[go: nahoru, domu]

phy.c revision 49a85d211a63ad1d565842ebc535c5168d85d86a
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
24
25#include "ath5k.h"
26#include "reg.h"
27#include "base.h"
28#include "rfbuffer.h"
29#include "rfgain.h"
30
31/*
32 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
33 */
34static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
35					const struct ath5k_rf_reg *rf_regs,
36					u32 val, u8 reg_id, bool set)
37{
38	const struct ath5k_rf_reg *rfreg = NULL;
39	u8 offset, bank, num_bits, col, position;
40	u16 entry;
41	u32 mask, data, last_bit, bits_shifted, first_bit;
42	u32 *rfb;
43	s32 bits_left;
44	int i;
45
46	data = 0;
47	rfb = ah->ah_rf_banks;
48
49	for (i = 0; i < ah->ah_rf_regs_count; i++) {
50		if (rf_regs[i].index == reg_id) {
51			rfreg = &rf_regs[i];
52			break;
53		}
54	}
55
56	if (rfb == NULL || rfreg == NULL) {
57		ATH5K_PRINTF("Rf register not found!\n");
58		/* should not happen */
59		return 0;
60	}
61
62	bank = rfreg->bank;
63	num_bits = rfreg->field.len;
64	first_bit = rfreg->field.pos;
65	col = rfreg->field.col;
66
67	/* first_bit is an offset from bank's
68	 * start. Since we have all banks on
69	 * the same array, we use this offset
70	 * to mark each bank's start */
71	offset = ah->ah_offset[bank];
72
73	/* Boundary check */
74	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
75		ATH5K_PRINTF("invalid values at offset %u\n", offset);
76		return 0;
77	}
78
79	entry = ((first_bit - 1) / 8) + offset;
80	position = (first_bit - 1) % 8;
81
82	if (set)
83		data = ath5k_hw_bitswap(val, num_bits);
84
85	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
86	position = 0, entry++) {
87
88		last_bit = (position + bits_left > 8) ? 8 :
89					position + bits_left;
90
91		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
92								(col * 8);
93
94		if (set) {
95			rfb[entry] &= ~mask;
96			rfb[entry] |= ((data << position) << (col * 8)) & mask;
97			data >>= (8 - position);
98		} else {
99			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
100				<< bits_shifted;
101			bits_shifted += last_bit - position;
102		}
103
104		bits_left -= 8 - position;
105	}
106
107	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
108
109	return data;
110}
111
112/**********************\
113* RF Gain optimization *
114\**********************/
115
116/*
117 * This code is used to optimize rf gain on different environments
118 * (temperature mostly) based on feedback from a power detector.
119 *
120 * It's only used on RF5111 and RF5112, later RF chips seem to have
121 * auto adjustment on hw -notice they have a much smaller BANK 7 and
122 * no gain optimization ladder-.
123 *
124 * For more infos check out this patent doc
125 * http://www.freepatentsonline.com/7400691.html
126 *
127 * This paper describes power drops as seen on the receiver due to
128 * probe packets
129 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
130 * %20of%20Power%20Control.pdf
131 *
132 * And this is the MadWiFi bug entry related to the above
133 * http://madwifi-project.org/ticket/1659
134 * with various measurements and diagrams
135 *
136 * TODO: Deal with power drops due to probes by setting an apropriate
137 * tx power on the probe packets ! Make this part of the calibration process.
138 */
139
140/* Initialize ah_gain durring attach */
141int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
142{
143	/* Initialize the gain optimization values */
144	switch (ah->ah_radio) {
145	case AR5K_RF5111:
146		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
147		ah->ah_gain.g_low = 20;
148		ah->ah_gain.g_high = 35;
149		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
150		break;
151	case AR5K_RF5112:
152		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
153		ah->ah_gain.g_low = 20;
154		ah->ah_gain.g_high = 85;
155		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
156		break;
157	default:
158		return -EINVAL;
159	}
160
161	return 0;
162}
163
164/* Schedule a gain probe check on the next transmited packet.
165 * That means our next packet is going to be sent with lower
166 * tx power and a Peak to Average Power Detector (PAPD) will try
167 * to measure the gain.
168 *
169 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
170 * just after we enable the probe so that we don't mess with
171 * standard traffic ? Maybe it's time to use sw interrupts and
172 * a probe tasklet !!!
173 */
174static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
175{
176
177	/* Skip if gain calibration is inactive or
178	 * we already handle a probe request */
179	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
180		return;
181
182	/* Send the packet with 2dB below max power as
183	 * patent doc suggest */
184	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
185			AR5K_PHY_PAPD_PROBE_TXPOWER) |
186			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
187
188	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
189
190}
191
192/* Calculate gain_F measurement correction
193 * based on the current step for RF5112 rev. 2 */
194static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
195{
196	u32 mix, step;
197	u32 *rf;
198	const struct ath5k_gain_opt *go;
199	const struct ath5k_gain_opt_step *g_step;
200	const struct ath5k_rf_reg *rf_regs;
201
202	/* Only RF5112 Rev. 2 supports it */
203	if ((ah->ah_radio != AR5K_RF5112) ||
204	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
205		return 0;
206
207	go = &rfgain_opt_5112;
208	rf_regs = rf_regs_5112a;
209	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
210
211	g_step = &go->go_step[ah->ah_gain.g_step_idx];
212
213	if (ah->ah_rf_banks == NULL)
214		return 0;
215
216	rf = ah->ah_rf_banks;
217	ah->ah_gain.g_f_corr = 0;
218
219	/* No VGA (Variable Gain Amplifier) override, skip */
220	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
221		return 0;
222
223	/* Mix gain stepping */
224	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
225
226	/* Mix gain override */
227	mix = g_step->gos_param[0];
228
229	switch (mix) {
230	case 3:
231		ah->ah_gain.g_f_corr = step * 2;
232		break;
233	case 2:
234		ah->ah_gain.g_f_corr = (step - 5) * 2;
235		break;
236	case 1:
237		ah->ah_gain.g_f_corr = step;
238		break;
239	default:
240		ah->ah_gain.g_f_corr = 0;
241		break;
242	}
243
244	return ah->ah_gain.g_f_corr;
245}
246
247/* Check if current gain_F measurement is in the range of our
248 * power detector windows. If we get a measurement outside range
249 * we know it's not accurate (detectors can't measure anything outside
250 * their detection window) so we must ignore it */
251static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
252{
253	const struct ath5k_rf_reg *rf_regs;
254	u32 step, mix_ovr, level[4];
255	u32 *rf;
256
257	if (ah->ah_rf_banks == NULL)
258		return false;
259
260	rf = ah->ah_rf_banks;
261
262	if (ah->ah_radio == AR5K_RF5111) {
263
264		rf_regs = rf_regs_5111;
265		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
266
267		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
268			false);
269
270		level[0] = 0;
271		level[1] = (step == 63) ? 50 : step + 4;
272		level[2] = (step != 63) ? 64 : level[0];
273		level[3] = level[2] + 50 ;
274
275		ah->ah_gain.g_high = level[3] -
276			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
277		ah->ah_gain.g_low = level[0] +
278			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
279	} else {
280
281		rf_regs = rf_regs_5112;
282		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
283
284		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
285			false);
286
287		level[0] = level[2] = 0;
288
289		if (mix_ovr == 1) {
290			level[1] = level[3] = 83;
291		} else {
292			level[1] = level[3] = 107;
293			ah->ah_gain.g_high = 55;
294		}
295	}
296
297	return (ah->ah_gain.g_current >= level[0] &&
298			ah->ah_gain.g_current <= level[1]) ||
299		(ah->ah_gain.g_current >= level[2] &&
300			ah->ah_gain.g_current <= level[3]);
301}
302
303/* Perform gain_F adjustment by choosing the right set
304 * of parameters from rf gain optimization ladder */
305static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
306{
307	const struct ath5k_gain_opt *go;
308	const struct ath5k_gain_opt_step *g_step;
309	int ret = 0;
310
311	switch (ah->ah_radio) {
312	case AR5K_RF5111:
313		go = &rfgain_opt_5111;
314		break;
315	case AR5K_RF5112:
316		go = &rfgain_opt_5112;
317		break;
318	default:
319		return 0;
320	}
321
322	g_step = &go->go_step[ah->ah_gain.g_step_idx];
323
324	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
325
326		/* Reached maximum */
327		if (ah->ah_gain.g_step_idx == 0)
328			return -1;
329
330		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
331				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
332				ah->ah_gain.g_step_idx > 0;
333				g_step = &go->go_step[ah->ah_gain.g_step_idx])
334			ah->ah_gain.g_target -= 2 *
335			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
336			    g_step->gos_gain);
337
338		ret = 1;
339		goto done;
340	}
341
342	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
343
344		/* Reached minimum */
345		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
346			return -2;
347
348		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
349				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
350				ah->ah_gain.g_step_idx < go->go_steps_count-1;
351				g_step = &go->go_step[ah->ah_gain.g_step_idx])
352			ah->ah_gain.g_target -= 2 *
353			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
354			    g_step->gos_gain);
355
356		ret = 2;
357		goto done;
358	}
359
360done:
361	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
362		"ret %d, gain step %u, current gain %u, target gain %u\n",
363		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
364		ah->ah_gain.g_target);
365
366	return ret;
367}
368
369/* Main callback for thermal rf gain calibration engine
370 * Check for a new gain reading and schedule an adjustment
371 * if needed.
