[go: nahoru, domu]

phy.c revision 4f59fce9e099fb6ba3c8361e5094163a3efce5be
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
24
25#include "ath5k.h"
26#include "reg.h"
27#include "base.h"
28#include "rfbuffer.h"
29#include "rfgain.h"
30
31/*
32 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
33 */
34static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
35					const struct ath5k_rf_reg *rf_regs,
36					u32 val, u8 reg_id, bool set)
37{
38	const struct ath5k_rf_reg *rfreg = NULL;
39	u8 offset, bank, num_bits, col, position;
40	u16 entry;
41	u32 mask, data, last_bit, bits_shifted, first_bit;
42	u32 *rfb;
43	s32 bits_left;
44	int i;
45
46	data = 0;
47	rfb = ah->ah_rf_banks;
48
49	for (i = 0; i < ah->ah_rf_regs_count; i++) {
50		if (rf_regs[i].index == reg_id) {
51			rfreg = &rf_regs[i];
52			break;
53		}
54	}
55
56	if (rfb == NULL || rfreg == NULL) {
57		ATH5K_PRINTF("Rf register not found!\n");
58		/* should not happen */
59		return 0;
60	}
61
62	bank = rfreg->bank;
63	num_bits = rfreg->field.len;
64	first_bit = rfreg->field.pos;
65	col = rfreg->field.col;
66
67	/* first_bit is an offset from bank's
68	 * start. Since we have all banks on
69	 * the same array, we use this offset
70	 * to mark each bank's start */
71	offset = ah->ah_offset[bank];
72
73	/* Boundary check */
74	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
75		ATH5K_PRINTF("invalid values at offset %u\n", offset);
76		return 0;
77	}
78
79	entry = ((first_bit - 1) / 8) + offset;
80	position = (first_bit - 1) % 8;
81
82	if (set)
83		data = ath5k_hw_bitswap(val, num_bits);
84
85	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
86	position = 0, entry++) {
87
88		last_bit = (position + bits_left > 8) ? 8 :
89					position + bits_left;
90
91		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
92								(col * 8);
93
94		if (set) {
95			rfb[entry] &= ~mask;
96			rfb[entry] |= ((data << position) << (col * 8)) & mask;
97			data >>= (8 - position);
98		} else {
99			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
100				<< bits_shifted;
101			bits_shifted += last_bit - position;
102		}
103
104		bits_left -= 8 - position;
105	}
106
107	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
108
109	return data;
110}
111
112/**********************\
113* RF Gain optimization *
114\**********************/
115
116/*
117 * This code is used to optimize rf gain on different environments
118 * (temperature mostly) based on feedback from a power detector.
119 *
120 * It's only used on RF5111 and RF5112, later RF chips seem to have
121 * auto adjustment on hw -notice they have a much smaller BANK 7 and
122 * no gain optimization ladder-.
123 *
124 * For more infos check out this patent doc
125 * http://www.freepatentsonline.com/7400691.html
126 *
127 * This paper describes power drops as seen on the receiver due to
128 * probe packets
129 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
130 * %20of%20Power%20Control.pdf
131 *
132 * And this is the MadWiFi bug entry related to the above
133 * http://madwifi-project.org/ticket/1659
134 * with various measurements and diagrams
135 *
136 * TODO: Deal with power drops due to probes by setting an apropriate
137 * tx power on the probe packets ! Make this part of the calibration process.
138 */
139
140/* Initialize ah_gain durring attach */
141int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
142{
143	/* Initialize the gain optimization values */
144	switch (ah->ah_radio) {
145	case AR5K_RF5111:
146		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
147		ah->ah_gain.g_low = 20;
148		ah->ah_gain.g_high = 35;
149		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
150		break;
151	case AR5K_RF5112:
152		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
153		ah->ah_gain.g_low = 20;
154		ah->ah_gain.g_high = 85;
155		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
156		break;
157	default:
158		return -EINVAL;
159	}
160
161	return 0;
162}
163
164/* Schedule a gain probe check on the next transmited packet.
