[go: nahoru, domu]

phy.c revision 32c254645f90a5a5486788c0deb30531fdb609c2
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
24#include <linux/slab.h>
25#include <asm/unaligned.h>
26
27#include "ath5k.h"
28#include "reg.h"
29#include "base.h"
30#include "rfbuffer.h"
31#include "rfgain.h"
32
33
34/******************\
35* Helper functions *
36\******************/
37
38/*
39 * Get the PHY Chip revision
40 */
41u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band)
42{
43	unsigned int i;
44	u32 srev;
45	u16 ret;
46
47	/*
48	 * Set the radio chip access register
49	 */
50	switch (band) {
51	case IEEE80211_BAND_2GHZ:
52		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
53		break;
54	case IEEE80211_BAND_5GHZ:
55		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
56		break;
57	default:
58		return 0;
59	}
60
61	mdelay(2);
62
63	/* ...wait until PHY is ready and read the selected radio revision */
64	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
65
66	for (i = 0; i < 8; i++)
67		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
68
69	if (ah->ah_version == AR5K_AR5210) {
70		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
71		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
72	} else {
73		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
74		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
75				((srev & 0x0f) << 4), 8);
76	}
77
78	/* Reset to the 5GHz mode */
79	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
80
81	return ret;
82}
83
84/*
85 * Check if a channel is supported
86 */
87bool ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
88{
89	u16 freq = channel->center_freq;
90
91	/* Check if the channel is in our supported range */
92	if (channel->band == IEEE80211_BAND_2GHZ) {
93		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
94		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
95			return true;
96	} else if (channel->band == IEEE80211_BAND_5GHZ)
97		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
98		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
99			return true;
100
101	return false;
102}
103
104bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
105				struct ieee80211_channel *channel)
106{
107	u8 refclk_freq;
108
109	if ((ah->ah_radio == AR5K_RF5112) ||
110	(ah->ah_radio == AR5K_RF5413) ||
111	(ah->ah_radio == AR5K_RF2413) ||
112	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
113		refclk_freq = 40;
114	else
115		refclk_freq = 32;
116
117	if ((channel->center_freq % refclk_freq != 0) &&
118	((channel->center_freq % refclk_freq < 10) ||
119	(channel->center_freq % refclk_freq > 22)))
120		return true;
121	else
122		return false;
123}
124
125/*
126 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
127 */
128static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
129					const struct ath5k_rf_reg *rf_regs,
130					u32 val, u8 reg_id, bool set)
131{
132	const struct ath5k_rf_reg *rfreg = NULL;
133	u8 offset, bank, num_bits, col, position;
134	u16 entry;
135	u32 mask, data, last_bit, bits_shifted, first_bit;
136	u32 *rfb;
137	s32 bits_left;
138	int i;
139
140	data = 0;
141	rfb = ah->ah_rf_banks;
142
143	for (i = 0; i < ah->ah_rf_regs_count; i++) {
144		if (rf_regs[i].index == reg_id) {
145			rfreg = &rf_regs[i];
146			break;
147		}
148	}
149
150	if (rfb == NULL || rfreg == NULL) {
151		ATH5K_PRINTF("Rf register not found!\n");
152		/* should not happen */
153		return 0;
154	}
155
156	bank = rfreg->bank;
157	num_bits = rfreg->field.len;
158	first_bit = rfreg->field.pos;
159	col = rfreg->field.col;
160
161	/* first_bit is an offset from bank's
162	 * start. Since we have all banks on
163	 * the same array, we use this offset
164	 * to mark each bank's start */
165	offset = ah->ah_offset[bank];
166
167	/* Boundary check */
168	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
169		ATH5K_PRINTF("invalid values at offset %u\n", offset);
170		return 0;
171	}
172
173	entry = ((first_bit - 1) / 8) + offset;
174	position = (first_bit - 1) % 8;
175
176	if (set)
177		data = ath5k_hw_bitswap(val, num_bits);
178
179	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
180	     position = 0, entry++) {
181
182		last_bit = (position + bits_left > 8) ? 8 :
183					position + bits_left;
184
185		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
186								(col * 8);
187
188		if (set) {
189			rfb[entry] &= ~mask;
190			rfb[entry] |= ((data << position) << (col * 8)) & mask;
191			data >>= (8 - position);
192		} else {
193			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
194				<< bits_shifted;
195			bits_shifted += last_bit - position;
196		}
197
198		bits_left -= 8 - position;
199	}
200
201	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
202
203	return data;
204}
205
206/**
207 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
208 *
209 * @ah: the &struct ath5k_hw
210 * @channel: the currently set channel upon reset
211 *
212 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
213 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
214 *
215 * Since delta slope is floating point we split it on its exponent and
216 * mantissa and provide these values on hw.
217 *
218 * For more infos i think this patent is related
219 * http://www.freepatentsonline.com/7184495.html
220 */
221static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
222	struct ieee80211_channel *channel)
223{
224	/* Get exponent and mantissa and set it */
225	u32 coef_scaled, coef_exp, coef_man,
226		ds_coef_exp, ds_coef_man, clock;
227
228	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
229		(channel->hw_value == AR5K_MODE_11B));
230
231	/* Get coefficient
232	 * ALGO: coef = (5 * clock / carrier_freq) / 2
233	 * we scale coef by shifting clock value by 24 for
234	 * better precision since we use integers */
235	switch (ah->ah_bwmode) {
236	case AR5K_BWMODE_40MHZ:
237		clock = 40 * 2;
238		break;
239	case AR5K_BWMODE_10MHZ:
240		clock = 40 / 2;
241		break;
242	case AR5K_BWMODE_5MHZ:
243		clock = 40 / 4;
244		break;
245	default:
246		clock = 40;
247		break;
248	}
249	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
250
251	/* Get exponent
252	 * ALGO: coef_exp = 14 - highest set bit position */
253	coef_exp = ilog2(coef_scaled);
254
255	/* Doesn't make sense if it's zero*/
256	if (!coef_scaled || !coef_exp)
257		return -EINVAL;
258
259	/* Note: we've shifted coef_scaled by 24 */
260	coef_exp = 14 - (coef_exp - 24);
261
262
263	/* Get mantissa (significant digits)
264	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
265	coef_man = coef_scaled +
266		(1 << (24 - coef_exp - 1));
267
268	/* Calculate delta slope coefficient exponent
269	 * and mantissa (remove scaling) and set them on hw */
270	ds_coef_man = coef_man >> (24 - coef_exp);
271	ds_coef_exp = coef_exp - 16;
272
273	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
274		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
275	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
276		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
277
278	return 0;
279}
280
281int ath5k_hw_phy_disable(struct ath5k_hw *ah)
282{
283	/*Just a try M.F.*/
284	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
285
286	return 0;
287}
288
289/*
290 * Wait for synth to settle
291 */
292static void ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
293			struct ieee80211_channel *channel)
294{
295	/*
296	 * On 5211+ read activation -> rx delay
297	 * and use it (100ns steps).
298	 */
299	if (ah->ah_version != AR5K_AR5210) {
300		u32 delay;
301		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
302			AR5K_PHY_RX_DELAY_M;
303		delay = (channel->hw_value == AR5K_MODE_11B) ?
304			((delay << 2) / 22) : (delay / 10);
305		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
306			delay = delay << 1;
307		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
308			delay = delay << 2;
309		/* XXX: /2 on turbo ? Let's be safe
310		 * for now */
311		udelay(100 + delay);
312	} else {
313		mdelay(1);
314	}
315}
316
317
318/**********************\
319* RF Gain optimization *
320\**********************/
321
322/*
323 * This code is used to optimize RF gain on different environments
324 * (temperature mostly) based on feedback from a power detector.
325 *
326 * It's only used on RF5111 and RF5112, later RF chips seem to have
327 * auto adjustment on hw -notice they have a much smaller BANK 7 and
328 * no gain optimization ladder-.
329 *
330 * For more infos check out this patent doc
331 * http://www.freepatentsonline.com/7400691.html
332 *
333 * This paper describes power drops as seen on the receiver due to
334 * probe packets
335 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
336 * %20of%20Power%20Control.pdf
337 *
338 * And this is the MadWiFi bug entry related to the above
339 * http://madwifi-project.org/ticket/1659
340 * with various measurements and diagrams
341 *
342 * TODO: Deal with power drops due to probes by setting an appropriate
343 * tx power on the probe packets ! Make this part of the calibration process.
344 */
345
346/* Initialize ah_gain during attach */
347int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
348{
349	/* Initialize the gain optimization values */
350	switch (ah->ah_radio) {
351	case AR5K_RF5111:
352		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
353		ah->ah_gain.g_low = 20;
354		ah->ah_gain.g_high = 35;
355		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
356		break;
357	case AR5K_RF5112:
358		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
359		ah->ah_gain.g_low = 20;
360		ah->ah_gain.g_high = 85;
361		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
362		break;
363	default:
364		return -EINVAL;
365	}
366
367	return 0;
368}
369
370/* Schedule a gain probe check on the next transmitted packet.
371 * That means our next packet is going to be sent with lower
372 * tx power and a Peak to Average Power Detector (PAPD) will try
373 * to measure the gain.
374 *
375 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
376 * just after we enable the probe so that we don't mess with
377 * standard traffic ? Maybe it's time to use sw interrupts and
378 * a probe tasklet !!!
379 */
380static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
381{
382
383	/* Skip if gain calibration is inactive or
384	 * we already handle a probe request */
385	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
386		return;
387
388	/* Send the packet with 2dB below max power as
389	 * patent doc suggest */
390	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
391			AR5K_PHY_PAPD_PROBE_TXPOWER) |
392			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
393
394	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
395
396}
397
398/* Calculate gain_F measurement correction
399 * based on the current step for RF5112 rev. 2 */
400static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
401{
402	u32 mix, step;
403	u32 *rf;
404	const struct ath5k_gain_opt *go;
405	const struct ath5k_gain_opt_step *g_step;
406	const struct ath5k_rf_reg *rf_regs;
407
408	/* Only RF5112 Rev. 2 supports it */
409	if ((ah->ah_radio != AR5K_RF5112) ||
410	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
411		return 0;
412
413	go = &rfgain_opt_5112;
414	rf_regs = rf_regs_5112a;
415	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
416
417	g_step = &go->go_step[ah->ah_gain.g_step_idx];
418
419	if (ah->ah_rf_banks == NULL)
420		return 0;
421
422	rf = ah->ah_rf_banks;
423	ah->ah_gain.g_f_corr = 0;
424
425	/* No VGA (Variable Gain Amplifier) override, skip */
426	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
427		return 0;
428
429	/* Mix gain stepping */
430	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
431
432	/* Mix gain override */
433	mix = g_step->gos_param[0];
434
435	switch (mix) {
436	case 3:
437		ah->ah_gain.g_f_corr = step * 2;
438		break;
439	case 2:
440		ah->ah_gain.g_f_corr = (step - 5) * 2;
441		break;
442	case 1:
443		ah->ah_gain.g_f_corr = step;
444		break;
445	default:
446		ah->ah_gain.g_f_corr = 0;
447		break;
448	}
449
450	return ah->ah_gain.g_f_corr;
451}
452
453/* Check if current gain_F measurement is in the range of our
454 * power detector windows. If we get a measurement outside range
455 * we know it's not accurate (detectors can't measure anything outside
456 * their detection window) so we must ignore it */
457static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
458{
459	const struct ath5k_rf_reg *rf_regs;
460	u32 step, mix_ovr, level[4];
461	u32 *rf;
462
463	if (ah->ah_rf_banks == NULL)
464		return false;
465
466	rf = ah->ah_rf_banks;
467
468	if (ah->ah_radio == AR5K_RF5111) {
469
470		rf_regs = rf_regs_5111;
471		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
472
473		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
474			false);
475
476		level[0] = 0;
477		level[1] = (step == 63) ? 50 : step + 4;
478		level[2] = (step != 63) ? 64 : level[0];
479		level[3] = level[2] + 50;
480
481		ah->ah_gain.g_high = level[3] -
482			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
483		ah->ah_gain.g_low = level[0] +
484			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
485	} else {
486
487		rf_regs = rf_regs_5112;
488		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
489
490		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
491			false);
492
493		level[0] = level[2] = 0;
494
495		if (mix_ovr == 1) {
496			level[1] = level[3] = 83;
497		} else {
498			level[1] = level[3] = 107;
499			ah->ah_gain.g_high = 55;
500		}
501	}
502
503	return (ah->ah_gain.g_current >= level[0] &&
504			ah->ah_gain.g_current <= level[1]) ||
505		(ah->ah_gain.g_current >= level[2] &&
506			ah->ah_gain.g_current <= level[3]);
507}
508
509/* Perform gain_F adjustment by choosing the right set
510 * of parameters from RF gain optimization ladder */
511static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
512{
513	const struct ath5k_gain_opt *go;
514	const struct ath5k_gain_opt_step *g_step;
515	int ret = 0;
516
517	switch (ah->ah_radio) {
518	case AR5K_RF5111:
519		go = &rfgain_opt_5111;
520		break;
521	case AR5K_RF5112:
522		go = &rfgain_opt_5112;
523		break;
524	default:
525		return 0;
526	}
527
528	g_step = &go->go_step[ah->ah_gain.g_step_idx];
529
530	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
531
532		/* Reached maximum */
533		if (ah->ah_gain.g_step_idx == 0)
534			return -1;
535
536		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
537				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
538				ah->ah_gain.g_step_idx > 0;
539				g_step = &go->go_step[ah->ah_gain.g_step_idx])
540			ah->ah_gain.g_target -= 2 *
541			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
542			    g_step->gos_gain);
543
544		ret = 1;
545		goto done;
546	}
547
548	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
549
550		/* Reached minimum */
551		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
552			return -2;
553
554		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
555				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
556				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
557				g_step = &go->go_step[ah->ah_gain.g_step_idx])
558			ah->ah_gain.g_target -= 2 *
559			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
560			    g_step->gos_gain);
561
562		ret = 2;
563		goto done;
564	}
565
566done:
567	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
568		"ret %d, gain step %u, current gain %u, target gain %u\n",
569		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
570		ah->ah_gain.g_target);
571
572	return ret;
573}
574
575/* Main callback for thermal RF gain calibration engine
576 * Check for a new gain reading and schedule an adjustment
577 * if needed.