372 *
373 * TODO: Use sw interrupt to schedule reset if gain_F needs
374 * adjustment */
375enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
376{
377	u32 data, type;
378	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
379
380	ATH5K_TRACE(ah->ah_sc);
381
382	if (ah->ah_rf_banks == NULL ||
383	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
384		return AR5K_RFGAIN_INACTIVE;
385
386	/* No check requested, either engine is inactive
387	 * or an adjustment is already requested */
388	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
389		goto done;
390
391	/* Read the PAPD (Peak to Average Power Detector)
392	 * register */
393	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
394
395	/* No probe is scheduled, read gain_F measurement */
396	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
397		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
398		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
399
400		/* If tx packet is CCK correct the gain_F measurement
401		 * by cck ofdm gain delta */
402		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
403			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
404				ah->ah_gain.g_current +=
405					ee->ee_cck_ofdm_gain_delta;
406			else
407				ah->ah_gain.g_current +=
408					AR5K_GAIN_CCK_PROBE_CORR;
409		}
410
411		/* Further correct gain_F measurement for
412		 * RF5112A radios */
413		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
414			ath5k_hw_rf_gainf_corr(ah);
415			ah->ah_gain.g_current =
416				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
417				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
418				0;
419		}
420
421		/* Check if measurement is ok and if we need
422		 * to adjust gain, schedule a gain adjustment,
423		 * else switch back to the acive state */
424		if (ath5k_hw_rf_check_gainf_readback(ah) &&
425		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
426		ath5k_hw_rf_gainf_adjust(ah)) {
427			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
428		} else {
429			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
430		}
431	}
432
433done:
434	return ah->ah_gain.g_state;
435}
436
437/* Write initial rf gain table to set the RF sensitivity
438 * this one works on all RF chips and has nothing to do
439 * with gain_F calibration */
440int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
441{
442	const struct ath5k_ini_rfgain *ath5k_rfg;
443	unsigned int i, size;
444
445	switch (ah->ah_radio) {
446	case AR5K_RF5111:
447		ath5k_rfg = rfgain_5111;
448		size = ARRAY_SIZE(rfgain_5111);
449		break;
450	case AR5K_RF5112:
451		ath5k_rfg = rfgain_5112;
452		size = ARRAY_SIZE(rfgain_5112);
453		break;
454	case AR5K_RF2413:
455		ath5k_rfg = rfgain_2413;
456		size = ARRAY_SIZE(rfgain_2413);
457		break;
458	case AR5K_RF2316:
459		ath5k_rfg = rfgain_2316;
460		size = ARRAY_SIZE(rfgain_2316);
461		break;
462	case AR5K_RF5413:
463		ath5k_rfg = rfgain_5413;
464		size = ARRAY_SIZE(rfgain_5413);
465		break;
466	case AR5K_RF2317:
467	case AR5K_RF2425:
468		ath5k_rfg = rfgain_2425;
469		size = ARRAY_SIZE(rfgain_2425);
470		break;
471	default:
472		return -EINVAL;
473	}
474
475	switch (freq) {
476	case AR5K_INI_RFGAIN_2GHZ:
477	case AR5K_INI_RFGAIN_5GHZ:
478		break;
479	default:
480		return -EINVAL;
481	}
482
483	for (i = 0; i < size; i++) {
484		AR5K_REG_WAIT(i);
485		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
486			(u32)ath5k_rfg[i].rfg_register);
487	}
488
489	return 0;
490}
491
492
493
494/********************\
495* RF Registers setup *
496\********************/
497
498
499/*
500 * Setup RF registers by writing rf buffer on hw
501 */
502int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
503		unsigned int mode)
504{
505	const struct ath5k_rf_reg *rf_regs;
506	const struct ath5k_ini_rfbuffer *ini_rfb;
507	const struct ath5k_gain_opt *go = NULL;
508	const struct ath5k_gain_opt_step *g_step;
509	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
510	u8 ee_mode = 0;
511	u32 *rfb;
512	int i, obdb = -1, bank = -1;
513
514	switch (ah->ah_radio) {
515	case AR5K_RF5111:
516		rf_regs = rf_regs_5111;
517		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
518		ini_rfb = rfb_5111;
519		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
520		go = &rfgain_opt_5111;
521		break;
522	case AR5K_RF5112:
523		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
524			rf_regs = rf_regs_5112a;
525			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
526			ini_rfb = rfb_5112a;
527			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
528		} else {
529			rf_regs = rf_regs_5112;
530			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
531			ini_rfb = rfb_5112;
532			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
533		}
534		go = &rfgain_opt_5112;
535		break;
536	case AR5K_RF2413:
537		rf_regs = rf_regs_2413;
538		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
539		ini_rfb = rfb_2413;
540		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
541		break;
542	case AR5K_RF2316:
543		rf_regs = rf_regs_2316;
544		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
545		ini_rfb = rfb_2316;
546		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
547		break;
548	case AR5K_RF5413:
549		rf_regs = rf_regs_5413;
550		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
551		ini_rfb = rfb_5413;
552		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
553		break;
554	case AR5K_RF2317:
555		rf_regs = rf_regs_2425;
556		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
557		ini_rfb = rfb_2317;
558		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
559		break;
560	case AR5K_RF2425:
561		rf_regs = rf_regs_2425;
562		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
563		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
564			ini_rfb = rfb_2425;
565			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
566		} else {
567			ini_rfb = rfb_2417;
568			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
569		}
570		break;
571	default:
572		return -EINVAL;
573	}
574
575	/* If it's the first time we set rf buffer, allocate
576	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
577	 * we set above */
578	if (ah->ah_rf_banks == NULL) {
579		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
580								GFP_KERNEL);
581		if (ah->ah_rf_banks == NULL) {
582			ATH5K_ERR(ah->ah_sc, "out of memory\n");
583			return -ENOMEM;
584		}
585	}
586
587	/* Copy values to modify them */
588	rfb = ah->ah_rf_banks;
589
590	for (i = 0; i < ah->ah_rf_banks_size; i++) {
591		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
592			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
593			return -EINVAL;
594		}
595
596		/* Bank changed, write down the offset */
597		if (bank != ini_rfb[i].rfb_bank) {
598			bank = ini_rfb[i].rfb_bank;
599			ah->ah_offset[bank] = i;
600		}
601
602		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
603	}
604
605	/* Set Output and Driver bias current (OB/DB) */
606	if (channel->hw_value & CHANNEL_2GHZ) {
607
608		if (channel->hw_value & CHANNEL_CCK)
609			ee_mode = AR5K_EEPROM_MODE_11B;
610		else
611			ee_mode = AR5K_EEPROM_MODE_11G;
612
613		/* For RF511X/RF211X combination we
614		 * use b_OB and b_DB parameters stored
615		 * in eeprom on ee->ee_ob[ee_mode][0]
616		 *
617		 * For all other chips we use OB/DB for 2Ghz
618		 * stored in the b/g modal section just like
619		 * 802.11a on ee->ee_ob[ee_mode][1] */
620		if ((ah->ah_radio == AR5K_RF5111) ||
621		(ah->ah_radio == AR5K_RF5112))
622			obdb = 0;
623		else
624			obdb = 1;
625
626		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
627						AR5K_RF_OB_2GHZ, true);
628
629		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
630						AR5K_RF_DB_2GHZ, true);
631
632	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
633	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
634			(ah->ah_radio == AR5K_RF5111)) {
635
636		/* For 11a, Turbo and XR we need to choose
637		 * OB/DB based on frequency range */
638		ee_mode = AR5K_EEPROM_MODE_11A;
639		obdb =	 channel->center_freq >= 5725 ? 3 :
640			(channel->center_freq >= 5500 ? 2 :
641			(channel->center_freq >= 5260 ? 1 :
642			 (channel->center_freq > 4000 ? 0 : -1)));
643
644		if (obdb < 0)
645			return -EINVAL;
646
647		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
648						AR5K_RF_OB_5GHZ, true);
649
650		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
651						AR5K_RF_DB_5GHZ, true);
652	}
653
654	g_step = &go->go_step[ah->ah_gain.g_step_idx];
655
656	/* Bank Modifications (chip-specific) */
657	if (ah->ah_radio == AR5K_RF5111) {
658
659		/* Set gain_F settings according to current step */
660		if (channel->hw_value & CHANNEL_OFDM) {
661
662			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
663					AR5K_PHY_FRAME_CTL_TX_CLIP,
664					g_step->gos_param[0]);
665
666			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
667							AR5K_RF_PWD_90, true);
668
669			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
670							AR5K_RF_PWD_84, true);
671
672			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
673						AR5K_RF_RFGAIN_SEL, true);
674
675			/* We programmed gain_F parameters, switch back
676			 * to active state */
677			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
678
679		}
680
681		/* Bank 6/7 setup */
682
683		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
684						AR5K_RF_PWD_XPD, true);
685
686		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
687						AR5K_RF_XPD_GAIN, true);
688
689		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
690						AR5K_RF_GAIN_I, true);
691
692		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
693						AR5K_RF_PLO_SEL, true);
694
695		/* TODO: Half/quarter channel support */
696	}
697
698	if (ah->ah_radio == AR5K_RF5112) {
699
700		/* Set gain_F settings according to current step */
701		if (channel->hw_value & CHANNEL_OFDM) {
702
703			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
704						AR5K_RF_MIXGAIN_OVR, true);
705
706			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
707						AR5K_RF_PWD_138, true);
708
709			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
710						AR5K_RF_PWD_137, true);
711
712			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
713						AR5K_RF_PWD_136, true);
714
715			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
716						AR5K_RF_PWD_132, true);
717
718			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
719						AR5K_RF_PWD_131, true);
720
721			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
722						AR5K_RF_PWD_130, true);
723
724			/* We programmed gain_F parameters, switch back
725			 * to active state */
726			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
727		}
728
729		/* Bank 6/7 setup */
730
731		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
732						AR5K_RF_XPD_SEL, true);
733
734		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
735			/* Rev. 1 supports only one xpd */
736			ath5k_hw_rfb_op(ah, rf_regs,
737						ee->ee_x_gain[ee_mode],
738						AR5K_RF_XPD_GAIN, true);
739
740		} else {
741			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
742			if (ee->ee_pd_gains[ee_mode] > 1) {
743				ath5k_hw_rfb_op(ah, rf_regs,
744						pdg_curve_to_idx[0],
745						AR5K_RF_PD_GAIN_LO, true);
746				ath5k_hw_rfb_op(ah, rf_regs,
747						pdg_curve_to_idx[1],
748						AR5K_RF_PD_GAIN_HI, true);
749			} else {
750				ath5k_hw_rfb_op(ah, rf_regs,
751						pdg_curve_to_idx[0],
752						AR5K_RF_PD_GAIN_LO, true);
753				ath5k_hw_rfb_op(ah, rf_regs,
754						pdg_curve_to_idx[0],
755						AR5K_RF_PD_GAIN_HI, true);
756			}
757
758			/* Lower synth voltage on Rev 2 */
759			ath5k_hw_rfb_op(ah, rf_regs, 2,
760					AR5K_RF_HIGH_VC_CP, true);
761
762			ath5k_hw_rfb_op(ah, rf_regs, 2,
763					AR5K_RF_MID_VC_CP, true);
764
765			ath5k_hw_rfb_op(ah, rf_regs, 2,
766					AR5K_RF_LOW_VC_CP, true);
767
768			ath5k_hw_rfb_op(ah, rf_regs, 2,
769					AR5K_RF_PUSH_UP, true);
770
771			/* Decrease power consumption on 5213+ BaseBand */
772			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
773				ath5k_hw_rfb_op(ah, rf_regs, 1,
774						AR5K_RF_PAD2GND, true);
775
776				ath5k_hw_rfb_op(ah, rf_regs, 1,
777						AR5K_RF_XB2_LVL, true);
778
779				ath5k_hw_rfb_op(ah, rf_regs, 1,
780						AR5K_RF_XB5_LVL, true);
781
782				ath5k_hw_rfb_op(ah, rf_regs, 1,
783						AR5K_RF_PWD_167, true);
784
785				ath5k_hw_rfb_op(ah, rf_regs, 1,
786						AR5K_RF_PWD_166, true);
787			}
788		}
789
790		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
791						AR5K_RF_GAIN_I, true);
792
793		/* TODO: Half/quarter channel support */
794
795	}
796
797	if (ah->ah_radio == AR5K_RF5413 &&
798	channel->hw_value & CHANNEL_2GHZ) {
799
800		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
801									true);
802
803		/* Set optimum value for early revisions (on pci-e chips) */
804		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
805		ah->ah_mac_srev < AR5K_SREV_AR5413)
806			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
807						AR5K_RF_PWD_ICLOBUF_2G, true);
808
809	}
810
811	/* Write RF banks on hw */
812	for (i = 0; i < ah->ah_rf_banks_size; i++) {
813		AR5K_REG_WAIT(i);
814		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
815	}
816
817	return 0;
818}
819
820
821/**************************\
822  PHY/RF channel functions
823\**************************/
824
825/*
826 * Check if a channel is supported
827 */
828bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
829{
830	/* Check if the channel is in our supported range */
831	if (flags & CHANNEL_2GHZ) {
832		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
833		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
834			return true;
835	} else if (flags & CHANNEL_5GHZ)
836		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
837		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
838			return true;
839
840	return false;
841}
842
843/*
844 * Convertion needed for RF5110
845 */
846static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
847{
848	u32 athchan;
849
850	/*
851	 * Convert IEEE channel/MHz to an internal channel value used
852	 * by the AR5210 chipset. This has not been verified with
853	 * newer chipsets like the AR5212A who have a completely
854	 * different RF/PHY part.