165 * That means our next packet is going to be sent with lower
166 * tx power and a Peak to Average Power Detector (PAPD) will try
167 * to measure the gain.
168 *
169 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
170 * just after we enable the probe so that we don't mess with
171 * standard traffic ? Maybe it's time to use sw interrupts and
172 * a probe tasklet !!!
173 */
174static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
175{
176
177	/* Skip if gain calibration is inactive or
178	 * we already handle a probe request */
179	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
180		return;
181
182	/* Send the packet with 2dB below max power as
183	 * patent doc suggest */
184	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
185			AR5K_PHY_PAPD_PROBE_TXPOWER) |
186			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
187
188	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
189
190}
191
192/* Calculate gain_F measurement correction
193 * based on the current step for RF5112 rev. 2 */
194static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
195{
196	u32 mix, step;
197	u32 *rf;
198	const struct ath5k_gain_opt *go;
199	const struct ath5k_gain_opt_step *g_step;
200	const struct ath5k_rf_reg *rf_regs;
201
202	/* Only RF5112 Rev. 2 supports it */
203	if ((ah->ah_radio != AR5K_RF5112) ||
204	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
205		return 0;
206
207	go = &rfgain_opt_5112;
208	rf_regs = rf_regs_5112a;
209	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
210
211	g_step = &go->go_step[ah->ah_gain.g_step_idx];
212
213	if (ah->ah_rf_banks == NULL)
214		return 0;
215
216	rf = ah->ah_rf_banks;
217	ah->ah_gain.g_f_corr = 0;
218
219	/* No VGA (Variable Gain Amplifier) override, skip */
220	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
221		return 0;
222
223	/* Mix gain stepping */
224	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
225
226	/* Mix gain override */
227	mix = g_step->gos_param[0];
228
229	switch (mix) {
230	case 3:
231		ah->ah_gain.g_f_corr = step * 2;
232		break;
233	case 2:
234		ah->ah_gain.g_f_corr = (step - 5) * 2;
235		break;
236	case 1:
237		ah->ah_gain.g_f_corr = step;
238		break;
239	default:
240		ah->ah_gain.g_f_corr = 0;
241		break;
242	}
243
244	return ah->ah_gain.g_f_corr;
245}
246
247/* Check if current gain_F measurement is in the range of our
248 * power detector windows. If we get a measurement outside range
249 * we know it's not accurate (detectors can't measure anything outside
250 * their detection window) so we must ignore it */
251static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
252{
253	const struct ath5k_rf_reg *rf_regs;
254	u32 step, mix_ovr, level[4];
255	u32 *rf;
256
257	if (ah->ah_rf_banks == NULL)
258		return false;
259
260	rf = ah->ah_rf_banks;
261
262	if (ah->ah_radio == AR5K_RF5111) {
263
264		rf_regs = rf_regs_5111;
265		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
266
267		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
268			false);
269
270		level[0] = 0;
271		level[1] = (step == 63) ? 50 : step + 4;
272		level[2] = (step != 63) ? 64 : level[0];
273		level[3] = level[2] + 50 ;
274
275		ah->ah_gain.g_high = level[3] -
276			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
277		ah->ah_gain.g_low = level[0] +
278			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
279	} else {
280
281		rf_regs = rf_regs_5112;
282		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
283
284		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
285			false);
286
287		level[0] = level[2] = 0;
288
289		if (mix_ovr == 1) {
290			level[1] = level[3] = 83;
291		} else {
292			level[1] = level[3] = 107;
293			ah->ah_gain.g_high = 55;
294		}
295	}
296
297	return (ah->ah_gain.g_current >= level[0] &&
298			ah->ah_gain.g_current <= level[1]) ||
299		(ah->ah_gain.g_current >= level[2] &&
300			ah->ah_gain.g_current <= level[3]);
301}
302
303/* Perform gain_F adjustment by choosing the right set
304 * of parameters from rf gain optimization ladder */
