfb;
45	s32 bits_left;
46	int i;
47
48	data = 0;
49	rfb = ah->ah_rf_banks;
50
51	for (i = 0; i < ah->ah_rf_regs_count; i++) {
52		if (rf_regs[i].index == reg_id) {
53			rfreg = &rf_regs[i];
54			break;
55		}
56	}
57
58	if (rfb == NULL || rfreg == NULL) {
59		ATH5K_PRINTF("Rf register not found!\n");
60		/* should not happen */
61		return 0;
62	}
63
64	bank = rfreg->bank;
65	num_bits = rfreg->field.len;
66	first_bit = rfreg->field.pos;
67	col = rfreg->field.col;
68
69	/* first_bit is an offset from bank's
70	 * start. Since we have all banks on
71	 * the same array, we use this offset
72	 * to mark each bank's start */
73	offset = ah->ah_offset[bank];
74
75	/* Boundary check */
76	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
77		ATH5K_PRINTF("invalid values at offset %u\n", offset);
78		return 0;
79	}
80
81	entry = ((first_bit - 1) / 8) + offset;
82	position = (first_bit - 1) % 8;
83
84	if (set)
85		data = ath5k_hw_bitswap(val, num_bits);
86
87	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
88	position = 0, entry++) {
89
90		last_bit = (position + bits_left > 8) ? 8 :
91					position + bits_left;
92
93		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
94								(col * 8);
95
96		if (set) {
97			rfb[entry] &= ~mask;
98			rfb[entry] |= ((data << position) << (col * 8)) & mask;
99			data >>= (8 - position);
100		} else {
101			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
102				<< bits_shifted;
103			bits_shifted += last_bit - position;
104		}
105
106		bits_left -= 8 - position;
107	}
108
109	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
110
111	return data;
112}
113
114/**********************\
115* RF Gain optimization *
116\**********************/
117
118/*
119 * This code is used to optimize rf gain on different environments
120 * (temprature mostly) based on feedback from a power detector.
121 *
122 * It's only used on RF5111 and RF5112, later RF chips seem to have
123 * auto adjustment on hw -notice they have a much smaller BANK 7 and
124 * no gain optimization ladder-.
125 *
126 * For more infos check out this patent doc
127 * http://www.freepatentsonline.com/7400691.html
128 *
129 * This paper describes power drops as seen on the receiver due to
130 * probe packets
131 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
132 * %20of%20Power%20Control.pdf
133 *
134 * And this is the MadWiFi bug entry related to the above
135 * http://madwifi-project.org/ticket/1659
136 * with various measurements and diagrams
137 *
138 * TODO: Deal with power drops due to probes by setting an apropriate
139 * tx power on the probe packets ! Make this part of the calibration process.
140 */
141
142/* Initialize ah_gain durring attach */
143int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
144{
145	/* Initialize the gain optimization values */
146	switch (ah->ah_radio) {
147	case AR5K_RF5111:
148		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
149		ah->ah_gain.g_low = 20;
150		ah->ah_gain.g_high = 35;
151		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
152		break;
153	case AR5K_RF5112:
154		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
155		ah->ah_gain.g_low = 20;
156		ah->ah_gain.g_high = 85;
157		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
158		break;
159	default:
160		return -EINVAL;
161	}
162
163	return 0;
164}
165
166/* Schedule a gain probe check on the next transmited packet.
167 * That means our next packet is going to be sent with lower
168 * tx power and a Peak to Average Power Detector (PAPD) will try
169 * to measure the gain.
170 *
171 * TODO: Use propper tx power setting for the probe packet so
172 * that we don't observe a serious power drop on the receiver
173 *
174 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
175 * just after we enable the probe so that we don't mess with
176 * standard traffic ? Maybe it's time to use sw interrupts and
177 * a probe tasklet !!!
178 */
179static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
180{
181
182	/* Skip if gain calibration is inactive or
183	 * we already handle a probe request */
184	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
185		return;
186
187	/* Send the packet with 2dB below max power as
188	 * patent doc suggest */
189	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4,
190			AR5K_PHY_PAPD_PROBE_TXPOWER) |
191			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
192
193	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
194
195}
196
197/* Calculate gain_F measurement correction
198 * based on the current step for RF5112 rev. 2 */
199static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
200{
201	u32 mix, step;
202	u32 *rf;
203	const struct ath5k_gain_opt *go;
204	const struct ath5k_gain_opt_step *g_step;
205	const struct ath5k_rf_reg *rf_regs;
206
207	/* Only RF5112 Rev. 2 supports it */
208	if ((ah->ah_radio != AR5K_RF5112) ||
209	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
210		return 0;
211
212	go = &rfgain_opt_5112;
213	rf_regs = rf_regs_5112a;
214	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
215
216	g_step = &go->go_step[ah->ah_gain.g_step_idx];
217
218	if (ah->ah_rf_banks == NULL)
219		return 0;
220
221	rf = ah->ah_rf_banks;
222	ah->ah_gain.g_f_corr = 0;
223
224	/* No VGA (Variable Gain Amplifier) override, skip */
225	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
226		return 0;
227
228	/* Mix gain stepping */
229	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
230
231	/* Mix gain override */
232	mix = g_step->gos_param[0];
233
234	switch (mix) {
235	case 3:
236		ah->ah_gain.g_f_corr = step * 2;
237		break;
238	case 2:
239		ah->ah_gain.g_f_corr = (step - 5) * 2;
240		break;
241	case 1:
242		ah->ah_gain.g_f_corr = step;
243		break;
244	default:
245		ah->ah_gain.g_f_corr = 0;
246		break;
247	}
248
249	return ah->ah_gain.g_f_corr;
250}
251
252/* Check if current gain_F measurement is in the range of our
253 * power detector windows. If we get a measurement outside range
254 * we know it's not accurate (detectors can't measure anything outside
255 * their detection window) so we must ignore it */
256static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
257{
258	const struct ath5k_rf_reg *rf_regs;
259	u32 step, mix_ovr, level[4];
260	u32 *rf;
261
262	if (ah->ah_rf_banks == NULL)
263		return false;
264
265	rf = ah->ah_rf_banks;
266
267	if (ah->ah_radio == AR5K_RF5111) {
268
269		rf_regs = rf_regs_5111;
270		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
271
272		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
273			false);
274
275		level[0] = 0;
276		level[1] = (step == 63) ? 50 : step + 4;
277		level[2] = (step != 63) ? 64 : level[0];
278		level[3] = level[2] + 50 ;
279
280		ah->ah_gain.g_high = level[3] -
281			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
282		ah->ah_gain.g_low = level[0] +
283			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
284	} else {
285
286		rf_regs = rf_regs_5112;
287		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
288
289		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
290			false);
291
292		level[0] = level[2] = 0;
293
294		if (mix_ovr == 1) {
295			level[1] = level[3] = 83;
296		} else {
297			level[1] = level[3] = 107;
298			ah->ah_gain.g_high = 55;
299		}
300	}
301
302	return (ah->ah_gain.g_current >= level[0] &&
303			ah->ah_gain.g_current <= level[1]) ||
304		(ah->ah_gain.g_current >= level[2] &&
305			ah->ah_gain.g_current <= level[3]);
306}
307
308/* Perform gain_F adjustment by choosing the right set
309 * of parameters from rf gain optimization ladder */
310static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
311{
312	const struct ath5k_gain_opt *go;
313	const struct ath5k_gain_opt_step *g_step;
314	int ret = 0;
315
316	switch (ah->ah_radio) {
317	case AR5K_RF5111:
318		go = &rfgain_opt_5111;
319		break;
320	case AR5K_RF5112:
321		go = &rfgain_opt_5112;
322		break;
323	default:
324		return 0;
325	}
326
327	g_step = &go->go_step[ah->ah_gain.g_step_idx];
328
329	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
330
331		/* Reached maximum */
332		if (ah->ah_gain.g_step_idx == 0)
333			return -1;
334
335		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
336				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
337				ah->ah_gain.g_step_idx > 0;
338				g_step = &go->go_step[ah->ah_gain.g_step_idx])
339			ah->ah_gain.g_target -= 2 *
340			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
341			    g_step->gos_gain);
342
343		ret = 1;
344		goto done;
345	}
346
347	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
348
349		/* Reached minimum */
350		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
351			return -2;
352
353		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
354				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
355				ah->ah_gain.g_step_idx < go->go_steps_count-1;
356				g_step = &go->go_step[ah->ah_gain.g_step_idx])
357			ah->ah_gain.g_target -= 2 *
358			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
359			    g_step->gos_gain);
360
361		ret = 2;
362		goto done;
363	}
364
365done:
366	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
367		"ret %d, gain step %u, current gain %u, target gain %u\n",
368		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
369		ah->ah_gain.g_target);
370
371	return ret;
372}
373
374/* Main callback for thermal rf gain calibration engine
375 * Check for a new gain reading and schedule an adjustment
376 * if needed.
