[go: nahoru, domu]

phy.c revision 230fc4f3b2fa72980787a5f86c850f02bb193187
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
24#include <linux/slab.h>
25
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
29#include "rfbuffer.h"
30#include "rfgain.h"
31
32/*
33 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
34 */
35static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
36					const struct ath5k_rf_reg *rf_regs,
37					u32 val, u8 reg_id, bool set)
38{
39	const struct ath5k_rf_reg *rfreg = NULL;
40	u8 offset, bank, num_bits, col, position;
41	u16 entry;
42	u32 mask, data, last_bit, bits_shifted, first_bit;
43	u32 *rfb;
44	s32 bits_left;
45	int i;
46
47	data = 0;
48	rfb = ah->ah_rf_banks;
49
50	for (i = 0; i < ah->ah_rf_regs_count; i++) {
51		if (rf_regs[i].index == reg_id) {
52			rfreg = &rf_regs[i];
53			break;
54		}
55	}
56
57	if (rfb == NULL || rfreg == NULL) {
58		ATH5K_PRINTF("Rf register not found!\n");
59		/* should not happen */
60		return 0;
61	}
62
63	bank = rfreg->bank;
64	num_bits = rfreg->field.len;
65	first_bit = rfreg->field.pos;
66	col = rfreg->field.col;
67
68	/* first_bit is an offset from bank's
69	 * start. Since we have all banks on
70	 * the same array, we use this offset
71	 * to mark each bank's start */
72	offset = ah->ah_offset[bank];
73
74	/* Boundary check */
75	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
76		ATH5K_PRINTF("invalid values at offset %u\n", offset);
77		return 0;
78	}
79
80	entry = ((first_bit - 1) / 8) + offset;
81	position = (first_bit - 1) % 8;
82
83	if (set)
84		data = ath5k_hw_bitswap(val, num_bits);
85
86	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
87	position = 0, entry++) {
88
89		last_bit = (position + bits_left > 8) ? 8 :
90					position + bits_left;
91
92		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
93								(col * 8);
94
95		if (set) {
96			rfb[entry] &= ~mask;
97			rfb[entry] |= ((data << position) << (col * 8)) & mask;
98			data >>= (8 - position);
99		} else {
100			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
101				<< bits_shifted;
102			bits_shifted += last_bit - position;
103		}
104
105		bits_left -= 8 - position;
106	}
107
108	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
109
110	return data;
111}
112
113/**********************\
114* RF Gain optimization *
115\**********************/
116
117/*
118 * This code is used to optimize rf gain on different environments
119 * (temperature mostly) based on feedback from a power detector.
120 *
121 * It's only used on RF5111 and RF5112, later RF chips seem to have
122 * auto adjustment on hw -notice they have a much smaller BANK 7 and
123 * no gain optimization ladder-.
124 *
125 * For more infos check out this patent doc
126 * http://www.freepatentsonline.com/7400691.html
127 *
128 * This paper describes power drops as seen on the receiver due to
129 * probe packets
130 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
131 * %20of%20Power%20Control.pdf
132 *
133 * And this is the MadWiFi bug entry related to the above
134 * http://madwifi-project.org/ticket/1659
135 * with various measurements and diagrams
136 *
137 * TODO: Deal with power drops due to probes by setting an apropriate
138 * tx power on the probe packets ! Make this part of the calibration process.
139 */
140
141/* Initialize ah_gain durring attach */
142int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
143{
144	/* Initialize the gain optimization values */
145	switch (ah->ah_radio) {
146	case AR5K_RF5111:
147		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
148		ah->ah_gain.g_low = 20;
149		ah->ah_gain.g_high = 35;
150		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
151		break;
152	case AR5K_RF5112:
153		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
154		ah->ah_gain.g_low = 20;
155		ah->ah_gain.g_high = 85;
156		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
157		break;
158	default:
159		return -EINVAL;
160	}
161
162	return 0;
163}
164
165/* Schedule a gain probe check on the next transmited packet.
166 * That means our next packet is going to be sent with lower
167 * tx power and a Peak to Average Power Detector (PAPD) will try
168 * to measure the gain.
169 *
170 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
171 * just after we enable the probe so that we don't mess with
172 * standard traffic ? Maybe it's time to use sw interrupts and
173 * a probe tasklet !!!
174 */
175static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
176{
177
178	/* Skip if gain calibration is inactive or
179	 * we already handle a probe request */
180	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
181		return;
182
183	/* Send the packet with 2dB below max power as
184	 * patent doc suggest */
185	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
186			AR5K_PHY_PAPD_PROBE_TXPOWER) |
187			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
188
189	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
190
191}
192
193/* Calculate gain_F measurement correction
194 * based on the current step for RF5112 rev. 2 */
195static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
196{
197	u32 mix, step;
198	u32 *rf;
199	const struct ath5k_gain_opt *go;
200	const struct ath5k_gain_opt_step *g_step;
201	const struct ath5k_rf_reg *rf_regs;
202
203	/* Only RF5112 Rev. 2 supports it */
204	if ((ah->ah_radio != AR5K_RF5112) ||
205	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
206		return 0;
207
208	go = &rfgain_opt_5112;
209	rf_regs = rf_regs_5112a;
210	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
211
212	g_step = &go->go_step[ah->ah_gain.g_step_idx];
213
214	if (ah->ah_rf_banks == NULL)
215		return 0;
216
217	rf = ah->ah_rf_banks;
218	ah->ah_gain.g_f_corr = 0;
219
220	/* No VGA (Variable Gain Amplifier) override, skip */
221	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
222		return 0;
223
224	/* Mix gain stepping */
225	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
226
227	/* Mix gain override */
228	mix = g_step->gos_param[0];
229
230	switch (mix) {
231	case 3:
232		ah->ah_gain.g_f_corr = step * 2;
233		break;
234	case 2:
235		ah->ah_gain.g_f_corr = (step - 5) * 2;
236		break;
237	case 1:
238		ah->ah_gain.g_f_corr = step;
239		break;
240	default:
241		ah->ah_gain.g_f_corr = 0;
242		break;
243	}
244
245	return ah->ah_gain.g_f_corr;
246}
247
248/* Check if current gain_F measurement is in the range of our
249 * power detector windows. If we get a measurement outside range
250 * we know it's not accurate (detectors can't measure anything outside
251 * their detection window) so we must ignore it */
252static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
253{
254	const struct ath5k_rf_reg *rf_regs;
255	u32 step, mix_ovr, level[4];
256	u32 *rf;
257
258	if (ah->ah_rf_banks == NULL)
259		return false;
260
261	rf = ah->ah_rf_banks;
262
263	if (ah->ah_radio == AR5K_RF5111) {
264
265		rf_regs = rf_regs_5111;
266		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
267
268		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
269			false);
270
271		level[0] = 0;
272		level[1] = (step == 63) ? 50 : step + 4;
273		level[2] = (step != 63) ? 64 : level[0];
274		level[3] = level[2] + 50 ;
275
276		ah->ah_gain.g_high = level[3] -
277			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
278		ah->ah_gain.g_low = level[0] +
279			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
280	} else {
281
282		rf_regs = rf_regs_5112;
283		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
284
285		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
286			false);
287
288		level[0] = level[2] = 0;
289
290		if (mix_ovr == 1) {
291			level[1] = level[3] = 83;
292		} else {
293			level[1] = level[3] = 107;
294			ah->ah_gain.g_high = 55;
295		}
296	}
297
298	return (ah->ah_gain.g_current >= level[0] &&
299			ah->ah_gain.g_current <= level[1]) ||
300		(ah->ah_gain.g_current >= level[2] &&
301			ah->ah_gain.g_current <= level[3]);
302}
303
304/* Perform gain_F adjustment by choosing the right set
305 * of parameters from rf gain optimization ladder */
306static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
307{
308	const struct ath5k_gain_opt *go;
309	const struct ath5k_gain_opt_step *g_step;
310	int ret = 0;
311
312	switch (ah->ah_radio) {
313	case AR5K_RF5111:
314		go = &rfgain_opt_5111;
315		break;
316	case AR5K_RF5112:
317		go = &rfgain_opt_5112;
318		break;
319	default:
320		return 0;
321	}
322
323	g_step = &go->go_step[ah->ah_gain.g_step_idx];
324
325	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
326
327		/* Reached maximum */
328		if (ah->ah_gain.g_step_idx == 0)
329			return -1;
330
331		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
332				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
333				ah->ah_gain.g_step_idx > 0;
334				g_step = &go->go_step[ah->ah_gain.g_step_idx])
335			ah->ah_gain.g_target -= 2 *
336			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
337			    g_step->gos_gain);
338
339		ret = 1;
340		goto done;
341	}
342
343	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
344
345		/* Reached minimum */
346		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
347			return -2;
348
349		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
350				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
351				ah->ah_gain.g_step_idx < go->go_steps_count-1;
352				g_step = &go->go_step[ah->ah_gain.g_step_idx])
353			ah->ah_gain.g_target -= 2 *
354			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
355			    g_step->gos_gain);
356
357		ret = 2;
358		goto done;
359	}
360
361done:
362	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
363		"ret %d, gain step %u, current gain %u, target gain %u\n",
364		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
365		ah->ah_gain.g_target);
366
367	return ret;
368}
369
370/* Main callback for thermal rf gain calibration engine
371 * Check for a new gain reading and schedule an adjustment
372 * if needed.