305static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
306{
307	const struct ath5k_gain_opt *go;
308	const struct ath5k_gain_opt_step *g_step;
309	int ret = 0;
310
311	switch (ah->ah_radio) {
312	case AR5K_RF5111:
313		go = &rfgain_opt_5111;
314		break;
315	case AR5K_RF5112:
316		go = &rfgain_opt_5112;
317		break;
318	default:
319		return 0;
320	}
321
322	g_step = &go->go_step[ah->ah_gain.g_step_idx];
323
324	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
325
326		/* Reached maximum */
327		if (ah->ah_gain.g_step_idx == 0)
328			return -1;
329
330		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
331				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
332				ah->ah_gain.g_step_idx > 0;
333				g_step = &go->go_step[ah->ah_gain.g_step_idx])
334			ah->ah_gain.g_target -= 2 *
335			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
336			    g_step->gos_gain);
337
338		ret = 1;
339		goto done;
340	}
341
342	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
343
344		/* Reached minimum */
345		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
346			return -2;
347
348		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
349				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
350				ah->ah_gain.g_step_idx < go->go_steps_count-1;
351				g_step = &go->go_step[ah->ah_gain.g_step_idx])
352			ah->ah_gain.g_target -= 2 *
353			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
354			    g_step->gos_gain);
355
356		ret = 2;
357		goto done;
358	}
359
360done:
361	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
362		"ret %d, gain step %u, current gain %u, target gain %u\n",
363		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
364		ah->ah_gain.g_target);
365
366	return ret;
367}
368
369/* Main callback for thermal rf gain calibration engine
370 * Check for a new gain reading and schedule an adjustment
371 * if needed.
372 *
373 * TODO: Use sw interrupt to schedule reset if gain_F needs
374 * adjustment */
375enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
376{
377	u32 data, type;
378	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
379
380	ATH5K_TRACE(ah->ah_sc);
381
382	if (ah->ah_rf_banks == NULL ||
383	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
384		return AR5K_RFGAIN_INACTIVE;
385
386	/* No check requested, either engine is inactive
387	 * or an adjustment is already requested */
388	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
389		goto done;
390
391	/* Read the PAPD (Peak to Average Power Detector)
392	 * register */
393	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
394
395	/* No probe is scheduled, read gain_F measurement */
396	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
397		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
398		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
399
400		/* If tx packet is CCK correct the gain_F measurement
401		 * by cck ofdm gain delta */
402		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
403			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
404				ah->ah_gain.g_current +=
405					ee->ee_cck_ofdm_gain_delta;
406			else
407				ah->ah_gain.g_current +=
408					AR5K_GAIN_CCK_PROBE_CORR;
409		}
410
411		/* Further correct gain_F measurement for
412		 * RF5112A radios */
413		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
414			ath5k_hw_rf_gainf_corr(ah);
415			ah->ah_gain.g_current =
416				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
417				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
418				0;
419		}
420
421		/* Check if measurement is ok and if we need
422		 * to adjust gain, schedule a gain adjustment,
423		 * else switch back to the acive state */
424		if (ath5k_hw_rf_check_gainf_readback(ah) &&
425		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
426		ath5k_hw_rf_gainf_adjust(ah)) {
427			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
428		} else {
429			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
430		}
431	}
432
433done:
434	return ah->ah_gain.g_state;
435}
436