578 *
579 * TODO: Use sw interrupt to schedule reset if gain_F needs
580 * adjustment */
581enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
582{
583	u32 data, type;
584	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
585
586	if (ah->ah_rf_banks == NULL ||
587	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
588		return AR5K_RFGAIN_INACTIVE;
589
590	/* No check requested, either engine is inactive
591	 * or an adjustment is already requested */
592	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
593		goto done;
594
595	/* Read the PAPD (Peak to Average Power Detector)
596	 * register */
597	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
598
599	/* No probe is scheduled, read gain_F measurement */
600	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
601		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
602		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
603
604		/* If tx packet is CCK correct the gain_F measurement
605		 * by cck ofdm gain delta */
606		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
607			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
608				ah->ah_gain.g_current +=
609					ee->ee_cck_ofdm_gain_delta;
610			else
611				ah->ah_gain.g_current +=
612					AR5K_GAIN_CCK_PROBE_CORR;
613		}
614
615		/* Further correct gain_F measurement for
616		 * RF5112A radios */
617		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
618			ath5k_hw_rf_gainf_corr(ah);
619			ah->ah_gain.g_current =
620				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
621				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
622				0;
623		}
624
625		/* Check if measurement is ok and if we need
626		 * to adjust gain, schedule a gain adjustment,
627		 * else switch back to the active state */
628		if (ath5k_hw_rf_check_gainf_readback(ah) &&
629		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
630		ath5k_hw_rf_gainf_adjust(ah)) {
631			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
632		} else {
633			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
634		}
635	}
636
637done:
638	return ah->ah_gain.g_state;
639}
640
641/* Write initial RF gain table to set the RF sensitivity
642 * this one works on all RF chips and has nothing to do
643 * with gain_F calibration */
644static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
645{
646	const struct ath5k_ini_rfgain *ath5k_rfg;
647	unsigned int i, size, index;
648
649	switch (ah->ah_radio) {
650	case AR5K_RF5111:
651		ath5k_rfg = rfgain_5111;
652		size = ARRAY_SIZE(rfgain_5111);
653		break;
654	case AR5K_RF5112:
655		ath5k_rfg = rfgain_5112;
656		size = ARRAY_SIZE(rfgain_5112);
657		break;
658	case AR5K_RF2413:
659		ath5k_rfg = rfgain_2413;
660		size = ARRAY_SIZE(rfgain_2413);
661		break;
662	case AR5K_RF2316:
663		ath5k_rfg = rfgain_2316;
664		size = ARRAY_SIZE(rfgain_2316);
665		break;
666	case AR5K_RF5413:
667		ath5k_rfg = rfgain_5413;
668		size = ARRAY_SIZE(rfgain_5413);
669		break;
670	case AR5K_RF2317:
671	case AR5K_RF2425:
672		ath5k_rfg = rfgain_2425;
673		size = ARRAY_SIZE(rfgain_2425);
674		break;
675	default:
676		return -EINVAL;
677	}
678
679	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
680
681	for (i = 0; i < size; i++) {
682		AR5K_REG_WAIT(i);
683		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
684			(u32)ath5k_rfg[i].rfg_register);
685	}
686
687	return 0;
688}
689
690
691
692/********************\
693* RF Registers setup *
694\********************/
695
696/*
697 * Setup RF registers by writing RF buffer on hw
698 */
699static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
700	struct ieee80211_channel *channel, unsigned int mode)
701{
702	const struct ath5k_rf_reg *rf_regs;
703	const struct ath5k_ini_rfbuffer *ini_rfb;
704	const struct ath5k_gain_opt *go = NULL;
705	const struct ath5k_gain_opt_step *g_step;
706	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
707	u8 ee_mode = 0;
708	u32 *rfb;
709	int i, obdb = -1, bank = -1;
710
711	switch (ah->ah_radio) {
712	case AR5K_RF5111:
713		rf_regs = rf_regs_5111;
714		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
715		ini_rfb = rfb_5111;
716		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
717		go = &rfgain_opt_5111;
718		break;
719	case AR5K_RF5112:
720		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
721			rf_regs = rf_regs_5112a;
722			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
723			ini_rfb = rfb_5112a;
724			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
725		} else {
726			rf_regs = rf_regs_5112;
727			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
728			ini_rfb = rfb_5112;
729			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
730		}
731		go = &rfgain_opt_5112;
732		break;
733	case AR5K_RF2413:
734		rf_regs = rf_regs_2413;
735		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
736		ini_rfb = rfb_2413;
737		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
738		break;
739	case AR5K_RF2316:
740		rf_regs = rf_regs_2316;
741		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
742		ini_rfb = rfb_2316;
743		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
744		break;
745	case AR5K_RF5413:
746		rf_regs = rf_regs_5413;
747		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
748		ini_rfb = rfb_5413;
749		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
750		break;
751	case AR5K_RF2317:
752		rf_regs = rf_regs_2425;
753		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
754		ini_rfb = rfb_2317;
755		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
756		break;
757	case AR5K_RF2425:
758		rf_regs = rf_regs_2425;
759		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
760		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
761			ini_rfb = rfb_2425;
762			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
763		} else {
764			ini_rfb = rfb_2417;
765			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
766		}
767		break;
768	default:
769		return -EINVAL;
770	}
771
772	/* If it's the first time we set RF buffer, allocate
773	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
774	 * we set above */
775	if (ah->ah_rf_banks == NULL) {
776		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
777								GFP_KERNEL);
778		if (ah->ah_rf_banks == NULL) {
779			ATH5K_ERR(ah, "out of memory\n");
780			return -ENOMEM;
781		}
782	}
783
784	/* Copy values to modify them */
785	rfb = ah->ah_rf_banks;
786
787	for (i = 0; i < ah->ah_rf_banks_size; i++) {
788		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
789			ATH5K_ERR(ah, "invalid bank\n");
790			return -EINVAL;
791		}
792
793		/* Bank changed, write down the offset */
794		if (bank != ini_rfb[i].rfb_bank) {
795			bank = ini_rfb[i].rfb_bank;
796			ah->ah_offset[bank] = i;
797		}
798
799		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
800	}
801
802	/* Set Output and Driver bias current (OB/DB) */
803	if (channel->band == IEEE80211_BAND_2GHZ) {
804
805		if (channel->hw_value == AR5K_MODE_11B)
806			ee_mode = AR5K_EEPROM_MODE_11B;
807		else
808			ee_mode = AR5K_EEPROM_MODE_11G;
809
810		/* For RF511X/RF211X combination we
811		 * use b_OB and b_DB parameters stored
812		 * in eeprom on ee->ee_ob[ee_mode][0]
813		 *
814		 * For all other chips we use OB/DB for 2GHz
815		 * stored in the b/g modal section just like
816		 * 802.11a on ee->ee_ob[ee_mode][1] */
817		if ((ah->ah_radio == AR5K_RF5111) ||
818		(ah->ah_radio == AR5K_RF5112))
819			obdb = 0;
820		else
821			obdb = 1;
822
823		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
824						AR5K_RF_OB_2GHZ, true);
825
826		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
827						AR5K_RF_DB_2GHZ, true);
828
829	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
830	} else if ((channel->band == IEEE80211_BAND_5GHZ) ||
831			(ah->ah_radio == AR5K_RF5111)) {
832
833		/* For 11a, Turbo and XR we need to choose
834		 * OB/DB based on frequency range */
835		ee_mode = AR5K_EEPROM_MODE_11A;
836		obdb =	 channel->center_freq >= 5725 ? 3 :
837			(channel->center_freq >= 5500 ? 2 :
838			(channel->center_freq >= 5260 ? 1 :
839			 (channel->center_freq > 4000 ? 0 : -1)));
840
841		if (obdb < 0)
842			return -EINVAL;
843
844		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
845						AR5K_RF_OB_5GHZ, true);
846
847		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
848						AR5K_RF_DB_5GHZ, true);
849	}
850
851	g_step = &go->go_step[ah->ah_gain.g_step_idx];
852
853	/* Set turbo mode (N/A on RF5413) */
854	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
855	(ah->ah_radio != AR5K_RF5413))
856		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
857
858	/* Bank Modifications (chip-specific) */
859	if (ah->ah_radio == AR5K_RF5111) {
860
861		/* Set gain_F settings according to current step */
862		if (channel->hw_value != AR5K_MODE_11B) {
863
864			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
865					AR5K_PHY_FRAME_CTL_TX_CLIP,
866					g_step->gos_param[0]);
867
868			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
869							AR5K_RF_PWD_90, true);
870
871			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
872							AR5K_RF_PWD_84, true);
873
874			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
875						AR5K_RF_RFGAIN_SEL, true);
876
877			/* We programmed gain_F parameters, switch back
878			 * to active state */
879			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
880
881		}
882
883		/* Bank 6/7 setup */
884
885		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
886						AR5K_RF_PWD_XPD, true);
887
888		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
889						AR5K_RF_XPD_GAIN, true);
890
891		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
892						AR5K_RF_GAIN_I, true);
893
894		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
895						AR5K_RF_PLO_SEL, true);
896
897		/* Tweak power detectors for half/quarter rate support */
898		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
899		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
900			u8 wait_i;
901
902			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
903						AR5K_RF_WAIT_S, true);
904
905			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
906							0x1f : 0x10;
907
908			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
909						AR5K_RF_WAIT_I, true);
910			ath5k_hw_rfb_op(ah, rf_regs, 3,
911						AR5K_RF_MAX_TIME, true);
912
913		}
914	}
915
916	if (ah->ah_radio == AR5K_RF5112) {
917
918		/* Set gain_F settings according to current step */
919		if (channel->hw_value != AR5K_MODE_11B) {
920
921			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
922						AR5K_RF_MIXGAIN_OVR, true);
923
924			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
925						AR5K_RF_PWD_138, true);
926
927			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
928						AR5K_RF_PWD_137, true);
929
930			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
931						AR5K_RF_PWD_136, true);
932
933			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
934						AR5K_RF_PWD_132, true);
935
936			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
937						AR5K_RF_PWD_131, true);
938
939			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
940						AR5K_RF_PWD_130, true);
941
942			/* We programmed gain_F parameters, switch back
943			 * to active state */
944			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
945		}
946
947		/* Bank 6/7 setup */
948
949		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
950						AR5K_RF_XPD_SEL, true);
951
952		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
953			/* Rev. 1 supports only one xpd */
954			ath5k_hw_rfb_op(ah, rf_regs,
955						ee->ee_x_gain[ee_mode],