377 *
378 * TODO: Use sw interrupt to schedule reset if gain_F needs
379 * adjustment */
380enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
381{
382	u32 data, type;
383	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
384
385	ATH5K_TRACE(ah->ah_sc);
386
387	if (ah->ah_rf_banks == NULL ||
388	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
389		return AR5K_RFGAIN_INACTIVE;
390
391	/* No check requested, either engine is inactive
392	 * or an adjustment is already requested */
393	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
394		goto done;
395
396	/* Read the PAPD (Peak to Average Power Detector)
397	 * register */
398	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
399
400	/* No probe is scheduled, read gain_F measurement */
401	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
402		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
403		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
404
405		/* If tx packet is CCK correct the gain_F measurement
406		 * by cck ofdm gain delta */
407		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
408			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
409				ah->ah_gain.g_current +=
410					ee->ee_cck_ofdm_gain_delta;
411			else
412				ah->ah_gain.g_current +=
413					AR5K_GAIN_CCK_PROBE_CORR;
414		}
415
416		/* Further correct gain_F measurement for
417		 * RF5112A radios */
418		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
419			ath5k_hw_rf_gainf_corr(ah);
420			ah->ah_gain.g_current =
421				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
422				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
423				0;
424		}
425
426		/* Check if measurement is ok and if we need
427		 * to adjust gain, schedule a gain adjustment,
428		 * else switch back to the acive state */
429		if (ath5k_hw_rf_check_gainf_readback(ah) &&
430		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
431		ath5k_hw_rf_gainf_adjust(ah)) {
432			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
433		} else {
434			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
435		}
436	}
437
438done:
439	return ah->ah_gain.g_state;
440}
441
442/* Write initial rf gain table to set the RF sensitivity
443 * this one works on all RF chips and has nothing to do
444 * with gain_F calibration */
445int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
446{
447	const struct ath5k_ini_rfgain *ath5k_rfg;
448	unsigned int i, size;
449
450	switch (ah->ah_radio) {
451	case AR5K_RF5111:
452		ath5k_rfg = rfgain_5111;
453		size = ARRAY_SIZE(rfgain_5111);
454		break;
455	case AR5K_RF5112:
456		ath5k_rfg = rfgain_5112;
457		size = ARRAY_SIZE(rfgain_5112);
458		break;
459	case AR5K_RF2413:
460		ath5k_rfg = rfgain_2413;
461		size = ARRAY_SIZE(rfgain_2413);
462		break;
463	case AR5K_RF2316:
464		ath5k_rfg = rfgain_2316;
465		size = ARRAY_SIZE(rfgain_2316);
466		break;
467	case AR5K_RF5413:
468		ath5k_rfg = rfgain_5413;
469		size = ARRAY_SIZE(rfgain_5413);
470		break;
471	case AR5K_RF2317:
472	case AR5K_RF2425:
473		ath5k_rfg = rfgain_2425;
474		size = ARRAY_SIZE(rfgain_2425);
475		break;
476	default:
477		return -EINVAL;
478	}
479
480	switch (freq) {
481	case AR5K_INI_RFGAIN_2GHZ:
482	case AR5K_INI_RFGAIN_5GHZ:
483		break;
484	default:
485		return -EINVAL;
486	}
487
488	for (i = 0; i < size; i++) {
489		AR5K_REG_WAIT(i);
490		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
491			(u32)ath5k_rfg[i].rfg_register);
492	}
493
494	return 0;
495}
496
497
498
499/********************\
500* RF Registers setup *
501\********************/
502
503
504/*
505 * Setup RF registers by writing rf buffer on hw
506 */
507int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
508		unsigned int mode)
509{
510	const struct ath5k_rf_reg *rf_regs;
511	const struct ath5k_ini_rfbuffer *ini_rfb;
512	const struct ath5k_gain_opt *go = NULL;
513	const struct ath5k_gain_opt_step *g_step;
514	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
515	u8 ee_mode = 0;
516	u32 *rfb;
517	int i, obdb = -1, bank = -1;
518
519	switch (ah->ah_radio) {
520	case AR5K_RF5111:
521		rf_regs = rf_regs_5111;
522		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
523		ini_rfb = rfb_5111;
524		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
525		go = &rfgain_opt_5111;
526		break;
527	case AR5K_RF5112:
528		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
529			rf_regs = rf_regs_5112a;
530			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
531			ini_rfb = rfb_5112a;
532			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
533		} else {
534			rf_regs = rf_regs_5112;
535			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
536			ini_rfb = rfb_5112;
537			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
538		}
539		go = &rfgain_opt_5112;
540		break;
541	case AR5K_RF2413:
542		rf_regs = rf_regs_2413;
543		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
544		ini_rfb = rfb_2413;
545		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
546		break;
547	case AR5K_RF2316:
548		rf_regs = rf_regs_2316;
549		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
550		ini_rfb = rfb_2316;
551		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
552		break;
553	case AR5K_RF5413:
554		rf_regs = rf_regs_5413;
555		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
556		ini_rfb = rfb_5413;
557		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
558		break;
559	case AR5K_RF2317:
560		rf_regs = rf_regs_2425;
561		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
562		ini_rfb = rfb_2317;
563		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
564		break;
565	case AR5K_RF2425:
566		rf_regs = rf_regs_2425;
567		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
568		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
569			ini_rfb = rfb_2425;
570			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
571		} else {
572			ini_rfb = rfb_2417;
573			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
574		}
575		break;
576	default:
577		return -EINVAL;
578	}
579
580	/* If it's the first time we set rf buffer, allocate
581	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
582	 * we set above */
583	if (ah->ah_rf_banks == NULL) {
584		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
585								GFP_KERNEL);
586		if (ah->ah_rf_banks == NULL) {
587			ATH5K_ERR(ah->ah_sc, "out of memory\n");
588			return -ENOMEM;
589		}
590	}
591
592	/* Copy values to modify them */
593	rfb = ah->ah_rf_banks;
594
595	for (i = 0; i < ah->ah_rf_banks_size; i++) {
596		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
597			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
598			return -EINVAL;
599		}
600
601		/* Bank changed, write down the offset */
602		if (bank != ini_rfb[i].rfb_bank) {
603			bank = ini_rfb[i].rfb_bank;
604			ah->ah_offset[bank] = i;
605		}
606
607		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
608	}
609
610	/* Set Output and Driver bias current (OB/DB) */
611	if (channel->hw_value & CHANNEL_2GHZ) {
612
613		if (channel->hw_value & CHANNEL_CCK)
614			ee_mode = AR5K_EEPROM_MODE_11B;
615		else
616			ee_mode = AR5K_EEPROM_MODE_11G;
617
618		/* For RF511X/RF211X combination we
619		 * use b_OB and b_DB parameters stored
620		 * in eeprom on ee->ee_ob[ee_mode][0]
621		 *
622		 * For all other chips we use OB/DB for 2Ghz
623		 * stored in the b/g modal section just like
624		 * 802.11a on ee->ee_ob[ee_mode][1] */
625		if ((ah->ah_radio == AR5K_RF5111) ||
626		(ah->ah_radio == AR5K_RF5112))
627			obdb = 0;
628		else
629			obdb = 1;
630
631		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
632						AR5K_RF_OB_2GHZ, true);
633
634		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
635						AR5K_RF_DB_2GHZ, true);
636
637	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
638	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
639			(ah->ah_radio == AR5K_RF5111)) {
640
641		/* For 11a, Turbo and XR we need to choose
642		 * OB/DB based on frequency range */
643		ee_mode = AR5K_EEPROM_MODE_11A;
644		obdb =	 channel->center_freq >= 5725 ? 3 :
645			(channel->center_freq >= 5500 ? 2 :
646			(channel->center_freq >= 5260 ? 1 :
647			 (channel->center_freq > 4000 ? 0 : -1)));
648
649		if (obdb < 0)
650			return -EINVAL;
651
652		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
653						AR5K_RF_OB_5GHZ, true);
654
655		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
656						AR5K_RF_DB_5GHZ, true);
657	}
658
659	g_step = &go->go_step[ah->ah_gain.g_step_idx];
660
661	/* Bank Modifications (chip-specific) */
662	if (ah->ah_radio == AR5K_RF5111) {
663
664		/* Set gain_F settings according to current step */
665		if (channel->hw_value & CHANNEL_OFDM) {
666
667			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
668					AR5K_PHY_FRAME_CTL_TX_CLIP,
669					g_step->gos_param[0]);
670
671			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
672							AR5K_RF_PWD_90, true);
673
674			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
675							AR5K_RF_PWD_84, true);
676
677			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
678						AR5K_RF_RFGAIN_SEL, true);
679
680			/* We programmed gain_F parameters, switch back
681			 * to active state */
682			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
683
684		}
685
686		/* Bank 6/7 setup */
687
688		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
689						AR5K_RF_PWD_XPD, true);
690
691		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
692						AR5K_RF_XPD_GAIN, true);
693
694		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
695						AR5K_RF_GAIN_I, true);
696
697		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
698						AR5K_RF_PLO_SEL, true);
699
700		/* TODO: Half/quarter channel support */
701	}
702
703	if (ah->ah_radio == AR5K_RF5112) {
704
705		/* Set gain_F settings according to current step */
706		if (channel->hw_value & CHANNEL_OFDM) {
707
708			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
709						AR5K_RF_MIXGAIN_OVR, true);
710
711			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
712						AR5K_RF_PWD_138, true);
713
714			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
715						AR5K_RF_PWD_137, true);
716
717			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
718						AR5K_RF_PWD_136, true);
719
720			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
721						AR5K_RF_PWD_132, true);
722
723			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
724						AR5K_RF_PWD_131, true);
725
726			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
727						AR5K_RF_PWD_130, true);
728