373 *
374 * TODO: Use sw interrupt to schedule reset if gain_F needs
375 * adjustment */
376enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
377{
378	u32 data, type;
379	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
380
381	if (ah->ah_rf_banks == NULL ||
382	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
383		return AR5K_RFGAIN_INACTIVE;
384
385	/* No check requested, either engine is inactive
386	 * or an adjustment is already requested */
387	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
388		goto done;
389
390	/* Read the PAPD (Peak to Average Power Detector)
391	 * register */
392	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
393
394	/* No probe is scheduled, read gain_F measurement */
395	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
396		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
397		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
398
399		/* If tx packet is CCK correct the gain_F measurement
400		 * by cck ofdm gain delta */
401		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
402			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
403				ah->ah_gain.g_current +=
404					ee->ee_cck_ofdm_gain_delta;
405			else
406				ah->ah_gain.g_current +=
407					AR5K_GAIN_CCK_PROBE_CORR;
408		}
409
410		/* Further correct gain_F measurement for
411		 * RF5112A radios */
412		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
413			ath5k_hw_rf_gainf_corr(ah);
414			ah->ah_gain.g_current =
415				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
416				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
417				0;
418		}
419
420		/* Check if measurement is ok and if we need
421		 * to adjust gain, schedule a gain adjustment,
422		 * else switch back to the acive state */
423		if (ath5k_hw_rf_check_gainf_readback(ah) &&
424		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
425		ath5k_hw_rf_gainf_adjust(ah)) {
426			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
427		} else {
428			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
429		}
430	}
431
432done:
433	return ah->ah_gain.g_state;
434}
435
436/* Write initial rf gain table to set the RF sensitivity
437 * this one works on all RF chips and has nothing to do
438 * with gain_F calibration */
439int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
440{
441	const struct ath5k_ini_rfgain *ath5k_rfg;
442	unsigned int i, size;
443
444	switch (ah->ah_radio) {
445	case AR5K_RF5111:
446		ath5k_rfg = rfgain_5111;
447		size = ARRAY_SIZE(rfgain_5111);
448		break;
449	case AR5K_RF5112:
450		ath5k_rfg = rfgain_5112;
451		size = ARRAY_SIZE(rfgain_5112);
452		break;
453	case AR5K_RF2413:
454		ath5k_rfg = rfgain_2413;
455		size = ARRAY_SIZE(rfgain_2413);
456		break;
457	case AR5K_RF2316:
458		ath5k_rfg = rfgain_2316;
459		size = ARRAY_SIZE(rfgain_2316);
460		break;
461	case AR5K_RF5413:
462		ath5k_rfg = rfgain_5413;
463		size = ARRAY_SIZE(rfgain_5413);
464		break;
465	case AR5K_RF2317:
466	case AR5K_RF2425:
467		ath5k_rfg = rfgain_2425;
468		size = ARRAY_SIZE(rfgain_2425);
469		break;
470	default:
471		return -EINVAL;
472	}
473
474	switch (freq) {
475	case AR5K_INI_RFGAIN_2GHZ:
476	case AR5K_INI_RFGAIN_5GHZ:
477		break;
478	default:
479		return -EINVAL;
480	}
481
482	for (i = 0; i < size; i++) {
483		AR5K_REG_WAIT(i);
484		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
485			(u32)ath5k_rfg[i].rfg_register);
486	}
487
488	return 0;
489}
490
491
492
493/********************\
494* RF Registers setup *
495\********************/
496
497
498/*
499 * Setup RF registers by writing rf buffer on hw
500 */
501int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
502		unsigned int mode)
503{
504	const struct ath5k_rf_reg *rf_regs;
505	const struct ath5k_ini_rfbuffer *ini_rfb;
506	const struct ath5k_gain_opt *go = NULL;
507	const struct ath5k_gain_opt_step *g_step;
508	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
509	u8 ee_mode = 0;
510	u32 *rfb;
511	int i, obdb = -1, bank = -1;
512
513	switch (ah->ah_radio) {
514	case AR5K_RF5111:
515		rf_regs = rf_regs_5111;
516		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
517		ini_rfb = rfb_5111;
518		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
519		go = &rfgain_opt_5111;
520		break;
521	case AR5K_RF5112:
522		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
523			rf_regs = rf_regs_5112a;
524			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
525			ini_rfb = rfb_5112a;
526			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
527		} else {
528			rf_regs = rf_regs_5112;
529			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
530			ini_rfb = rfb_5112;
531			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
532		}
533		go = &rfgain_opt_5112;
534		break;
535	case AR5K_RF2413:
536		rf_regs = rf_regs_2413;
537		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
538		ini_rfb = rfb_2413;
539		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
540		break;
541	case AR5K_RF2316:
542		rf_regs = rf_regs_2316;
543		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
544		ini_rfb = rfb_2316;
545		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
546		break;
547	case AR5K_RF5413:
548		rf_regs = rf_regs_5413;
549		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
550		ini_rfb = rfb_5413;
551		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
552		break;
553	case AR5K_RF2317:
554		rf_regs = rf_regs_2425;
555		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
556		ini_rfb = rfb_2317;
557		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
558		break;
559	case AR5K_RF2425:
560		rf_regs = rf_regs_2425;
561		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
562		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
563			ini_rfb = rfb_2425;
564			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
565		} else {
566			ini_rfb = rfb_2417;
567			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
568		}
569		break;
570	default:
571		return -EINVAL;
572	}
573
574	/* If it's the first time we set rf buffer, allocate
575	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
576	 * we set above */
577	if (ah->ah_rf_banks == NULL) {
578		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
579								GFP_KERNEL);
580		if (ah->ah_rf_banks == NULL) {
581			ATH5K_ERR(ah->ah_sc, "out of memory\n");
582			return -ENOMEM;
583		}
584	}
585
586	/* Copy values to modify them */
587	rfb = ah->ah_rf_banks;
588
589	for (i = 0; i < ah->ah_rf_banks_size; i++) {
590		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
591			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
592			return -EINVAL;
593		}
594
595		/* Bank changed, write down the offset */
596		if (bank != ini_rfb[i].rfb_bank) {
597			bank = ini_rfb[i].rfb_bank;
598			ah->ah_offset[bank] = i;
599		}
600
601		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
602	}
603
604	/* Set Output and Driver bias current (OB/DB) */
605	if (channel->hw_value & CHANNEL_2GHZ) {
606
607		if (channel->hw_value & CHANNEL_CCK)
608			ee_mode = AR5K_EEPROM_MODE_11B;
609		else
610			ee_mode = AR5K_EEPROM_MODE_11G;
611
612		/* For RF511X/RF211X combination we
613		 * use b_OB and b_DB parameters stored
614		 * in eeprom on ee->ee_ob[ee_mode][0]
615		 *
616		 * For all other chips we use OB/DB for 2Ghz
617		 * stored in the b/g modal section just like
618		 * 802.11a on ee->ee_ob[ee_mode][1] */
619		if ((ah->ah_radio == AR5K_RF5111) ||
620		(ah->ah_radio == AR5K_RF5112))
621			obdb = 0;
622		else
623			obdb = 1;
624
625		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
626						AR5K_RF_OB_2GHZ, true);
627
628		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
629						AR5K_RF_DB_2GHZ, true);
630
631	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
632	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
633			(ah->ah_radio == AR5K_RF5111)) {
634
635		/* For 11a, Turbo and XR we need to choose
636		 * OB/DB based on frequency range */
637		ee_mode = AR5K_EEPROM_MODE_11A;
638		obdb =	 channel->center_freq >= 5725 ? 3 :
639			(channel->center_freq >= 5500 ? 2 :
640			(channel->center_freq >= 5260 ? 1 :
641			 (channel->center_freq > 4000 ? 0 : -1)));
642
643		if (obdb < 0)
644			return -EINVAL;
645
646		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
647						AR5K_RF_OB_5GHZ, true);
648
649		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
650						AR5K_RF_DB_5GHZ, true);
651	}
652
653	g_step = &go->go_step[ah->ah_gain.g_step_idx];
654
655	/* Bank Modifications (chip-specific) */
656	if (ah->ah_radio == AR5K_RF5111) {
657
658		/* Set gain_F settings according to current step */
659		if (channel->hw_value & CHANNEL_OFDM) {
660
661			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
662					AR5K_PHY_FRAME_CTL_TX_CLIP,
663					g_step->gos_param[0]);
664
665			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
666							AR5K_RF_PWD_90, true);
667
668			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
669							AR5K_RF_PWD_84, true);
670
671			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
672						AR5K_RF_RFGAIN_SEL, true);
673
674			/* We programmed gain_F parameters, switch back
675			 * to active state */
676			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
677
678		}
679
680		/* Bank 6/7 setup */
681
682		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
683						AR5K_RF_PWD_XPD, true);
684
685		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
686						AR5K_RF_XPD_GAIN, true);
687
688		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
689						AR5K_RF_GAIN_I, true);
690
691		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
692						AR5K_RF_PLO_SEL, true);
693
694		/* TODO: Half/quarter channel support */
695	}
696
697	if (ah->ah_radio == AR5K_RF5112) {
698
699		/* Set gain_F settings according to current step */
700		if (channel->hw_value & CHANNEL_OFDM) {
701
702			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
703						AR5K_RF_MIXGAIN_OVR, true);
704
705			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
706						AR5K_RF_PWD_138, true);
707
708			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
709						AR5K_RF_PWD_137, true);
710
711			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
712						AR5K_RF_PWD_136, true);
713
714			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
715						AR5K_RF_PWD_132, true);
716
717			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
718						AR5K_RF_PWD_131, true);
719
720			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
721						AR5K_RF_PWD_130, true);
722
723			/* We programmed gain_F parameters, switch back
724			 * to active state */
725			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
726		}
727
728		/* Bank 6/7 setup */
729
730		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
731						AR5K_RF_XPD_SEL, true);
732
733		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
734			/* Rev. 1 supports only one xpd */
735			ath5k_hw_rfb_op(ah, rf_regs,
736						ee->ee_x_gain[ee_mode],
737						AR5K_RF_XPD_GAIN, true);
738
739		} else {
740			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
741			if (ee->ee_pd_gains[ee_mode] > 1) {
742				ath5k_hw_rfb_op(ah, rf_regs,
743						pdg_curve_to_idx[0],
744						AR5K_RF_PD_GAIN_LO, true);
745				ath5k_hw_rfb_op(ah, rf_regs,
746						pdg_curve_to_idx[1],
747						AR5K_RF_PD_GAIN_HI, true);
748			} else {
749				ath5k_hw_rfb_op(ah, rf_regs,
750						pdg_curve_to_idx[0],
751						AR5K_RF_PD_GAIN_LO, true);
752				ath5k_hw_rfb_op(ah, rf_regs,
753						pdg_curve_to_idx[0],
754						AR5K_RF_PD_GAIN_HI, true);
755			}
756
757			/* Lower synth voltage on Rev 2 */
758			ath5k_hw_rfb_op(ah, rf_regs, 2,
759					AR5K_RF_HIGH_VC_CP, true);
760
761			ath5k_hw_rfb_op(ah, rf_regs, 2,
762					AR5K_RF_MID_VC_CP, true);
763
764			ath5k_hw_rfb_op(ah, rf_regs, 2,
765					AR5K_RF_LOW_VC_CP, true);
766
767			ath5k_hw_rfb_op(ah, rf_regs, 2,
768					AR5K_RF_PUSH_UP, true);
769
770			/* Decrease power consumption on 5213+ BaseBand */
771			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
772				ath5k_hw_rfb_op(ah, rf_regs, 1,
773						AR5K_RF_PAD2GND, true);
774
775				ath5k_hw_rfb_op(ah, rf_regs, 1,
776						AR5K_RF_XB2_LVL, true);
777
778				ath5k_hw_rfb_op(ah, rf_regs, 1,
779						AR5K_RF_XB5_LVL, true);
780
781				ath5k_hw_rfb_op(ah, rf_regs, 1,
782						AR5K_RF_PWD_167, true);
783
784				ath5k_hw_rfb_op(ah, rf_regs, 1,
785						AR5K_RF_PWD_166, true);
786			}
787		}
788
789		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
790						AR5K_RF_GAIN_I, true);
791
792		/* TODO: Half/quarter channel support */
793
794	}
795
796	if (ah->ah_radio == AR5K_RF5413 &&
797	channel->hw_value & CHANNEL_2GHZ) {
798
799		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
800									true);
801
802		/* Set optimum value for early revisions (on pci-e chips) */
803		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
804		ah->ah_mac_srev < AR5K_SREV_AR5413)
805			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
806						AR5K_RF_PWD_ICLOBUF_2G, true);
807
808	}
809
810	/* Write RF banks on hw */
811	for (i = 0; i < ah->ah_rf_banks_size; i++) {
812		AR5K_REG_WAIT(i);
813		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
814	}
815
816	return 0;
817}
818
819
820/**************************\
821  PHY/RF channel functions
822\**************************/
823
824/*
825 * Check if a channel is supported
826 */
827bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
828{
829	/* Check if the channel is in our supported range */
830	if (flags & CHANNEL_2GHZ) {
831		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
832		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
833			return true;
834	} else if (flags & CHANNEL_5GHZ)
835		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
836		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
837			return true;
838
839	return false;
840}
841
842/*
843 * Convertion needed for RF5110
844 */
845static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
846{
847	u32 athchan;
848
849	/*
850	 * Convert IEEE channel/MHz to an internal channel value used
851	 * by the AR5210 chipset. This has not been verified with
852	 * newer chipsets like the AR5212A who have a completely
853	 * different RF/PHY part.