956						AR5K_RF_XPD_GAIN, true);
957
958		} else {
959			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
960			if (ee->ee_pd_gains[ee_mode] > 1) {
961				ath5k_hw_rfb_op(ah, rf_regs,
962						pdg_curve_to_idx[0],
963						AR5K_RF_PD_GAIN_LO, true);
964				ath5k_hw_rfb_op(ah, rf_regs,
965						pdg_curve_to_idx[1],
966						AR5K_RF_PD_GAIN_HI, true);
967			} else {
968				ath5k_hw_rfb_op(ah, rf_regs,
969						pdg_curve_to_idx[0],
970						AR5K_RF_PD_GAIN_LO, true);
971				ath5k_hw_rfb_op(ah, rf_regs,
972						pdg_curve_to_idx[0],
973						AR5K_RF_PD_GAIN_HI, true);
974			}
975
976			/* Lower synth voltage on Rev 2 */
977			if (ah->ah_radio == AR5K_RF5112 &&
978			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
979				ath5k_hw_rfb_op(ah, rf_regs, 2,
980						AR5K_RF_HIGH_VC_CP, true);
981
982				ath5k_hw_rfb_op(ah, rf_regs, 2,
983						AR5K_RF_MID_VC_CP, true);
984
985				ath5k_hw_rfb_op(ah, rf_regs, 2,
986						AR5K_RF_LOW_VC_CP, true);
987
988				ath5k_hw_rfb_op(ah, rf_regs, 2,
989						AR5K_RF_PUSH_UP, true);
990			}
991
992			/* Decrease power consumption on 5213+ BaseBand */
993			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
994				ath5k_hw_rfb_op(ah, rf_regs, 1,
995						AR5K_RF_PAD2GND, true);
996
997				ath5k_hw_rfb_op(ah, rf_regs, 1,
998						AR5K_RF_XB2_LVL, true);
999
1000				ath5k_hw_rfb_op(ah, rf_regs, 1,
1001						AR5K_RF_XB5_LVL, true);
1002
1003				ath5k_hw_rfb_op(ah, rf_regs, 1,
1004						AR5K_RF_PWD_167, true);
1005
1006				ath5k_hw_rfb_op(ah, rf_regs, 1,
1007						AR5K_RF_PWD_166, true);
1008			}
1009		}
1010
1011		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1012						AR5K_RF_GAIN_I, true);
1013
1014		/* Tweak power detector for half/quarter rates */
1015		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1016		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1017			u8 pd_delay;
1018
1019			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1020							0xf : 0x8;
1021
1022			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1023						AR5K_RF_PD_PERIOD_A, true);
1024			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1025						AR5K_RF_PD_DELAY_A, true);
1026
1027		}
1028	}
1029
1030	if (ah->ah_radio == AR5K_RF5413 &&
1031	channel->band == IEEE80211_BAND_2GHZ) {
1032
1033		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1034									true);
1035
1036		/* Set optimum value for early revisions (on pci-e chips) */
1037		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1038		ah->ah_mac_srev < AR5K_SREV_AR5413)
1039			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1040						AR5K_RF_PWD_ICLOBUF_2G, true);
1041
1042	}
1043
1044	/* Write RF banks on hw */
1045	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1046		AR5K_REG_WAIT(i);
1047		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1048	}
1049
1050	return 0;
1051}
1052
1053
1054/**************************\
1055  PHY/RF channel functions
1056\**************************/
1057
1058/*
1059 * Conversion needed for RF5110
1060 */
1061static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1062{
1063	u32 athchan;
1064
1065	/*
1066	 * Convert IEEE channel/MHz to an internal channel value used
1067	 * by the AR5210 chipset. This has not been verified with
1068	 * newer chipsets like the AR5212A who have a completely
1069	 * different RF/PHY part.
1070	 */
1071	athchan = (ath5k_hw_bitswap(
1072			(ieee80211_frequency_to_channel(
1073				channel->center_freq) - 24) / 2, 5)
1074				<< 1) | (1 << 6) | 0x1;
1075	return athchan;
1076}
1077
1078/*
1079 * Set channel on RF5110
1080 */
1081static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1082		struct ieee80211_channel *channel)
1083{
1084	u32 data;
1085
1086	/*
1087	 * Set the channel and wait
1088	 */
1089	data = ath5k_hw_rf5110_chan2athchan(channel);
1090	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1091	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1092	mdelay(1);
1093
1094	return 0;
1095}
1096
1097/*
1098 * Conversion needed for 5111
1099 */
1100static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1101		struct ath5k_athchan_2ghz *athchan)
1102{
1103	int channel;
1104
1105	/* Cast this value to catch negative channel numbers (>= -19) */
1106	channel = (int)ieee;
1107
1108	/*
1109	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1110	 */
1111	if (channel <= 13) {
1112		athchan->a2_athchan = 115 + channel;
1113		athchan->a2_flags = 0x46;
1114	} else if (channel == 14) {
1115		athchan->a2_athchan = 124;
1116		athchan->a2_flags = 0x44;
1117	} else if (channel >= 15 && channel <= 26) {
1118		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1119		athchan->a2_flags = 0x46;
1120	} else
1121		return -EINVAL;
1122
1123	return 0;
1124}
1125
1126/*
1127 * Set channel on 5111
1128 */
1129static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1130		struct ieee80211_channel *channel)
1131{
1132	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1133	unsigned int ath5k_channel =
1134		ieee80211_frequency_to_channel(channel->center_freq);
1135	u32 data0, data1, clock;
1136	int ret;
1137
1138	/*
1139	 * Set the channel on the RF5111 radio
1140	 */
1141	data0 = data1 = 0;
1142
1143	if (channel->band == IEEE80211_BAND_2GHZ) {
1144		/* Map 2GHz channel to 5GHz Atheros channel ID */
1145		ret = ath5k_hw_rf5111_chan2athchan(
1146			ieee80211_frequency_to_channel(channel->center_freq),
1147			&ath5k_channel_2ghz);
1148		if (ret)
1149			return ret;
1150
1151		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1152		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1153		    << 5) | (1 << 4);
1154	}
1155
1156	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1157		clock = 1;
1158		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1159			(clock << 1) | (1 << 10) | 1;
1160	} else {
1161		clock = 0;
1162		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1163			<< 2) | (clock << 1) | (1 << 10) | 1;
1164	}
1165
1166	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1167			AR5K_RF_BUFFER);
1168	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1169			AR5K_RF_BUFFER_CONTROL_3);
1170
1171	return 0;
1172}
1173
1174/*
1175 * Set channel on 5112 and newer
1176 */
1177static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1178		struct ieee80211_channel *channel)
1179{
1180	u32 data, data0, data1, data2;
1181	u16 c;
1182
1183	data = data0 = data1 = data2 = 0;
1184	c = channel->center_freq;
1185
1186	if (c < 4800) {
1187		if (!((c - 2224) % 5)) {
1188			data0 = ((2 * (c - 704)) - 3040) / 10;
1189			data1 = 1;
1190		} else if (!((c - 2192) % 5)) {
1191			data0 = ((2 * (c - 672)) - 3040) / 10;
1192			data1 = 0;
1193		} else
1194			return -EINVAL;
1195
1196		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1197	} else if ((c % 5) != 2 || c > 5435) {
1198		if (!(c % 20) && c >= 5120) {
1199			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1200			data2 = ath5k_hw_bitswap(3, 2);
1201		} else if (!(c % 10)) {
1202			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1203			data2 = ath5k_hw_bitswap(2, 2);
1204		} else if (!(c % 5)) {
1205			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1206			data2 = ath5k_hw_bitswap(1, 2);
1207		} else
1208			return -EINVAL;
1209	} else {
1210		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1211		data2 = ath5k_hw_bitswap(0, 2);
1212	}
1213
1214	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1215
1216	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1217	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1218
1219	return 0;
1220}
1221
1222/*
1223 * Set the channel on the RF2425
1224 */
1225static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1226		struct ieee80211_channel *channel)
1227{
1228	u32 data, data0, data2;
1229	u16 c;
1230
1231	data = data0 = data2 = 0;
1232	c = channel->center_freq;
1233
1234	if (c < 4800) {
1235		data0 = ath5k_hw_bitswap((c - 2272), 8);
1236		data2 = 0;
1237	/* ? 5GHz ? */
1238	} else if ((c % 5) != 2 || c > 5435) {
1239		if (!(c % 20) && c < 5120)
1240			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1241		else if (!(c % 10))
1242			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1243		else if (!(c % 5))
1244			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1245		else
1246			return -EINVAL;
1247		data2 = ath5k_hw_bitswap(1, 2);
1248	} else {
1249		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1250		data2 = ath5k_hw_bitswap(0, 2);
1251	}
1252
1253	data = (data0 << 4) | data2 << 2 | 0x1001;
1254
1255	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1256	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1257
1258	return 0;
1259}
1260
1261/*
1262 * Set a channel on the radio chip
1263 */
1264static int ath5k_hw_channel(struct ath5k_hw *ah,
1265		struct ieee80211_channel *channel)
1266{
1267	int ret;
1268	/*
1269	 * Check bounds supported by the PHY (we don't care about regulatory
1270	 * restrictions at this point).
1271	 */
1272	if (!ath5k_channel_ok(ah, channel)) {
1273		ATH5K_ERR(ah,
1274			"channel frequency (%u MHz) out of supported "
1275			"band range\n",
1276			channel->center_freq);
1277			return -EINVAL;
1278	}
1279
1280	/*
1281	 * Set the channel and wait
1282	 */
1283	switch (ah->ah_radio) {
1284	case AR5K_RF5110:
1285		ret = ath5k_hw_rf5110_channel(ah, channel);
1286		break;
1287	case AR5K_RF5111:
1288		ret = ath5k_hw_rf5111_channel(ah, channel);
1289		break;
1290	case AR5K_RF2317:
1291	case AR5K_RF2425:
1292		ret = ath5k_hw_rf2425_channel(ah, channel);
1293		break;
1294	default:
1295		ret = ath5k_hw_rf5112_channel(ah, channel);
1296		break;
1297	}
1298
1299	if (ret)
1300		return ret;
1301
1302	/* Set JAPAN setting for channel 14 */
1303	if (channel->center_freq == 2484) {
1304		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1305				AR5K_PHY_CCKTXCTL_JAPAN);
1306	} else {
1307		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1308				AR5K_PHY_CCKTXCTL_WORLD);
1309	}
1310
1311	ah->ah_current_channel = channel;
1312
1313	return 0;
1314}
1315
1316/*****************\
1317  PHY calibration
1318\*****************/
1319
1320static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1321{
1322	s32 val;
1323
1324	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1325	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1326}
1327
1328void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1329{
1330	int i;
1331
1332	ah->ah_nfcal_hist.index = 0;
1333	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1334		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1335}
1336
1337static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1338{
1339	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1340	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1341	hist->nfval[hist->index] = noise_floor;
1342}
1343
1344static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1345{
1346	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1347	s16 tmp;
1348	int i, j;
1349
1350	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1351	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1352		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1353			if (sort[j] > sort[j - 1]) {
1354				tmp = sort[j];
1355				sort[j] = sort[j - 1];
1356				sort[j - 1] = tmp;
1357			}
1358		}
1359	}
1360	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1361		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1362			"cal %d:%d\n", i, sort[i]);
1363	}
1364	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1365}
1366
1367/*
1368 * When we tell the hardware to perform a noise floor calibration
1369 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1370 * sample-and-hold the minimum noise level seen at the antennas.