729			/* We programmed gain_F parameters, switch back
730			 * to active state */
731			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
732		}
733
734		/* Bank 6/7 setup */
735
736		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
737						AR5K_RF_XPD_SEL, true);
738
739		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
740			/* Rev. 1 supports only one xpd */
741			ath5k_hw_rfb_op(ah, rf_regs,
742						ee->ee_x_gain[ee_mode],
743						AR5K_RF_XPD_GAIN, true);
744
745		} else {
746			/* TODO: Set high and low gain bits */
747			ath5k_hw_rfb_op(ah, rf_regs,
748						ee->ee_x_gain[ee_mode],
749						AR5K_RF_PD_GAIN_LO, true);
750			ath5k_hw_rfb_op(ah, rf_regs,
751						ee->ee_x_gain[ee_mode],
752						AR5K_RF_PD_GAIN_HI, true);
753
754			/* Lower synth voltage on Rev 2 */
755			ath5k_hw_rfb_op(ah, rf_regs, 2,
756					AR5K_RF_HIGH_VC_CP, true);
757
758			ath5k_hw_rfb_op(ah, rf_regs, 2,
759					AR5K_RF_MID_VC_CP, true);
760
761			ath5k_hw_rfb_op(ah, rf_regs, 2,
762					AR5K_RF_LOW_VC_CP, true);
763
764			ath5k_hw_rfb_op(ah, rf_regs, 2,
765					AR5K_RF_PUSH_UP, true);
766
767			/* Decrease power consumption on 5213+ BaseBand */
768			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
769				ath5k_hw_rfb_op(ah, rf_regs, 1,
770						AR5K_RF_PAD2GND, true);
771
772				ath5k_hw_rfb_op(ah, rf_regs, 1,
773						AR5K_RF_XB2_LVL, true);
774
775				ath5k_hw_rfb_op(ah, rf_regs, 1,
776						AR5K_RF_XB5_LVL, true);
777
778				ath5k_hw_rfb_op(ah, rf_regs, 1,
779						AR5K_RF_PWD_167, true);
780
781				ath5k_hw_rfb_op(ah, rf_regs, 1,
782						AR5K_RF_PWD_166, true);
783			}
784		}
785
786		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
787						AR5K_RF_GAIN_I, true);
788
789		/* TODO: Half/quarter channel support */
790
791	}
792
793	if (ah->ah_radio == AR5K_RF5413 &&
794	channel->hw_value & CHANNEL_2GHZ) {
795
796		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
797									true);
798
799		/* Set optimum value for early revisions (on pci-e chips) */
800		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
801		ah->ah_mac_srev < AR5K_SREV_AR5413)
802			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
803						AR5K_RF_PWD_ICLOBUF_2G, true);
804
805	}
806
807	/* Write RF banks on hw */
808	for (i = 0; i < ah->ah_rf_banks_size; i++) {
809		AR5K_REG_WAIT(i);
810		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
811	}
812
813	return 0;
814}
815
816
817/**************************\
818  PHY/RF channel functions
819\**************************/
820
821/*
822 * Check if a channel is supported
823 */
824bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
825{
826	/* Check if the channel is in our supported range */
827	if (flags & CHANNEL_2GHZ) {
828		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
829		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
830			return true;
831	} else if (flags & CHANNEL_5GHZ)
832		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
833		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
834			return true;
835
836	return false;
837}
838
839/*
840 * Convertion needed for RF5110
841 */
842static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
843{
844	u32 athchan;
845
846	/*
847	 * Convert IEEE channel/MHz to an internal channel value used
848	 * by the AR5210 chipset. This has not been verified with
849	 * newer chipsets like the AR5212A who have a completely
850	 * different RF/PHY part.
851	 */
852	athchan = (ath5k_hw_bitswap(
853			(ieee80211_frequency_to_channel(
854				channel->center_freq) - 24) / 2, 5)
855				<< 1) | (1 << 6) | 0x1;
856	return athchan;
857}
858
859/*
860 * Set channel on RF5110
861 */
862static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
863		struct ieee80211_channel *channel)
864{
865	u32 data;
866
867	/*
868	 * Set the channel and wait
869	 */
870	data = ath5k_hw_rf5110_chan2athchan(channel);
871	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
872	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
873	mdelay(1);
874
875	return 0;
876}
877
878/*
879 * Convertion needed for 5111
880 */
881static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
882		struct ath5k_athchan_2ghz *athchan)
883{
884	int channel;
885
886	/* Cast this value to catch negative channel numbers (>= -19) */
887	channel = (int)ieee;
888
889	/*
890	 * Map 2GHz IEEE channel to 5GHz Atheros channel
891	 */
892	if (channel <= 13) {
893		athchan->a2_athchan = 115 + channel;
894		athchan->a2_flags = 0x46;
895	} else if (channel == 14) {
896		athchan->a2_athchan = 124;
897		athchan->a2_flags = 0x44;
898	} else if (channel >= 15 && channel <= 26) {
899		athchan->a2_athchan = ((channel - 14) * 4) + 132;
900		athchan->a2_flags = 0x46;
901	} else
902		return -EINVAL;
903
904	return 0;
905}
906
907/*
908 * Set channel on 5111
909 */
910static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
911		struct ieee80211_channel *channel)
912{
913	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
914	unsigned int ath5k_channel =
915		ieee80211_frequency_to_channel(channel->center_freq);
916	u32 data0, data1, clock;
917	int ret;
918
919	/*
920	 * Set the channel on the RF5111 radio
921	 */
922	data0 = data1 = 0;
923
924	if (channel->hw_value & CHANNEL_2GHZ) {
925		/* Map 2GHz channel to 5GHz Atheros channel ID */
926		ret = ath5k_hw_rf5111_chan2athchan(
927			ieee80211_frequency_to_channel(channel->center_freq),
928			&ath5k_channel_2ghz);
929		if (ret)
930			return ret;
931
932		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
933		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
934		    << 5) | (1 << 4);
935	}
936
937	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
938		clock = 1;
939		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
940			(clock << 1) | (1 << 10) | 1;
941	} else {
942		clock = 0;
943		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
944			<< 2) | (clock << 1) | (1 << 10) | 1;
945	}
946
947	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
948			AR5K_RF_BUFFER);
949	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
950			AR5K_RF_BUFFER_CONTROL_3);
951
952	return 0;
953}
954
955/*
956 * Set channel on 5112 and newer
957 */
958static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
959		struct ieee80211_channel *channel)
960{
961	u32 data, data0, data1, data2;
962	u16 c;
963
964	data = data0 = data1 = data2 = 0;
965	c = channel->center_freq;
966
967	if (c < 4800) {
968		if (!((c - 2224) % 5)) {
969			data0 = ((2 * (c - 704)) - 3040) / 10;
970			data1 = 1;
971		} else if (!((c - 2192) % 5)) {
972			data0 = ((2 * (c - 672)) - 3040) / 10;
973			data1 = 0;
974		} else
975			return -EINVAL;
976
977		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
978	} else if ((c - (c % 5)) != 2 || c > 5435) {
979		if (!(c % 20) && c >= 5120) {
980			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
981			data2 = ath5k_hw_bitswap(3, 2);
982		} else if (!(c % 10)) {
983			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
984			data2 = ath5k_hw_bitswap(2, 2);
985		} else if (!(c % 5)) {
986			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
987			data2 = ath5k_hw_bitswap(1, 2);
988		} else
989			return -EINVAL;
990	} else {
991		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
992		data2 = ath5k_hw_bitswap(0, 2);
993	}
994
995	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
996
997	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
998	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
999
1000	return 0;
1001}
1002
1003/*
1004 * Set the channel on the RF2425
1005 */
1006static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1007		struct ieee80211_channel *channel)
1008{
1009	u32 data, data0, data2;
1010	u16 c;
1011
1012	data = data0 = data2 = 0;
1013	c = channel->center_freq;
1014
1015	if (c < 4800) {
1016		data0 = ath5k_hw_bitswap((c - 2272), 8);
1017		data2 = 0;
1018	/* ? 5GHz ? */
1019	} else if ((c - (c % 5)) != 2 || c > 5435) {
1020		if (!(c % 20) && c < 5120)
1021			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1022		else if (!(c % 10))
1023			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1024		else if (!(c % 5))
1025			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1026		else
1027			return -EINVAL;
1028		data2 = ath5k_hw_bitswap(1, 2);
1029	} else {
1030		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1031		data2 = ath5k_hw_bitswap(0, 2);
1032	}
1033
1034	data = (data0 << 4) | data2 << 2 | 0x1001;
1035
1036	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1037	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1038
1039	return 0;
1040}
1041
1042/*
1043 * Set a channel on the radio chip
1044 */
1045int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1046{
1047	int ret;
1048	/*
1049	 * Check bounds supported by the PHY (we don't care about regultory
1050	 * restrictions at this point). Note: hw_value already has the band
1051	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1052	 * of the band by that */
1053	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1054		ATH5K_ERR(ah->ah_sc,
1055			"channel frequency (%u MHz) out of supported "
1056			"band range\n",
1057			channel->center_freq);
1058			return -EINVAL;
1059	}
1060
1061	/*
1062	 * Set the channel and wait
1063	 */
1064	switch (ah->ah_radio) {
1065	case AR5K_RF5110:
1066		ret = ath5k_hw_rf5110_channel(ah, channel);
1067		break;
1068	case AR5K_RF5111:
1069		ret = ath5k_hw_rf5111_channel(ah, channel);
1070		break;
1071	case AR5K_RF2425:
1072		ret = ath5k_hw_rf2425_channel(ah, channel);
1073		break;
1074	default:
1075		ret = ath5k_hw_rf5112_channel(ah, channel);
1076		break;
1077	}
1078
1079	if (ret)
1080		return ret;
1081
1082	/* Set JAPAN setting for channel 14 */
1083	if (channel->center_freq == 2484) {
1084		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1085				AR5K_PHY_CCKTXCTL_JAPAN);
1086	} else {
1087		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1088				AR5K_PHY_CCKTXCTL_WORLD);
1089	}
1090
1091	ah->ah_current_channel.center_freq = channel->center_freq;
1092	ah->ah_current_channel.hw_value = channel->hw_value;
1093	ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1094
1095	return 0;
1096}
1097
1098/*****************\
1099  PHY calibration
1100\*****************/
1101
1102/**
1103 * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
1104 *
1105 * @ah: struct ath5k_hw pointer we are operating on
1106 * @freq: the channel frequency, just used for error logging
1107 *
1108 * This function performs a noise floor calibration of the PHY and waits for
1109 * it to complete. Then the noise floor value is compared to some maximum
1110 * noise floor we consider valid.