854	 */
855	athchan = (ath5k_hw_bitswap(
856			(ieee80211_frequency_to_channel(
857				channel->center_freq) - 24) / 2, 5)
858				<< 1) | (1 << 6) | 0x1;
859	return athchan;
860}
861
862/*
863 * Set channel on RF5110
864 */
865static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
866		struct ieee80211_channel *channel)
867{
868	u32 data;
869
870	/*
871	 * Set the channel and wait
872	 */
873	data = ath5k_hw_rf5110_chan2athchan(channel);
874	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
875	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
876	mdelay(1);
877
878	return 0;
879}
880
881/*
882 * Convertion needed for 5111
883 */
884static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
885		struct ath5k_athchan_2ghz *athchan)
886{
887	int channel;
888
889	/* Cast this value to catch negative channel numbers (>= -19) */
890	channel = (int)ieee;
891
892	/*
893	 * Map 2GHz IEEE channel to 5GHz Atheros channel
894	 */
895	if (channel <= 13) {
896		athchan->a2_athchan = 115 + channel;
897		athchan->a2_flags = 0x46;
898	} else if (channel == 14) {
899		athchan->a2_athchan = 124;
900		athchan->a2_flags = 0x44;
901	} else if (channel >= 15 && channel <= 26) {
902		athchan->a2_athchan = ((channel - 14) * 4) + 132;
903		athchan->a2_flags = 0x46;
904	} else
905		return -EINVAL;
906
907	return 0;
908}
909
910/*
911 * Set channel on 5111
912 */
913static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
914		struct ieee80211_channel *channel)
915{
916	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
917	unsigned int ath5k_channel =
918		ieee80211_frequency_to_channel(channel->center_freq);
919	u32 data0, data1, clock;
920	int ret;
921
922	/*
923	 * Set the channel on the RF5111 radio
924	 */
925	data0 = data1 = 0;
926
927	if (channel->hw_value & CHANNEL_2GHZ) {
928		/* Map 2GHz channel to 5GHz Atheros channel ID */
929		ret = ath5k_hw_rf5111_chan2athchan(
930			ieee80211_frequency_to_channel(channel->center_freq),
931			&ath5k_channel_2ghz);
932		if (ret)
933			return ret;
934
935		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
936		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
937		    << 5) | (1 << 4);
938	}
939
940	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
941		clock = 1;
942		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
943			(clock << 1) | (1 << 10) | 1;
944	} else {
945		clock = 0;
946		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
947			<< 2) | (clock << 1) | (1 << 10) | 1;
948	}
949
950	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
951			AR5K_RF_BUFFER);
952	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
953			AR5K_RF_BUFFER_CONTROL_3);
954
955	return 0;
956}
957
958/*
959 * Set channel on 5112 and newer
960 */
961static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
962		struct ieee80211_channel *channel)
963{
964	u32 data, data0, data1, data2;
965	u16 c;
966
967	data = data0 = data1 = data2 = 0;
968	c = channel->center_freq;
969
970	if (c < 4800) {
971		if (!((c - 2224) % 5)) {
972			data0 = ((2 * (c - 704)) - 3040) / 10;
973			data1 = 1;
974		} else if (!((c - 2192) % 5)) {
975			data0 = ((2 * (c - 672)) - 3040) / 10;
976			data1 = 0;
977		} else
978			return -EINVAL;
979
980		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
981	} else if ((c % 5) != 2 || c > 5435) {
982		if (!(c % 20) && c >= 5120) {
983			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
984			data2 = ath5k_hw_bitswap(3, 2);
985		} else if (!(c % 10)) {
986			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
987			data2 = ath5k_hw_bitswap(2, 2);
988		} else if (!(c % 5)) {
989			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
990			data2 = ath5k_hw_bitswap(1, 2);
991		} else
992			return -EINVAL;
993	} else {
994		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
995		data2 = ath5k_hw_bitswap(0, 2);
996	}
997
998	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
999
1000	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1001	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1002
1003	return 0;
1004}
1005
1006/*
1007 * Set the channel on the RF2425
1008 */
1009static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1010		struct ieee80211_channel *channel)
1011{
1012	u32 data, data0, data2;
1013	u16 c;
1014
1015	data = data0 = data2 = 0;
1016	c = channel->center_freq;
1017
1018	if (c < 4800) {
1019		data0 = ath5k_hw_bitswap((c - 2272), 8);
1020		data2 = 0;
1021	/* ? 5GHz ? */
1022	} else if ((c % 5) != 2 || c > 5435) {
1023		if (!(c % 20) && c < 5120)
1024			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1025		else if (!(c % 10))
1026			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1027		else if (!(c % 5))
1028			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1029		else
1030			return -EINVAL;
1031		data2 = ath5k_hw_bitswap(1, 2);
1032	} else {
1033		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1034		data2 = ath5k_hw_bitswap(0, 2);
1035	}
1036
1037	data = (data0 << 4) | data2 << 2 | 0x1001;
1038
1039	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1040	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1041
1042	return 0;
1043}
1044
1045/*
1046 * Set a channel on the radio chip
1047 */
1048int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1049{
1050	int ret;
1051	/*
1052	 * Check bounds supported by the PHY (we don't care about regultory
1053	 * restrictions at this point). Note: hw_value already has the band
1054	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1055	 * of the band by that */
1056	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1057		ATH5K_ERR(ah->ah_sc,
1058			"channel frequency (%u MHz) out of supported "
1059			"band range\n",
1060			channel->center_freq);
1061			return -EINVAL;
1062	}
1063
1064	/*
1065	 * Set the channel and wait
1066	 */
1067	switch (ah->ah_radio) {
1068	case AR5K_RF5110:
1069		ret = ath5k_hw_rf5110_channel(ah, channel);
1070		break;
1071	case AR5K_RF5111:
1072		ret = ath5k_hw_rf5111_channel(ah, channel);
1073		break;
1074	case AR5K_RF2425:
1075		ret = ath5k_hw_rf2425_channel(ah, channel);
1076		break;
1077	default:
1078		ret = ath5k_hw_rf5112_channel(ah, channel);
1079		break;
1080	}
1081
1082	if (ret)
1083		return ret;
1084
1085	/* Set JAPAN setting for channel 14 */
1086	if (channel->center_freq == 2484) {
1087		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1088				AR5K_PHY_CCKTXCTL_JAPAN);
1089	} else {
1090		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1091				AR5K_PHY_CCKTXCTL_WORLD);
1092	}
1093
1094	ah->ah_current_channel = channel;
1095	ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1096
1097	return 0;
1098}
1099
1100/*****************\
1101  PHY calibration
1102\*****************/
1103
1104static int sign_extend(int val, const int nbits)
1105{
1106	int order = BIT(nbits-1);
1107	return (val ^ order) - order;
1108}
1109
1110static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1111{
1112	s32 val;
1113
1114	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1115	return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1116}
1117
1118void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1119{
1120	int i;
1121
1122	ah->ah_nfcal_hist.index = 0;
1123	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1124		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1125}
1126
1127static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1128{
1129	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1130	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1131	hist->nfval[hist->index] = noise_floor;
1132}
1133
1134static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1135{
1136	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1137	s16 tmp;
1138	int i, j;
1139
1140	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1141	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1142		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1143			if (sort[j] > sort[j-1]) {
1144				tmp = sort[j];
1145				sort[j] = sort[j-1];
1146				sort[j-1] = tmp;
1147			}
1148		}
1149	}
1150	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1151		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1152			"cal %d:%d\n", i, sort[i]);
1153	}
1154	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1155}
1156
1157/*
1158 * When we tell the hardware to perform a noise floor calibration
1159 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1160 * sample-and-hold the minimum noise level seen at the antennas.
1161 * This value is then stored in a ring buffer of recently measured
1162 * noise floor values so we have a moving window of the last few
1163 * samples.
1164 *
1165 * The median of the values in the history is then loaded into the
1166 * hardware for its own use for RSSI and CCA measurements.
1167 */
1168void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1169{
1170	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1171	u32 val;
1172	s16 nf, threshold;
1173	u8 ee_mode;
1174
1175	/* keep last value if calibration hasn't completed */
1176	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1177		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1178			"NF did not complete in calibration window\n");
1179
1180		return;
1181	}
1182
1183	switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1184	case CHANNEL_A:
1185	case CHANNEL_T:
1186	case CHANNEL_XR:
1187		ee_mode = AR5K_EEPROM_MODE_11A;
1188		break;
1189	case CHANNEL_G:
1190	case CHANNEL_TG:
1191		ee_mode = AR5K_EEPROM_MODE_11G;
1192		break;
1193	default:
1194	case CHANNEL_B:
1195		ee_mode = AR5K_EEPROM_MODE_11B;
1196		break;
1197	}
1198
1199
1200	/* completed NF calibration, test threshold */
1201	nf = ath5k_hw_read_measured_noise_floor(ah);
1202	threshold = ee->ee_noise_floor_thr[ee_mode];
1203
1204	if (nf > threshold) {
1205		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1206			"noise floor failure detected; "
1207			"read %d, threshold %d\n",
1208			nf, threshold);
1209
1210		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1211	}
1212
1213	ath5k_hw_update_nfcal_hist(ah, nf);
1214	nf = ath5k_hw_get_median_noise_floor(ah);
1215
1216	/* load noise floor (in .5 dBm) so the hardware will use it */
1217	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1218	val |= (nf * 2) & AR5K_PHY_NF_M;
1219	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1220
1221	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1222		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1223
1224	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1225		0, false);
1226
1227	/*
1228	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1229	 * so that we're not capped by the median we just loaded.