1371 * This value is then stored in a ring buffer of recently measured
1372 * noise floor values so we have a moving window of the last few
1373 * samples.
1374 *
1375 * The median of the values in the history is then loaded into the
1376 * hardware for its own use for RSSI and CCA measurements.
1377 */
1378void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1379{
1380	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1381	u32 val;
1382	s16 nf, threshold;
1383	u8 ee_mode;
1384
1385	/* keep last value if calibration hasn't completed */
1386	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1387		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1388			"NF did not complete in calibration window\n");
1389
1390		return;
1391	}
1392
1393	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1394
1395	/* completed NF calibration, test threshold */
1396	nf = ath5k_hw_read_measured_noise_floor(ah);
1397	threshold = ee->ee_noise_floor_thr[ee_mode];
1398
1399	if (nf > threshold) {
1400		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1401			"noise floor failure detected; "
1402			"read %d, threshold %d\n",
1403			nf, threshold);
1404
1405		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1406	}
1407
1408	ath5k_hw_update_nfcal_hist(ah, nf);
1409	nf = ath5k_hw_get_median_noise_floor(ah);
1410
1411	/* load noise floor (in .5 dBm) so the hardware will use it */
1412	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1413	val |= (nf * 2) & AR5K_PHY_NF_M;
1414	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1415
1416	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1417		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1418
1419	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1420		0, false);
1421
1422	/*
1423	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1424	 * so that we're not capped by the median we just loaded.
1425	 * This will be used as the initial value for the next noise
1426	 * floor calibration.
1427	 */
1428	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1429	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1430	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1431		AR5K_PHY_AGCCTL_NF_EN |
1432		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1433		AR5K_PHY_AGCCTL_NF);
1434
1435	ah->ah_noise_floor = nf;
1436
1437	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1438		"noise floor calibrated: %d\n", nf);
1439}
1440
1441/*
1442 * Perform a PHY calibration on RF5110
1443 * -Fix BPSK/QAM Constellation (I/Q correction)
1444 */
1445static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1446		struct ieee80211_channel *channel)
1447{
1448	u32 phy_sig, phy_agc, phy_sat, beacon;
1449	int ret;
1450
1451	/*
1452	 * Disable beacons and RX/TX queues, wait
1453	 */
1454	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1455		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1456	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1457	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1458
1459	mdelay(2);
1460
1461	/*
1462	 * Set the channel (with AGC turned off)
1463	 */
1464	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1465	udelay(10);
1466	ret = ath5k_hw_channel(ah, channel);
1467
1468	/*
1469	 * Activate PHY and wait
1470	 */
1471	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1472	mdelay(1);
1473
1474	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1475
1476	if (ret)
1477		return ret;
1478
1479	/*
1480	 * Calibrate the radio chip
1481	 */
1482
1483	/* Remember normal state */
1484	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1485	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1486	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1487
1488	/* Update radio registers */
1489	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1490		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1491
1492	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1493			AR5K_PHY_AGCCOARSE_LO)) |
1494		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1495		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1496
1497	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1498			AR5K_PHY_ADCSAT_THR)) |
1499		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1500		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1501
1502	udelay(20);
1503
1504	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1505	udelay(10);
1506	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1507	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1508
1509	mdelay(1);
1510
1511	/*
1512	 * Enable calibration and wait until completion
1513	 */
1514	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1515
1516	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1517			AR5K_PHY_AGCCTL_CAL, 0, false);
1518
1519	/* Reset to normal state */
1520	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1521	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1522	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1523
1524	if (ret) {
1525		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1526				channel->center_freq);
1527		return ret;
1528	}
1529
1530	/*
1531	 * Re-enable RX/TX and beacons
1532	 */
1533	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1534		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1535	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1536
1537	return 0;
1538}
1539
1540/*
1541 * Perform I/Q calibration on RF5111/5112 and newer chips
1542 */
1543static int
1544ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1545{
1546	u32 i_pwr, q_pwr;
1547	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1548	int i;
1549
1550	if (!ah->ah_calibration ||
1551		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1552		return 0;
1553
1554	/* Calibration has finished, get the results and re-run */
1555	/* work around empty results which can apparently happen on 5212 */
1556	for (i = 0; i <= 10; i++) {
1557		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1558		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1559		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1560		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1561			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1562		if (i_pwr && q_pwr)
1563			break;
1564	}
1565
1566	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1567
1568	if (ah->ah_version == AR5K_AR5211)
1569		q_coffd = q_pwr >> 6;
1570	else
1571		q_coffd = q_pwr >> 7;
1572
1573	/* protect against divide by 0 and loss of sign bits */
1574	if (i_coffd == 0 || q_coffd < 2)
1575		return 0;
1576
1577	i_coff = (-iq_corr) / i_coffd;
1578	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1579
1580	if (ah->ah_version == AR5K_AR5211)
1581		q_coff = (i_pwr / q_coffd) - 64;
1582	else
1583		q_coff = (i_pwr / q_coffd) - 128;
1584	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1585
1586	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1587			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1588			i_coff, q_coff, i_coffd, q_coffd);
1589
1590	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1591	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1592	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1593	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1594
1595	/* Re-enable calibration -if we don't we'll commit
1596	 * the same values again and again */
1597	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1598			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1599	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1600
1601	return 0;
1602}
1603
1604/*
1605 * Perform a PHY calibration
1606 */
1607int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1608		struct ieee80211_channel *channel)
1609{
1610	int ret;
1611
1612	if (ah->ah_radio == AR5K_RF5110)
1613		return ath5k_hw_rf5110_calibrate(ah, channel);
1614
1615	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1616
1617	if ((ah->ah_radio == AR5K_RF5111 || ah->ah_radio == AR5K_RF5112) &&
1618	    (channel->hw_value != AR5K_MODE_11B))
1619		ath5k_hw_request_rfgain_probe(ah);
1620
1621	return ret;
1622}
1623
1624
1625/***************************\
1626* Spur mitigation functions *
1627\***************************/
1628
1629static void
1630ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1631				struct ieee80211_channel *channel)
1632{
1633	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1634	u32 mag_mask[4] = {0, 0, 0, 0};
1635	u32 pilot_mask[2] = {0, 0};
1636	/* Note: fbin values are scaled up by 2 */
1637	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1638	s32 spur_delta_phase, spur_freq_sigma_delta;
1639	s32 spur_offset, num_symbols_x16;
1640	u8 num_symbol_offsets, i, freq_band;
1641
1642	/* Convert current frequency to fbin value (the same way channels
1643	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1644	 * up by 2 so we can compare it later */
1645	if (channel->band == IEEE80211_BAND_2GHZ) {
1646		chan_fbin = (channel->center_freq - 2300) * 10;
1647		freq_band = AR5K_EEPROM_BAND_2GHZ;
1648	} else {
1649		chan_fbin = (channel->center_freq - 4900) * 10;
1650		freq_band = AR5K_EEPROM_BAND_5GHZ;
1651	}
1652
1653	/* Check if any spur_chan_fbin from EEPROM is
1654	 * within our current channel's spur detection range */
1655	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1656	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1657	/* XXX: Half/Quarter channels ?*/
1658	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1659		spur_detection_window *= 2;
1660
1661	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1662		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1663
1664		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1665		 * so it's zero if we got nothing from EEPROM */
1666		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1667			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1668			break;
1669		}
1670
1671		if ((chan_fbin - spur_detection_window <=
1672		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1673		(chan_fbin + spur_detection_window >=
1674		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1675			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1676			break;
1677		}
1678	}
1679
1680	/* We need to enable spur filter for this channel */
1681	if (spur_chan_fbin) {
1682		spur_offset = spur_chan_fbin - chan_fbin;
1683		/*
1684		 * Calculate deltas:
1685		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1686		 * spur_delta_phase -> spur_offset / chip_freq << 11
1687		 * Note: Both values have 100Hz resolution
1688		 */
1689		switch (ah->ah_bwmode) {
1690		case AR5K_BWMODE_40MHZ:
1691			/* Both sample_freq and chip_freq are 80MHz */
1692			spur_delta_phase = (spur_offset << 16) / 25;
1693			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1694			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1695			break;
1696		case AR5K_BWMODE_10MHZ:
1697			/* Both sample_freq and chip_freq are 20MHz (?) */
1698			spur_delta_phase = (spur_offset << 18) / 25;
1699			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1700			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1701		case AR5K_BWMODE_5MHZ:
1702			/* Both sample_freq and chip_freq are 10MHz (?) */
1703			spur_delta_phase = (spur_offset << 19) / 25;
1704			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1705			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1706		default:
1707			if (channel->band == IEEE80211_BAND_5GHZ) {
1708				/* Both sample_freq and chip_freq are 40MHz */
1709				spur_delta_phase = (spur_offset << 17) / 25;
1710				spur_freq_sigma_delta =
1711						(spur_delta_phase >> 10);
1712				symbol_width =
1713					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1714			} else {
1715				/* sample_freq -> 40MHz chip_freq -> 44MHz
1716				 * (for b compatibility) */
1717				spur_delta_phase = (spur_offset << 17) / 25;
1718				spur_freq_sigma_delta =
1719						(spur_offset << 8) / 55;
1720				symbol_width =
1721					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1722			}
1723			break;
1724		}
1725
1726		/* Calculate pilot and magnitude masks */
1727
1728		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1729		 * and divide by symbol_width to find how many symbols we have
1730		 * Note: number of symbols is scaled up by 16 */
1731		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1732
1733		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1734		if (!(num_symbols_x16 & 0xF))
1735			/* _X_ */
1736			num_symbol_offsets = 3;
1737		else
1738			/* _xx_ */
1739			num_symbol_offsets = 4;
1740
1741		for (i = 0; i < num_symbol_offsets; i++) {
1742
1743			/* Calculate pilot mask */
1744			s32 curr_sym_off =
1745				(num_symbols_x16 / 16) + i + 25;
1746
1747			/* Pilot magnitude mask seems to be a way to
1748			 * declare the boundaries for our detection
1749			 * window or something, it's 2 for the middle
1750			 * value(s) where the symbol is expected to be
1751			 * and 1 on the boundary values */
1752			u8 plt_mag_map =
1753				(i == 0 || i == (num_symbol_offsets - 1))
1754								? 1 : 2;
1755
1756			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1757				if (curr_sym_off <= 25)
1758					pilot_mask[0] |= 1 << curr_sym_off;
1759				else if (curr_sym_off >= 27)
1760					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1761			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1762				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1763
1764			/* Calculate magnitude mask (for viterbi decoder) */
1765			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1766				mag_mask[0] |=
1767					plt_mag_map << (curr_sym_off + 1) * 2;
1768			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1769				mag_mask[1] |=
1770					plt_mag_map << (curr_sym_off - 15) * 2;
1771			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1772				mag_mask[2] |=
1773					plt_mag_map << (curr_sym_off - 31) * 2;
1774			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1775				mag_mask[3] |=
1776					plt_mag_map << (curr_sym_off - 47) * 2;
1777
1778		}
1779
1780		/* Write settings on hw to enable spur filter */
1781		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1782					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1783		/* XXX: Self correlator also ? */
1784		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1785					AR5K_PHY_IQ_PILOT_MASK_EN |
1786					AR5K_PHY_IQ_CHAN_MASK_EN |
1787					AR5K_PHY_IQ_SPUR_FILT_EN);
1788
1789		/* Set delta phase and freq sigma delta */
1790		ath5k_hw_reg_write(ah,
1791				AR5K_REG_SM(spur_delta_phase,
1792					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1793				AR5K_REG_SM(spur_freq_sigma_delta,
1794				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1795				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1796				AR5K_PHY_TIMING_11);
1797
1798		/* Write pilot masks */
1799		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1800		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1801					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1802					pilot_mask[1]);
1803
1804		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1805		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1806					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1807					pilot_mask[1]);
1808
1809		/* Write magnitude masks */
1810		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1811		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1812		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1813		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1814					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1815					mag_mask[3]);
1816
1817		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1818		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1819		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1820		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1821					AR5K_PHY_BIN_MASK2_4_MASK_4,
1822					mag_mask[3]);
1823
1824	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1825	AR5K_PHY_IQ_SPUR_FILT_EN) {
1826		/* Clean up spur mitigation settings and disable filter */
1827		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1828					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1829		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1830					AR5K_PHY_IQ_PILOT_MASK_EN |
1831					AR5K_PHY_IQ_CHAN_MASK_EN |
1832					AR5K_PHY_IQ_SPUR_FILT_EN);
1833		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1834
1835		/* Clear pilot masks */
1836		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1837		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1838					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1839					0);
1840
1841		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1842		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1843					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1844					0);
1845
1846		/* Clear magnitude masks */
1847		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1848		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1849		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1850		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1851					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1852					0);
1853
1854		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1855		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1856		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1857		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1858					AR5K_PHY_BIN_MASK2_4_MASK_4,
1859					0);
1860	}
1861}
1862
1863
1864/*****************\
1865* Antenna control *
1866\*****************/
1867
1868static void /*TODO:Boundary check*/
1869ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1870{
1871	if (ah->ah_version != AR5K_AR5210)
1872		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1873}
1874
1875/*
1876 * Enable/disable fast rx antenna diversity
1877 */
1878static void
1879ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1880{
1881	switch (ee_mode) {
1882	case AR5K_EEPROM_MODE_11G:
1883		/* XXX: This is set to
1884		 * disabled on initvals !!! */
1885	case AR5K_EEPROM_MODE_11A:
1886		if (enable)
1887			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1888					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1889		else
1890			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1891					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1892		break;
1893	case AR5K_EEPROM_MODE_11B:
1894		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1895					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1896		break;
1897	default:
1898		return;
1899	}
1900
1901	if (enable) {
1902		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1903				AR5K_PHY_RESTART_DIV_GC, 4);
1904
1905		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1906					AR5K_PHY_FAST_ANT_DIV_EN);
1907	} else {
1908		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1909				AR5K_PHY_RESTART_DIV_GC, 0);
1910
1911		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1912					AR5K_PHY_FAST_ANT_DIV_EN);
1913	}
1914}
1915
1916void
1917ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1918{
1919	u8 ant0, ant1;
1920
1921	/*
1922	 * In case a fixed antenna was set as default
1923	 * use the same switch table twice.