1111 *
1112 * Note that this is different from what the madwifi HAL does: it reads the
1113 * noise floor and afterwards initiates the calibration. Since the noise floor
1114 * calibration can take some time to finish, depending on the current channel
1115 * use, that avoids the occasional timeout warnings we are seeing now.
1116 *
1117 * See the following link for an Atheros patent on noise floor calibration:
1118 * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
1119 * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
1120 *
1121 * XXX: Since during noise floor calibration antennas are detached according to
1122 * the patent, we should stop tx queues here.
1123 */
1124int
1125ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
1126{
1127	int ret;
1128	unsigned int i;
1129	s32 noise_floor;
1130
1131	/*
1132	 * Enable noise floor calibration
1133	 */
1134	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1135				AR5K_PHY_AGCCTL_NF);
1136
1137	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1138			AR5K_PHY_AGCCTL_NF, 0, false);
1139	if (ret) {
1140		ATH5K_ERR(ah->ah_sc,
1141			"noise floor calibration timeout (%uMHz)\n", freq);
1142		return -EAGAIN;
1143	}
1144
1145	/* Wait until the noise floor is calibrated and read the value */
1146	for (i = 20; i > 0; i--) {
1147		mdelay(1);
1148		noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1149		noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
1150		if (noise_floor & AR5K_PHY_NF_ACTIVE) {
1151			noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
1152
1153			if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
1154				break;
1155		}
1156	}
1157
1158	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1159		"noise floor %d\n", noise_floor);
1160
1161	if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
1162		ATH5K_ERR(ah->ah_sc,
1163			"noise floor calibration failed (%uMHz)\n", freq);
1164		return -EAGAIN;
1165	}
1166
1167	ah->ah_noise_floor = noise_floor;
1168
1169	return 0;
1170}
1171
1172/*
1173 * Perform a PHY calibration on RF5110
1174 * -Fix BPSK/QAM Constellation (I/Q correction)
1175 * -Calculate Noise Floor
1176 */
1177static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1178		struct ieee80211_channel *channel)
1179{
1180	u32 phy_sig, phy_agc, phy_sat, beacon;
1181	int ret;
1182
1183	/*
1184	 * Disable beacons and RX/TX queues, wait
1185	 */
1186	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1187		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1188	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1189	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1190
1191	mdelay(2);
1192
1193	/*
1194	 * Set the channel (with AGC turned off)
1195	 */
1196	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1197	udelay(10);
1198	ret = ath5k_hw_channel(ah, channel);
1199
1200	/*
1201	 * Activate PHY and wait
1202	 */
1203	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1204	mdelay(1);
1205
1206	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1207
1208	if (ret)
1209		return ret;
1210
1211	/*
1212	 * Calibrate the radio chip
1213	 */
1214
1215	/* Remember normal state */
1216	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1217	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1218	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1219
1220	/* Update radio registers */
1221	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1222		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1223
1224	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1225			AR5K_PHY_AGCCOARSE_LO)) |
1226		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1227		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1228
1229	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1230			AR5K_PHY_ADCSAT_THR)) |
1231		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1232		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1233
1234	udelay(20);
1235
1236	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1237	udelay(10);
1238	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1239	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1240
1241	mdelay(1);
1242
1243	/*
1244	 * Enable calibration and wait until completion
1245	 */
1246	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1247
1248	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1249			AR5K_PHY_AGCCTL_CAL, 0, false);
1250
1251	/* Reset to normal state */
1252	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1253	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1254	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1255
1256	if (ret) {
1257		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1258				channel->center_freq);
1259		return ret;
1260	}
1261
1262	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1263
1264	/*
1265	 * Re-enable RX/TX and beacons
1266	 */
1267	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1268		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1269	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1270
1271	return 0;
1272}
1273
1274/*
1275 * Perform a PHY calibration on RF5111/5112 and newer chips
1276 */
1277static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1278		struct ieee80211_channel *channel)
1279{
1280	u32 i_pwr, q_pwr;
1281	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1282	int i;
1283	ATH5K_TRACE(ah->ah_sc);
1284
1285	if (!ah->ah_calibration ||
1286		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1287		goto done;
1288
1289	/* Calibration has finished, get the results and re-run */
1290	for (i = 0; i <= 10; i++) {
1291		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1292		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1293		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1294	}
1295
1296	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1297	q_coffd = q_pwr >> 7;
1298
1299	/* No correction */
1300	if (i_coffd == 0 || q_coffd == 0)
1301		goto done;
1302
1303	i_coff = ((-iq_corr) / i_coffd) & 0x3f;
1304
1305	/* Boundary check */
1306	if (i_coff > 31)
1307		i_coff = 31;
1308	if (i_coff < -32)
1309		i_coff = -32;
1310
1311	q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
1312
1313	/* Boundary check */
1314	if (q_coff > 15)
1315		q_coff = 15;
1316	if (q_coff < -16)
1317		q_coff = -16;
1318
1319	/* Commit new I/Q value */
1320	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1321		((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1322
1323	/* Re-enable calibration -if we don't we'll commit
1324	 * the same values again and again */
1325	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1326			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1327	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1328
1329done:
1330
1331	/* TODO: Separate noise floor calibration from I/Q calibration
1332	 * since noise floor calibration interrupts rx path while I/Q
1333	 * calibration doesn't. We don't need to run noise floor calibration
1334	 * as often as I/Q calibration.*/
1335	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1336
1337	/* Initiate a gain_F calibration */
1338	ath5k_hw_request_rfgain_probe(ah);
1339
1340	return 0;
1341}
1342
1343/*
1344 * Perform a PHY calibration
1345 */
1346int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1347		struct ieee80211_channel *channel)
1348{
1349	int ret;
1350
1351	if (ah->ah_radio == AR5K_RF5110)
1352		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1353	else
1354		ret = ath5k_hw_rf511x_calibrate(ah, channel);
1355
1356	return ret;
1357}
1358
1359int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1360{
1361	ATH5K_TRACE(ah->ah_sc);
1362	/*Just a try M.F.*/
1363	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1364
1365	return 0;
1366}
1367
1368/********************\
1369  Misc PHY functions
1370\********************/
1371
1372/*
1373 * Get the PHY Chip revision
1374 */
1375u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1376{
1377	unsigned int i;
1378	u32 srev;
1379	u16 ret;
1380
1381	ATH5K_TRACE(ah->ah_sc);
1382
1383	/*
1384	 * Set the radio chip access register
1385	 */
1386	switch (chan) {
1387	case CHANNEL_2GHZ:
1388		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1389		break;
1390	case CHANNEL_5GHZ:
1391		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1392		break;
1393	default:
1394		return 0;
1395	}
1396
1397	mdelay(2);
1398
1399	/* ...wait until PHY is ready and read the selected radio revision */
1400	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1401
1402	for (i = 0; i < 8; i++)
1403		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1404
1405	if (ah->ah_version == AR5K_AR5210) {
1406		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1407		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1408	} else {
1409		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1410		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1411				((srev & 0x0f) << 4), 8);
1412	}
1413
1414	/* Reset to the 5GHz mode */
1415	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1416
1417	return ret;
1418}
1419
1420void /*TODO:Boundary check*/
1421ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant)
1422{
1423	ATH5K_TRACE(ah->ah_sc);
1424	/*Just a try M.F.*/
1425	if (ah->ah_version != AR5K_AR5210)
1426		ath5k_hw_reg_write(ah, ant, AR5K_DEFAULT_ANTENNA);
1427}
1428
1429unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1430{
1431	ATH5K_TRACE(ah->ah_sc);
1432	/*Just a try M.F.*/
1433	if (ah->ah_version != AR5K_AR5210)
1434		return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
1435
1436	return false; /*XXX: What do we return for 5210 ?*/
1437}
1438
1439
1440/****************\
1441* TX power setup *
1442\****************/
1443
1444/*
1445 * Helper functions
1446 */
1447
1448/*
1449 * Do linear interpolation between two given (x, y) points
1450 */
1451static s16
1452ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1453					s16 y_left, s16 y_right)
1454{
1455	s16 ratio, result;
1456
1457	/* Avoid divide by zero and skip interpolation
1458	 * if we have the same point */
1459	if ((x_left == x_right) || (y_left == y_right))
1460		return y_left;
1461
1462	/*
1463	 * Since we use ints and not fps, we need to scale up in
1464	 * order to get a sane ratio value (or else we 'll eg. get
1465	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1466	 * to have some accuracy both for 0.5 and 0.25 steps.