437/* Write initial rf gain table to set the RF sensitivity
438 * this one works on all RF chips and has nothing to do
439 * with gain_F calibration */
440int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
441{
442	const struct ath5k_ini_rfgain *ath5k_rfg;
443	unsigned int i, size;
444
445	switch (ah->ah_radio) {
446	case AR5K_RF5111:
447		ath5k_rfg = rfgain_5111;
448		size = ARRAY_SIZE(rfgain_5111);
449		break;
450	case AR5K_RF5112:
451		ath5k_rfg = rfgain_5112;
452		size = ARRAY_SIZE(rfgain_5112);
453		break;
454	case AR5K_RF2413:
455		ath5k_rfg = rfgain_2413;
456		size = ARRAY_SIZE(rfgain_2413);
457		break;
458	case AR5K_RF2316:
459		ath5k_rfg = rfgain_2316;
460		size = ARRAY_SIZE(rfgain_2316);
461		break;
462	case AR5K_RF5413:
463		ath5k_rfg = rfgain_5413;
464		size = ARRAY_SIZE(rfgain_5413);
465		break;
466	case AR5K_RF2317:
467	case AR5K_RF2425:
468		ath5k_rfg = rfgain_2425;
469		size = ARRAY_SIZE(rfgain_2425);
470		break;
471	default:
472		return -EINVAL;
473	}
474
475	switch (freq) {
476	case AR5K_INI_RFGAIN_2GHZ:
477	case AR5K_INI_RFGAIN_5GHZ:
478		break;
479	default:
480		return -EINVAL;
481	}
482
483	for (i = 0; i < size; i++) {
484		AR5K_REG_WAIT(i);
485		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
486			(u32)ath5k_rfg[i].rfg_register);
487	}
488
489	return 0;
490}
491
492
493
494/********************\
495* RF Registers setup *
496\********************/
497
498
499/*
500 * Setup RF registers by writing rf buffer on hw
501 */
502int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
503		unsigned int mode)
504{
505	const struct ath5k_rf_reg *rf_regs;
506	const struct ath5k_ini_rfbuffer *ini_rfb;
507	const struct ath5k_gain_opt *go = NULL;
508	const struct ath5k_gain_opt_step *g_step;
509	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
510	u8 ee_mode = 0;
511	u32 *rfb;
512	int i, obdb = -1, bank = -1;
513
514	switch (ah->ah_radio) {
515	case AR5K_RF5111:
516		rf_regs = rf_regs_5111;
517		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
518		ini_rfb = rfb_5111;
519		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
520		go = &rfgain_opt_5111;
521		break;
522	case AR5K_RF5112:
523		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
524			rf_regs = rf_regs_5112a;
525			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
526			ini_rfb = rfb_5112a;
527			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
528		} else {
529			rf_regs = rf_regs_5112;
530			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
531			ini_rfb = rfb_5112;
532			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
533		}
534		go = &rfgain_opt_5112;
535		break;
536	case AR5K_RF2413:
537		rf_regs = rf_regs_2413;
538		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
539		ini_rfb = rfb_2413;
540		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
541		break;
542	case AR5K_RF2316:
543		rf_regs = rf_regs_2316;
544		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
545		ini_rfb = rfb_2316;
546		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
547		break;
548	case AR5K_RF5413:
549		rf_regs = rf_regs_5413;
550		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
551		ini_rfb = rfb_5413;
552		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
553		break;
554	case AR5K_RF2317:
555		rf_regs = rf_regs_2425;
556		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
557		ini_rfb = rfb_2317;
558		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
559		break;
560	case AR5K_RF2425:
561		rf_regs = rf_regs_2425;
562		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
563		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
564			ini_rfb = rfb_2425;
565			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
566		} else {
567			ini_rfb = rfb_2417;
568			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
569		}
570		break;
571	default:
572		return -EINVAL;
573	}
574
575	/* If it's the first time we set rf buffer, allocate
576	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
577	 * we set above */
578	if (ah->ah_rf_banks == NULL) {