855	 */
856	athchan = (ath5k_hw_bitswap(
857			(ieee80211_frequency_to_channel(
858				channel->center_freq) - 24) / 2, 5)
859				<< 1) | (1 << 6) | 0x1;
860	return athchan;
861}
862
863/*
864 * Set channel on RF5110
865 */
866static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
867		struct ieee80211_channel *channel)
868{
869	u32 data;
870
871	/*
872	 * Set the channel and wait
873	 */
874	data = ath5k_hw_rf5110_chan2athchan(channel);
875	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
876	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
877	mdelay(1);
878
879	return 0;
880}
881
882/*
883 * Convertion needed for 5111
884 */
885static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
886		struct ath5k_athchan_2ghz *athchan)
887{
888	int channel;
889
890	/* Cast this value to catch negative channel numbers (>= -19) */
891	channel = (int)ieee;
892
893	/*
894	 * Map 2GHz IEEE channel to 5GHz Atheros channel
895	 */
896	if (channel <= 13) {
897		athchan->a2_athchan = 115 + channel;
898		athchan->a2_flags = 0x46;
899	} else if (channel == 14) {
900		athchan->a2_athchan = 124;
901		athchan->a2_flags = 0x44;
902	} else if (channel >= 15 && channel <= 26) {
903		athchan->a2_athchan = ((channel - 14) * 4) + 132;
904		athchan->a2_flags = 0x46;
905	} else
906		return -EINVAL;
907
908	return 0;
909}
910
911/*
912 * Set channel on 5111
913 */
914static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
915		struct ieee80211_channel *channel)
916{
917	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
918	unsigned int ath5k_channel =
919		ieee80211_frequency_to_channel(channel->center_freq);
920	u32 data0, data1, clock;
921	int ret;
922
923	/*
924	 * Set the channel on the RF5111 radio
925	 */
926	data0 = data1 = 0;
927
928	if (channel->hw_value & CHANNEL_2GHZ) {
929		/* Map 2GHz channel to 5GHz Atheros channel ID */
930		ret = ath5k_hw_rf5111_chan2athchan(
931			ieee80211_frequency_to_channel(channel->center_freq),
932			&ath5k_channel_2ghz);
933		if (ret)
934			return ret;
935
936		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
937		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
938		    << 5) | (1 << 4);
939	}
940
941	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
942		clock = 1;
943		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
944			(clock << 1) | (1 << 10) | 1;
945	} else {
946		clock = 0;
947		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
948			<< 2) | (clock << 1) | (1 << 10) | 1;
949	}
950
951	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
952			AR5K_RF_BUFFER);
953	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
954			AR5K_RF_BUFFER_CONTROL_3);
955
956	return 0;
957}
958
959/*
960 * Set channel on 5112 and newer
961 */
962static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
963		struct ieee80211_channel *channel)
964{
965	u32 data, data0, data1, data2;
966	u16 c;
967
968	data = data0 = data1 = data2 = 0;
969	c = channel->center_freq;
970
971	if (c < 4800) {
972		if (!((c - 2224) % 5)) {
973			data0 = ((2 * (c - 704)) - 3040) / 10;
974			data1 = 1;
975		} else if (!((c - 2192) % 5)) {
976			data0 = ((2 * (c - 672)) - 3040) / 10;
977			data1 = 0;
978		} else
979			return -EINVAL;
980
981		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
982	} else if ((c - (c % 5)) != 2 || c > 5435) {
983		if (!(c % 20) && c >= 5120) {
984			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
985			data2 = ath5k_hw_bitswap(3, 2);
986		} else if (!(c % 10)) {
987			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
988			data2 = ath5k_hw_bitswap(2, 2);
989		} else if (!(c % 5)) {
990			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
991			data2 = ath5k_hw_bitswap(1, 2);
992		} else
993			return -EINVAL;
994	} else {
995		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
996		data2 = ath5k_hw_bitswap(0, 2);
997	}
998
999	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1000
1001	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1002	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1003
1004	return 0;
1005}
1006
1007/*
1008 * Set the channel on the RF2425
1009 */
1010static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1011		struct ieee80211_channel *channel)
1012{
1013	u32 data, data0, data2;
1014	u16 c;
1015
1016	data = data0 = data2 = 0;
1017	c = channel->center_freq;
1018
1019	if (c < 4800) {
1020		data0 = ath5k_hw_bitswap((c - 2272), 8);
1021		data2 = 0;
1022	/* ? 5GHz ? */
1023	} else if ((c - (c % 5)) != 2 || c > 5435) {
1024		if (!(c % 20) && c < 5120)
1025			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1026		else if (!(c % 10))
1027			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1028		else if (!(c % 5))
1029			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1030		else
1031			return -EINVAL;
1032		data2 = ath5k_hw_bitswap(1, 2);
1033	} else {
1034		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1035		data2 = ath5k_hw_bitswap(0, 2);
1036	}
1037
1038	data = (data0 << 4) | data2 << 2 | 0x1001;
1039
1040	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1041	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1042
1043	return 0;
1044}
1045
1046/*
1047 * Set a channel on the radio chip
1048 */
1049int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1050{
1051	int ret;
1052	/*
1053	 * Check bounds supported by the PHY (we don't care about regultory
1054	 * restrictions at this point). Note: hw_value already has the band
1055	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1056	 * of the band by that */
1057	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1058		ATH5K_ERR(ah->ah_sc,
1059			"channel frequency (%u MHz) out of supported "
1060			"band range\n",
1061			channel->center_freq);
1062			return -EINVAL;
1063	}
1064
1065	/*
1066	 * Set the channel and wait
1067	 */
1068	switch (ah->ah_radio) {
1069	case AR5K_RF5110:
1070		ret = ath5k_hw_rf5110_channel(ah, channel);
1071		break;
1072	case AR5K_RF5111:
1073		ret = ath5k_hw_rf5111_channel(ah, channel);
1074		break;
1075	case AR5K_RF2425:
1076		ret = ath5k_hw_rf2425_channel(ah, channel);
1077		break;
1078	default:
1079		ret = ath5k_hw_rf5112_channel(ah, channel);
1080		break;
1081	}
1082
1083	if (ret)
1084		return ret;
1085
1086	/* Set JAPAN setting for channel 14 */
1087	if (channel->center_freq == 2484) {
1088		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1089				AR5K_PHY_CCKTXCTL_JAPAN);
1090	} else {
1091		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1092				AR5K_PHY_CCKTXCTL_WORLD);
1093	}
1094
1095	ah->ah_current_channel = channel;
1096	ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1097
1098	return 0;
1099}
1100
1101/*****************\
1102  PHY calibration
1103\*****************/
1104
1105void
1106ath5k_hw_calibration_poll(struct ath5k_hw *ah)
1107{
1108	/* Calibration interval in jiffies */
1109	unsigned long cal_intval;
1110
1111	cal_intval = msecs_to_jiffies(ah->ah_cal_intval * 1000);
1112
1113	/* Initialize timestamp if needed */
1114	if (!ah->ah_cal_tstamp)
1115		ah->ah_cal_tstamp = jiffies;
1116
1117	/* For now we always do full calibration
1118	 * Mark software interrupt mask and fire software
1119	 * interrupt (bit gets auto-cleared) */
1120	if (time_is_before_eq_jiffies(ah->ah_cal_tstamp + cal_intval)) {
1121		ah->ah_cal_tstamp = jiffies;
1122		ah->ah_swi_mask = AR5K_SWI_FULL_CALIBRATION;
1123		AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI);
1124	}
1125}
1126
1127static int sign_extend(int val, const int nbits)
1128{
1129	int order = BIT(nbits-1);
1130	return (val ^ order) - order;
1131}
1132
1133static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1134{
1135	s32 val;
1136
1137	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1138	return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1139}
1140
1141void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1142{
1143	int i;
1144
1145	ah->ah_nfcal_hist.index = 0;
1146	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1147		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1148}
1149
1150static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1151{
1152	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1153	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1154	hist->nfval[hist->index] = noise_floor;
1155}
1156
1157static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1158{
1159	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1160	s16 tmp;
1161	int i, j;
1162
1163	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1164	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1165		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1166			if (sort[j] > sort[j-1]) {
1167				tmp = sort[j];
1168				sort[j] = sort[j-1];
1169				sort[j-1] = tmp;
1170			}
1171		}
1172	}
1173	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1174		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1175			"cal %d:%d\n", i, sort[i]);
1176	}
1177	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1178}
1179
1180/*
1181 * When we tell the hardware to perform a noise floor calibration
1182 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1183 * sample-and-hold the minimum noise level seen at the antennas.
1184 * This value is then stored in a ring buffer of recently measured
1185 * noise floor values so we have a moving window of the last few
1186 * samples.
1187 *
1188 * The median of the values in the history is then loaded into the
1189 * hardware for its own use for RSSI and CCA measurements.
1190 */
1191static void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1192{
1193	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1194	u32 val;
1195	s16 nf, threshold;
1196	u8 ee_mode;
1197
1198	/* keep last value if calibration hasn't completed */
1199	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1200		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1201			"NF did not complete in calibration window\n");
1202
1203		return;
1204	}
1205
1206	switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1207	case CHANNEL_A:
1208	case CHANNEL_T:
1209	case CHANNEL_XR:
1210		ee_mode = AR5K_EEPROM_MODE_11A;
1211		break;
1212	case CHANNEL_G:
1213	case CHANNEL_TG:
1214		ee_mode = AR5K_EEPROM_MODE_11G;
1215		break;
1216	default:
1217	case CHANNEL_B:
1218		ee_mode = AR5K_EEPROM_MODE_11B;
1219		break;
1220	}
1221
1222
1223	/* completed NF calibration, test threshold */
1224	nf = ath5k_hw_read_measured_noise_floor(ah);
1225	threshold = ee->ee_noise_floor_thr[ee_mode];
1226
1227	if (nf > threshold) {
1228		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1229			"noise floor failure detected; "
1230			"read %d, threshold %d\n",
1231			nf, threshold);
1232
1233		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1234	}
1235
1236	ath5k_hw_update_nfcal_hist(ah, nf);
1237	nf = ath5k_hw_get_median_noise_floor(ah);
1238
1239	/* load noise floor (in .5 dBm) so the hardware will use it */
1240	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1241	val |= (nf * 2) & AR5K_PHY_NF_M;
1242	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1243
1244	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1245		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1246
1247	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1248		0, false);
1249
1250	/*
1251	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1252	 * so that we're not capped by the median we just loaded.