1467	 */
1468	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1469
1470	/* Now scale down to be in range */
1471	result = y_left + (ratio * (target - x_left) / 100);
1472
1473	return result;
1474}
1475
1476/*
1477 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1478 *
1479 * Since we have the top of the curve and we draw the line below
1480 * until we reach 1 (1 pcdac step) we need to know which point
1481 * (x value) that is so that we don't go below y axis and have negative
1482 * pcdac values when creating the curve, or fill the table with zeroes.
1483 */
1484static s16
1485ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1486				const s16 *pwrL, const s16 *pwrR)
1487{
1488	s8 tmp;
1489	s16 min_pwrL, min_pwrR;
1490	s16 pwr_i = pwrL[0];
1491
1492	do {
1493		pwr_i--;
1494		tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1495						pwrL[0], pwrL[1],
1496						stepL[0], stepL[1]);
1497
1498	} while (tmp > 1);
1499
1500	min_pwrL = pwr_i;
1501
1502	pwr_i = pwrR[0];
1503	do {
1504		pwr_i--;
1505		tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1506						pwrR[0], pwrR[1],
1507						stepR[0], stepR[1]);
1508
1509	} while (tmp > 1);
1510
1511	min_pwrR = pwr_i;
1512
1513	/* Keep the right boundary so that it works for both curves */
1514	return max(min_pwrL, min_pwrR);
1515}
1516
1517/*
1518 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1519 * Power to PCDAC curve.
1520 *
1521 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1522 * steps (offsets) on y axis. Power can go up to 31.5dB and max
1523 * PCDAC/PDADC step for each curve is 64 but we can write more than
1524 * one curves on hw so we can go up to 128 (which is the max step we
1525 * can write on the final table).
1526 *
1527 * We write y values (PCDAC/PDADC steps) on hw.
1528 */
1529static void
1530ath5k_create_power_curve(s16 pmin, s16 pmax,
1531			const s16 *pwr, const u8 *vpd,
1532			u8 num_points,
1533			u8 *vpd_table, u8 type)
1534{
1535	u8 idx[2] = { 0, 1 };
1536	s16 pwr_i = 2*pmin;
1537	int i;
1538
1539	if (num_points < 2)
1540		return;
1541
1542	/* We want the whole line, so adjust boundaries
1543	 * to cover the entire power range. Note that
1544	 * power values are already 0.25dB so no need
1545	 * to multiply pwr_i by 2 */
1546	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
1547		pwr_i = pmin;
1548		pmin = 0;
1549		pmax = 63;
1550	}
1551
1552	/* Find surrounding turning points (TPs)
1553	 * and interpolate between them */
1554	for (i = 0; (i <= (u16) (pmax - pmin)) &&
1555	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
1556
1557		/* We passed the right TP, move to the next set of TPs
1558		 * if we pass the last TP, extrapolate above using the last
1559		 * two TPs for ratio */
1560		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
1561			idx[0]++;
1562			idx[1]++;
1563		}
1564
1565		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
1566						pwr[idx[0]], pwr[idx[1]],
1567						vpd[idx[0]], vpd[idx[1]]);
1568
1569		/* Increase by 0.5dB
1570		 * (0.25 dB units) */
1571		pwr_i += 2;
1572	}
1573}
1574
1575/*
1576 * Get the surrounding per-channel power calibration piers
1577 * for a given frequency so that we can interpolate between
1578 * them and come up with an apropriate dataset for our current
1579 * channel.
1580 */
1581static void
1582ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
1583			struct ieee80211_channel *channel,
1584			struct ath5k_chan_pcal_info **pcinfo_l,
1585			struct ath5k_chan_pcal_info **pcinfo_r)
1586{
1587	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1588	struct ath5k_chan_pcal_info *pcinfo;
1589	u8 idx_l, idx_r;
1590	u8 mode, max, i;
1591	u32 target = channel->center_freq;
1592
1593	idx_l = 0;
1594	idx_r = 0;
1595
1596	if (!(channel->hw_value & CHANNEL_OFDM)) {
1597		pcinfo = ee->ee_pwr_cal_b;
1598		mode = AR5K_EEPROM_MODE_11B;
1599	} else if (channel->hw_value & CHANNEL_2GHZ) {
1600		pcinfo = ee->ee_pwr_cal_g;
1601		mode = AR5K_EEPROM_MODE_11G;
1602	} else {
1603		pcinfo = ee->ee_pwr_cal_a;
1604		mode = AR5K_EEPROM_MODE_11A;
1605	}
1606	max = ee->ee_n_piers[mode] - 1;
1607
1608	/* Frequency is below our calibrated
1609	 * range. Use the lowest power curve
1610	 * we have */
1611	if (target < pcinfo[0].freq) {
1612		idx_l = idx_r = 0;
1613		goto done;
1614	}
1615
1616	/* Frequency is above our calibrated
1617	 * range. Use the highest power curve
1618	 * we have */
1619	if (target > pcinfo[max].freq) {
1620		idx_l = idx_r = max;
1621		goto done;
1622	}
1623
1624	/* Frequency is inside our calibrated
1625	 * channel range. Pick the surrounding
1626	 * calibration piers so that we can
1627	 * interpolate */
1628	for (i = 0; i <= max; i++) {
1629
1630		/* Frequency matches one of our calibration
1631		 * piers, no need to interpolate, just use
1632		 * that calibration pier */
1633		if (pcinfo[i].freq == target) {
1634			idx_l = idx_r = i;
1635			goto done;
1636		}
1637
1638		/* We found a calibration pier that's above
1639		 * frequency, use this pier and the previous
1640		 * one to interpolate */
1641		if (target < pcinfo[i].freq) {
1642			idx_r = i;
1643			idx_l = idx_r - 1;
1644			goto done;
1645		}
1646	}
1647
1648done:
1649	*pcinfo_l = &pcinfo[idx_l];
1650	*pcinfo_r = &pcinfo[idx_r];
1651
1652	return;
1653}
1654
1655/*
1656 * Get the surrounding per-rate power calibration data
1657 * for a given frequency and interpolate between power
1658 * values to set max target power supported by hw for
1659 * each rate.
1660 */
1661static void
1662ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
1663			struct ieee80211_channel *channel,
1664			struct ath5k_rate_pcal_info *rates)
1665{
1666	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1667	struct ath5k_rate_pcal_info *rpinfo;
1668	u8 idx_l, idx_r;
1669	u8 mode, max, i;
1670	u32 target = channel->center_freq;
1671
1672	idx_l = 0;
1673	idx_r = 0;
1674
1675	if (!(channel->hw_value & CHANNEL_OFDM)) {
1676		rpinfo = ee->ee_rate_tpwr_b;
1677		mode = AR5K_EEPROM_MODE_11B;
1678	} else if (channel->hw_value & CHANNEL_2GHZ) {
1679		rpinfo = ee->ee_rate_tpwr_g;
1680		mode = AR5K_EEPROM_MODE_11G;
1681	} else {
1682		rpinfo = ee->ee_rate_tpwr_a;
1683		mode = AR5K_EEPROM_MODE_11A;
1684	}
1685	max = ee->ee_rate_target_pwr_num[mode] - 1;
1686
1687	/* Get the surrounding calibration
1688	 * piers - same as above */
1689	if (target < rpinfo[0].freq) {
1690		idx_l = idx_r = 0;
1691		goto done;
1692	}
1693
1694	if (target > rpinfo[max].freq) {
1695		idx_l = idx_r = max;
1696		goto done;
1697	}
1698
1699	for (i = 0; i <= max; i++) {
1700
1701		if (rpinfo[i].freq == target) {
1702			idx_l = idx_r = i;
1703			goto done;
1704		}
1705
1706		if (target < rpinfo[i].freq) {
1707			idx_r = i;
1708			idx_l = idx_r - 1;
1709			goto done;
1710		}
1711	}
1712
1713done:
1714	/* Now interpolate power value, based on the frequency */
1715	rates->freq = target;
1716
1717	rates->target_power_6to24 =
1718		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1719					rpinfo[idx_r].freq,
1720					rpinfo[idx_l].target_power_6to24,
1721					rpinfo[idx_r].target_power_6to24);
1722
1723	rates->target_power_36 =
1724		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1725					rpinfo[idx_r].freq,
1726					rpinfo[idx_l].target_power_36,
1727					rpinfo[idx_r].target_power_36);
1728
1729	rates->target_power_48 =
1730		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1731					rpinfo[idx_r].freq,
1732					rpinfo[idx_l].target_power_48,
1733					rpinfo[idx_r].target_power_48);
1734
1735	rates->target_power_54 =
1736		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1737					rpinfo[idx_r].freq,
1738					rpinfo[idx_l].target_power_54,
1739					rpinfo[idx_r].target_power_54);
1740}
1741
1742/*
1743 * Get the max edge power for this channel if
1744 * we have such data from EEPROM's Conformance Test
1745 * Limits (CTL), and limit max power if needed.