579		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
580								GFP_KERNEL);
581		if (ah->ah_rf_banks == NULL) {
582			ATH5K_ERR(ah->ah_sc, "out of memory\n");
583			return -ENOMEM;
584		}
585	}
586
587	/* Copy values to modify them */
588	rfb = ah->ah_rf_banks;
589
590	for (i = 0; i < ah->ah_rf_banks_size; i++) {
591		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
592			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
593			return -EINVAL;
594		}
595
596		/* Bank changed, write down the offset */
597		if (bank != ini_rfb[i].rfb_bank) {
598			bank = ini_rfb[i].rfb_bank;
599			ah->ah_offset[bank] = i;
600		}
601
602		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
603	}
604
605	/* Set Output and Driver bias current (OB/DB) */
606	if (channel->hw_value & CHANNEL_2GHZ) {
607
608		if (channel->hw_value & CHANNEL_CCK)
609			ee_mode = AR5K_EEPROM_MODE_11B;
610		else
611			ee_mode = AR5K_EEPROM_MODE_11G;
612
613		/* For RF511X/RF211X combination we
614		 * use b_OB and b_DB parameters stored
615		 * in eeprom on ee->ee_ob[ee_mode][0]
616		 *
617		 * For all other chips we use OB/DB for 2Ghz
618		 * stored in the b/g modal section just like
619		 * 802.11a on ee->ee_ob[ee_mode][1] */
620		if ((ah->ah_radio == AR5K_RF5111) ||
621		(ah->ah_radio == AR5K_RF5112))
622			obdb = 0;
623		else
624			obdb = 1;
625
626		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
627						AR5K_RF_OB_2GHZ, true);
628
629		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
630						AR5K_RF_DB_2GHZ, true);
631
632	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
633	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
634			(ah->ah_radio == AR5K_RF5111)) {
635
636		/* For 11a, Turbo and XR we need to choose
637		 * OB/DB based on frequency range */
638		ee_mode = AR5K_EEPROM_MODE_11A;
639		obdb =	 channel->center_freq >= 5725 ? 3 :
640			(channel->center_freq >= 5500 ? 2 :
641			(channel->center_freq >= 5260 ? 1 :
642			 (channel->center_freq > 4000 ? 0 : -1)));
643
644		if (obdb < 0)
645			return -EINVAL;
646
647		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
648						AR5K_RF_OB_5GHZ, true);
649
650		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
651						AR5K_RF_DB_5GHZ, true);
652	}
653
654	g_step = &go->go_step[ah->ah_gain.g_step_idx];
655
656	/* Bank Modifications (chip-specific) */
657	if (ah->ah_radio == AR5K_RF5111) {
658
659		/* Set gain_F settings according to current step */
660		if (channel->hw_value & CHANNEL_OFDM) {
661
662			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
663					AR5K_PHY_FRAME_CTL_TX_CLIP,
664					g_step->gos_param[0]);
665
666			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
667							AR5K_RF_PWD_90, true);
668
669			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
670							AR5K_RF_PWD_84, true);
671
672			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
673						AR5K_RF_RFGAIN_SEL, true);
674
675			/* We programmed gain_F parameters, switch back
676			 * to active state */
677			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
678
679		}
680
681		/* Bank 6/7 setup */
682
683		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
684						AR5K_RF_PWD_XPD, true);
685
686		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
687						AR5K_RF_XPD_GAIN, true);
688
689		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
690						AR5K_RF_GAIN_I, true);
691
692		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
693						AR5K_RF_PLO_SEL, true);
694
695		/* TODO: Half/quarter channel support */
696	}
697
698	if (ah->ah_radio == AR5K_RF5112) {
699
700		/* Set gain_F settings according to current step */
701		if (channel->hw_value & CHANNEL_OFDM) {
702
703			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
704						AR5K_RF_MIXGAIN_OVR, true);
705
706			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
707						AR5K_RF_PWD_138, true);
708
709			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
710						AR5K_RF_PWD_137, true);
711
712			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