1924	 */
1925	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1926		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1927	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1928		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1929	else {
1930		ant0 = AR5K_ANT_SWTABLE_A;
1931		ant1 = AR5K_ANT_SWTABLE_B;
1932	}
1933
1934	/* Set antenna idle switch table */
1935	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1936			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1937			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1938			AR5K_PHY_ANT_CTL_TXRX_EN));
1939
1940	/* Set antenna switch tables */
1941	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1942		AR5K_PHY_ANT_SWITCH_TABLE_0);
1943	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1944		AR5K_PHY_ANT_SWITCH_TABLE_1);
1945}
1946
1947/*
1948 * Set antenna operating mode
1949 */
1950void
1951ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1952{
1953	struct ieee80211_channel *channel = ah->ah_current_channel;
1954	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1955	bool use_def_for_sg;
1956	int ee_mode;
1957	u8 def_ant, tx_ant;
1958	u32 sta_id1 = 0;
1959
1960	/* if channel is not initialized yet we can't set the antennas
1961	 * so just store the mode. it will be set on the next reset */
1962	if (channel == NULL) {
1963		ah->ah_ant_mode = ant_mode;
1964		return;
1965	}
1966
1967	def_ant = ah->ah_def_ant;
1968
1969	ee_mode = ath5k_eeprom_mode_from_channel(channel);
1970	if (ee_mode < 0) {
1971		ATH5K_ERR(ah,
1972			"invalid channel: %d\n", channel->center_freq);
1973		return;
1974	}
1975
1976	switch (ant_mode) {
1977	case AR5K_ANTMODE_DEFAULT:
1978		tx_ant = 0;
1979		use_def_for_tx = false;
1980		update_def_on_tx = false;
1981		use_def_for_rts = false;
1982		use_def_for_sg = false;
1983		fast_div = true;
1984		break;
1985	case AR5K_ANTMODE_FIXED_A:
1986		def_ant = 1;
1987		tx_ant = 1;
1988		use_def_for_tx = true;
1989		update_def_on_tx = false;
1990		use_def_for_rts = true;
1991		use_def_for_sg = true;
1992		fast_div = false;
1993		break;
1994	case AR5K_ANTMODE_FIXED_B:
1995		def_ant = 2;
1996		tx_ant = 2;
1997		use_def_for_tx = true;
1998		update_def_on_tx = false;
1999		use_def_for_rts = true;
2000		use_def_for_sg = true;
2001		fast_div = false;
2002		break;
2003	case AR5K_ANTMODE_SINGLE_AP:
2004		def_ant = 1;	/* updated on tx */
2005		tx_ant = 0;
2006		use_def_for_tx = true;
2007		update_def_on_tx = true;
2008		use_def_for_rts = true;
2009		use_def_for_sg = true;
2010		fast_div = true;
2011		break;
2012	case AR5K_ANTMODE_SECTOR_AP:
2013		tx_ant = 1;	/* variable */
2014		use_def_for_tx = false;
2015		update_def_on_tx = false;
2016		use_def_for_rts = true;
2017		use_def_for_sg = false;
2018		fast_div = false;
2019		break;
2020	case AR5K_ANTMODE_SECTOR_STA:
2021		tx_ant = 1;	/* variable */
2022		use_def_for_tx = true;
2023		update_def_on_tx = false;
2024		use_def_for_rts = true;
2025		use_def_for_sg = false;
2026		fast_div = true;
2027		break;
2028	case AR5K_ANTMODE_DEBUG:
2029		def_ant = 1;
2030		tx_ant = 2;
2031		use_def_for_tx = false;
2032		update_def_on_tx = false;
2033		use_def_for_rts = false;
2034		use_def_for_sg = false;
2035		fast_div = false;
2036		break;
2037	default:
2038		return;
2039	}
2040
2041	ah->ah_tx_ant = tx_ant;
2042	ah->ah_ant_mode = ant_mode;
2043	ah->ah_def_ant = def_ant;
2044
2045	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2046	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2047	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2048	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2049
2050	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2051
2052	if (sta_id1)
2053		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2054
2055	ath5k_hw_set_antenna_switch(ah, ee_mode);
2056	/* Note: set diversity before default antenna
2057	 * because it won't work correctly */
2058	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2059	ath5k_hw_set_def_antenna(ah, def_ant);
2060}
2061
2062
2063/****************\
2064* TX power setup *
2065\****************/
2066
2067/*
2068 * Helper functions
2069 */
2070
2071/*
2072 * Do linear interpolation between two given (x, y) points
2073 */
2074static s16
2075ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2076					s16 y_left, s16 y_right)
2077{
2078	s16 ratio, result;
2079
2080	/* Avoid divide by zero and skip interpolation
2081	 * if we have the same point */
2082	if ((x_left == x_right) || (y_left == y_right))
2083		return y_left;
2084
2085	/*
2086	 * Since we use ints and not fps, we need to scale up in
2087	 * order to get a sane ratio value (or else we 'll eg. get
2088	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2089	 * to have some accuracy both for 0.5 and 0.25 steps.
2090	 */
2091	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2092
2093	/* Now scale down to be in range */
2094	result = y_left + (ratio * (target - x_left) / 100);
2095
2096	return result;
2097}
2098
2099/*
2100 * Find vertical boundary (min pwr) for the linear PCDAC curve.
2101 *
2102 * Since we have the top of the curve and we draw the line below
2103 * until we reach 1 (1 pcdac step) we need to know which point
2104 * (x value) that is so that we don't go below y axis and have negative
2105 * pcdac values when creating the curve, or fill the table with zeroes.
2106 */
2107static s16
2108ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2109				const s16 *pwrL, const s16 *pwrR)
2110{
2111	s8 tmp;
2112	s16 min_pwrL, min_pwrR;
2113	s16 pwr_i;
2114
2115	/* Some vendors write the same pcdac value twice !!! */
2116	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2117		return max(pwrL[0], pwrR[0]);
2118
2119	if (pwrL[0] == pwrL[1])
2120		min_pwrL = pwrL[0];
2121	else {
2122		pwr_i = pwrL[0];
2123		do {
2124			pwr_i--;
2125			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2126							pwrL[0], pwrL[1],
2127							stepL[0], stepL[1]);
2128		} while (tmp > 1);
2129
2130		min_pwrL = pwr_i;
2131	}
2132
2133	if (pwrR[0] == pwrR[1])
2134		min_pwrR = pwrR[0];
2135	else {
2136		pwr_i = pwrR[0];
2137		do {
2138			pwr_i--;
2139			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2140							pwrR[0], pwrR[1],
2141							stepR[0], stepR[1]);
2142		} while (tmp > 1);
2143
2144		min_pwrR = pwr_i;
2145	}
2146
2147	/* Keep the right boundary so that it works for both curves */
2148	return max(min_pwrL, min_pwrR);
2149}
2150
2151/*
2152 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2153 * Power to PCDAC curve.
2154 *
2155 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2156 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2157 * PCDAC/PDADC step for each curve is 64 but we can write more than
2158 * one curves on hw so we can go up to 128 (which is the max step we
2159 * can write on the final table).
2160 *
2161 * We write y values (PCDAC/PDADC steps) on hw.
2162 */
2163static void
2164ath5k_create_power_curve(s16 pmin, s16 pmax,
2165			const s16 *pwr, const u8 *vpd,
2166			u8 num_points,
2167			u8 *vpd_table, u8 type)
2168{
2169	u8 idx[2] = { 0, 1 };
2170	s16 pwr_i = 2 * pmin;
2171	int i;
2172
2173	if (num_points < 2)
2174		return;
2175
2176	/* We want the whole line, so adjust boundaries
2177	 * to cover the entire power range. Note that
2178	 * power values are already 0.25dB so no need
2179	 * to multiply pwr_i by 2 */
2180	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2181		pwr_i = pmin;
2182		pmin = 0;
2183		pmax = 63;
2184	}
2185
2186	/* Find surrounding turning points (TPs)
2187	 * and interpolate between them */
2188	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2189	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2190
2191		/* We passed the right TP, move to the next set of TPs
2192		 * if we pass the last TP, extrapolate above using the last
2193		 * two TPs for ratio */
2194		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2195			idx[0]++;
2196			idx[1]++;
2197		}
2198
2199		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2200						pwr[idx[0]], pwr[idx[1]],
2201						vpd[idx[0]], vpd[idx[1]]);
2202
2203		/* Increase by 0.5dB
2204		 * (0.25 dB units) */
2205		pwr_i += 2;
2206	}
2207}
2208
2209/*
2210 * Get the surrounding per-channel power calibration piers
2211 * for a given frequency so that we can interpolate between
2212 * them and come up with an appropriate dataset for our current
2213 * channel.