1253	 * This will be used as the initial value for the next noise
1254	 * floor calibration.
1255	 */
1256	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1257	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1258	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1259		AR5K_PHY_AGCCTL_NF_EN |
1260		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1261		AR5K_PHY_AGCCTL_NF);
1262
1263	ah->ah_noise_floor = nf;
1264
1265	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1266		"noise floor calibrated: %d\n", nf);
1267}
1268
1269/*
1270 * Perform a PHY calibration on RF5110
1271 * -Fix BPSK/QAM Constellation (I/Q correction)
1272 * -Calculate Noise Floor
1273 */
1274static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1275		struct ieee80211_channel *channel)
1276{
1277	u32 phy_sig, phy_agc, phy_sat, beacon;
1278	int ret;
1279
1280	/*
1281	 * Disable beacons and RX/TX queues, wait
1282	 */
1283	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1284		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1285	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1286	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1287
1288	mdelay(2);
1289
1290	/*
1291	 * Set the channel (with AGC turned off)
1292	 */
1293	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1294	udelay(10);
1295	ret = ath5k_hw_channel(ah, channel);
1296
1297	/*
1298	 * Activate PHY and wait
1299	 */
1300	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1301	mdelay(1);
1302
1303	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1304
1305	if (ret)
1306		return ret;
1307
1308	/*
1309	 * Calibrate the radio chip
1310	 */
1311
1312	/* Remember normal state */
1313	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1314	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1315	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1316
1317	/* Update radio registers */
1318	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1319		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1320
1321	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1322			AR5K_PHY_AGCCOARSE_LO)) |
1323		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1324		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1325
1326	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1327			AR5K_PHY_ADCSAT_THR)) |
1328		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1329		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1330
1331	udelay(20);
1332
1333	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1334	udelay(10);
1335	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1336	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1337
1338	mdelay(1);
1339
1340	/*
1341	 * Enable calibration and wait until completion
1342	 */
1343	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1344
1345	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1346			AR5K_PHY_AGCCTL_CAL, 0, false);
1347
1348	/* Reset to normal state */
1349	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1350	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1351	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1352
1353	if (ret) {
1354		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1355				channel->center_freq);
1356		return ret;
1357	}
1358
1359	ath5k_hw_update_noise_floor(ah);
1360
1361	/*
1362	 * Re-enable RX/TX and beacons
1363	 */
1364	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1365		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1366	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1367
1368	return 0;
1369}
1370
1371/*
1372 * Perform a PHY calibration on RF5111/5112 and newer chips
1373 */
1374static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1375		struct ieee80211_channel *channel)
1376{
1377	u32 i_pwr, q_pwr;
1378	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1379	int i;
1380	ATH5K_TRACE(ah->ah_sc);
1381
1382	if (!ah->ah_calibration ||
1383		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1384		goto done;
1385
1386	/* Calibration has finished, get the results and re-run */
1387	for (i = 0; i <= 10; i++) {
1388		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1389		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1390		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1391	}
1392
1393	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1394
1395	if (ah->ah_version == AR5K_AR5211)
1396		q_coffd = q_pwr >> 6;
1397	else
1398		q_coffd = q_pwr >> 7;
1399
1400	/* No correction */
1401	if (i_coffd == 0 || q_coffd == 0)
1402		goto done;
1403
1404	i_coff = ((-iq_corr) / i_coffd);
1405
1406	/* Boundary check */
1407	if (i_coff > 31)
1408		i_coff = 31;
1409	if (i_coff < -32)
1410		i_coff = -32;
1411
1412	if (ah->ah_version == AR5K_AR5211)
1413		q_coff = (i_pwr / q_coffd) - 64;
1414	else
1415		q_coff = (i_pwr / q_coffd) - 128;
1416
1417	/* Boundary check */
1418	if (q_coff > 15)
1419		q_coff = 15;
1420	if (q_coff < -16)
1421		q_coff = -16;
1422
1423	/* Commit new I/Q value */
1424	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1425		((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1426
1427	/* Re-enable calibration -if we don't we'll commit
1428	 * the same values again and again */
1429	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1430			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1431	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1432
1433done:
1434
1435	/* TODO: Separate noise floor calibration from I/Q calibration
1436	 * since noise floor calibration interrupts rx path while I/Q
1437	 * calibration doesn't. We don't need to run noise floor calibration
1438	 * as often as I/Q calibration.*/
1439	ath5k_hw_update_noise_floor(ah);
1440
1441	/* Initiate a gain_F calibration */
1442	ath5k_hw_request_rfgain_probe(ah);
1443
1444	return 0;
1445}
1446
1447/*
1448 * Perform a PHY calibration
1449 */
1450int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1451		struct ieee80211_channel *channel)
1452{
1453	int ret;
1454
1455	if (ah->ah_radio == AR5K_RF5110)
1456		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1457	else
1458		ret = ath5k_hw_rf511x_calibrate(ah, channel);
1459
1460	return ret;
1461}
1462
1463/***************************\
1464* Spur mitigation functions *
1465\***************************/
1466
1467bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1468				struct ieee80211_channel *channel)
1469{
1470	u8 refclk_freq;
1471
1472	if ((ah->ah_radio == AR5K_RF5112) ||
1473	(ah->ah_radio == AR5K_RF5413) ||
1474	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1475		refclk_freq = 40;
1476	else
1477		refclk_freq = 32;
1478
1479	if ((channel->center_freq % refclk_freq != 0) &&
1480	((channel->center_freq % refclk_freq < 10) ||
1481	(channel->center_freq % refclk_freq > 22)))
1482		return true;
1483	else
1484		return false;
1485}
1486
1487void
1488ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1489				struct ieee80211_channel *channel)
1490{
1491	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1492	u32 mag_mask[4] = {0, 0, 0, 0};
1493	u32 pilot_mask[2] = {0, 0};
1494	/* Note: fbin values are scaled up by 2 */
1495	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1496	s32 spur_delta_phase, spur_freq_sigma_delta;
1497	s32 spur_offset, num_symbols_x16;
1498	u8 num_symbol_offsets, i, freq_band;
1499
1500	/* Convert current frequency to fbin value (the same way channels
1501	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1502	 * up by 2 so we can compare it later */
1503	if (channel->hw_value & CHANNEL_2GHZ) {
1504		chan_fbin = (channel->center_freq - 2300) * 10;
1505		freq_band = AR5K_EEPROM_BAND_2GHZ;
1506	} else {
1507		chan_fbin = (channel->center_freq - 4900) * 10;
1508		freq_band = AR5K_EEPROM_BAND_5GHZ;
1509	}
1510
1511	/* Check if any spur_chan_fbin from EEPROM is
1512	 * within our current channel's spur detection range */
1513	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1514	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1515	/* XXX: Half/Quarter channels ?*/
1516	if (channel->hw_value & CHANNEL_TURBO)
1517		spur_detection_window *= 2;
1518
1519	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1520		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1521
1522		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1523		 * so it's zero if we got nothing from EEPROM */
1524		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1525			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1526			break;
1527		}
1528
1529		if ((chan_fbin - spur_detection_window <=
1530		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1531		(chan_fbin + spur_detection_window >=
1532		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1533			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1534			break;
1535		}
1536	}
1537
1538	/* We need to enable spur filter for this channel */
1539	if (spur_chan_fbin) {
1540		spur_offset = spur_chan_fbin - chan_fbin;
1541		/*
1542		 * Calculate deltas:
1543		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1544		 * spur_delta_phase -> spur_offset / chip_freq << 11
1545		 * Note: Both values have 100KHz resolution
1546		 */
1547		/* XXX: Half/Quarter rate channels ? */
1548		switch (channel->hw_value) {
1549		case CHANNEL_A:
1550			/* Both sample_freq and chip_freq are 40MHz */
1551			spur_delta_phase = (spur_offset << 17) / 25;
1552			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1553			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1554			break;
1555		case CHANNEL_G:
1556			/* sample_freq -> 40MHz chip_freq -> 44MHz
1557			 * (for b compatibility) */
1558			spur_freq_sigma_delta = (spur_offset << 8) / 55;
1559			spur_delta_phase = (spur_offset << 17) / 25;
1560			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1561			break;
1562		case CHANNEL_T:
1563		case CHANNEL_TG:
1564			/* Both sample_freq and chip_freq are 80MHz */
1565			spur_delta_phase = (spur_offset << 16) / 25;
1566			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1567			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1568			break;
1569		default:
1570			return;
1571		}
1572
1573		/* Calculate pilot and magnitude masks */
1574
1575		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1576		 * and divide by symbol_width to find how many symbols we have
1577		 * Note: number of symbols is scaled up by 16 */
1578		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1579
1580		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1581		if (!(num_symbols_x16 & 0xF))
1582			/* _X_ */
1583			num_symbol_offsets = 3;
1584		else
1585			/* _xx_ */
1586			num_symbol_offsets = 4;
1587
1588		for (i = 0; i < num_symbol_offsets; i++) {
1589
1590			/* Calculate pilot mask */
1591			s32 curr_sym_off =
1592				(num_symbols_x16 / 16) + i + 25;
1593
1594			/* Pilot magnitude mask seems to be a way to
1595			 * declare the boundaries for our detection
1596			 * window or something, it's 2 for the middle
1597			 * value(s) where the symbol is expected to be
1598			 * and 1 on the boundary values */
1599			u8 plt_mag_map =
1600				(i == 0 || i == (num_symbol_offsets - 1))
1601								? 1 : 2;
1602
1603			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1604				if (curr_sym_off <= 25)
1605					pilot_mask[0] |= 1 << curr_sym_off;
1606				else if (curr_sym_off >= 27)
1607					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1608			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1609				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1610
1611			/* Calculate magnitude mask (for viterbi decoder) */
1612			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1613				mag_mask[0] |=
1614					plt_mag_map << (curr_sym_off + 1) * 2;
1615			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1616				mag_mask[1] |=
1617					plt_mag_map << (curr_sym_off - 15) * 2;
1618			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1619				mag_mask[2] |=
1620					plt_mag_map << (curr_sym_off - 31) * 2;
1621			else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1622				mag_mask[3] |=
1623					plt_mag_map << (curr_sym_off - 47) * 2;
1624
1625		}
1626
1627		/* Write settings on hw to enable spur filter */
1628		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1629					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1630		/* XXX: Self correlator also ? */
1631		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1632					AR5K_PHY_IQ_PILOT_MASK_EN |
1633					AR5K_PHY_IQ_CHAN_MASK_EN |
1634					AR5K_PHY_IQ_SPUR_FILT_EN);
1635