1746 *
1747 * FIXME: Only works for world regulatory domains
1748 */
1749static void
1750ath5k_get_max_ctl_power(struct ath5k_hw *ah,
1751			struct ieee80211_channel *channel)
1752{
1753	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1754	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
1755	u8 *ctl_val = ee->ee_ctl;
1756	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
1757	s16 edge_pwr = 0;
1758	u8 rep_idx;
1759	u8 i, ctl_mode;
1760	u8 ctl_idx = 0xFF;
1761	u32 target = channel->center_freq;
1762
1763	/* Find out a CTL for our mode that's not mapped
1764	 * on a specific reg domain.
1765	 *
1766	 * TODO: Map our current reg domain to one of the 3 available
1767	 * reg domain ids so that we can support more CTLs. */
1768	switch (channel->hw_value & CHANNEL_MODES) {
1769	case CHANNEL_A:
1770		ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN;
1771		break;
1772	case CHANNEL_G:
1773		ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN;
1774		break;
1775	case CHANNEL_B:
1776		ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN;
1777		break;
1778	case CHANNEL_T:
1779		ctl_mode = AR5K_CTL_TURBO | AR5K_CTL_NO_REGDOMAIN;
1780		break;
1781	case CHANNEL_TG:
1782		ctl_mode = AR5K_CTL_TURBOG | AR5K_CTL_NO_REGDOMAIN;
1783		break;
1784	case CHANNEL_XR:
1785		/* Fall through */
1786	default:
1787		return;
1788	}
1789
1790	for (i = 0; i < ee->ee_ctls; i++) {
1791		if (ctl_val[i] == ctl_mode) {
1792			ctl_idx = i;
1793			break;
1794		}
1795	}
1796
1797	/* If we have a CTL dataset available grab it and find the
1798	 * edge power for our frequency */
1799	if (ctl_idx == 0xFF)
1800		return;
1801
1802	/* Edge powers are sorted by frequency from lower
1803	 * to higher. Each CTL corresponds to 8 edge power
1804	 * measurements. */
1805	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
1806
1807	/* Don't do boundaries check because we
1808	 * might have more that one bands defined
1809	 * for this mode */
1810
1811	/* Get the edge power that's closer to our
1812	 * frequency */
1813	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
1814		rep_idx += i;
1815		if (target <= rep[rep_idx].freq)
1816			edge_pwr = (s16) rep[rep_idx].edge;
1817	}
1818
1819	if (edge_pwr)
1820		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
1821}
1822
1823
1824/*
1825 * Power to PCDAC table functions
1826 */
1827
1828/*
1829 * Fill Power to PCDAC table on RF5111
1830 *
1831 * No further processing is needed for RF5111, the only thing we have to
1832 * do is fill the values below and above calibration range since eeprom data
1833 * may not cover the entire PCDAC table.
1834 */
1835static void
1836ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
1837							s16 *table_max)
1838{
1839	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
1840	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
1841	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
1842	s16	min_pwr, max_pwr;
1843
1844	/* Get table boundaries */
1845	min_pwr = table_min[0];
1846	pcdac_0 = pcdac_tmp[0];
1847
1848	max_pwr = table_max[0];
1849	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
1850
1851	/* Extrapolate below minimum using pcdac_0 */
1852	pcdac_i = 0;
1853	for (i = 0; i < min_pwr; i++)
1854		pcdac_out[pcdac_i++] = pcdac_0;
1855
1856	/* Copy values from pcdac_tmp */
1857	pwr_idx = min_pwr;
1858	for (i = 0 ; pwr_idx <= max_pwr &&
1859	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
1860		pcdac_out[pcdac_i++] = pcdac_tmp[i];
1861		pwr_idx++;
1862	}
1863
1864	/* Extrapolate above maximum */
1865	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
1866		pcdac_out[pcdac_i++] = pcdac_n;
1867
1868}
1869
1870/*
1871 * Combine available XPD Curves and fill Linear Power to PCDAC table
1872 * on RF5112
1873 *
1874 * RFX112 can have up to 2 curves (one for low txpower range and one for
1875 * higher txpower range). We need to put them both on pcdac_out and place
1876 * them in the correct location. In case we only have one curve available
1877 * just fit it on pcdac_out (it's supposed to cover the entire range of
1878 * available pwr levels since it's always the higher power curve). Extrapolate
1879 * below and above final table if needed.
1880 */
1881static void
1882ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
1883						s16 *table_max, u8 pdcurves)
1884{
1885	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
1886	u8	*pcdac_low_pwr;
1887	u8	*pcdac_high_pwr;
1888	u8	*pcdac_tmp;
1889	u8	pwr;
1890	s16	max_pwr_idx;
1891	s16	min_pwr_idx;
1892	s16	mid_pwr_idx = 0;
1893	/* Edge flag turs on the 7nth bit on the PCDAC
1894	 * to delcare the higher power curve (force values
1895	 * to be greater than 64). If we only have one curve
1896	 * we don't need to set this, if we have 2 curves and
1897	 * fill the table backwards this can also be used to
1898	 * switch from higher power curve to lower power curve */
1899	u8	edge_flag;
1900	int	i;
1901
1902	/* When we have only one curve available
1903	 * that's the higher power curve. If we have
1904	 * two curves the first is the high power curve
1905	 * and the next is the low power curve. */
1906	if (pdcurves > 1) {
1907		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
1908		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
1909		mid_pwr_idx = table_max[1] - table_min[1] - 1;
1910		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
1911
1912		/* If table size goes beyond 31.5dB, keep the
1913		 * upper 31.5dB range when setting tx power.
1914		 * Note: 126 = 31.5 dB in quarter dB steps */
1915		if (table_max[0] - table_min[1] > 126)
1916			min_pwr_idx = table_max[0] - 126;
1917		else
1918			min_pwr_idx = table_min[1];
1919
1920		/* Since we fill table backwards
1921		 * start from high power curve */
1922		pcdac_tmp = pcdac_high_pwr;
1923
1924		edge_flag = 0x40;
1925#if 0
1926		/* If both min and max power limits are in lower
1927		 * power curve's range, only use the low power curve.
1928		 * TODO: min/max levels are related to target
1929		 * power values requested from driver/user
1930		 * XXX: Is this really needed ? */
1931		if (min_pwr < table_max[1] &&
1932		max_pwr < table_max[1]) {
1933			edge_flag = 0;
1934			pcdac_tmp = pcdac_low_pwr;
1935			max_pwr_idx = (table_max[1] - table_min[1])/2;
1936		}
1937#endif
1938	} else {
1939		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
1940		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
1941		min_pwr_idx = table_min[0];
1942		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
1943		pcdac_tmp = pcdac_high_pwr;
1944		edge_flag = 0;
1945	}
1946
1947	/* This is used when setting tx power*/
1948	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
1949
1950	/* Fill Power to PCDAC table backwards */
1951	pwr = max_pwr_idx;
1952	for (i = 63; i >= 0; i--) {
1953		/* Entering lower power range, reset
1954		 * edge flag and set pcdac_tmp to lower
1955		 * power curve.*/
1956		if (edge_flag == 0x40 &&
1957		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
1958			edge_flag = 0x00;
1959			pcdac_tmp = pcdac_low_pwr;
1960			pwr = mid_pwr_idx/2;
1961		}
1962
1963		/* Don't go below 1, extrapolate below if we have
1964		 * already swithced to the lower power curve -or
1965		 * we only have one curve and edge_flag is zero
1966		 * anyway */
1967		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
1968			while (i >= 0) {
1969				pcdac_out[i] = pcdac_out[i + 1];
1970				i--;
1971			}
1972			break;
1973		}
1974
1975		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
1976
1977		/* Extrapolate above if pcdac is greater than
1978		 * 126 -this can happen because we OR pcdac_out
1979		 * value with edge_flag on high power curve */
1980		if (pcdac_out[i] > 126)
1981			pcdac_out[i] = 126;
1982
1983		/* Decrease by a 0.5dB step */
1984		pwr--;
1985	}
1986}
1987
1988/* Write PCDAC values on hw */
1989static void
1990ath5k_setup_pcdac_table(struct ath5k_hw *ah)
1991{
1992	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
1993	int	i;
1994
1995	/*
1996	 * Write TX power values
1997	 */
1998	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
1999		ath5k_hw_reg_write(ah,
2000			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2001			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2002			AR5K_PHY_PCDAC_TXPOWER(i));
2003	}
2004}
2005
2006
2007/*
2008 * Power to PDADC table functions
2009 */
2010
2011/*
2012 * Set the gain boundaries and create final Power to PDADC table
2013 *
2014 * We can have up to 4 pd curves, we need to do a simmilar process
2015 * as we do for RF5112. This time we don't have an edge_flag but we
2016 * set the gain boundaries on a separate register.