1230	 * This will be used as the initial value for the next noise
1231	 * floor calibration.
1232	 */
1233	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1234	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1235	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1236		AR5K_PHY_AGCCTL_NF_EN |
1237		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1238		AR5K_PHY_AGCCTL_NF);
1239
1240	ah->ah_noise_floor = nf;
1241
1242	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1243		"noise floor calibrated: %d\n", nf);
1244}
1245
1246/*
1247 * Perform a PHY calibration on RF5110
1248 * -Fix BPSK/QAM Constellation (I/Q correction)
1249 */
1250static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1251		struct ieee80211_channel *channel)
1252{
1253	u32 phy_sig, phy_agc, phy_sat, beacon;
1254	int ret;
1255
1256	/*
1257	 * Disable beacons and RX/TX queues, wait
1258	 */
1259	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1260		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1261	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1262	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1263
1264	mdelay(2);
1265
1266	/*
1267	 * Set the channel (with AGC turned off)
1268	 */
1269	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1270	udelay(10);
1271	ret = ath5k_hw_channel(ah, channel);
1272
1273	/*
1274	 * Activate PHY and wait
1275	 */
1276	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1277	mdelay(1);
1278
1279	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1280
1281	if (ret)
1282		return ret;
1283
1284	/*
1285	 * Calibrate the radio chip
1286	 */
1287
1288	/* Remember normal state */
1289	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1290	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1291	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1292
1293	/* Update radio registers */
1294	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1295		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1296
1297	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1298			AR5K_PHY_AGCCOARSE_LO)) |
1299		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1300		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1301
1302	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1303			AR5K_PHY_ADCSAT_THR)) |
1304		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1305		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1306
1307	udelay(20);
1308
1309	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1310	udelay(10);
1311	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1312	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1313
1314	mdelay(1);
1315
1316	/*
1317	 * Enable calibration and wait until completion
1318	 */
1319	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1320
1321	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1322			AR5K_PHY_AGCCTL_CAL, 0, false);
1323
1324	/* Reset to normal state */
1325	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1326	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1327	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1328
1329	if (ret) {
1330		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1331				channel->center_freq);
1332		return ret;
1333	}
1334
1335	/*
1336	 * Re-enable RX/TX and beacons
1337	 */
1338	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1339		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1340	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1341
1342	return 0;
1343}
1344
1345/*
1346 * Perform I/Q calibration on RF5111/5112 and newer chips
1347 */
1348static int
1349ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1350{
1351	u32 i_pwr, q_pwr;
1352	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1353	int i;
1354
1355	if (!ah->ah_calibration ||
1356		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1357		return 0;
1358
1359	/* Calibration has finished, get the results and re-run */
1360	/* work around empty results which can apparently happen on 5212 */
1361	for (i = 0; i <= 10; i++) {
1362		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1363		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1364		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1365		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1366			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1367		if (i_pwr && q_pwr)
1368			break;
1369	}
1370
1371	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1372
1373	if (ah->ah_version == AR5K_AR5211)
1374		q_coffd = q_pwr >> 6;
1375	else
1376		q_coffd = q_pwr >> 7;
1377
1378	/* protect against divide by 0 and loss of sign bits */
1379	if (i_coffd == 0 || q_coffd < 2)
1380		return -1;
1381
1382	i_coff = (-iq_corr) / i_coffd;
1383	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1384
1385	if (ah->ah_version == AR5K_AR5211)
1386		q_coff = (i_pwr / q_coffd) - 64;
1387	else
1388		q_coff = (i_pwr / q_coffd) - 128;
1389	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1390
1391	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1392			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1393			i_coff, q_coff, i_coffd, q_coffd);
1394
1395	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1396	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1397	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1398	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1399
1400	/* Re-enable calibration -if we don't we'll commit
1401	 * the same values again and again */
1402	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1403			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1404	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1405
1406	return 0;
1407}
1408
1409/*
1410 * Perform a PHY calibration
1411 */
1412int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1413		struct ieee80211_channel *channel)
1414{
1415	int ret;
1416
1417	if (ah->ah_radio == AR5K_RF5110)
1418		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1419	else {
1420		ret = ath5k_hw_rf511x_iq_calibrate(ah);
1421		ath5k_hw_request_rfgain_probe(ah);
1422	}
1423
1424	return ret;
1425}
1426
1427/***************************\
1428* Spur mitigation functions *
1429\***************************/
1430
1431bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1432				struct ieee80211_channel *channel)
1433{
1434	u8 refclk_freq;
1435
1436	if ((ah->ah_radio == AR5K_RF5112) ||
1437	(ah->ah_radio == AR5K_RF5413) ||
1438	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1439		refclk_freq = 40;
1440	else
1441		refclk_freq = 32;
1442
1443	if ((channel->center_freq % refclk_freq != 0) &&
1444	((channel->center_freq % refclk_freq < 10) ||
1445	(channel->center_freq % refclk_freq > 22)))
1446		return true;
1447	else
1448		return false;
1449}
1450
1451void
1452ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1453				struct ieee80211_channel *channel)
1454{
1455	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1456	u32 mag_mask[4] = {0, 0, 0, 0};
1457	u32 pilot_mask[2] = {0, 0};
1458	/* Note: fbin values are scaled up by 2 */
1459	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1460	s32 spur_delta_phase, spur_freq_sigma_delta;
1461	s32 spur_offset, num_symbols_x16;
1462	u8 num_symbol_offsets, i, freq_band;
1463
1464	/* Convert current frequency to fbin value (the same way channels
1465	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1466	 * up by 2 so we can compare it later */
1467	if (channel->hw_value & CHANNEL_2GHZ) {
1468		chan_fbin = (channel->center_freq - 2300) * 10;
1469		freq_band = AR5K_EEPROM_BAND_2GHZ;
1470	} else {
1471		chan_fbin = (channel->center_freq - 4900) * 10;
1472		freq_band = AR5K_EEPROM_BAND_5GHZ;
1473	}
1474
1475	/* Check if any spur_chan_fbin from EEPROM is
1476	 * within our current channel's spur detection range */
1477	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1478	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1479	/* XXX: Half/Quarter channels ?*/
1480	if (channel->hw_value & CHANNEL_TURBO)
1481		spur_detection_window *= 2;
1482
1483	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1484		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1485
1486		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1487		 * so it's zero if we got nothing from EEPROM */
1488		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1489			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1490			break;
1491		}
1492
1493		if ((chan_fbin - spur_detection_window <=
1494		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1495		(chan_fbin + spur_detection_window >=
1496		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1497			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1498			break;
1499		}
1500	}
1501
1502	/* We need to enable spur filter for this channel */
1503	if (spur_chan_fbin) {
1504		spur_offset = spur_chan_fbin - chan_fbin;
1505		/*
1506		 * Calculate deltas:
1507		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1508		 * spur_delta_phase -> spur_offset / chip_freq << 11
1509		 * Note: Both values have 100KHz resolution
1510		 */
1511		/* XXX: Half/Quarter rate channels ? */
1512		switch (channel->hw_value) {
1513		case CHANNEL_A:
1514			/* Both sample_freq and chip_freq are 40MHz */
1515			spur_delta_phase = (spur_offset << 17) / 25;
1516			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1517			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1518			break;
1519		case CHANNEL_G:
1520			/* sample_freq -> 40MHz chip_freq -> 44MHz
1521			 * (for b compatibility) */
1522			spur_freq_sigma_delta = (spur_offset << 8) / 55;
1523			spur_delta_phase = (spur_offset << 17) / 25;
1524			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1525			break;
1526		case CHANNEL_T:
1527		case CHANNEL_TG:
1528			/* Both sample_freq and chip_freq are 80MHz */
1529			spur_delta_phase = (spur_offset << 16) / 25;
1530			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1531			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1532			break;
1533		default:
1534			return;
1535		}
1536
1537		/* Calculate pilot and magnitude masks */
1538
1539		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1540		 * and divide by symbol_width to find how many symbols we have
1541		 * Note: number of symbols is scaled up by 16 */
1542		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1543
1544		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1545		if (!(num_symbols_x16 & 0xF))
1546			/* _X_ */
1547			num_symbol_offsets = 3;
1548		else
1549			/* _xx_ */
1550			num_symbol_offsets = 4;
1551
1552		for (i = 0; i < num_symbol_offsets; i++) {
1553
1554			/* Calculate pilot mask */
1555			s32 curr_sym_off =
1556				(num_symbols_x16 / 16) + i + 25;
1557
1558			/* Pilot magnitude mask seems to be a way to
1559			 * declare the boundaries for our detection
1560			 * window or something, it's 2 for the middle
1561			 * value(s) where the symbol is expected to be
1562			 * and 1 on the boundary values */
1563			u8 plt_mag_map =
1564				(i == 0 || i == (num_symbol_offsets - 1))
1565								? 1 : 2;
1566
1567			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1568				if (curr_sym_off <= 25)
1569					pilot_mask[0] |= 1 << curr_sym_off;
1570				else if (curr_sym_off >= 27)
1571					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1572			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1573				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1574
1575			/* Calculate magnitude mask (for viterbi decoder) */
1576			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1577				mag_mask[0] |=
1578					plt_mag_map << (curr_sym_off + 1) * 2;
1579			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1580				mag_mask[1] |=
1581					plt_mag_map << (curr_sym_off - 15) * 2;
1582			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1583				mag_mask[2] |=
1584					plt_mag_map << (curr_sym_off - 31) * 2;
1585			else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1586				mag_mask[3] |=
1587					plt_mag_map << (curr_sym_off - 47) * 2;
1588
1589		}
1590
1591		/* Write settings on hw to enable spur filter */
1592		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1593					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1594		/* XXX: Self correlator also ? */