1636		/* Set delta phase and freq sigma delta */
1637		ath5k_hw_reg_write(ah,
1638				AR5K_REG_SM(spur_delta_phase,
1639					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1640				AR5K_REG_SM(spur_freq_sigma_delta,
1641				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1642				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1643				AR5K_PHY_TIMING_11);
1644
1645		/* Write pilot masks */
1646		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1647		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1648					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1649					pilot_mask[1]);
1650
1651		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1652		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1653					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1654					pilot_mask[1]);
1655
1656		/* Write magnitude masks */
1657		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1658		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1659		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1660		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1661					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1662					mag_mask[3]);
1663
1664		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1665		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1666		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1667		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1668					AR5K_PHY_BIN_MASK2_4_MASK_4,
1669					mag_mask[3]);
1670
1671	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1672	AR5K_PHY_IQ_SPUR_FILT_EN) {
1673		/* Clean up spur mitigation settings and disable fliter */
1674		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1675					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1676		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1677					AR5K_PHY_IQ_PILOT_MASK_EN |
1678					AR5K_PHY_IQ_CHAN_MASK_EN |
1679					AR5K_PHY_IQ_SPUR_FILT_EN);
1680		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1681
1682		/* Clear pilot masks */
1683		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1684		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1685					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1686					0);
1687
1688		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1689		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1690					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1691					0);
1692
1693		/* Clear magnitude masks */
1694		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1695		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1696		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1697		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1698					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1699					0);
1700
1701		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1702		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1703		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1704		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1705					AR5K_PHY_BIN_MASK2_4_MASK_4,
1706					0);
1707	}
1708}
1709
1710/********************\
1711  Misc PHY functions
1712\********************/
1713
1714int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1715{
1716	ATH5K_TRACE(ah->ah_sc);
1717	/*Just a try M.F.*/
1718	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1719
1720	return 0;
1721}
1722
1723/*
1724 * Get the PHY Chip revision
1725 */
1726u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1727{
1728	unsigned int i;
1729	u32 srev;
1730	u16 ret;
1731
1732	ATH5K_TRACE(ah->ah_sc);
1733
1734	/*
1735	 * Set the radio chip access register
1736	 */
1737	switch (chan) {
1738	case CHANNEL_2GHZ:
1739		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1740		break;
1741	case CHANNEL_5GHZ:
1742		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1743		break;
1744	default:
1745		return 0;
1746	}
1747
1748	mdelay(2);
1749
1750	/* ...wait until PHY is ready and read the selected radio revision */
1751	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1752
1753	for (i = 0; i < 8; i++)
1754		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1755
1756	if (ah->ah_version == AR5K_AR5210) {
1757		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1758		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1759	} else {
1760		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1761		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1762				((srev & 0x0f) << 4), 8);
1763	}
1764
1765	/* Reset to the 5GHz mode */
1766	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1767
1768	return ret;
1769}
1770
1771/*****************\
1772* Antenna control *
1773\*****************/
1774
1775static void /*TODO:Boundary check*/
1776ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1777{
1778	ATH5K_TRACE(ah->ah_sc);
1779
1780	if (ah->ah_version != AR5K_AR5210)
1781		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1782}
1783
1784#if 0
1785unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1786{
1787	ATH5K_TRACE(ah->ah_sc);
1788
1789	if (ah->ah_version != AR5K_AR5210)
1790		return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
1791
1792	return false; /*XXX: What do we return for 5210 ?*/
1793}
1794#endif
1795
1796/*
1797 * Enable/disable fast rx antenna diversity
1798 */
1799static void
1800ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1801{
1802	switch (ee_mode) {
1803	case AR5K_EEPROM_MODE_11G:
1804		/* XXX: This is set to
1805		 * disabled on initvals !!! */
1806	case AR5K_EEPROM_MODE_11A:
1807		if (enable)
1808			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1809					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1810		else
1811			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1812					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1813		break;
1814	case AR5K_EEPROM_MODE_11B:
1815		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1816					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1817		break;
1818	default:
1819		return;
1820	}
1821
1822	if (enable) {
1823		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1824				AR5K_PHY_RESTART_DIV_GC, 0xc);
1825
1826		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1827					AR5K_PHY_FAST_ANT_DIV_EN);
1828	} else {
1829		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1830				AR5K_PHY_RESTART_DIV_GC, 0x8);
1831
1832		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1833					AR5K_PHY_FAST_ANT_DIV_EN);
1834	}
1835}
1836
1837/*
1838 * Set antenna operating mode
1839 */
1840void
1841ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1842{
1843	struct ieee80211_channel *channel = ah->ah_current_channel;
1844	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1845	bool use_def_for_sg;
1846	u8 def_ant, tx_ant, ee_mode;
1847	u32 sta_id1 = 0;
1848
1849	def_ant = ah->ah_def_ant;
1850
1851	ATH5K_TRACE(ah->ah_sc);
1852
1853	switch (channel->hw_value & CHANNEL_MODES) {
1854	case CHANNEL_A:
1855	case CHANNEL_T:
1856	case CHANNEL_XR:
1857		ee_mode = AR5K_EEPROM_MODE_11A;
1858		break;
1859	case CHANNEL_G:
1860	case CHANNEL_TG:
1861		ee_mode = AR5K_EEPROM_MODE_11G;
1862		break;
1863	case CHANNEL_B:
1864		ee_mode = AR5K_EEPROM_MODE_11B;
1865		break;
1866	default:
1867		ATH5K_ERR(ah->ah_sc,
1868			"invalid channel: %d\n", channel->center_freq);
1869		return;
1870	}
1871
1872	switch (ant_mode) {
1873	case AR5K_ANTMODE_DEFAULT:
1874		tx_ant = 0;
1875		use_def_for_tx = false;
1876		update_def_on_tx = false;
1877		use_def_for_rts = false;
1878		use_def_for_sg = false;
1879		fast_div = true;
1880		break;
1881	case AR5K_ANTMODE_FIXED_A:
1882		def_ant = 1;
1883		tx_ant = 0;
1884		use_def_for_tx = true;
1885		update_def_on_tx = false;
1886		use_def_for_rts = true;
1887		use_def_for_sg = true;
1888		fast_div = false;
1889		break;
1890	case AR5K_ANTMODE_FIXED_B:
1891		def_ant = 2;
1892		tx_ant = 0;
1893		use_def_for_tx = true;
1894		update_def_on_tx = false;
1895		use_def_for_rts = true;
1896		use_def_for_sg = true;
1897		fast_div = false;
1898		break;
1899	case AR5K_ANTMODE_SINGLE_AP:
1900		def_ant = 1;	/* updated on tx */
1901		tx_ant = 0;
1902		use_def_for_tx = true;
1903		update_def_on_tx = true;
1904		use_def_for_rts = true;
1905		use_def_for_sg = true;
1906		fast_div = true;
1907		break;
1908	case AR5K_ANTMODE_SECTOR_AP:
1909		tx_ant = 1;	/* variable */
1910		use_def_for_tx = false;
1911		update_def_on_tx = false;
1912		use_def_for_rts = true;
1913		use_def_for_sg = false;
1914		fast_div = false;
1915		break;
1916	case AR5K_ANTMODE_SECTOR_STA:
1917		tx_ant = 1;	/* variable */
1918		use_def_for_tx = true;
1919		update_def_on_tx = false;
1920		use_def_for_rts = true;
1921		use_def_for_sg = false;
1922		fast_div = true;
1923		break;
1924	case AR5K_ANTMODE_DEBUG:
1925		def_ant = 1;
1926		tx_ant = 2;
1927		use_def_for_tx = false;
1928		update_def_on_tx = false;
1929		use_def_for_rts = false;
1930		use_def_for_sg = false;
1931		fast_div = false;
1932		break;
1933	default:
1934		return;
1935	}
1936
1937	ah->ah_tx_ant = tx_ant;
1938	ah->ah_ant_mode = ant_mode;
1939	ah->ah_def_ant = def_ant;
1940
1941	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1942	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1943	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1944	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1945
1946	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1947
1948	if (sta_id1)
1949		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1950
1951	/* Note: set diversity before default antenna
1952	 * because it won't work correctly */
1953	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1954	ath5k_hw_set_def_antenna(ah, def_ant);
1955}
1956
1957
1958/****************\
1959* TX power setup *
1960\****************/
1961
1962/*
1963 * Helper functions
1964 */
1965
1966/*
1967 * Do linear interpolation between two given (x, y) points
1968 */
1969static s16
1970ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1971					s16 y_left, s16 y_right)
1972{
1973	s16 ratio, result;
1974
1975	/* Avoid divide by zero and skip interpolation
1976	 * if we have the same point */
1977	if ((x_left == x_right) || (y_left == y_right))
1978		return y_left;
1979
1980	/*
1981	 * Since we use ints and not fps, we need to scale up in
1982	 * order to get a sane ratio value (or else we 'll eg. get
1983	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1984	 * to have some accuracy both for 0.5 and 0.25 steps.
1985	 */
1986	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1987
1988	/* Now scale down to be in range */
1989	result = y_left + (ratio * (target - x_left) / 100);
1990
1991	return result;
1992}
1993
1994/*
1995 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1996 *
1997 * Since we have the top of the curve and we draw the line below
1998 * until we reach 1 (1 pcdac step) we need to know which point
1999 * (x value) that is so that we don't go below y axis and have negative
2000 * pcdac values when creating the curve, or fill the table with zeroes.
2001 */
2002static s16
2003ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2004				const s16 *pwrL, const s16 *pwrR)
2005{
2006	s8 tmp;
2007	s16 min_pwrL, min_pwrR;
2008	s16 pwr_i;
2009
2010	/* Some vendors write the same pcdac value twice !!! */
2011	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2012		return max(pwrL[0], pwrR[0]);
2013
2014	if (pwrL[0] == pwrL[1])
2015		min_pwrL = pwrL[0];
2016	else {
2017		pwr_i = pwrL[0];
2018		do {
2019			pwr_i--;
2020			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2021							pwrL[0], pwrL[1],
2022							stepL[0], stepL[1]);
2023		} while (tmp > 1);
2024
2025		min_pwrL = pwr_i;
2026	}
2027
2028	if (pwrR[0] == pwrR[1])
2029		min_pwrR = pwrR[0];
2030	else {
2031		pwr_i = pwrR[0];
2032		do {
2033			pwr_i--;
2034			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2035							pwrR[0], pwrR[1],
2036							stepR[0], stepR[1]);
2037		} while (tmp > 1);
2038
2039		min_pwrR = pwr_i;
2040	}
2041
2042	/* Keep the right boundary so that it works for both curves */
2043	return max(min_pwrL, min_pwrR);
2044}
2045
2046/*
2047 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2048 * Power to PCDAC curve.
2049 *
2050 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2051 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2052 * PCDAC/PDADC step for each curve is 64 but we can write more than
2053 * one curves on hw so we can go up to 128 (which is the max step we
2054 * can write on the final table).
2055 *
2056 * We write y values (PCDAC/PDADC steps) on hw.