713						AR5K_RF_PWD_136, true);
714
715			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
716						AR5K_RF_PWD_132, true);
717
718			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
719						AR5K_RF_PWD_131, true);
720
721			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
722						AR5K_RF_PWD_130, true);
723
724			/* We programmed gain_F parameters, switch back
725			 * to active state */
726			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
727		}
728
729		/* Bank 6/7 setup */
730
731		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
732						AR5K_RF_XPD_SEL, true);
733
734		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
735			/* Rev. 1 supports only one xpd */
736			ath5k_hw_rfb_op(ah, rf_regs,
737						ee->ee_x_gain[ee_mode],
738						AR5K_RF_XPD_GAIN, true);
739
740		} else {
741			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
742			if (ee->ee_pd_gains[ee_mode] > 1) {
743				ath5k_hw_rfb_op(ah, rf_regs,
744						pdg_curve_to_idx[0],
745						AR5K_RF_PD_GAIN_LO, true);
746				ath5k_hw_rfb_op(ah, rf_regs,
747						pdg_curve_to_idx[1],
748						AR5K_RF_PD_GAIN_HI, true);
749			} else {
750				ath5k_hw_rfb_op(ah, rf_regs,
751						pdg_curve_to_idx[0],
752						AR5K_RF_PD_GAIN_LO, true);
753				ath5k_hw_rfb_op(ah, rf_regs,
754						pdg_curve_to_idx[0],
755						AR5K_RF_PD_GAIN_HI, true);
756			}
757
758			/* Lower synth voltage on Rev 2 */
759			ath5k_hw_rfb_op(ah, rf_regs, 2,
760					AR5K_RF_HIGH_VC_CP, true);
761
762			ath5k_hw_rfb_op(ah, rf_regs, 2,
763					AR5K_RF_MID_VC_CP, true);
764
765			ath5k_hw_rfb_op(ah, rf_regs, 2,
766					AR5K_RF_LOW_VC_CP, true);
767
768			ath5k_hw_rfb_op(ah, rf_regs, 2,
769					AR5K_RF_PUSH_UP, true);
770
771			/* Decrease power consumption on 5213+ BaseBand */
772			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
773				ath5k_hw_rfb_op(ah, rf_regs, 1,
774						AR5K_RF_PAD2GND, true);
775
776				ath5k_hw_rfb_op(ah, rf_regs, 1,
777						AR5K_RF_XB2_LVL, true);
778
779				ath5k_hw_rfb_op(ah, rf_regs, 1,
780						AR5K_RF_XB5_LVL, true);
781
782				ath5k_hw_rfb_op(ah, rf_regs, 1,
783						AR5K_RF_PWD_167, true);
784
785				ath5k_hw_rfb_op(ah, rf_regs, 1,
786						AR5K_RF_PWD_166, true);
787			}
788		}
789
790		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
791						AR5K_RF_GAIN_I, true);
792
793		/* TODO: Half/quarter channel support */
794
795	}
796
797	if (ah->ah_radio == AR5K_RF5413 &&
798	channel->hw_value & CHANNEL_2GHZ) {
799
800		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
801									true);
802
803		/* Set optimum value for early revisions (on pci-e chips) */
804		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
805		ah->ah_mac_srev < AR5K_SREV_AR5413)
806			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
807						AR5K_RF_PWD_ICLOBUF_2G, true);
808
809	}
810
811	/* Write RF banks on hw */
812	for (i = 0; i < ah->ah_rf_banks_size; i++) {
813		AR5K_REG_WAIT(i);
814		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
815	}
816
817	return 0;
818}
819
820
821/**************************\
822  PHY/RF channel functions
823\**************************/
824
825/*
826 * Check if a channel is supported
827 */
828bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
829{
830	/* Check if the channel is in our supported range */
831	if (flags & CHANNEL_2GHZ) {
832		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
833		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
834			return true;
835	} else if (flags & CHANNEL_5GHZ)
836		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
837		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
838			return true;
839
840	return false;
841}
842
843/*
844 * Convertion needed for RF5110
845 */
846static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
847{
848	u32 athchan;
849
850	/*
851	 * Convert IEEE channel/MHz to an internal channel value used
852	 * by the AR5210 chipset. This has not been verified with
853	 * newer chipsets like the AR5212A who have a completely
854	 * different RF/PHY part.