2017 */
2018static void
2019ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2020			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2021{
2022	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2023	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2024	u8 *pdadc_tmp;
2025	s16 pdadc_0;
2026	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2027	u8 pd_gain_overlap;
2028
2029	/* Note: Register value is initialized on initvals
2030	 * there is no feedback from hw.
2031	 * XXX: What about pd_gain_overlap from EEPROM ? */
2032	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2033		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2034
2035	/* Create final PDADC table */
2036	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2037		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2038
2039		if (pdg == pdcurves - 1)
2040			/* 2 dB boundary stretch for last
2041			 * (higher power) curve */
2042			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2043		else
2044			/* Set gain boundary in the middle
2045			 * between this curve and the next one */
2046			gain_boundaries[pdg] =
2047				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2048
2049		/* Sanity check in case our 2 db stretch got out of
2050		 * range. */
2051		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2052			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2053
2054		/* For the first curve (lower power)
2055		 * start from 0 dB */
2056		if (pdg == 0)
2057			pdadc_0 = 0;
2058		else
2059			/* For the other curves use the gain overlap */
2060			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2061							pd_gain_overlap;
2062
2063		/* Force each power step to be at least 0.5 dB */
2064		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2065			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2066		else
2067			pwr_step = 1;
2068
2069		/* If pdadc_0 is negative, we need to extrapolate
2070		 * below this pdgain by a number of pwr_steps */
2071		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2072			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2073			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2074			pdadc_0++;
2075		}
2076
2077		/* Set last pwr level, using gain boundaries */
2078		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2079		/* Limit it to be inside pwr range */
2080		table_size = pwr_max[pdg] - pwr_min[pdg];
2081		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2082
2083		/* Fill pdadc_out table */
2084		while (pdadc_0 < max_idx)
2085			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2086
2087		/* Need to extrapolate above this pdgain? */
2088		if (pdadc_n <= max_idx)
2089			continue;
2090
2091		/* Force each power step to be at least 0.5 dB */
2092		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2093			pwr_step = pdadc_tmp[table_size - 1] -
2094						pdadc_tmp[table_size - 2];
2095		else
2096			pwr_step = 1;
2097
2098		/* Extrapolate above */
2099		while ((pdadc_0 < (s16) pdadc_n) &&
2100		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2101			s16 tmp = pdadc_tmp[table_size - 1] +
2102					(pdadc_0 - max_idx) * pwr_step;
2103			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2104			pdadc_0++;
2105		}
2106	}
2107
2108	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2109		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2110		pdg++;
2111	}
2112
2113	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2114		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2115		pdadc_i++;
2116	}
2117
2118	/* Set gain boundaries */
2119	ath5k_hw_reg_write(ah,
2120		AR5K_REG_SM(pd_gain_overlap,
2121			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2122		AR5K_REG_SM(gain_boundaries[0],
2123			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2124		AR5K_REG_SM(gain_boundaries[1],
2125			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2126		AR5K_REG_SM(gain_boundaries[2],
2127			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2128		AR5K_REG_SM(gain_boundaries[3],
2129			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2130		AR5K_PHY_TPC_RG5);
2131
2132	/* Used for setting rate power table */
2133	ah->ah_txpower.txp_min_idx = pwr_min[0];
2134
2135}
2136
2137/* Write PDADC values on hw */
2138static void
2139ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2140			u8 pdcurves, u8 *pdg_to_idx)
2141{
2142	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2143	u32 reg;
2144	u8 i;
2145
2146	/* Select the right pdgain curves */
2147
2148	/* Clear current settings */
2149	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2150	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2151		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2152		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2153		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2154
2155	/*
2156	 * Use pd_gains curve from eeprom
2157	 *
2158	 * This overrides the default setting from initvals
2159	 * in case some vendors (e.g. Zcomax) don't use the default
2160	 * curves. If we don't honor their settings we 'll get a
2161	 * 5dB (1 * gain overlap ?) drop.
2162	 */
2163	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2164
2165	switch (pdcurves) {
2166	case 3:
2167		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2168		/* Fall through */
2169	case 2:
2170		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2171		/* Fall through */
2172	case 1:
2173		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2174		break;
2175	}
2176	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2177
2178	/*
2179	 * Write TX power values
2180	 */
2181	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2182		ath5k_hw_reg_write(ah,
2183			((pdadc_out[4*i + 0] & 0xff) << 0) |
2184			((pdadc_out[4*i + 1] & 0xff) << 8) |
2185			((pdadc_out[4*i + 2] & 0xff) << 16) |
2186			((pdadc_out[4*i + 3] & 0xff) << 24),
2187			AR5K_PHY_PDADC_TXPOWER(i));
2188	}
2189}
2190
2191
2192/*
2193 * Common code for PCDAC/PDADC tables
2194 */
2195
2196/*
2197 * This is the main function that uses all of the above
2198 * to set PCDAC/PDADC table on hw for the current channel.
2199 * This table is used for tx power calibration on the basband,
2200 * without it we get weird tx power levels and in some cases
2201 * distorted spectral mask
2202 */
2203static int
2204ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2205			struct ieee80211_channel *channel,
2206			u8 ee_mode, u8 type)
2207{
2208	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2209	struct ath5k_chan_pcal_info *pcinfo_L;
2210	struct ath5k_chan_pcal_info *pcinfo_R;
2211	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2212	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2213	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2214	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2215	u8 *tmpL;
2216	u8 *tmpR;
2217	u32 target = channel->center_freq;
2218	int pdg, i;
2219
2220	/* Get surounding freq piers for this channel */
2221	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2222						&pcinfo_L,
2223						&pcinfo_R);
2224
2225	/* Loop over pd gain curves on
2226	 * surounding freq piers by index */
2227	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2228
2229		/* Fill curves in reverse order
2230		 * from lower power (max gain)
2231		 * to higher power. Use curve -> idx
2232		 * backmaping we did on eeprom init */
2233		u8 idx = pdg_curve_to_idx[pdg];
2234
2235		/* Grab the needed curves by index */
2236		pdg_L = &pcinfo_L->pd_curves[idx];
2237		pdg_R = &pcinfo_R->pd_curves[idx];
2238
2239		/* Initialize the temp tables */
2240		tmpL = ah->ah_txpower.tmpL[pdg];
2241		tmpR = ah->ah_txpower.tmpR[pdg];
2242
2243		/* Set curve's x boundaries and create
2244		 * curves so that they cover the same
2245		 * range (if we don't do that one table
2246		 * will have values on some range and the
2247		 * other one won't have any so interpolation
2248		 * will fail) */
2249		table_min[pdg] = min(pdg_L->pd_pwr[0],
2250					pdg_R->pd_pwr[0]) / 2;
2251
2252		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2253				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2254
2255		/* Now create the curves on surrounding channels
2256		 * and interpolate if needed to get the final
2257		 * curve for this gain on this channel */
2258		switch (type) {
2259		case AR5K_PWRTABLE_LINEAR_PCDAC:
2260			/* Override min/max so that we don't loose
2261			 * accuracy (don't divide by 2) */
2262			table_min[pdg] = min(pdg_L->pd_pwr[0],
2263						pdg_R->pd_pwr[0]);
2264
2265			table_max[pdg] =
2266				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2267					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2268
2269			/* Override minimum so that we don't get
2270			 * out of bounds while extrapolating
2271			 * below. Don't do this when we have 2
2272			 * curves and we are on the high power curve
2273			 * because table_min is ok in this case */
2274			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2275
2276				table_min[pdg] =
2277					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2278								pdg_R->pd_step,
2279								pdg_L->pd_pwr,
2280								pdg_R->pd_pwr);
2281
2282				/* Don't go too low because we will
2283				 * miss the upper part of the curve.