2057 */
2058static void
2059ath5k_create_power_curve(s16 pmin, s16 pmax,
2060			const s16 *pwr, const u8 *vpd,
2061			u8 num_points,
2062			u8 *vpd_table, u8 type)
2063{
2064	u8 idx[2] = { 0, 1 };
2065	s16 pwr_i = 2*pmin;
2066	int i;
2067
2068	if (num_points < 2)
2069		return;
2070
2071	/* We want the whole line, so adjust boundaries
2072	 * to cover the entire power range. Note that
2073	 * power values are already 0.25dB so no need
2074	 * to multiply pwr_i by 2 */
2075	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2076		pwr_i = pmin;
2077		pmin = 0;
2078		pmax = 63;
2079	}
2080
2081	/* Find surrounding turning points (TPs)
2082	 * and interpolate between them */
2083	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2084	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2085
2086		/* We passed the right TP, move to the next set of TPs
2087		 * if we pass the last TP, extrapolate above using the last
2088		 * two TPs for ratio */
2089		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2090			idx[0]++;
2091			idx[1]++;
2092		}
2093
2094		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2095						pwr[idx[0]], pwr[idx[1]],
2096						vpd[idx[0]], vpd[idx[1]]);
2097
2098		/* Increase by 0.5dB
2099		 * (0.25 dB units) */
2100		pwr_i += 2;
2101	}
2102}
2103
2104/*
2105 * Get the surrounding per-channel power calibration piers
2106 * for a given frequency so that we can interpolate between
2107 * them and come up with an apropriate dataset for our current
2108 * channel.
2109 */
2110static void
2111ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2112			struct ieee80211_channel *channel,
2113			struct ath5k_chan_pcal_info **pcinfo_l,
2114			struct ath5k_chan_pcal_info **pcinfo_r)
2115{
2116	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2117	struct ath5k_chan_pcal_info *pcinfo;
2118	u8 idx_l, idx_r;
2119	u8 mode, max, i;
2120	u32 target = channel->center_freq;
2121
2122	idx_l = 0;
2123	idx_r = 0;
2124
2125	if (!(channel->hw_value & CHANNEL_OFDM)) {
2126		pcinfo = ee->ee_pwr_cal_b;
2127		mode = AR5K_EEPROM_MODE_11B;
2128	} else if (channel->hw_value & CHANNEL_2GHZ) {
2129		pcinfo = ee->ee_pwr_cal_g;
2130		mode = AR5K_EEPROM_MODE_11G;
2131	} else {
2132		pcinfo = ee->ee_pwr_cal_a;
2133		mode = AR5K_EEPROM_MODE_11A;
2134	}
2135	max = ee->ee_n_piers[mode] - 1;
2136
2137	/* Frequency is below our calibrated
2138	 * range. Use the lowest power curve
2139	 * we have */
2140	if (target < pcinfo[0].freq) {
2141		idx_l = idx_r = 0;
2142		goto done;
2143	}
2144
2145	/* Frequency is above our calibrated
2146	 * range. Use the highest power curve
2147	 * we have */
2148	if (target > pcinfo[max].freq) {
2149		idx_l = idx_r = max;
2150		goto done;
2151	}
2152
2153	/* Frequency is inside our calibrated
2154	 * channel range. Pick the surrounding
2155	 * calibration piers so that we can
2156	 * interpolate */
2157	for (i = 0; i <= max; i++) {
2158
2159		/* Frequency matches one of our calibration
2160		 * piers, no need to interpolate, just use
2161		 * that calibration pier */
2162		if (pcinfo[i].freq == target) {
2163			idx_l = idx_r = i;
2164			goto done;
2165		}
2166
2167		/* We found a calibration pier that's above
2168		 * frequency, use this pier and the previous
2169		 * one to interpolate */
2170		if (target < pcinfo[i].freq) {
2171			idx_r = i;
2172			idx_l = idx_r - 1;
2173			goto done;
2174		}
2175	}
2176
2177done:
2178	*pcinfo_l = &pcinfo[idx_l];
2179	*pcinfo_r = &pcinfo[idx_r];
2180
2181	return;
2182}
2183
2184/*
2185 * Get the surrounding per-rate power calibration data
2186 * for a given frequency and interpolate between power
2187 * values to set max target power supported by hw for
2188 * each rate.
2189 */
2190static void
2191ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2192			struct ieee80211_channel *channel,
2193			struct ath5k_rate_pcal_info *rates)
2194{
2195	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2196	struct ath5k_rate_pcal_info *rpinfo;
2197	u8 idx_l, idx_r;
2198	u8 mode, max, i;
2199	u32 target = channel->center_freq;
2200
2201	idx_l = 0;
2202	idx_r = 0;
2203
2204	if (!(channel->hw_value & CHANNEL_OFDM)) {
2205		rpinfo = ee->ee_rate_tpwr_b;
2206		mode = AR5K_EEPROM_MODE_11B;
2207	} else if (channel->hw_value & CHANNEL_2GHZ) {
2208		rpinfo = ee->ee_rate_tpwr_g;
2209		mode = AR5K_EEPROM_MODE_11G;
2210	} else {
2211		rpinfo = ee->ee_rate_tpwr_a;
2212		mode = AR5K_EEPROM_MODE_11A;
2213	}
2214	max = ee->ee_rate_target_pwr_num[mode] - 1;
2215
2216	/* Get the surrounding calibration
2217	 * piers - same as above */
2218	if (target < rpinfo[0].freq) {
2219		idx_l = idx_r = 0;
2220		goto done;
2221	}
2222
2223	if (target > rpinfo[max].freq) {
2224		idx_l = idx_r = max;
2225		goto done;
2226	}
2227
2228	for (i = 0; i <= max; i++) {
2229
2230		if (rpinfo[i].freq == target) {
2231			idx_l = idx_r = i;
2232			goto done;
2233		}
2234
2235		if (target < rpinfo[i].freq) {
2236			idx_r = i;
2237			idx_l = idx_r - 1;
2238			goto done;
2239		}
2240	}
2241
2242done:
2243	/* Now interpolate power value, based on the frequency */
2244	rates->freq = target;
2245
2246	rates->target_power_6to24 =
2247		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2248					rpinfo[idx_r].freq,
2249					rpinfo[idx_l].target_power_6to24,
2250					rpinfo[idx_r].target_power_6to24);
2251
2252	rates->target_power_36 =
2253		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2254					rpinfo[idx_r].freq,
2255					rpinfo[idx_l].target_power_36,
2256					rpinfo[idx_r].target_power_36);
2257
2258	rates->target_power_48 =
2259		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2260					rpinfo[idx_r].freq,
2261					rpinfo[idx_l].target_power_48,
2262					rpinfo[idx_r].target_power_48);
2263
2264	rates->target_power_54 =
2265		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2266					rpinfo[idx_r].freq,
2267					rpinfo[idx_l].target_power_54,
2268					rpinfo[idx_r].target_power_54);
2269}
2270
2271/*
2272 * Get the max edge power for this channel if
2273 * we have such data from EEPROM's Conformance Test
2274 * Limits (CTL), and limit max power if needed.
2275 */
2276static void
2277ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2278			struct ieee80211_channel *channel)
2279{
2280	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2281	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2282	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2283	u8 *ctl_val = ee->ee_ctl;
2284	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2285	s16 edge_pwr = 0;
2286	u8 rep_idx;
2287	u8 i, ctl_mode;
2288	u8 ctl_idx = 0xFF;
2289	u32 target = channel->center_freq;
2290
2291	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2292
2293	switch (channel->hw_value & CHANNEL_MODES) {
2294	case CHANNEL_A:
2295		ctl_mode |= AR5K_CTL_11A;
2296		break;
2297	case CHANNEL_G:
2298		ctl_mode |= AR5K_CTL_11G;
2299		break;
2300	case CHANNEL_B:
2301		ctl_mode |= AR5K_CTL_11B;
2302		break;
2303	case CHANNEL_T:
2304		ctl_mode |= AR5K_CTL_TURBO;
2305		break;
2306	case CHANNEL_TG:
2307		ctl_mode |= AR5K_CTL_TURBOG;
2308		break;
2309	case CHANNEL_XR:
2310		/* Fall through */
2311	default:
2312		return;
2313	}
2314
2315	for (i = 0; i < ee->ee_ctls; i++) {
2316		if (ctl_val[i] == ctl_mode) {
2317			ctl_idx = i;
2318			break;
2319		}
2320	}
2321
2322	/* If we have a CTL dataset available grab it and find the
2323	 * edge power for our frequency */
2324	if (ctl_idx == 0xFF)
2325		return;
2326
2327	/* Edge powers are sorted by frequency from lower
2328	 * to higher. Each CTL corresponds to 8 edge power
2329	 * measurements. */
2330	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2331
2332	/* Don't do boundaries check because we
2333	 * might have more that one bands defined
2334	 * for this mode */
2335
2336	/* Get the edge power that's closer to our
2337	 * frequency */
2338	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2339		rep_idx += i;
2340		if (target <= rep[rep_idx].freq)
2341			edge_pwr = (s16) rep[rep_idx].edge;
2342	}
2343
2344	if (edge_pwr)
2345		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2346}
2347
2348
2349/*
2350 * Power to PCDAC table functions
2351 */
2352
2353/*
2354 * Fill Power to PCDAC table on RF5111
2355 *
2356 * No further processing is needed for RF5111, the only thing we have to
2357 * do is fill the values below and above calibration range since eeprom data
2358 * may not cover the entire PCDAC table.
2359 */
2360static void
2361ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2362							s16 *table_max)
2363{
2364	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2365	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2366	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2367	s16	min_pwr, max_pwr;
2368
2369	/* Get table boundaries */
2370	min_pwr = table_min[0];
2371	pcdac_0 = pcdac_tmp[0];
2372
2373	max_pwr = table_max[0];
2374	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2375
2376	/* Extrapolate below minimum using pcdac_0 */
2377	pcdac_i = 0;
2378	for (i = 0; i < min_pwr; i++)
2379		pcdac_out[pcdac_i++] = pcdac_0;
2380
2381	/* Copy values from pcdac_tmp */
2382	pwr_idx = min_pwr;
2383	for (i = 0 ; pwr_idx <= max_pwr &&
2384	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2385		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2386		pwr_idx++;
2387	}
2388
2389	/* Extrapolate above maximum */
2390	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2391		pcdac_out[pcdac_i++] = pcdac_n;
2392
2393}
2394
2395/*
2396 * Combine available XPD Curves and fill Linear Power to PCDAC table
2397 * on RF5112
2398 *
2399 * RFX112 can have up to 2 curves (one for low txpower range and one for
2400 * higher txpower range). We need to put them both on pcdac_out and place
2401 * them in the correct location. In case we only have one curve available
2402 * just fit it on pcdac_out (it's supposed to cover the entire range of
2403 * available pwr levels since it's always the higher power curve). Extrapolate
2404 * below and above final table if needed.