2214 */
2215static void
2216ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2217			struct ieee80211_channel *channel,
2218			struct ath5k_chan_pcal_info **pcinfo_l,
2219			struct ath5k_chan_pcal_info **pcinfo_r)
2220{
2221	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2222	struct ath5k_chan_pcal_info *pcinfo;
2223	u8 idx_l, idx_r;
2224	u8 mode, max, i;
2225	u32 target = channel->center_freq;
2226
2227	idx_l = 0;
2228	idx_r = 0;
2229
2230	switch (channel->hw_value) {
2231	case AR5K_EEPROM_MODE_11A:
2232		pcinfo = ee->ee_pwr_cal_a;
2233		mode = AR5K_EEPROM_MODE_11A;
2234		break;
2235	case AR5K_EEPROM_MODE_11B:
2236		pcinfo = ee->ee_pwr_cal_b;
2237		mode = AR5K_EEPROM_MODE_11B;
2238		break;
2239	case AR5K_EEPROM_MODE_11G:
2240	default:
2241		pcinfo = ee->ee_pwr_cal_g;
2242		mode = AR5K_EEPROM_MODE_11G;
2243		break;
2244	}
2245	max = ee->ee_n_piers[mode] - 1;
2246
2247	/* Frequency is below our calibrated
2248	 * range. Use the lowest power curve
2249	 * we have */
2250	if (target < pcinfo[0].freq) {
2251		idx_l = idx_r = 0;
2252		goto done;
2253	}
2254
2255	/* Frequency is above our calibrated
2256	 * range. Use the highest power curve
2257	 * we have */
2258	if (target > pcinfo[max].freq) {
2259		idx_l = idx_r = max;
2260		goto done;
2261	}
2262
2263	/* Frequency is inside our calibrated
2264	 * channel range. Pick the surrounding
2265	 * calibration piers so that we can
2266	 * interpolate */
2267	for (i = 0; i <= max; i++) {
2268
2269		/* Frequency matches one of our calibration
2270		 * piers, no need to interpolate, just use
2271		 * that calibration pier */
2272		if (pcinfo[i].freq == target) {
2273			idx_l = idx_r = i;
2274			goto done;
2275		}
2276
2277		/* We found a calibration pier that's above
2278		 * frequency, use this pier and the previous
2279		 * one to interpolate */
2280		if (target < pcinfo[i].freq) {
2281			idx_r = i;
2282			idx_l = idx_r - 1;
2283			goto done;
2284		}
2285	}
2286
2287done:
2288	*pcinfo_l = &pcinfo[idx_l];
2289	*pcinfo_r = &pcinfo[idx_r];
2290}
2291
2292/*
2293 * Get the surrounding per-rate power calibration data
2294 * for a given frequency and interpolate between power
2295 * values to set max target power supported by hw for
2296 * each rate.
2297 */
2298static void
2299ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2300			struct ieee80211_channel *channel,
2301			struct ath5k_rate_pcal_info *rates)
2302{
2303	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2304	struct ath5k_rate_pcal_info *rpinfo;
2305	u8 idx_l, idx_r;
2306	u8 mode, max, i;
2307	u32 target = channel->center_freq;
2308
2309	idx_l = 0;
2310	idx_r = 0;
2311
2312	switch (channel->hw_value) {
2313	case AR5K_MODE_11A:
2314		rpinfo = ee->ee_rate_tpwr_a;
2315		mode = AR5K_EEPROM_MODE_11A;
2316		break;
2317	case AR5K_MODE_11B:
2318		rpinfo = ee->ee_rate_tpwr_b;
2319		mode = AR5K_EEPROM_MODE_11B;
2320		break;
2321	case AR5K_MODE_11G:
2322	default:
2323		rpinfo = ee->ee_rate_tpwr_g;
2324		mode = AR5K_EEPROM_MODE_11G;
2325		break;
2326	}
2327	max = ee->ee_rate_target_pwr_num[mode] - 1;
2328
2329	/* Get the surrounding calibration
2330	 * piers - same as above */
2331	if (target < rpinfo[0].freq) {
2332		idx_l = idx_r = 0;
2333		goto done;
2334	}
2335
2336	if (target > rpinfo[max].freq) {
2337		idx_l = idx_r = max;
2338		goto done;
2339	}
2340
2341	for (i = 0; i <= max; i++) {
2342
2343		if (rpinfo[i].freq == target) {
2344			idx_l = idx_r = i;
2345			goto done;
2346		}
2347
2348		if (target < rpinfo[i].freq) {
2349			idx_r = i;
2350			idx_l = idx_r - 1;
2351			goto done;
2352		}
2353	}
2354
2355done:
2356	/* Now interpolate power value, based on the frequency */
2357	rates->freq = target;
2358
2359	rates->target_power_6to24 =
2360		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2361					rpinfo[idx_r].freq,
2362					rpinfo[idx_l].target_power_6to24,
2363					rpinfo[idx_r].target_power_6to24);
2364
2365	rates->target_power_36 =
2366		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2367					rpinfo[idx_r].freq,
2368					rpinfo[idx_l].target_power_36,
2369					rpinfo[idx_r].target_power_36);
2370
2371	rates->target_power_48 =
2372		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2373					rpinfo[idx_r].freq,
2374					rpinfo[idx_l].target_power_48,
2375					rpinfo[idx_r].target_power_48);
2376
2377	rates->target_power_54 =
2378		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2379					rpinfo[idx_r].freq,
2380					rpinfo[idx_l].target_power_54,
2381					rpinfo[idx_r].target_power_54);
2382}
2383
2384/*
2385 * Get the max edge power for this channel if
2386 * we have such data from EEPROM's Conformance Test
2387 * Limits (CTL), and limit max power if needed.
2388 */
2389static void
2390ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2391			struct ieee80211_channel *channel)
2392{
2393	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2394	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2395	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2396	u8 *ctl_val = ee->ee_ctl;
2397	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2398	s16 edge_pwr = 0;
2399	u8 rep_idx;
2400	u8 i, ctl_mode;
2401	u8 ctl_idx = 0xFF;
2402	u32 target = channel->center_freq;
2403
2404	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2405
2406	switch (channel->hw_value) {
2407	case AR5K_MODE_11A:
2408		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2409			ctl_mode |= AR5K_CTL_TURBO;
2410		else
2411			ctl_mode |= AR5K_CTL_11A;
2412		break;
2413	case AR5K_MODE_11G:
2414		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2415			ctl_mode |= AR5K_CTL_TURBOG;
2416		else
2417			ctl_mode |= AR5K_CTL_11G;
2418		break;
2419	case AR5K_MODE_11B:
2420		ctl_mode |= AR5K_CTL_11B;
2421		break;
2422	default:
2423		return;
2424	}
2425
2426	for (i = 0; i < ee->ee_ctls; i++) {
2427		if (ctl_val[i] == ctl_mode) {
2428			ctl_idx = i;
2429			break;
2430		}
2431	}
2432
2433	/* If we have a CTL dataset available grab it and find the
2434	 * edge power for our frequency */
2435	if (ctl_idx == 0xFF)
2436		return;
2437
2438	/* Edge powers are sorted by frequency from lower
2439	 * to higher. Each CTL corresponds to 8 edge power
2440	 * measurements. */
2441	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2442
2443	/* Don't do boundaries check because we
2444	 * might have more that one bands defined
2445	 * for this mode */
2446
2447	/* Get the edge power that's closer to our
2448	 * frequency */
2449	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2450		rep_idx += i;
2451		if (target <= rep[rep_idx].freq)
2452			edge_pwr = (s16) rep[rep_idx].edge;
2453	}
2454
2455	if (edge_pwr)
2456		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2457}
2458
2459
2460/*
2461 * Power to PCDAC table functions
2462 */
2463
2464/*
2465 * Fill Power to PCDAC table on RF5111
2466 *
2467 * No further processing is needed for RF5111, the only thing we have to
2468 * do is fill the values below and above calibration range since eeprom data
2469 * may not cover the entire PCDAC table.
2470 */
2471static void
2472ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2473							s16 *table_max)
2474{
2475	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2476	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2477	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2478	s16	min_pwr, max_pwr;
2479
2480	/* Get table boundaries */
2481	min_pwr = table_min[0];
2482	pcdac_0 = pcdac_tmp[0];
2483
2484	max_pwr = table_max[0];
2485	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2486
2487	/* Extrapolate below minimum using pcdac_0 */
2488	pcdac_i = 0;
2489	for (i = 0; i < min_pwr; i++)
2490		pcdac_out[pcdac_i++] = pcdac_0;
2491
2492	/* Copy values from pcdac_tmp */
2493	pwr_idx = min_pwr;
2494	for (i = 0; pwr_idx <= max_pwr &&
2495		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2496		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2497		pwr_idx++;
2498	}
2499
2500	/* Extrapolate above maximum */
2501	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2502		pcdac_out[pcdac_i++] = pcdac_n;
2503
2504}
2505
2506/*
2507 * Combine available XPD Curves and fill Linear Power to PCDAC table
2508 * on RF5112
2509 *
2510 * RFX112 can have up to 2 curves (one for low txpower range and one for
2511 * higher txpower range). We need to put them both on pcdac_out and place
2512 * them in the correct location. In case we only have one curve available
2513 * just fit it on pcdac_out (it's supposed to cover the entire range of
2514 * available pwr levels since it's always the higher power curve). Extrapolate
2515 * below and above final table if needed.
2516 */
2517static void
2518ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2519						s16 *table_max, u8 pdcurves)
2520{
2521	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2522	u8	*pcdac_low_pwr;
2523	u8	*pcdac_high_pwr;
2524	u8	*pcdac_tmp;
2525	u8	pwr;
2526	s16	max_pwr_idx;
2527	s16	min_pwr_idx;
2528	s16	mid_pwr_idx = 0;
2529	/* Edge flag turns on the 7nth bit on the PCDAC
2530	 * to declare the higher power curve (force values
2531	 * to be greater than 64). If we only have one curve
2532	 * we don't need to set this, if we have 2 curves and
2533	 * fill the table backwards this can also be used to
2534	 * switch from higher power curve to lower power curve */
2535	u8	edge_flag;
2536	int	i;
2537
2538	/* When we have only one curve available
2539	 * that's the higher power curve. If we have
2540	 * two curves the first is the high power curve
2541	 * and the next is the low power curve. */
2542	if (pdcurves > 1) {
2543		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2544		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2545		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2546		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2547
2548		/* If table size goes beyond 31.5dB, keep the
2549		 * upper 31.5dB range when setting tx power.
2550		 * Note: 126 = 31.5 dB in quarter dB steps */
2551		if (table_max[0] - table_min[1] > 126)
2552			min_pwr_idx = table_max[0] - 126;
2553		else
2554			min_pwr_idx = table_min[1];
2555
2556		/* Since we fill table backwards
2557		 * start from high power curve */
2558		pcdac_tmp = pcdac_high_pwr;
2559
2560		edge_flag = 0x40;
2561	} else {
2562		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2563		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2564		min_pwr_idx = table_min[0];
2565		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2566		pcdac_tmp = pcdac_high_pwr;
2567		edge_flag = 0;
2568	}
2569
2570	/* This is used when setting tx power*/
2571	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2572
2573	/* Fill Power to PCDAC table backwards */
2574	pwr = max_pwr_idx;
2575	for (i = 63; i >= 0; i--) {
2576		/* Entering lower power range, reset
2577		 * edge flag and set pcdac_tmp to lower
2578		 * power curve.*/
2579		if (edge_flag == 0x40 &&
2580		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2581			edge_flag = 0x00;
2582			pcdac_tmp = pcdac_low_pwr;
2583			pwr = mid_pwr_idx / 2;
2584		}
2585
2586		/* Don't go below 1, extrapolate below if we have
2587		 * already switched to the lower power curve -or
2588		 * we only have one curve and edge_flag is zero
2589		 * anyway */
2590		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2591			while (i >= 0) {
2592				pcdac_out[i] = pcdac_out[i + 1];
2593				i--;
2594			}
2595			break;
2596		}
2597
2598		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2599
2600		/* Extrapolate above if pcdac is greater than
2601		 * 126 -this can happen because we OR pcdac_out
2602		 * value with edge_flag on high power curve */
2603		if (pcdac_out[i] > 126)
2604			pcdac_out[i] = 126;
2605
2606		/* Decrease by a 0.5dB step */
2607		pwr--;
2608	}
2609}
2610
2611/* Write PCDAC values on hw */
2612static void
2613ath5k_write_pcdac_table(struct ath5k_hw *ah)
2614{
2615	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2616	int	i;
2617
2618	/*
2619	 * Write TX power values
2620	 */
2621	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2622		ath5k_hw_reg_write(ah,
2623			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
2624			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
2625			AR5K_PHY_PCDAC_TXPOWER(i));
2626	}
2627}
2628
2629
2630/*
2631 * Power to PDADC table functions
2632 */
2633
2634/*
2635 * Set the gain boundaries and create final Power to PDADC table
2636 *
2637 * We can have up to 4 pd curves, we need to do a similar process
2638 * as we do for RF5112. This time we don't have an edge_flag but we
2639 * set the gain boundaries on a separate register.