2284				 * Note: 126 = 31.5dB (max power supported)
2285				 * in 0.25dB units */
2286				if (table_max[pdg] - table_min[pdg] > 126)
2287					table_min[pdg] = table_max[pdg] - 126;
2288			}
2289
2290			/* Fall through */
2291		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2292		case AR5K_PWRTABLE_PWR_TO_PDADC:
2293
2294			ath5k_create_power_curve(table_min[pdg],
2295						table_max[pdg],
2296						pdg_L->pd_pwr,
2297						pdg_L->pd_step,
2298						pdg_L->pd_points, tmpL, type);
2299
2300			/* We are in a calibration
2301			 * pier, no need to interpolate
2302			 * between freq piers */
2303			if (pcinfo_L == pcinfo_R)
2304				continue;
2305
2306			ath5k_create_power_curve(table_min[pdg],
2307						table_max[pdg],
2308						pdg_R->pd_pwr,
2309						pdg_R->pd_step,
2310						pdg_R->pd_points, tmpR, type);
2311			break;
2312		default:
2313			return -EINVAL;
2314		}
2315
2316		/* Interpolate between curves
2317		 * of surounding freq piers to
2318		 * get the final curve for this
2319		 * pd gain. Re-use tmpL for interpolation
2320		 * output */
2321		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2322		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2323			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2324							(s16) pcinfo_L->freq,
2325							(s16) pcinfo_R->freq,
2326							(s16) tmpL[i],
2327							(s16) tmpR[i]);
2328		}
2329	}
2330
2331	/* Now we have a set of curves for this
2332	 * channel on tmpL (x range is table_max - table_min
2333	 * and y values are tmpL[pdg][]) sorted in the same
2334	 * order as EEPROM (because we've used the backmaping).
2335	 * So for RF5112 it's from higher power to lower power
2336	 * and for RF2413 it's from lower power to higher power.
2337	 * For RF5111 we only have one curve. */
2338
2339	/* Fill min and max power levels for this
2340	 * channel by interpolating the values on
2341	 * surounding channels to complete the dataset */
2342	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2343					(s16) pcinfo_L->freq,
2344					(s16) pcinfo_R->freq,
2345					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2346
2347	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2348					(s16) pcinfo_L->freq,
2349					(s16) pcinfo_R->freq,
2350					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2351
2352	/* We are ready to go, fill PCDAC/PDADC
2353	 * table and write settings on hardware */
2354	switch (type) {
2355	case AR5K_PWRTABLE_LINEAR_PCDAC:
2356		/* For RF5112 we can have one or two curves
2357		 * and each curve covers a certain power lvl
2358		 * range so we need to do some more processing */
2359		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2360						ee->ee_pd_gains[ee_mode]);
2361
2362		/* Set txp.offset so that we can
2363		 * match max power value with max
2364		 * table index */
2365		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2366
2367		/* Write settings on hw */
2368		ath5k_setup_pcdac_table(ah);
2369		break;
2370	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2371		/* We are done for RF5111 since it has only
2372		 * one curve, just fit the curve on the table */
2373		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2374
2375		/* No rate powertable adjustment for RF5111 */
2376		ah->ah_txpower.txp_min_idx = 0;
2377		ah->ah_txpower.txp_offset = 0;
2378
2379		/* Write settings on hw */
2380		ath5k_setup_pcdac_table(ah);
2381		break;
2382	case AR5K_PWRTABLE_PWR_TO_PDADC:
2383		/* Set PDADC boundaries and fill
2384		 * final PDADC table */
2385		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2386						ee->ee_pd_gains[ee_mode]);
2387
2388		/* Write settings on hw */
2389		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2390
2391		/* Set txp.offset, note that table_min
2392		 * can be negative */
2393		ah->ah_txpower.txp_offset = table_min[0];
2394		break;
2395	default:
2396		return -EINVAL;
2397	}
2398
2399	return 0;
2400}
2401
2402
2403/*
2404 * Per-rate tx power setting
2405 *
2406 * This is the code that sets the desired tx power (below
2407 * maximum) on hw for each rate (we also have TPC that sets
2408 * power per packet). We do that by providing an index on the
2409 * PCDAC/PDADC table we set up.
2410 */
2411
2412/*
2413 * Set rate power table
2414 *
2415 * For now we only limit txpower based on maximum tx power
2416 * supported by hw (what's inside rate_info). We need to limit
2417 * this even more, based on regulatory domain etc.
2418 *
2419 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2420 * and is indexed as follows:
2421 * rates[0] - rates[7] -> OFDM rates
2422 * rates[8] - rates[14] -> CCK rates
2423 * rates[15] -> XR rates (they all have the same power)
2424 */
2425static void
2426ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2427			struct ath5k_rate_pcal_info *rate_info,
2428			u8 ee_mode)
2429{
2430	unsigned int i;
2431	u16 *rates;
2432
2433	/* max_pwr is power level we got from driver/user in 0.5dB
2434	 * units, switch to 0.25dB units so we can compare */
2435	max_pwr *= 2;
2436	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2437
2438	/* apply rate limits */
2439	rates = ah->ah_txpower.txp_rates_power_table;
2440
2441	/* OFDM rates 6 to 24Mb/s */
2442	for (i = 0; i < 5; i++)
2443		rates[i] = min(max_pwr, rate_info->target_power_6to24);
2444
2445	/* Rest OFDM rates */
2446	rates[5] = min(rates[0], rate_info->target_power_36);
2447	rates[6] = min(rates[0], rate_info->target_power_48);
2448	rates[7] = min(rates[0], rate_info->target_power_54);
2449
2450	/* CCK rates */
2451	/* 1L */
2452	rates[8] = min(rates[0], rate_info->target_power_6to24);
2453	/* 2L */
2454	rates[9] = min(rates[0], rate_info->target_power_36);
2455	/* 2S */
2456	rates[10] = min(rates[0], rate_info->target_power_36);
2457	/* 5L */
2458	rates[11] = min(rates[0], rate_info->target_power_48);
2459	/* 5S */
2460	rates[12] = min(rates[0], rate_info->target_power_48);
2461	/* 11L */
2462	rates[13] = min(rates[0], rate_info->target_power_54);
2463	/* 11S */
2464	rates[14] = min(rates[0], rate_info->target_power_54);
2465
2466	/* XR rates */
2467	rates[15] = min(rates[0], rate_info->target_power_6to24);
2468
2469	/* CCK rates have different peak to average ratio
2470	 * so we have to tweak their power so that gainf
2471	 * correction works ok. For this we use OFDM to
2472	 * CCK delta from eeprom */
2473	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2474	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2475		for (i = 8; i <= 15; i++)
2476			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2477
2478	ah->ah_txpower.txp_min_pwr = rates[7];
2479	ah->ah_txpower.txp_max_pwr = rates[0];
2480	ah->ah_txpower.txp_ofdm = rates[7];
2481}
2482
2483
2484/*
2485 * Set transmition power
2486 */
2487int
2488ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2489		u8 ee_mode, u8 txpower)
2490{
2491	struct ath5k_rate_pcal_info rate_info;
2492	u8 type;
2493	int ret;
2494
2495	ATH5K_TRACE(ah->ah_sc);
2496	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2497		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2498		return -EINVAL;
2499	}
2500	if (txpower == 0)
2501		txpower = AR5K_TUNE_DEFAULT_TXPOWER;
2502
2503	/* Reset TX power values */
2504	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2505	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2506	ah->ah_txpower.txp_min_pwr = 0;
2507	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2508
2509	/* Initialize TX power table */
2510	switch (ah->ah_radio) {
2511	case AR5K_RF5111:
2512		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
2513		break;
2514	case AR5K_RF5112:
2515		type = AR5K_PWRTABLE_LINEAR_PCDAC;
2516		break;
2517	case AR5K_RF2413:
2518	case AR5K_RF5413:
2519	case AR5K_RF2316:
2520	case AR5K_RF2317:
2521	case AR5K_RF2425:
2522		type = AR5K_PWRTABLE_PWR_TO_PDADC;
2523		break;
2524	default:
2525		return -EINVAL;
2526	}
2527
2528	/* FIXME: Only on channel/mode change */
2529	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
2530	if (ret)
2531		return ret;
2532
2533	/* Limit max power if we have a CTL available */
2534	ath5k_get_max_ctl_power(ah, channel);
2535
2536	/* FIXME: Tx power limit for this regdomain
2537	 * XXX: Mac80211/CRDA will do that anyway ? */
2538
2539	/* FIXME: Antenna reduction stuff */
2540
2541	/* FIXME: Limit power on turbo modes */
2542
2543	/* FIXME: TPC scale reduction */
2544
2545	/* Get surounding channels for per-rate power table
2546	 * calibration */
2547	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
2548
2549	/* Setup rate power table */
2550	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
2551
2552	/* Write rate power table on hw */
2553	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
2554		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
2555		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
2556
2557	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
2558		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
2559		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
2560
2561	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
2562		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
2563		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
2564
2565	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
2566		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
2567		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
2568
2569	/* FIXME: TPC support */
2570	if (ah->ah_txpower.txp_tpc) {
2571		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
2572			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
2573
2574		ath5k_hw_reg_write(ah,
2575			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
2576			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
2577			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
2578			AR5K_TPC);
2579	} else {
2580		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
2581			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
2582	}
2583
2584	return 0;
2585}
2586
2587int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower)
2588{
2589	/*Just a try M.F.*/
2590	struct ieee80211_channel *channel = &ah->ah_current_channel;
2591
2592	ATH5K_TRACE(ah->ah_sc);
2593	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
2594		"changing txpower to %d\n", txpower);
2595
2596	return ath5k_hw_txpower(ah, channel, mode, txpower);
2597}
2598
2599#undef _ATH5K_PHY
2600