1595		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1596					AR5K_PHY_IQ_PILOT_MASK_EN |
1597					AR5K_PHY_IQ_CHAN_MASK_EN |
1598					AR5K_PHY_IQ_SPUR_FILT_EN);
1599
1600		/* Set delta phase and freq sigma delta */
1601		ath5k_hw_reg_write(ah,
1602				AR5K_REG_SM(spur_delta_phase,
1603					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1604				AR5K_REG_SM(spur_freq_sigma_delta,
1605				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1606				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1607				AR5K_PHY_TIMING_11);
1608
1609		/* Write pilot masks */
1610		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1611		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1612					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1613					pilot_mask[1]);
1614
1615		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1616		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1617					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1618					pilot_mask[1]);
1619
1620		/* Write magnitude masks */
1621		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1622		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1623		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1624		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1625					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1626					mag_mask[3]);
1627
1628		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1629		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1630		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1631		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1632					AR5K_PHY_BIN_MASK2_4_MASK_4,
1633					mag_mask[3]);
1634
1635	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1636	AR5K_PHY_IQ_SPUR_FILT_EN) {
1637		/* Clean up spur mitigation settings and disable fliter */
1638		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1639					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1640		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1641					AR5K_PHY_IQ_PILOT_MASK_EN |
1642					AR5K_PHY_IQ_CHAN_MASK_EN |
1643					AR5K_PHY_IQ_SPUR_FILT_EN);
1644		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1645
1646		/* Clear pilot masks */
1647		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1648		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1649					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1650					0);
1651
1652		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1653		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1654					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1655					0);
1656
1657		/* Clear magnitude masks */
1658		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1659		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1660		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1661		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1662					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1663					0);
1664
1665		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1666		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1667		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1668		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1669					AR5K_PHY_BIN_MASK2_4_MASK_4,
1670					0);
1671	}
1672}
1673
1674/********************\
1675  Misc PHY functions
1676\********************/
1677
1678int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1679{
1680	/*Just a try M.F.*/
1681	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1682
1683	return 0;
1684}
1685
1686/*
1687 * Get the PHY Chip revision
1688 */
1689u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1690{
1691	unsigned int i;
1692	u32 srev;
1693	u16 ret;
1694
1695	/*
1696	 * Set the radio chip access register
1697	 */
1698	switch (chan) {
1699	case CHANNEL_2GHZ:
1700		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1701		break;
1702	case CHANNEL_5GHZ:
1703		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1704		break;
1705	default:
1706		return 0;
1707	}
1708
1709	mdelay(2);
1710
1711	/* ...wait until PHY is ready and read the selected radio revision */
1712	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1713
1714	for (i = 0; i < 8; i++)
1715		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1716
1717	if (ah->ah_version == AR5K_AR5210) {
1718		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1719		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1720	} else {
1721		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1722		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1723				((srev & 0x0f) << 4), 8);
1724	}
1725
1726	/* Reset to the 5GHz mode */
1727	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1728
1729	return ret;
1730}
1731
1732/*****************\
1733* Antenna control *
1734\*****************/
1735
1736static void /*TODO:Boundary check*/
1737ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1738{
1739	if (ah->ah_version != AR5K_AR5210)
1740		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1741}
1742
1743/*
1744 * Enable/disable fast rx antenna diversity
1745 */
1746static void
1747ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1748{
1749	switch (ee_mode) {
1750	case AR5K_EEPROM_MODE_11G:
1751		/* XXX: This is set to
1752		 * disabled on initvals !!! */
1753	case AR5K_EEPROM_MODE_11A:
1754		if (enable)
1755			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1756					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1757		else
1758			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1759					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1760		break;
1761	case AR5K_EEPROM_MODE_11B:
1762		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1763					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1764		break;
1765	default:
1766		return;
1767	}
1768
1769	if (enable) {
1770		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1771				AR5K_PHY_RESTART_DIV_GC, 0xc);
1772
1773		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1774					AR5K_PHY_FAST_ANT_DIV_EN);
1775	} else {
1776		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1777				AR5K_PHY_RESTART_DIV_GC, 0x8);
1778
1779		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1780					AR5K_PHY_FAST_ANT_DIV_EN);
1781	}
1782}
1783
1784/*
1785 * Set antenna operating mode
1786 */
1787void
1788ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1789{
1790	struct ieee80211_channel *channel = ah->ah_current_channel;
1791	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1792	bool use_def_for_sg;
1793	u8 def_ant, tx_ant, ee_mode;
1794	u32 sta_id1 = 0;
1795
1796	def_ant = ah->ah_def_ant;
1797
1798	switch (channel->hw_value & CHANNEL_MODES) {
1799	case CHANNEL_A:
1800	case CHANNEL_T:
1801	case CHANNEL_XR:
1802		ee_mode = AR5K_EEPROM_MODE_11A;
1803		break;
1804	case CHANNEL_G:
1805	case CHANNEL_TG:
1806		ee_mode = AR5K_EEPROM_MODE_11G;
1807		break;
1808	case CHANNEL_B:
1809		ee_mode = AR5K_EEPROM_MODE_11B;
1810		break;
1811	default:
1812		ATH5K_ERR(ah->ah_sc,
1813			"invalid channel: %d\n", channel->center_freq);
1814		return;
1815	}
1816
1817	switch (ant_mode) {
1818	case AR5K_ANTMODE_DEFAULT:
1819		tx_ant = 0;
1820		use_def_for_tx = false;
1821		update_def_on_tx = false;
1822		use_def_for_rts = false;
1823		use_def_for_sg = false;
1824		fast_div = true;
1825		break;
1826	case AR5K_ANTMODE_FIXED_A:
1827		def_ant = 1;
1828		tx_ant = 1;
1829		use_def_for_tx = true;
1830		update_def_on_tx = false;
1831		use_def_for_rts = true;
1832		use_def_for_sg = true;
1833		fast_div = false;
1834		break;
1835	case AR5K_ANTMODE_FIXED_B:
1836		def_ant = 2;
1837		tx_ant = 2;
1838		use_def_for_tx = true;
1839		update_def_on_tx = false;
1840		use_def_for_rts = true;
1841		use_def_for_sg = true;
1842		fast_div = false;
1843		break;
1844	case AR5K_ANTMODE_SINGLE_AP:
1845		def_ant = 1;	/* updated on tx */
1846		tx_ant = 0;
1847		use_def_for_tx = true;
1848		update_def_on_tx = true;
1849		use_def_for_rts = true;
1850		use_def_for_sg = true;
1851		fast_div = true;
1852		break;
1853	case AR5K_ANTMODE_SECTOR_AP:
1854		tx_ant = 1;	/* variable */
1855		use_def_for_tx = false;
1856		update_def_on_tx = false;
1857		use_def_for_rts = true;
1858		use_def_for_sg = false;
1859		fast_div = false;
1860		break;
1861	case AR5K_ANTMODE_SECTOR_STA:
1862		tx_ant = 1;	/* variable */
1863		use_def_for_tx = true;
1864		update_def_on_tx = false;
1865		use_def_for_rts = true;
1866		use_def_for_sg = false;
1867		fast_div = true;
1868		break;
1869	case AR5K_ANTMODE_DEBUG:
1870		def_ant = 1;
1871		tx_ant = 2;
1872		use_def_for_tx = false;
1873		update_def_on_tx = false;
1874		use_def_for_rts = false;
1875		use_def_for_sg = false;
1876		fast_div = false;
1877		break;
1878	default:
1879		return;
1880	}
1881
1882	ah->ah_tx_ant = tx_ant;
1883	ah->ah_ant_mode = ant_mode;
1884	ah->ah_def_ant = def_ant;
1885
1886	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1887	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1888	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1889	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1890
1891	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1892
1893	if (sta_id1)
1894		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1895
1896	/* Note: set diversity before default antenna
1897	 * because it won't work correctly */
1898	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1899	ath5k_hw_set_def_antenna(ah, def_ant);
1900}
1901
1902
1903/****************\
1904* TX power setup *
1905\****************/
1906
1907/*
1908 * Helper functions
1909 */
1910
1911/*
1912 * Do linear interpolation between two given (x, y) points
1913 */
1914static s16
1915ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1916					s16 y_left, s16 y_right)
1917{
1918	s16 ratio, result;
1919
1920	/* Avoid divide by zero and skip interpolation
1921	 * if we have the same point */
1922	if ((x_left == x_right) || (y_left == y_right))
1923		return y_left;
1924
1925	/*
1926	 * Since we use ints and not fps, we need to scale up in
1927	 * order to get a sane ratio value (or else we 'll eg. get
1928	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1929	 * to have some accuracy both for 0.5 and 0.25 steps.
1930	 */
1931	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1932
1933	/* Now scale down to be in range */
1934	result = y_left + (ratio * (target - x_left) / 100);
1935
1936	return result;
1937}
1938
1939/*
1940 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1941 *
1942 * Since we have the top of the curve and we draw the line below
1943 * until we reach 1 (1 pcdac step) we need to know which point
1944 * (x value) that is so that we don't go below y axis and have negative
1945 * pcdac values when creating the curve, or fill the table with zeroes.
1946 */
1947static s16
1948ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1949				const s16 *pwrL, const s16 *pwrR)
1950{
1951	s8 tmp;
1952	s16 min_pwrL, min_pwrR;
1953	s16 pwr_i;
1954
1955	/* Some vendors write the same pcdac value twice !!! */
1956	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1957		return max(pwrL[0], pwrR[0]);
1958
1959	if (pwrL[0] == pwrL[1])
1960		min_pwrL = pwrL[0];
1961	else {
1962		pwr_i = pwrL[0];
1963		do {
1964			pwr_i--;
1965			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1966							pwrL[0], pwrL[1],
1967							stepL[0], stepL[1]);
1968		} while (tmp > 1);
1969
1970		min_pwrL = pwr_i;
1971	}
1972
1973	if (pwrR[0] == pwrR[1])
1974		min_pwrR = pwrR[0];
1975	else {
1976		pwr_i = pwrR[0];
1977		do {
1978			pwr_i--;
1979			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1980							pwrR[0], pwrR[1],
1981							stepR[0], stepR[1]);
1982		} while (tmp > 1);
1983
1984		min_pwrR = pwr_i;
1985	}
1986
1987	/* Keep the right boundary so that it works for both curves */
1988	return max(min_pwrL, min_pwrR);
1989}
1990
1991/*
1992 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1993 * Power to PCDAC curve.
1994 *
1995 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1996 * steps (offsets) on y axis. Power can go up to 31.5dB and max
1997 * PCDAC/PDADC step for each curve is 64 but we can write more than
1998 * one curves on hw so we can go up to 128 (which is the max step we
1999 * can write on the final table).
2000 *
2001 * We write y values (PCDAC/PDADC steps) on hw.