2640 */
2641static void
2642ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2643			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2644{
2645	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2646	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2647	u8 *pdadc_tmp;
2648	s16 pdadc_0;
2649	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2650	u8 pd_gain_overlap;
2651
2652	/* Note: Register value is initialized on initvals
2653	 * there is no feedback from hw.
2654	 * XXX: What about pd_gain_overlap from EEPROM ? */
2655	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2656		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2657
2658	/* Create final PDADC table */
2659	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2660		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2661
2662		if (pdg == pdcurves - 1)
2663			/* 2 dB boundary stretch for last
2664			 * (higher power) curve */
2665			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2666		else
2667			/* Set gain boundary in the middle
2668			 * between this curve and the next one */
2669			gain_boundaries[pdg] =
2670				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2671
2672		/* Sanity check in case our 2 db stretch got out of
2673		 * range. */
2674		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2675			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2676
2677		/* For the first curve (lower power)
2678		 * start from 0 dB */
2679		if (pdg == 0)
2680			pdadc_0 = 0;
2681		else
2682			/* For the other curves use the gain overlap */
2683			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2684							pd_gain_overlap;
2685
2686		/* Force each power step to be at least 0.5 dB */
2687		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2688			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2689		else
2690			pwr_step = 1;
2691
2692		/* If pdadc_0 is negative, we need to extrapolate
2693		 * below this pdgain by a number of pwr_steps */
2694		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2695			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2696			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2697			pdadc_0++;
2698		}
2699
2700		/* Set last pwr level, using gain boundaries */
2701		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2702		/* Limit it to be inside pwr range */
2703		table_size = pwr_max[pdg] - pwr_min[pdg];
2704		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2705
2706		/* Fill pdadc_out table */
2707		while (pdadc_0 < max_idx && pdadc_i < 128)
2708			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2709
2710		/* Need to extrapolate above this pdgain? */
2711		if (pdadc_n <= max_idx)
2712			continue;
2713
2714		/* Force each power step to be at least 0.5 dB */
2715		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2716			pwr_step = pdadc_tmp[table_size - 1] -
2717						pdadc_tmp[table_size - 2];
2718		else
2719			pwr_step = 1;
2720
2721		/* Extrapolate above */
2722		while ((pdadc_0 < (s16) pdadc_n) &&
2723		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2724			s16 tmp = pdadc_tmp[table_size - 1] +
2725					(pdadc_0 - max_idx) * pwr_step;
2726			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2727			pdadc_0++;
2728		}
2729	}
2730
2731	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2732		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2733		pdg++;
2734	}
2735
2736	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2737		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2738		pdadc_i++;
2739	}
2740
2741	/* Set gain boundaries */
2742	ath5k_hw_reg_write(ah,
2743		AR5K_REG_SM(pd_gain_overlap,
2744			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2745		AR5K_REG_SM(gain_boundaries[0],
2746			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2747		AR5K_REG_SM(gain_boundaries[1],
2748			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2749		AR5K_REG_SM(gain_boundaries[2],
2750			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2751		AR5K_REG_SM(gain_boundaries[3],
2752			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2753		AR5K_PHY_TPC_RG5);
2754
2755	/* Used for setting rate power table */
2756	ah->ah_txpower.txp_min_idx = pwr_min[0];
2757
2758}
2759
2760/* Write PDADC values on hw */
2761static void
2762ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
2763{
2764	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2765	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2766	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
2767	u8 pdcurves = ee->ee_pd_gains[ee_mode];
2768	u32 reg;
2769	u8 i;
2770
2771	/* Select the right pdgain curves */
2772
2773	/* Clear current settings */
2774	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2775	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2776		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2777		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2778		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2779
2780	/*
2781	 * Use pd_gains curve from eeprom
2782	 *
2783	 * This overrides the default setting from initvals
2784	 * in case some vendors (e.g. Zcomax) don't use the default
2785	 * curves. If we don't honor their settings we 'll get a
2786	 * 5dB (1 * gain overlap ?) drop.
2787	 */
2788	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2789
2790	switch (pdcurves) {
2791	case 3:
2792		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2793		/* Fall through */
2794	case 2:
2795		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2796		/* Fall through */
2797	case 1:
2798		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2799		break;
2800	}
2801	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2802
2803	/*
2804	 * Write TX power values
2805	 */
2806	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2807		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
2808		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
2809	}
2810}
2811
2812
2813/*
2814 * Common code for PCDAC/PDADC tables
2815 */
2816
2817/*
2818 * This is the main function that uses all of the above
2819 * to set PCDAC/PDADC table on hw for the current channel.
2820 * This table is used for tx power calibration on the baseband,
2821 * without it we get weird tx power levels and in some cases
2822 * distorted spectral mask
2823 */
2824static int
2825ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2826			struct ieee80211_channel *channel,
2827			u8 ee_mode, u8 type)
2828{
2829	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2830	struct ath5k_chan_pcal_info *pcinfo_L;
2831	struct ath5k_chan_pcal_info *pcinfo_R;
2832	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2833	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2834	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2835	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2836	u8 *tmpL;
2837	u8 *tmpR;
2838	u32 target = channel->center_freq;
2839	int pdg, i;
2840
2841	/* Get surrounding freq piers for this channel */
2842	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2843						&pcinfo_L,
2844						&pcinfo_R);
2845
2846	/* Loop over pd gain curves on
2847	 * surrounding freq piers by index */
2848	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2849
2850		/* Fill curves in reverse order
2851		 * from lower power (max gain)
2852		 * to higher power. Use curve -> idx
2853		 * backmapping we did on eeprom init */
2854		u8 idx = pdg_curve_to_idx[pdg];
2855
2856		/* Grab the needed curves by index */
2857		pdg_L = &pcinfo_L->pd_curves[idx];
2858		pdg_R = &pcinfo_R->pd_curves[idx];
2859
2860		/* Initialize the temp tables */
2861		tmpL = ah->ah_txpower.tmpL[pdg];
2862		tmpR = ah->ah_txpower.tmpR[pdg];
2863
2864		/* Set curve's x boundaries and create
2865		 * curves so that they cover the same
2866		 * range (if we don't do that one table
2867		 * will have values on some range and the
2868		 * other one won't have any so interpolation
2869		 * will fail) */
2870		table_min[pdg] = min(pdg_L->pd_pwr[0],
2871					pdg_R->pd_pwr[0]) / 2;
2872
2873		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2874				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2875
2876		/* Now create the curves on surrounding channels
2877		 * and interpolate if needed to get the final
2878		 * curve for this gain on this channel */
2879		switch (type) {
2880		case AR5K_PWRTABLE_LINEAR_PCDAC:
2881			/* Override min/max so that we don't loose
2882			 * accuracy (don't divide by 2) */
2883			table_min[pdg] = min(pdg_L->pd_pwr[0],
2884						pdg_R->pd_pwr[0]);
2885
2886			table_max[pdg] =
2887				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2888					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2889
2890			/* Override minimum so that we don't get
2891			 * out of bounds while extrapolating
2892			 * below. Don't do this when we have 2
2893			 * curves and we are on the high power curve
2894			 * because table_min is ok in this case */
2895			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2896
2897				table_min[pdg] =
2898					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2899								pdg_R->pd_step,
2900								pdg_L->pd_pwr,
2901								pdg_R->pd_pwr);
2902
2903				/* Don't go too low because we will
2904				 * miss the upper part of the curve.
2905				 * Note: 126 = 31.5dB (max power supported)
2906				 * in 0.25dB units */
2907				if (table_max[pdg] - table_min[pdg] > 126)
2908					table_min[pdg] = table_max[pdg] - 126;
2909			}
2910
2911			/* Fall through */
2912		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2913		case AR5K_PWRTABLE_PWR_TO_PDADC:
2914
2915			ath5k_create_power_curve(table_min[pdg],
2916						table_max[pdg],
2917						pdg_L->pd_pwr,
2918						pdg_L->pd_step,
2919						pdg_L->pd_points, tmpL, type);
2920
2921			/* We are in a calibration
2922			 * pier, no need to interpolate
2923			 * between freq piers */
2924			if (pcinfo_L == pcinfo_R)
2925				continue;
2926
2927			ath5k_create_power_curve(table_min[pdg],
2928						table_max[pdg],
2929						pdg_R->pd_pwr,
2930						pdg_R->pd_step,
2931						pdg_R->pd_points, tmpR, type);
2932			break;
2933		default:
2934			return -EINVAL;
2935		}
2936
2937		/* Interpolate between curves
2938		 * of surrounding freq piers to
2939		 * get the final curve for this
2940		 * pd gain. Re-use tmpL for interpolation
2941		 * output */
2942		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2943		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2944			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2945							(s16) pcinfo_L->freq,
2946							(s16) pcinfo_R->freq,
2947							(s16) tmpL[i],
2948							(s16) tmpR[i]);
2949		}
2950	}
2951
2952	/* Now we have a set of curves for this
2953	 * channel on tmpL (x range is table_max - table_min
2954	 * and y values are tmpL[pdg][]) sorted in the same
2955	 * order as EEPROM (because we've used the backmapping).
2956	 * So for RF5112 it's from higher power to lower power
2957	 * and for RF2413 it's from lower power to higher power.
2958	 * For RF5111 we only have one curve. */
2959
2960	/* Fill min and max power levels for this
2961	 * channel by interpolating the values on
2962	 * surrounding channels to complete the dataset */
2963	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2964					(s16) pcinfo_L->freq,
2965					(s16) pcinfo_R->freq,
2966					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2967
2968	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2969					(s16) pcinfo_L->freq,
2970					(s16) pcinfo_R->freq,
2971					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2972
2973	/* Fill PCDAC/PDADC table */
2974	switch (type) {
2975	case AR5K_PWRTABLE_LINEAR_PCDAC:
2976		/* For RF5112 we can have one or two curves
2977		 * and each curve covers a certain power lvl
2978		 * range so we need to do some more processing */
2979		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2980						ee->ee_pd_gains[ee_mode]);
2981
2982		/* Set txp.offset so that we can
2983		 * match max power value with max
2984		 * table index */
2985		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2986		break;
2987	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2988		/* We are done for RF5111 since it has only
2989		 * one curve, just fit the curve on the table */
2990		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2991
2992		/* No rate powertable adjustment for RF5111 */
2993		ah->ah_txpower.txp_min_idx = 0;
2994		ah->ah_txpower.txp_offset = 0;
2995		break;
2996	case AR5K_PWRTABLE_PWR_TO_PDADC:
2997		/* Set PDADC boundaries and fill
2998		 * final PDADC table */
2999		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3000						ee->ee_pd_gains[ee_mode]);
3001
3002		/* Set txp.offset, note that table_min
3003		 * can be negative */
3004		ah->ah_txpower.txp_offset = table_min[0];
3005		break;
3006	default:
3007		return -EINVAL;
3008	}
3009
3010	ah->ah_txpower.txp_setup = true;
3011
3012	return 0;
3013}
3014
3015/* Write power table for current channel to hw */
3016static void
3017ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3018{
3019	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3020		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3021	else
3022		ath5k_write_pcdac_table(ah);
3023}
3024
3025/*
3026 * Per-rate tx power setting
3027 *
3028 * This is the code that sets the desired tx power (below
3029 * maximum) on hw for each rate (we also have TPC that sets
3030 * power per packet). We do that by providing an index on the
3031 * PCDAC/PDADC table we set up.