2405 */
2406static void
2407ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2408						s16 *table_max, u8 pdcurves)
2409{
2410	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2411	u8	*pcdac_low_pwr;
2412	u8	*pcdac_high_pwr;
2413	u8	*pcdac_tmp;
2414	u8	pwr;
2415	s16	max_pwr_idx;
2416	s16	min_pwr_idx;
2417	s16	mid_pwr_idx = 0;
2418	/* Edge flag turs on the 7nth bit on the PCDAC
2419	 * to delcare the higher power curve (force values
2420	 * to be greater than 64). If we only have one curve
2421	 * we don't need to set this, if we have 2 curves and
2422	 * fill the table backwards this can also be used to
2423	 * switch from higher power curve to lower power curve */
2424	u8	edge_flag;
2425	int	i;
2426
2427	/* When we have only one curve available
2428	 * that's the higher power curve. If we have
2429	 * two curves the first is the high power curve
2430	 * and the next is the low power curve. */
2431	if (pdcurves > 1) {
2432		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2433		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2434		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2435		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2436
2437		/* If table size goes beyond 31.5dB, keep the
2438		 * upper 31.5dB range when setting tx power.
2439		 * Note: 126 = 31.5 dB in quarter dB steps */
2440		if (table_max[0] - table_min[1] > 126)
2441			min_pwr_idx = table_max[0] - 126;
2442		else
2443			min_pwr_idx = table_min[1];
2444
2445		/* Since we fill table backwards
2446		 * start from high power curve */
2447		pcdac_tmp = pcdac_high_pwr;
2448
2449		edge_flag = 0x40;
2450#if 0
2451		/* If both min and max power limits are in lower
2452		 * power curve's range, only use the low power curve.
2453		 * TODO: min/max levels are related to target
2454		 * power values requested from driver/user
2455		 * XXX: Is this really needed ? */
2456		if (min_pwr < table_max[1] &&
2457		max_pwr < table_max[1]) {
2458			edge_flag = 0;
2459			pcdac_tmp = pcdac_low_pwr;
2460			max_pwr_idx = (table_max[1] - table_min[1])/2;
2461		}
2462#endif
2463	} else {
2464		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2465		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2466		min_pwr_idx = table_min[0];
2467		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2468		pcdac_tmp = pcdac_high_pwr;
2469		edge_flag = 0;
2470	}
2471
2472	/* This is used when setting tx power*/
2473	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2474
2475	/* Fill Power to PCDAC table backwards */
2476	pwr = max_pwr_idx;
2477	for (i = 63; i >= 0; i--) {
2478		/* Entering lower power range, reset
2479		 * edge flag and set pcdac_tmp to lower
2480		 * power curve.*/
2481		if (edge_flag == 0x40 &&
2482		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2483			edge_flag = 0x00;
2484			pcdac_tmp = pcdac_low_pwr;
2485			pwr = mid_pwr_idx/2;
2486		}
2487
2488		/* Don't go below 1, extrapolate below if we have
2489		 * already swithced to the lower power curve -or
2490		 * we only have one curve and edge_flag is zero
2491		 * anyway */
2492		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2493			while (i >= 0) {
2494				pcdac_out[i] = pcdac_out[i + 1];
2495				i--;
2496			}
2497			break;
2498		}
2499
2500		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2501
2502		/* Extrapolate above if pcdac is greater than
2503		 * 126 -this can happen because we OR pcdac_out
2504		 * value with edge_flag on high power curve */
2505		if (pcdac_out[i] > 126)
2506			pcdac_out[i] = 126;
2507
2508		/* Decrease by a 0.5dB step */
2509		pwr--;
2510	}
2511}
2512
2513/* Write PCDAC values on hw */
2514static void
2515ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2516{
2517	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2518	int	i;
2519
2520	/*
2521	 * Write TX power values
2522	 */
2523	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2524		ath5k_hw_reg_write(ah,
2525			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2526			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2527			AR5K_PHY_PCDAC_TXPOWER(i));
2528	}
2529}
2530
2531
2532/*
2533 * Power to PDADC table functions
2534 */
2535
2536/*
2537 * Set the gain boundaries and create final Power to PDADC table
2538 *
2539 * We can have up to 4 pd curves, we need to do a simmilar process
2540 * as we do for RF5112. This time we don't have an edge_flag but we
2541 * set the gain boundaries on a separate register.
2542 */
2543static void
2544ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2545			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2546{
2547	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2548	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2549	u8 *pdadc_tmp;
2550	s16 pdadc_0;
2551	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2552	u8 pd_gain_overlap;
2553
2554	/* Note: Register value is initialized on initvals
2555	 * there is no feedback from hw.
2556	 * XXX: What about pd_gain_overlap from EEPROM ? */
2557	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2558		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2559
2560	/* Create final PDADC table */
2561	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2562		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2563
2564		if (pdg == pdcurves - 1)
2565			/* 2 dB boundary stretch for last
2566			 * (higher power) curve */
2567			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2568		else
2569			/* Set gain boundary in the middle
2570			 * between this curve and the next one */
2571			gain_boundaries[pdg] =
2572				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2573
2574		/* Sanity check in case our 2 db stretch got out of
2575		 * range. */
2576		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2577			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2578
2579		/* For the first curve (lower power)
2580		 * start from 0 dB */
2581		if (pdg == 0)
2582			pdadc_0 = 0;
2583		else
2584			/* For the other curves use the gain overlap */
2585			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2586							pd_gain_overlap;
2587
2588		/* Force each power step to be at least 0.5 dB */
2589		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2590			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2591		else
2592			pwr_step = 1;
2593
2594		/* If pdadc_0 is negative, we need to extrapolate
2595		 * below this pdgain by a number of pwr_steps */
2596		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2597			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2598			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2599			pdadc_0++;
2600		}
2601
2602		/* Set last pwr level, using gain boundaries */
2603		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2604		/* Limit it to be inside pwr range */
2605		table_size = pwr_max[pdg] - pwr_min[pdg];
2606		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2607
2608		/* Fill pdadc_out table */
2609		while (pdadc_0 < max_idx)
2610			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2611
2612		/* Need to extrapolate above this pdgain? */
2613		if (pdadc_n <= max_idx)
2614			continue;
2615
2616		/* Force each power step to be at least 0.5 dB */
2617		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2618			pwr_step = pdadc_tmp[table_size - 1] -
2619						pdadc_tmp[table_size - 2];
2620		else
2621			pwr_step = 1;
2622
2623		/* Extrapolate above */
2624		while ((pdadc_0 < (s16) pdadc_n) &&
2625		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2626			s16 tmp = pdadc_tmp[table_size - 1] +
2627					(pdadc_0 - max_idx) * pwr_step;
2628			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2629			pdadc_0++;
2630		}
2631	}
2632
2633	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2634		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2635		pdg++;
2636	}
2637
2638	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2639		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2640		pdadc_i++;
2641	}
2642
2643	/* Set gain boundaries */
2644	ath5k_hw_reg_write(ah,
2645		AR5K_REG_SM(pd_gain_overlap,
2646			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2647		AR5K_REG_SM(gain_boundaries[0],
2648			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2649		AR5K_REG_SM(gain_boundaries[1],
2650			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2651		AR5K_REG_SM(gain_boundaries[2],
2652			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2653		AR5K_REG_SM(gain_boundaries[3],
2654			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2655		AR5K_PHY_TPC_RG5);
2656
2657	/* Used for setting rate power table */
2658	ah->ah_txpower.txp_min_idx = pwr_min[0];
2659
2660}
2661
2662/* Write PDADC values on hw */
2663static void
2664ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2665			u8 pdcurves, u8 *pdg_to_idx)
2666{
2667	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2668	u32 reg;
2669	u8 i;
2670
2671	/* Select the right pdgain curves */
2672
2673	/* Clear current settings */
2674	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2675	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2676		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2677		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2678		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2679
2680	/*
2681	 * Use pd_gains curve from eeprom
2682	 *
2683	 * This overrides the default setting from initvals
2684	 * in case some vendors (e.g. Zcomax) don't use the default
2685	 * curves. If we don't honor their settings we 'll get a
2686	 * 5dB (1 * gain overlap ?) drop.
2687	 */
2688	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2689
2690	switch (pdcurves) {
2691	case 3:
2692		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2693		/* Fall through */
2694	case 2:
2695		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2696		/* Fall through */
2697	case 1:
2698		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2699		break;
2700	}
2701	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2702
2703	/*
2704	 * Write TX power values
2705	 */
2706	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2707		ath5k_hw_reg_write(ah,
2708			((pdadc_out[4*i + 0] & 0xff) << 0) |
2709			((pdadc_out[4*i + 1] & 0xff) << 8) |
2710			((pdadc_out[4*i + 2] & 0xff) << 16) |
2711			((pdadc_out[4*i + 3] & 0xff) << 24),
2712			AR5K_PHY_PDADC_TXPOWER(i));
2713	}
2714}
2715
2716
2717/*
2718 * Common code for PCDAC/PDADC tables
2719 */
2720
2721/*
2722 * This is the main function that uses all of the above
2723 * to set PCDAC/PDADC table on hw for the current channel.
2724 * This table is used for tx power calibration on the basband,
2725 * without it we get weird tx power levels and in some cases
2726 * distorted spectral mask
2727 */
2728static int
2729ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2730			struct ieee80211_channel *channel,
2731			u8 ee_mode, u8 type)
2732{
2733	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2734	struct ath5k_chan_pcal_info *pcinfo_L;
2735	struct ath5k_chan_pcal_info *pcinfo_R;
2736	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2737	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2738	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2739	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2740	u8 *tmpL;
2741	u8 *tmpR;
2742	u32 target = channel->center_freq;
2743	int pdg, i;
2744
2745	/* Get surounding freq piers for this channel */
2746	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2747						&pcinfo_L,
2748						&pcinfo_R);
2749
2750	/* Loop over pd gain curves on
2751	 * surounding freq piers by index */
2752	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2753
2754		/* Fill curves in reverse order
2755		 * from lower power (max gain)
2756		 * to higher power. Use curve -> idx
2757		 * backmapping we did on eeprom init */
2758		u8 idx = pdg_curve_to_idx[pdg];
2759
2760		/* Grab the needed curves by index */
2761		pdg_L = &pcinfo_L->pd_curves[idx];
2762		pdg_R = &pcinfo_R->pd_curves[idx];
2763
2764		/* Initialize the temp tables */
2765		tmpL = ah->ah_txpower.tmpL[pdg];
2766		tmpR = ah->ah_txpower.tmpR[pdg];
2767
2768		/* Set curve's x boundaries and create
2769		 * curves so that they cover the same
2770		 * range (if we don't do that one table
2771		 * will have values on some range and the
2772		 * other one won't have any so interpolation
2773		 * will fail) */
2774		table_min[pdg] = min(pdg_L->pd_pwr[0],
2775					pdg_R->pd_pwr[0]) / 2;
2776
2777		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2778				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2779
2780		/* Now create the curves on surrounding channels
2781		 * and interpolate if needed to get the final
2782		 * curve for this gain on this channel */
2783		switch (type) {
2784		case AR5K_PWRTABLE_LINEAR_PCDAC:
2785			/* Override min/max so that we don't loose
2786			 * accuracy (don't divide by 2) */
2787			table_min[pdg] = min(pdg_L->pd_pwr[0],
2788						pdg_R->pd_pwr[0]);
2789
2790			table_max[pdg] =
2791				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2792					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2793
2794			/* Override minimum so that we don't get
2795			 * out of bounds while extrapolating
2796			 * below. Don't do this when we have 2
2797			 * curves and we are on the high power curve
2798			 * because table_min is ok in this case */
2799			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2800
2801				table_min[pdg] =
2802					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2803								pdg_R->pd_step,
2804								pdg_L->pd_pwr,
2805								pdg_R->pd_pwr);
2806
2807				/* Don't go too low because we will
2808				 * miss the upper part of the curve.