2002 */
2003static void
2004ath5k_create_power_curve(s16 pmin, s16 pmax,
2005			const s16 *pwr, const u8 *vpd,
2006			u8 num_points,
2007			u8 *vpd_table, u8 type)
2008{
2009	u8 idx[2] = { 0, 1 };
2010	s16 pwr_i = 2*pmin;
2011	int i;
2012
2013	if (num_points < 2)
2014		return;
2015
2016	/* We want the whole line, so adjust boundaries
2017	 * to cover the entire power range. Note that
2018	 * power values are already 0.25dB so no need
2019	 * to multiply pwr_i by 2 */
2020	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2021		pwr_i = pmin;
2022		pmin = 0;
2023		pmax = 63;
2024	}
2025
2026	/* Find surrounding turning points (TPs)
2027	 * and interpolate between them */
2028	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2029	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2030
2031		/* We passed the right TP, move to the next set of TPs
2032		 * if we pass the last TP, extrapolate above using the last
2033		 * two TPs for ratio */
2034		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2035			idx[0]++;
2036			idx[1]++;
2037		}
2038
2039		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2040						pwr[idx[0]], pwr[idx[1]],
2041						vpd[idx[0]], vpd[idx[1]]);
2042
2043		/* Increase by 0.5dB
2044		 * (0.25 dB units) */
2045		pwr_i += 2;
2046	}
2047}
2048
2049/*
2050 * Get the surrounding per-channel power calibration piers
2051 * for a given frequency so that we can interpolate between
2052 * them and come up with an apropriate dataset for our current
2053 * channel.
2054 */
2055static void
2056ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2057			struct ieee80211_channel *channel,
2058			struct ath5k_chan_pcal_info **pcinfo_l,
2059			struct ath5k_chan_pcal_info **pcinfo_r)
2060{
2061	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2062	struct ath5k_chan_pcal_info *pcinfo;
2063	u8 idx_l, idx_r;
2064	u8 mode, max, i;
2065	u32 target = channel->center_freq;
2066
2067	idx_l = 0;
2068	idx_r = 0;
2069
2070	if (!(channel->hw_value & CHANNEL_OFDM)) {
2071		pcinfo = ee->ee_pwr_cal_b;
2072		mode = AR5K_EEPROM_MODE_11B;
2073	} else if (channel->hw_value & CHANNEL_2GHZ) {
2074		pcinfo = ee->ee_pwr_cal_g;
2075		mode = AR5K_EEPROM_MODE_11G;
2076	} else {
2077		pcinfo = ee->ee_pwr_cal_a;
2078		mode = AR5K_EEPROM_MODE_11A;
2079	}
2080	max = ee->ee_n_piers[mode] - 1;
2081
2082	/* Frequency is below our calibrated
2083	 * range. Use the lowest power curve
2084	 * we have */
2085	if (target < pcinfo[0].freq) {
2086		idx_l = idx_r = 0;
2087		goto done;
2088	}
2089
2090	/* Frequency is above our calibrated
2091	 * range. Use the highest power curve
2092	 * we have */
2093	if (target > pcinfo[max].freq) {
2094		idx_l = idx_r = max;
2095		goto done;
2096	}
2097
2098	/* Frequency is inside our calibrated
2099	 * channel range. Pick the surrounding
2100	 * calibration piers so that we can
2101	 * interpolate */
2102	for (i = 0; i <= max; i++) {
2103
2104		/* Frequency matches one of our calibration
2105		 * piers, no need to interpolate, just use
2106		 * that calibration pier */
2107		if (pcinfo[i].freq == target) {
2108			idx_l = idx_r = i;
2109			goto done;
2110		}
2111
2112		/* We found a calibration pier that's above
2113		 * frequency, use this pier and the previous
2114		 * one to interpolate */
2115		if (target < pcinfo[i].freq) {
2116			idx_r = i;
2117			idx_l = idx_r - 1;
2118			goto done;
2119		}
2120	}
2121
2122done:
2123	*pcinfo_l = &pcinfo[idx_l];
2124	*pcinfo_r = &pcinfo[idx_r];
2125}
2126
2127/*
2128 * Get the surrounding per-rate power calibration data
2129 * for a given frequency and interpolate between power
2130 * values to set max target power supported by hw for
2131 * each rate.
2132 */
2133static void
2134ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2135			struct ieee80211_channel *channel,
2136			struct ath5k_rate_pcal_info *rates)
2137{
2138	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2139	struct ath5k_rate_pcal_info *rpinfo;
2140	u8 idx_l, idx_r;
2141	u8 mode, max, i;
2142	u32 target = channel->center_freq;
2143
2144	idx_l = 0;
2145	idx_r = 0;
2146
2147	if (!(channel->hw_value & CHANNEL_OFDM)) {
2148		rpinfo = ee->ee_rate_tpwr_b;
2149		mode = AR5K_EEPROM_MODE_11B;
2150	} else if (channel->hw_value & CHANNEL_2GHZ) {
2151		rpinfo = ee->ee_rate_tpwr_g;
2152		mode = AR5K_EEPROM_MODE_11G;
2153	} else {
2154		rpinfo = ee->ee_rate_tpwr_a;
2155		mode = AR5K_EEPROM_MODE_11A;
2156	}
2157	max = ee->ee_rate_target_pwr_num[mode] - 1;
2158
2159	/* Get the surrounding calibration
2160	 * piers - same as above */
2161	if (target < rpinfo[0].freq) {
2162		idx_l = idx_r = 0;
2163		goto done;
2164	}
2165
2166	if (target > rpinfo[max].freq) {
2167		idx_l = idx_r = max;
2168		goto done;
2169	}
2170
2171	for (i = 0; i <= max; i++) {
2172
2173		if (rpinfo[i].freq == target) {
2174			idx_l = idx_r = i;
2175			goto done;
2176		}
2177
2178		if (target < rpinfo[i].freq) {
2179			idx_r = i;
2180			idx_l = idx_r - 1;
2181			goto done;
2182		}
2183	}
2184
2185done:
2186	/* Now interpolate power value, based on the frequency */
2187	rates->freq = target;
2188
2189	rates->target_power_6to24 =
2190		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2191					rpinfo[idx_r].freq,
2192					rpinfo[idx_l].target_power_6to24,
2193					rpinfo[idx_r].target_power_6to24);
2194
2195	rates->target_power_36 =
2196		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2197					rpinfo[idx_r].freq,
2198					rpinfo[idx_l].target_power_36,
2199					rpinfo[idx_r].target_power_36);
2200
2201	rates->target_power_48 =
2202		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2203					rpinfo[idx_r].freq,
2204					rpinfo[idx_l].target_power_48,
2205					rpinfo[idx_r].target_power_48);
2206
2207	rates->target_power_54 =
2208		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2209					rpinfo[idx_r].freq,
2210					rpinfo[idx_l].target_power_54,
2211					rpinfo[idx_r].target_power_54);
2212}
2213
2214/*
2215 * Get the max edge power for this channel if
2216 * we have such data from EEPROM's Conformance Test
2217 * Limits (CTL), and limit max power if needed.
2218 */
2219static void
2220ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2221			struct ieee80211_channel *channel)
2222{
2223	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2224	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2225	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2226	u8 *ctl_val = ee->ee_ctl;
2227	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2228	s16 edge_pwr = 0;
2229	u8 rep_idx;
2230	u8 i, ctl_mode;
2231	u8 ctl_idx = 0xFF;
2232	u32 target = channel->center_freq;
2233
2234	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2235
2236	switch (channel->hw_value & CHANNEL_MODES) {
2237	case CHANNEL_A:
2238		ctl_mode |= AR5K_CTL_11A;
2239		break;
2240	case CHANNEL_G:
2241		ctl_mode |= AR5K_CTL_11G;
2242		break;
2243	case CHANNEL_B:
2244		ctl_mode |= AR5K_CTL_11B;
2245		break;
2246	case CHANNEL_T:
2247		ctl_mode |= AR5K_CTL_TURBO;
2248		break;
2249	case CHANNEL_TG:
2250		ctl_mode |= AR5K_CTL_TURBOG;
2251		break;
2252	case CHANNEL_XR:
2253		/* Fall through */
2254	default:
2255		return;
2256	}
2257
2258	for (i = 0; i < ee->ee_ctls; i++) {
2259		if (ctl_val[i] == ctl_mode) {
2260			ctl_idx = i;
2261			break;
2262		}
2263	}
2264
2265	/* If we have a CTL dataset available grab it and find the
2266	 * edge power for our frequency */
2267	if (ctl_idx == 0xFF)
2268		return;
2269
2270	/* Edge powers are sorted by frequency from lower
2271	 * to higher. Each CTL corresponds to 8 edge power
2272	 * measurements. */
2273	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2274
2275	/* Don't do boundaries check because we
2276	 * might have more that one bands defined
2277	 * for this mode */
2278
2279	/* Get the edge power that's closer to our
2280	 * frequency */
2281	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2282		rep_idx += i;
2283		if (target <= rep[rep_idx].freq)
2284			edge_pwr = (s16) rep[rep_idx].edge;
2285	}
2286
2287	if (edge_pwr)
2288		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2289}
2290
2291
2292/*
2293 * Power to PCDAC table functions
2294 */
2295
2296/*
2297 * Fill Power to PCDAC table on RF5111
2298 *
2299 * No further processing is needed for RF5111, the only thing we have to
2300 * do is fill the values below and above calibration range since eeprom data
2301 * may not cover the entire PCDAC table.
2302 */
2303static void
2304ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2305							s16 *table_max)
2306{
2307	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2308	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2309	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2310	s16	min_pwr, max_pwr;
2311
2312	/* Get table boundaries */
2313	min_pwr = table_min[0];
2314	pcdac_0 = pcdac_tmp[0];
2315
2316	max_pwr = table_max[0];
2317	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2318
2319	/* Extrapolate below minimum using pcdac_0 */
2320	pcdac_i = 0;
2321	for (i = 0; i < min_pwr; i++)
2322		pcdac_out[pcdac_i++] = pcdac_0;
2323
2324	/* Copy values from pcdac_tmp */
2325	pwr_idx = min_pwr;
2326	for (i = 0 ; pwr_idx <= max_pwr &&
2327	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2328		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2329		pwr_idx++;
2330	}
2331
2332	/* Extrapolate above maximum */
2333	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2334		pcdac_out[pcdac_i++] = pcdac_n;
2335
2336}
2337
2338/*
2339 * Combine available XPD Curves and fill Linear Power to PCDAC table
2340 * on RF5112
2341 *
2342 * RFX112 can have up to 2 curves (one for low txpower range and one for
2343 * higher txpower range). We need to put them both on pcdac_out and place
2344 * them in the correct location. In case we only have one curve available
2345 * just fit it on pcdac_out (it's supposed to cover the entire range of
2346 * available pwr levels since it's always the higher power curve). Extrapolate
2347 * below and above final table if needed.