3032 */
3033
3034/*
3035 * Set rate power table
3036 *
3037 * For now we only limit txpower based on maximum tx power
3038 * supported by hw (what's inside rate_info). We need to limit
3039 * this even more, based on regulatory domain etc.
3040 *
3041 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3042 * and is indexed as follows:
3043 * rates[0] - rates[7] -> OFDM rates
3044 * rates[8] - rates[14] -> CCK rates
3045 * rates[15] -> XR rates (they all have the same power)
3046 */
3047static void
3048ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3049			struct ath5k_rate_pcal_info *rate_info,
3050			u8 ee_mode)
3051{
3052	unsigned int i;
3053	u16 *rates;
3054
3055	/* max_pwr is power level we got from driver/user in 0.5dB
3056	 * units, switch to 0.25dB units so we can compare */
3057	max_pwr *= 2;
3058	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3059
3060	/* apply rate limits */
3061	rates = ah->ah_txpower.txp_rates_power_table;
3062
3063	/* OFDM rates 6 to 24Mb/s */
3064	for (i = 0; i < 5; i++)
3065		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3066
3067	/* Rest OFDM rates */
3068	rates[5] = min(rates[0], rate_info->target_power_36);
3069	rates[6] = min(rates[0], rate_info->target_power_48);
3070	rates[7] = min(rates[0], rate_info->target_power_54);
3071
3072	/* CCK rates */
3073	/* 1L */
3074	rates[8] = min(rates[0], rate_info->target_power_6to24);
3075	/* 2L */
3076	rates[9] = min(rates[0], rate_info->target_power_36);
3077	/* 2S */
3078	rates[10] = min(rates[0], rate_info->target_power_36);
3079	/* 5L */
3080	rates[11] = min(rates[0], rate_info->target_power_48);
3081	/* 5S */
3082	rates[12] = min(rates[0], rate_info->target_power_48);
3083	/* 11L */
3084	rates[13] = min(rates[0], rate_info->target_power_54);
3085	/* 11S */
3086	rates[14] = min(rates[0], rate_info->target_power_54);
3087
3088	/* XR rates */
3089	rates[15] = min(rates[0], rate_info->target_power_6to24);
3090
3091	/* CCK rates have different peak to average ratio
3092	 * so we have to tweak their power so that gainf
3093	 * correction works ok. For this we use OFDM to
3094	 * CCK delta from eeprom */
3095	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3096	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3097		for (i = 8; i <= 15; i++)
3098			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3099
3100	/* Now that we have all rates setup use table offset to
3101	 * match the power range set by user with the power indices
3102	 * on PCDAC/PDADC table */
3103	for (i = 0; i < 16; i++) {
3104		rates[i] += ah->ah_txpower.txp_offset;
3105		/* Don't get out of bounds */
3106		if (rates[i] > 63)
3107			rates[i] = 63;
3108	}
3109
3110	/* Min/max in 0.25dB units */
3111	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3112	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3113	ah->ah_txpower.txp_ofdm = rates[7];
3114}
3115
3116
3117/*
3118 * Set transmission power
3119 */
3120static int
3121ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3122		 u8 txpower)
3123{
3124	struct ath5k_rate_pcal_info rate_info;
3125	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3126	int ee_mode;
3127	u8 type;
3128	int ret;
3129
3130	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3131		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3132		return -EINVAL;
3133	}
3134
3135	ee_mode = ath5k_eeprom_mode_from_channel(channel);
3136	if (ee_mode < 0) {
3137		ATH5K_ERR(ah,
3138			"invalid channel: %d\n", channel->center_freq);
3139		return -EINVAL;
3140	}
3141
3142	/* Initialize TX power table */
3143	switch (ah->ah_radio) {
3144	case AR5K_RF5110:
3145		/* TODO */
3146		return 0;
3147	case AR5K_RF5111:
3148		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3149		break;
3150	case AR5K_RF5112:
3151		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3152		break;
3153	case AR5K_RF2413:
3154	case AR5K_RF5413:
3155	case AR5K_RF2316:
3156	case AR5K_RF2317:
3157	case AR5K_RF2425:
3158		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3159		break;
3160	default:
3161		return -EINVAL;
3162	}
3163
3164	/*
3165	 * If we don't change channel/mode skip tx powertable calculation
3166	 * and use the cached one.
3167	 */
3168	if (!ah->ah_txpower.txp_setup ||
3169	    (channel->hw_value != curr_channel->hw_value) ||
3170	    (channel->center_freq != curr_channel->center_freq)) {
3171		/* Reset TX power values */
3172		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3173		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3174
3175		/* Calculate the powertable */
3176		ret = ath5k_setup_channel_powertable(ah, channel,
3177							ee_mode, type);
3178		if (ret)
3179			return ret;
3180	}
3181
3182	/* Write table on hw */
3183	ath5k_write_channel_powertable(ah, ee_mode, type);
3184
3185	/* Limit max power if we have a CTL available */
3186	ath5k_get_max_ctl_power(ah, channel);
3187
3188	/* FIXME: Antenna reduction stuff */
3189
3190	/* FIXME: Limit power on turbo modes */
3191
3192	/* FIXME: TPC scale reduction */
3193
3194	/* Get surrounding channels for per-rate power table
3195	 * calibration */
3196	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3197
3198	/* Setup rate power table */
3199	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3200
3201	/* Write rate power table on hw */
3202	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3203		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3204		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3205
3206	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3207		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3208		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3209
3210	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3211		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3212		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3213
3214	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3215		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3216		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3217
3218	/* FIXME: TPC support */
3219	if (ah->ah_txpower.txp_tpc) {
3220		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3221			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3222
3223		ath5k_hw_reg_write(ah,
3224			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3225			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3226			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3227			AR5K_TPC);
3228	} else {
3229		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3230			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3231	}
3232
3233	return 0;
3234}
3235
3236int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3237{
3238	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3239		"changing txpower to %d\n", txpower);
3240
3241	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3242}
3243
3244/*************\
3245 Init function
3246\*************/
3247
3248int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3249		      u8 mode, bool fast)
3250{
3251	struct ieee80211_channel *curr_channel;
3252	int ret, i;
3253	u32 phy_tst1;
3254	ret = 0;
3255
3256	/*
3257	 * Sanity check for fast flag
3258	 * Don't try fast channel change when changing modulation
3259	 * mode/band. We check for chip compatibility on
3260	 * ath5k_hw_reset.
3261	 */
3262	curr_channel = ah->ah_current_channel;
3263	if (fast && (channel->hw_value != curr_channel->hw_value))
3264		return -EINVAL;
3265
3266	/*
3267	 * On fast channel change we only set the synth parameters
3268	 * while PHY is running, enable calibration and skip the rest.
3269	 */
3270	if (fast) {
3271		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3272				    AR5K_PHY_RFBUS_REQ_REQUEST);
3273		for (i = 0; i < 100; i++) {
3274			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3275				break;
3276			udelay(5);
3277		}
3278		/* Failed */
3279		if (i >= 100)
3280			return -EIO;
3281
3282		/* Set channel and wait for synth */
3283		ret = ath5k_hw_channel(ah, channel);
3284		if (ret)
3285			return ret;
3286
3287		ath5k_hw_wait_for_synth(ah, channel);
3288	}
3289
3290	/*
3291	 * Set TX power
3292	 *
3293	 * Note: We need to do that before we set
3294	 * RF buffer settings on 5211/5212+ so that we
3295	 * properly set curve indices.
3296	 */
3297	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3298			ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3299	if (ret)
3300		return ret;
3301
3302	/* Write OFDM timings on 5212*/
3303	if (ah->ah_version == AR5K_AR5212 &&
3304		channel->hw_value != AR5K_MODE_11B) {
3305
3306		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3307		if (ret)
3308			return ret;
3309
3310		/* Spur info is available only from EEPROM versions
3311		 * greater than 5.3, but the EEPROM routines will use
3312		 * static values for older versions */
3313		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3314			ath5k_hw_set_spur_mitigation_filter(ah,
3315							    channel);
3316	}
3317
3318	/* If we used fast channel switching
3319	 * we are done, release RF bus and
3320	 * fire up NF calibration.
3321	 *
3322	 * Note: Only NF calibration due to
3323	 * channel change, not AGC calibration
3324	 * since AGC is still running !
3325	 */
3326	if (fast) {
3327		/*
3328		 * Release RF Bus grant
3329		 */
3330		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3331				    AR5K_PHY_RFBUS_REQ_REQUEST);
3332
3333		/*
3334		 * Start NF calibration
3335		 */
3336		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3337					AR5K_PHY_AGCCTL_NF);
3338
3339		return ret;
3340	}
3341
3342	/*
3343	 * For 5210 we do all initialization using
3344	 * initvals, so we don't have to modify
3345	 * any settings (5210 also only supports
3346	 * a/aturbo modes)
3347	 */
3348	if (ah->ah_version != AR5K_AR5210) {
3349
3350		/*
3351		 * Write initial RF gain settings
3352		 * This should work for both 5111/5112
3353		 */
3354		ret = ath5k_hw_rfgain_init(ah, channel->band);
3355		if (ret)
3356			return ret;
3357
3358		mdelay(1);
3359
3360		/*
3361		 * Write RF buffer
3362		 */
3363		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3364		if (ret)
3365			return ret;
3366
3367		/*Enable/disable 802.11b mode on 5111
3368		(enable 2111 frequency converter + CCK)*/
3369		if (ah->ah_radio == AR5K_RF5111) {
3370			if (mode == AR5K_MODE_11B)
3371				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3372				    AR5K_TXCFG_B_MODE);
3373			else
3374				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3375				    AR5K_TXCFG_B_MODE);
3376		}
3377
3378	} else if (ah->ah_version == AR5K_AR5210) {
3379		mdelay(1);
3380		/* Disable phy and wait */
3381		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3382		mdelay(1);
3383	}
3384
3385	/* Set channel on PHY */
3386	ret = ath5k_hw_channel(ah, channel);
3387	if (ret)
3388		return ret;
3389
3390	/*
3391	 * Enable the PHY and wait until completion
3392	 * This includes BaseBand and Synthesizer
3393	 * activation.
3394	 */
3395	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3396
3397	ath5k_hw_wait_for_synth(ah, channel);
3398
3399	/*
3400	 * Perform ADC test to see if baseband is ready
3401	 * Set tx hold and check adc test register
3402	 */
3403	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3404	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3405	for (i = 0; i <= 20; i++) {
3406		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3407			break;
3408		udelay(200);
3409	}
3410	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3411
3412	/*
3413	 * Start automatic gain control calibration
3414	 *
3415	 * During AGC calibration RX path is re-routed to
3416	 * a power detector so we don't receive anything.
3417	 *
3418	 * This method is used to calibrate some static offsets
3419	 * used together with on-the fly I/Q calibration (the
3420	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3421	 * interrupt rx path.
3422	 *
3423	 * While rx path is re-routed to the power detector we also
3424	 * start a noise floor calibration to measure the
3425	 * card's noise floor (the noise we measure when we are not
3426	 * transmitting or receiving anything).
3427	 *
3428	 * If we are in a noisy environment, AGC calibration may time
3429	 * out and/or noise floor calibration might timeout.
3430	 */
3431	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3432				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3433
3434	/* At the same time start I/Q calibration for QAM constellation
3435	 * -no need for CCK- */
3436	ah->ah_calibration = false;
3437	if (!(mode == AR5K_MODE_11B)) {
3438		ah->ah_calibration = true;
3439		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3440				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3441		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3442				AR5K_PHY_IQ_RUN);
3443	}
3444
3445	/* Wait for gain calibration to finish (we check for I/Q calibration
3446	 * during ath5k_phy_calibrate) */
3447	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3448			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3449		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3450			channel->center_freq);
3451	}
3452
3453	/* Restore antenna mode */
3454	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3455
3456	return ret;
3457}
3458