2809				 * Note: 126 = 31.5dB (max power supported)
2810				 * in 0.25dB units */
2811				if (table_max[pdg] - table_min[pdg] > 126)
2812					table_min[pdg] = table_max[pdg] - 126;
2813			}
2814
2815			/* Fall through */
2816		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2817		case AR5K_PWRTABLE_PWR_TO_PDADC:
2818
2819			ath5k_create_power_curve(table_min[pdg],
2820						table_max[pdg],
2821						pdg_L->pd_pwr,
2822						pdg_L->pd_step,
2823						pdg_L->pd_points, tmpL, type);
2824
2825			/* We are in a calibration
2826			 * pier, no need to interpolate
2827			 * between freq piers */
2828			if (pcinfo_L == pcinfo_R)
2829				continue;
2830
2831			ath5k_create_power_curve(table_min[pdg],
2832						table_max[pdg],
2833						pdg_R->pd_pwr,
2834						pdg_R->pd_step,
2835						pdg_R->pd_points, tmpR, type);
2836			break;
2837		default:
2838			return -EINVAL;
2839		}
2840
2841		/* Interpolate between curves
2842		 * of surounding freq piers to
2843		 * get the final curve for this
2844		 * pd gain. Re-use tmpL for interpolation
2845		 * output */
2846		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2847		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2848			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2849							(s16) pcinfo_L->freq,
2850							(s16) pcinfo_R->freq,
2851							(s16) tmpL[i],
2852							(s16) tmpR[i]);
2853		}
2854	}
2855
2856	/* Now we have a set of curves for this
2857	 * channel on tmpL (x range is table_max - table_min
2858	 * and y values are tmpL[pdg][]) sorted in the same
2859	 * order as EEPROM (because we've used the backmapping).
2860	 * So for RF5112 it's from higher power to lower power
2861	 * and for RF2413 it's from lower power to higher power.
2862	 * For RF5111 we only have one curve. */
2863
2864	/* Fill min and max power levels for this
2865	 * channel by interpolating the values on
2866	 * surounding channels to complete the dataset */
2867	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2868					(s16) pcinfo_L->freq,
2869					(s16) pcinfo_R->freq,
2870					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2871
2872	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2873					(s16) pcinfo_L->freq,
2874					(s16) pcinfo_R->freq,
2875					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2876
2877	/* We are ready to go, fill PCDAC/PDADC
2878	 * table and write settings on hardware */
2879	switch (type) {
2880	case AR5K_PWRTABLE_LINEAR_PCDAC:
2881		/* For RF5112 we can have one or two curves
2882		 * and each curve covers a certain power lvl
2883		 * range so we need to do some more processing */
2884		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2885						ee->ee_pd_gains[ee_mode]);
2886
2887		/* Set txp.offset so that we can
2888		 * match max power value with max
2889		 * table index */
2890		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2891
2892		/* Write settings on hw */
2893		ath5k_setup_pcdac_table(ah);
2894		break;
2895	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2896		/* We are done for RF5111 since it has only
2897		 * one curve, just fit the curve on the table */
2898		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2899
2900		/* No rate powertable adjustment for RF5111 */
2901		ah->ah_txpower.txp_min_idx = 0;
2902		ah->ah_txpower.txp_offset = 0;
2903
2904		/* Write settings on hw */
2905		ath5k_setup_pcdac_table(ah);
2906		break;
2907	case AR5K_PWRTABLE_PWR_TO_PDADC:
2908		/* Set PDADC boundaries and fill
2909		 * final PDADC table */
2910		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2911						ee->ee_pd_gains[ee_mode]);
2912
2913		/* Write settings on hw */
2914		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2915
2916		/* Set txp.offset, note that table_min
2917		 * can be negative */
2918		ah->ah_txpower.txp_offset = table_min[0];
2919		break;
2920	default:
2921		return -EINVAL;
2922	}
2923
2924	return 0;
2925}
2926
2927
2928/*
2929 * Per-rate tx power setting
2930 *
2931 * This is the code that sets the desired tx power (below
2932 * maximum) on hw for each rate (we also have TPC that sets
2933 * power per packet). We do that by providing an index on the
2934 * PCDAC/PDADC table we set up.
2935 */
2936
2937/*
2938 * Set rate power table
2939 *
2940 * For now we only limit txpower based on maximum tx power
2941 * supported by hw (what's inside rate_info). We need to limit
2942 * this even more, based on regulatory domain etc.
2943 *
2944 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2945 * and is indexed as follows:
2946 * rates[0] - rates[7] -> OFDM rates
2947 * rates[8] - rates[14] -> CCK rates
2948 * rates[15] -> XR rates (they all have the same power)
2949 */
2950static void
2951ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2952			struct ath5k_rate_pcal_info *rate_info,
2953			u8 ee_mode)
2954{
2955	unsigned int i;
2956	u16 *rates;
2957
2958	/* max_pwr is power level we got from driver/user in 0.5dB
2959	 * units, switch to 0.25dB units so we can compare */
2960	max_pwr *= 2;
2961	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2962
2963	/* apply rate limits */
2964	rates = ah->ah_txpower.txp_rates_power_table;
2965
2966	/* OFDM rates 6 to 24Mb/s */
2967	for (i = 0; i < 5; i++)
2968		rates[i] = min(max_pwr, rate_info->target_power_6to24);
2969
2970	/* Rest OFDM rates */
2971	rates[5] = min(rates[0], rate_info->target_power_36);
2972	rates[6] = min(rates[0], rate_info->target_power_48);
2973	rates[7] = min(rates[0], rate_info->target_power_54);
2974
2975	/* CCK rates */
2976	/* 1L */
2977	rates[8] = min(rates[0], rate_info->target_power_6to24);
2978	/* 2L */
2979	rates[9] = min(rates[0], rate_info->target_power_36);
2980	/* 2S */
2981	rates[10] = min(rates[0], rate_info->target_power_36);
2982	/* 5L */
2983	rates[11] = min(rates[0], rate_info->target_power_48);
2984	/* 5S */
2985	rates[12] = min(rates[0], rate_info->target_power_48);
2986	/* 11L */
2987	rates[13] = min(rates[0], rate_info->target_power_54);
2988	/* 11S */
2989	rates[14] = min(rates[0], rate_info->target_power_54);
2990
2991	/* XR rates */
2992	rates[15] = min(rates[0], rate_info->target_power_6to24);
2993
2994	/* CCK rates have different peak to average ratio
2995	 * so we have to tweak their power so that gainf
2996	 * correction works ok. For this we use OFDM to
2997	 * CCK delta from eeprom */
2998	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2999	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3000		for (i = 8; i <= 15; i++)
3001			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3002
3003	/* Now that we have all rates setup use table offset to
3004	 * match the power range set by user with the power indices
3005	 * on PCDAC/PDADC table */
3006	for (i = 0; i < 16; i++) {
3007		rates[i] += ah->ah_txpower.txp_offset;
3008		/* Don't get out of bounds */
3009		if (rates[i] > 63)
3010			rates[i] = 63;
3011	}
3012
3013	/* Min/max in 0.25dB units */
3014	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3015	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
3016	ah->ah_txpower.txp_ofdm = rates[7];
3017}
3018
3019
3020/*
3021 * Set transmition power
3022 */
3023int
3024ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3025		u8 ee_mode, u8 txpower)
3026{
3027	struct ath5k_rate_pcal_info rate_info;
3028	u8 type;
3029	int ret;
3030
3031	ATH5K_TRACE(ah->ah_sc);
3032	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3033		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3034		return -EINVAL;
3035	}
3036
3037	/* Reset TX power values */
3038	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3039	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3040	ah->ah_txpower.txp_min_pwr = 0;
3041	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3042
3043	/* Initialize TX power table */
3044	switch (ah->ah_radio) {
3045	case AR5K_RF5111:
3046		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3047		break;
3048	case AR5K_RF5112:
3049		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3050		break;
3051	case AR5K_RF2413:
3052	case AR5K_RF5413:
3053	case AR5K_RF2316:
3054	case AR5K_RF2317:
3055	case AR5K_RF2425:
3056		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3057		break;
3058	default:
3059		return -EINVAL;
3060	}
3061
3062	/* FIXME: Only on channel/mode change */
3063	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3064	if (ret)
3065		return ret;
3066
3067	/* Limit max power if we have a CTL available */
3068	ath5k_get_max_ctl_power(ah, channel);
3069
3070	/* FIXME: Tx power limit for this regdomain
3071	 * XXX: Mac80211/CRDA will do that anyway ? */
3072
3073	/* FIXME: Antenna reduction stuff */
3074
3075	/* FIXME: Limit power on turbo modes */
3076
3077	/* FIXME: TPC scale reduction */
3078
3079	/* Get surounding channels for per-rate power table
3080	 * calibration */
3081	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3082
3083	/* Setup rate power table */
3084	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3085
3086	/* Write rate power table on hw */
3087	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3088		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3089		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3090
3091	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3092		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3093		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3094
3095	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3096		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3097		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3098
3099	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3100		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3101		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3102
3103	/* FIXME: TPC support */
3104	if (ah->ah_txpower.txp_tpc) {
3105		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3106			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3107
3108		ath5k_hw_reg_write(ah,
3109			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3110			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3111			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3112			AR5K_TPC);
3113	} else {
3114		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3115			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3116	}
3117
3118	return 0;
3119}
3120
3121int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3122{
3123	/*Just a try M.F.*/
3124	struct ieee80211_channel *channel = ah->ah_current_channel;
3125	u8 ee_mode;
3126
3127	ATH5K_TRACE(ah->ah_sc);
3128
3129	switch (channel->hw_value & CHANNEL_MODES) {
3130	case CHANNEL_A:
3131	case CHANNEL_T:
3132	case CHANNEL_XR:
3133		ee_mode = AR5K_EEPROM_MODE_11A;
3134		break;
3135	case CHANNEL_G:
3136	case CHANNEL_TG:
3137		ee_mode = AR5K_EEPROM_MODE_11G;
3138		break;
3139	case CHANNEL_B:
3140		ee_mode = AR5K_EEPROM_MODE_11B;
3141		break;
3142	default:
3143		ATH5K_ERR(ah->ah_sc,
3144			"invalid channel: %d\n", channel->center_freq);
3145		return -EINVAL;
3146	}
3147
3148	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3149		"changing txpower to %d\n", txpower);
3150
3151	return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3152}
3153