2348 */
2349static void
2350ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2351						s16 *table_max, u8 pdcurves)
2352{
2353	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2354	u8	*pcdac_low_pwr;
2355	u8	*pcdac_high_pwr;
2356	u8	*pcdac_tmp;
2357	u8	pwr;
2358	s16	max_pwr_idx;
2359	s16	min_pwr_idx;
2360	s16	mid_pwr_idx = 0;
2361	/* Edge flag turs on the 7nth bit on the PCDAC
2362	 * to delcare the higher power curve (force values
2363	 * to be greater than 64). If we only have one curve
2364	 * we don't need to set this, if we have 2 curves and
2365	 * fill the table backwards this can also be used to
2366	 * switch from higher power curve to lower power curve */
2367	u8	edge_flag;
2368	int	i;
2369
2370	/* When we have only one curve available
2371	 * that's the higher power curve. If we have
2372	 * two curves the first is the high power curve
2373	 * and the next is the low power curve. */
2374	if (pdcurves > 1) {
2375		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2376		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2377		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2378		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2379
2380		/* If table size goes beyond 31.5dB, keep the
2381		 * upper 31.5dB range when setting tx power.
2382		 * Note: 126 = 31.5 dB in quarter dB steps */
2383		if (table_max[0] - table_min[1] > 126)
2384			min_pwr_idx = table_max[0] - 126;
2385		else
2386			min_pwr_idx = table_min[1];
2387
2388		/* Since we fill table backwards
2389		 * start from high power curve */
2390		pcdac_tmp = pcdac_high_pwr;
2391
2392		edge_flag = 0x40;
2393	} else {
2394		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2395		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2396		min_pwr_idx = table_min[0];
2397		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2398		pcdac_tmp = pcdac_high_pwr;
2399		edge_flag = 0;
2400	}
2401
2402	/* This is used when setting tx power*/
2403	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2404
2405	/* Fill Power to PCDAC table backwards */
2406	pwr = max_pwr_idx;
2407	for (i = 63; i >= 0; i--) {
2408		/* Entering lower power range, reset
2409		 * edge flag and set pcdac_tmp to lower
2410		 * power curve.*/
2411		if (edge_flag == 0x40 &&
2412		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2413			edge_flag = 0x00;
2414			pcdac_tmp = pcdac_low_pwr;
2415			pwr = mid_pwr_idx/2;
2416		}
2417
2418		/* Don't go below 1, extrapolate below if we have
2419		 * already swithced to the lower power curve -or
2420		 * we only have one curve and edge_flag is zero
2421		 * anyway */
2422		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2423			while (i >= 0) {
2424				pcdac_out[i] = pcdac_out[i + 1];
2425				i--;
2426			}
2427			break;
2428		}
2429
2430		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2431
2432		/* Extrapolate above if pcdac is greater than
2433		 * 126 -this can happen because we OR pcdac_out
2434		 * value with edge_flag on high power curve */
2435		if (pcdac_out[i] > 126)
2436			pcdac_out[i] = 126;
2437
2438		/* Decrease by a 0.5dB step */
2439		pwr--;
2440	}
2441}
2442
2443/* Write PCDAC values on hw */
2444static void
2445ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2446{
2447	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2448	int	i;
2449
2450	/*
2451	 * Write TX power values
2452	 */
2453	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2454		ath5k_hw_reg_write(ah,
2455			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2456			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2457			AR5K_PHY_PCDAC_TXPOWER(i));
2458	}
2459}
2460
2461
2462/*
2463 * Power to PDADC table functions
2464 */
2465
2466/*
2467 * Set the gain boundaries and create final Power to PDADC table
2468 *
2469 * We can have up to 4 pd curves, we need to do a simmilar process
2470 * as we do for RF5112. This time we don't have an edge_flag but we
2471 * set the gain boundaries on a separate register.
2472 */
2473static void
2474ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2475			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2476{
2477	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2478	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2479	u8 *pdadc_tmp;
2480	s16 pdadc_0;
2481	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2482	u8 pd_gain_overlap;
2483
2484	/* Note: Register value is initialized on initvals
2485	 * there is no feedback from hw.
2486	 * XXX: What about pd_gain_overlap from EEPROM ? */
2487	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2488		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2489
2490	/* Create final PDADC table */
2491	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2492		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2493
2494		if (pdg == pdcurves - 1)
2495			/* 2 dB boundary stretch for last
2496			 * (higher power) curve */
2497			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2498		else
2499			/* Set gain boundary in the middle
2500			 * between this curve and the next one */
2501			gain_boundaries[pdg] =
2502				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2503
2504		/* Sanity check in case our 2 db stretch got out of
2505		 * range. */
2506		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2507			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2508
2509		/* For the first curve (lower power)
2510		 * start from 0 dB */
2511		if (pdg == 0)
2512			pdadc_0 = 0;
2513		else
2514			/* For the other curves use the gain overlap */
2515			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2516							pd_gain_overlap;
2517
2518		/* Force each power step to be at least 0.5 dB */
2519		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2520			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2521		else
2522			pwr_step = 1;
2523
2524		/* If pdadc_0 is negative, we need to extrapolate
2525		 * below this pdgain by a number of pwr_steps */
2526		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2527			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2528			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2529			pdadc_0++;
2530		}
2531
2532		/* Set last pwr level, using gain boundaries */
2533		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2534		/* Limit it to be inside pwr range */
2535		table_size = pwr_max[pdg] - pwr_min[pdg];
2536		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2537
2538		/* Fill pdadc_out table */
2539		while (pdadc_0 < max_idx && pdadc_i < 128)
2540			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2541
2542		/* Need to extrapolate above this pdgain? */
2543		if (pdadc_n <= max_idx)
2544			continue;
2545
2546		/* Force each power step to be at least 0.5 dB */
2547		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2548			pwr_step = pdadc_tmp[table_size - 1] -
2549						pdadc_tmp[table_size - 2];
2550		else
2551			pwr_step = 1;
2552
2553		/* Extrapolate above */
2554		while ((pdadc_0 < (s16) pdadc_n) &&
2555		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2556			s16 tmp = pdadc_tmp[table_size - 1] +
2557					(pdadc_0 - max_idx) * pwr_step;
2558			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2559			pdadc_0++;
2560		}
2561	}
2562
2563	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2564		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2565		pdg++;
2566	}
2567
2568	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2569		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2570		pdadc_i++;
2571	}
2572
2573	/* Set gain boundaries */
2574	ath5k_hw_reg_write(ah,
2575		AR5K_REG_SM(pd_gain_overlap,
2576			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2577		AR5K_REG_SM(gain_boundaries[0],
2578			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2579		AR5K_REG_SM(gain_boundaries[1],
2580			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2581		AR5K_REG_SM(gain_boundaries[2],
2582			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2583		AR5K_REG_SM(gain_boundaries[3],
2584			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2585		AR5K_PHY_TPC_RG5);
2586
2587	/* Used for setting rate power table */
2588	ah->ah_txpower.txp_min_idx = pwr_min[0];
2589
2590}
2591
2592/* Write PDADC values on hw */
2593static void
2594ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2595			u8 pdcurves, u8 *pdg_to_idx)
2596{
2597	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2598	u32 reg;
2599	u8 i;
2600
2601	/* Select the right pdgain curves */
2602
2603	/* Clear current settings */
2604	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2605	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2606		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2607		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2608		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2609
2610	/*
2611	 * Use pd_gains curve from eeprom
2612	 *
2613	 * This overrides the default setting from initvals
2614	 * in case some vendors (e.g. Zcomax) don't use the default
2615	 * curves. If we don't honor their settings we 'll get a
2616	 * 5dB (1 * gain overlap ?) drop.
2617	 */
2618	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2619
2620	switch (pdcurves) {
2621	case 3:
2622		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2623		/* Fall through */
2624	case 2:
2625		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2626		/* Fall through */
2627	case 1:
2628		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2629		break;
2630	}
2631	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2632
2633	/*
2634	 * Write TX power values
2635	 */
2636	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2637		ath5k_hw_reg_write(ah,
2638			((pdadc_out[4*i + 0] & 0xff) << 0) |
2639			((pdadc_out[4*i + 1] & 0xff) << 8) |
2640			((pdadc_out[4*i + 2] & 0xff) << 16) |
2641			((pdadc_out[4*i + 3] & 0xff) << 24),
2642			AR5K_PHY_PDADC_TXPOWER(i));
2643	}
2644}
2645
2646
2647/*
2648 * Common code for PCDAC/PDADC tables
2649 */
2650
2651/*
2652 * This is the main function that uses all of the above
2653 * to set PCDAC/PDADC table on hw for the current channel.
2654 * This table is used for tx power calibration on the basband,
2655 * without it we get weird tx power levels and in some cases
2656 * distorted spectral mask
2657 */
2658static int
2659ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2660			struct ieee80211_channel *channel,
2661			u8 ee_mode, u8 type)
2662{
2663	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2664	struct ath5k_chan_pcal_info *pcinfo_L;
2665	struct ath5k_chan_pcal_info *pcinfo_R;
2666	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2667	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2668	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2669	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2670	u8 *tmpL;
2671	u8 *tmpR;
2672	u32 target = channel->center_freq;
2673	int pdg, i;
2674
2675	/* Get surounding freq piers for this channel */
2676	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2677						&pcinfo_L,
2678						&pcinfo_R);
2679
2680	/* Loop over pd gain curves on
2681	 * surounding freq piers by index */
2682	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2683
2684		/* Fill curves in reverse order
2685		 * from lower power (max gain)
2686		 * to higher power. Use curve -> idx
2687		 * backmapping we did on eeprom init */
2688		u8 idx = pdg_curve_to_idx[pdg];
2689
2690		/* Grab the needed curves by index */
2691		pdg_L = &pcinfo_L->pd_curves[idx];
2692		pdg_R = &pcinfo_R->pd_curves[idx];
2693
2694		/* Initialize the temp tables */
2695		tmpL = ah->ah_txpower.tmpL[pdg];
2696		tmpR = ah->ah_txpower.tmpR[pdg];
2697
2698		/* Set curve's x boundaries and create
2699		 * curves so that they cover the same
2700		 * range (if we don't do that one table
2701		 * will have values on some range and the
2702		 * other one won't have any so interpolation
2703		 * will fail) */
2704		table_min[pdg] = min(pdg_L->pd_pwr[0],
2705					pdg_R->pd_pwr[0]) / 2;
2706
2707		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2708				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2709
2710		/* Now create the curves on surrounding channels
2711		 * and interpolate if needed to get the final
2712		 * curve for this gain on this channel */
2713		switch (type) {
2714		case AR5K_PWRTABLE_LINEAR_PCDAC:
2715			/* Override min/max so that we don't loose
2716			 * accuracy (don't divide by 2) */
2717			table_min[pdg] = min(pdg_L->pd_pwr[0],
2718						pdg_R->pd_pwr[0]);
2719
2720			table_max[pdg] =
2721				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2722					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2723
2724			/* Override minimum so that we don't get
2725			 * out of bounds while extrapolating
2726			 * below. Don't do this when we have 2
2727			 * curves and we are on the high power curve
2728			 * because table_min is ok in this case */
2729			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2730
2731				table_min[pdg] =
2732					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2733								pdg_R->pd_step,
2734								pdg_L->pd_pwr,
2735								pdg_R->pd_pwr);
2736
2737				/* Don't go too low because we will
2738				 * miss the upper part of the curve.
2739				 * Note: 126 = 31.5dB (max power supported)
2740				 * in 0.25dB units */
2741				if (table_max[pdg] - table_min[pdg] > 126)
2742					table_min[pdg] = table_max[pdg] - 126;
2743			}
2744
2745			/* Fall through */
2746		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2747		case AR5K_PWRTABLE_PWR_TO_PDADC:
2748
2749			ath5k_create_power_curve(table_min[pdg],
2750						table_max[pdg],
2751						pdg_L->pd_pwr,
2752						pdg_L->pd_step,
2753						pdg_L->pd_points, tmpL, type);
2754
2755			/* We are in a calibration
2756			 * pier, no need to interpolate
2757			 * between freq piers */
2758			if (pcinfo_L == pcinfo_R)
2759				continue;
2760
2761			ath5k_create_power_curve(table_min[pdg],
2762						table_max[pdg],
2763						pdg_R->pd_pwr,
2764						pdg_R->pd_step,
2765						pdg_R->pd_points, tmpR, type);
2766			break;
2767		default:
2768			return -EINVAL;
2769		}
2770
2771		/* Interpolate between curves
2772		 * of surounding freq piers to
2773		 * get the final curve for this
2774		 * pd gain. Re-use tmpL for interpolation
2775		 * output */
2776		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2777		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2778			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2779							(s16) pcinfo_L->freq,
2780							(s16) pcinfo_R->freq,
2781							(s16) tmpL[i],
2782							(s16) tmpR[i]);
2783		}
2784	}
2785
2786	/* Now we have a set of curves for this
2787	 * channel on tmpL (x range is table_max - table_min
2788	 * and y values are tmpL[pdg][]) sorted in the same
2789	 * order as EEPROM (because we've used the backmapping).
2790	 * So for RF5112 it's from higher power to lower power
2791	 * and for RF2413 it's from lower power to higher power.
2792	 * For RF5111 we only have one curve. */
2793
2794	/* Fill min and max power levels for this
2795	 * channel by interpolating the values on
2796	 * surounding channels to complete the dataset */
2797	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2798					(s16) pcinfo_L->freq,
2799					(s16) pcinfo_R->freq,
2800					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2801
2802	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2803					(s16) pcinfo_L->freq,
2804					(s16) pcinfo_R->freq,
2805					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2806
2807	/* We are ready to go, fill PCDAC/PDADC
2808	 * table and write settings on hardware */
2809	switch (type) {
2810	case AR5K_PWRTABLE_LINEAR_PCDAC:
2811		/* For RF5112 we can have one or two curves
2812		 * and each curve covers a certain power lvl
2813		 * range so we need to do some more processing */
2814		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2815						ee->ee_pd_gains[ee_mode]);
2816
2817		/* Set txp.offset so that we can
2818		 * match max power value with max
2819		 * table index */
2820		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2821
2822		/* Write settings on hw */
2823		ath5k_setup_pcdac_table(ah);
2824		break;
2825	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2826		/* We are done for RF5111 since it has only
2827		 * one curve, just fit the curve on the table */
2828		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2829
2830		/* No rate powertable adjustment for RF5111 */
2831		ah->ah_txpower.txp_min_idx = 0;
2832		ah->ah_txpower.txp_offset = 0;
2833
2834		/* Write settings on hw */
2835		ath5k_setup_pcdac_table(ah);
2836		break;
2837	case AR5K_PWRTABLE_PWR_TO_PDADC:
2838		/* Set PDADC boundaries and fill
2839		 * final PDADC table */
2840		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2841						ee->ee_pd_gains[ee_mode]);
2842
2843		/* Write settings on hw */
2844		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2845
2846		/* Set txp.offset, note that table_min
2847		 * can be negative */
2848		ah->ah_txpower.txp_offset = table_min[0];
2849		break;
2850	default:
2851		return -EINVAL;
2852	}
2853
2854	return 0;
2855}
2856
2857
2858/*
2859 * Per-rate tx power setting
2860 *
2861 * This is the code that sets the desired tx power (below
2862 * maximum) on hw for each rate (we also have TPC that sets
2863 * power per packet). We do that by providing an index on the
2864 * PCDAC/PDADC table we set up.
2865 */
2866
2867/*
2868 * Set rate power table
2869 *
2870 * For now we only limit txpower based on maximum tx power
2871 * supported by hw (what's inside rate_info). We need to limit
2872 * this even more, based on regulatory domain etc.
2873 *
2874 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2875 * and is indexed as follows:
2876 * rates[0] - rates[7] -> OFDM rates
2877 * rates[8] - rates[14] -> CCK rates
2878 * rates[15] -> XR rates (they all have the same power)
2879 */
2880static void
2881ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2882			struct ath5k_rate_pcal_info *rate_info,
2883			u8 ee_mode)
2884{
2885	unsigned int i;
2886	u16 *rates;
2887
2888	/* max_pwr is power level we got from driver/user in 0.5dB
2889	 * units, switch to 0.25dB units so we can compare */
2890	max_pwr *= 2;
2891	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2892
2893	/* apply rate limits */
2894	rates = ah->ah_txpower.txp_rates_power_table;
2895
2896	/* OFDM rates 6 to 24Mb/s */
2897	for (i = 0; i < 5; i++)
2898		rates[i] = min(max_pwr, rate_info->target_power_6to24);
2899
2900	/* Rest OFDM rates */
2901	rates[5] = min(rates[0], rate_info->target_power_36);
2902	rates[6] = min(rates[0], rate_info->target_power_48);
2903	rates[7] = min(rates[0], rate_info->target_power_54);
2904
2905	/* CCK rates */
2906	/* 1L */
2907	rates[8] = min(rates[0], rate_info->target_power_6to24);
2908	/* 2L */
2909	rates[9] = min(rates[0], rate_info->target_power_36);
2910	/* 2S */
2911	rates[10] = min(rates[0], rate_info->target_power_36);
2912	/* 5L */
2913	rates[11] = min(rates[0], rate_info->target_power_48);
2914	/* 5S */
2915	rates[12] = min(rates[0], rate_info->target_power_48);
2916	/* 11L */
2917	rates[13] = min(rates[0], rate_info->target_power_54);
2918	/* 11S */
2919	rates[14] = min(rates[0], rate_info->target_power_54);
2920
2921	/* XR rates */
2922	rates[15] = min(rates[0], rate_info->target_power_6to24);
2923
2924	/* CCK rates have different peak to average ratio
2925	 * so we have to tweak their power so that gainf
2926	 * correction works ok. For this we use OFDM to
2927	 * CCK delta from eeprom */
2928	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2929	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2930		for (i = 8; i <= 15; i++)
2931			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2932
2933	/* Now that we have all rates setup use table offset to
2934	 * match the power range set by user with the power indices
2935	 * on PCDAC/PDADC table */
2936	for (i = 0; i < 16; i++) {
2937		rates[i] += ah->ah_txpower.txp_offset;
2938		/* Don't get out of bounds */
2939		if (rates[i] > 63)
2940			rates[i] = 63;
2941	}
2942
2943	/* Min/max in 0.25dB units */
2944	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2945	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2946	ah->ah_txpower.txp_ofdm = rates[7];
2947}
2948
2949
2950/*
2951 * Set transmition power
2952 */
2953int
2954ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2955		u8 ee_mode, u8 txpower)
2956{
2957	struct ath5k_rate_pcal_info rate_info;
2958	u8 type;
2959	int ret;
2960
2961	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2962		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2963		return -EINVAL;
2964	}
2965
2966	/* Reset TX power values */
2967	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2968	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2969	ah->ah_txpower.txp_min_pwr = 0;
2970	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2971
2972	/* Initialize TX power table */
2973	switch (ah->ah_radio) {
2974	case AR5K_RF5111:
2975		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
2976		break;
2977	case AR5K_RF5112:
2978		type = AR5K_PWRTABLE_LINEAR_PCDAC;
2979		break;
2980	case AR5K_RF2413:
2981	case AR5K_RF5413:
2982	case AR5K_RF2316:
2983	case AR5K_RF2317:
2984	case AR5K_RF2425:
2985		type = AR5K_PWRTABLE_PWR_TO_PDADC;
2986		break;
2987	default:
2988		return -EINVAL;
2989	}
2990
2991	/* FIXME: Only on channel/mode change */
2992	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
2993	if (ret)
2994		return ret;
2995
2996	/* Limit max power if we have a CTL available */
2997	ath5k_get_max_ctl_power(ah, channel);
2998
2999	/* FIXME: Tx power limit for this regdomain
3000	 * XXX: Mac80211/CRDA will do that anyway ? */
3001
3002	/* FIXME: Antenna reduction stuff */
3003
3004	/* FIXME: Limit power on turbo modes */
3005
3006	/* FIXME: TPC scale reduction */
3007
3008	/* Get surounding channels for per-rate power table
3009	 * calibration */
3010	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3011
3012	/* Setup rate power table */
3013	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3014
3015	/* Write rate power table on hw */
3016	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3017		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3018		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3019
3020	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3021		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3022		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3023
3024	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3025		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3026		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3027
3028	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3029		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3030		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3031
3032	/* FIXME: TPC support */
3033	if (ah->ah_txpower.txp_tpc) {
3034		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3035			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3036
3037		ath5k_hw_reg_write(ah,
3038			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3039			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3040			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3041			AR5K_TPC);
3042	} else {
3043		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3044			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3045	}
3046
3047	return 0;
3048}
3049
3050int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3051{
3052	/*Just a try M.F.*/
3053	struct ieee80211_channel *channel = ah->ah_current_channel;
3054	u8 ee_mode;
3055
3056	switch (channel->hw_value & CHANNEL_MODES) {
3057	case CHANNEL_A:
3058	case CHANNEL_T:
3059	case CHANNEL_XR:
3060		ee_mode = AR5K_EEPROM_MODE_11A;
3061		break;
3062	case CHANNEL_G:
3063	case CHANNEL_TG:
3064		ee_mode = AR5K_EEPROM_MODE_11G;
3065		break;
3066	case CHANNEL_B:
3067		ee_mode = AR5K_EEPROM_MODE_11B;
3068		break;
3069	default:
3070		ATH5K_ERR(ah->ah_sc,
3071			"invalid channel: %d\n", channel->center_freq);
3072		return -EINVAL;
3073	}
3074
3075	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3076		"changing txpower to %d\n", txpower);
3077
3078	return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3079}
3080