855	 */
856	athchan = (ath5k_hw_bitswap(
857			(ieee80211_frequency_to_channel(
858				channel->center_freq) - 24) / 2, 5)
859				<< 1) | (1 << 6) | 0x1;
860	return athchan;
861}
862
863/*
864 * Set channel on RF5110
865 */
866static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
867		struct ieee80211_channel *channel)
868{
869	u32 data;
870
871	/*
872	 * Set the channel and wait
873	 */
874	data = ath5k_hw_rf5110_chan2athchan(channel);
875	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
876	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
877	mdelay(1);
878
879	return 0;
880}
881
882/*
883 * Convertion needed for 5111
884 */
885static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
886		struct ath5k_athchan_2ghz *athchan)
887{
888	int channel;
889
890	/* Cast this value to catch negative channel numbers (>= -19) */
891	channel = (int)ieee;
892
893	/*
894	 * Map 2GHz IEEE channel to 5GHz Atheros channel
895	 */
896	if (channel <= 13) {
897		athchan->a2_athchan = 115 + channel;
898		athchan->a2_flags = 0x46;
899	} else if (channel == 14) {
900		athchan->a2_athchan = 124;
901		athchan->a2_flags = 0x44;
902	} else if (channel >= 15 && channel <= 26) {
903		athchan->a2_athchan = ((channel - 14) * 4) + 132;
904		athchan->a2_flags = 0x46;
905	} else
906		return -EINVAL;
907
908	return 0;
909}
910
911/*
912 * Set channel on 5111
913 */
914static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
915		struct ieee80211_channel *channel)
916{
917	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
918	unsigned int ath5k_channel =
919		ieee80211_frequency_to_channel(channel->center_freq);
920	u32 data0, data1, clock;
921	int ret;
922
923	/*
924	 * Set the channel on the RF5111 radio
925	 */
926	data0 = data1 = 0;
927
928	if (channel->hw_value & CHANNEL_2GHZ) {
929		/* Map 2GHz channel to 5GHz Atheros channel ID */
930		ret = ath5k_hw_rf5111_chan2athchan(
931			ieee80211_frequency_to_channel(channel->center_freq),
932			&ath5k_channel_2ghz);
933		if (ret)
934			return ret;
935
936		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
937		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
938		    << 5) | (1 << 4);
939	}
940
941	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
942		clock = 1;
943		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
944			(clock << 1) | (1 << 10) | 1;
945	} else {
946		clock = 0;
947		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
948			<< 2) | (clock << 1) | (1 << 10) | 1;
949	}
950
951	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
952			AR5K_RF_BUFFER);
953	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
954			AR5K_RF_BUFFER_CONTROL_3);
955
956	return 0;
957}
958
959/*
960 * Set channel on 5112 and newer
961 */
962static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
963		struct ieee80211_channel *channel)
964{
965	u32 data, data0, data1, data2;
966	u16 c;
967
968	data = data0 = data1 = data2 = 0;
969	c = channel->center_freq;
970
971	if (c < 4800) {
972		if (!((c - 2224) % 5)) {
973			data0 = ((2 * (c - 704)) - 3040) / 10;
974			data1 = 1;
975		} else if (!((c - 2192) % 5)) {
976			data0 = ((2 * (c - 672)) - 3040) / 10;
977			data1 = 0;
978		} else
979			return -EINVAL;
980
981		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
982	} else if ((c % 5) != 2 || c > 5435) {
983		if (!(c % 20) && c >= 5120) {
984			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
985			data2 = ath5k_hw_bitswap(3, 2);
986		} else if (!(c % 10)) {
987			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
988			data2 = ath5k_hw_bitswap(2, 2);
989		} else if (!(c % 5)) {
990			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
991			data2 = ath5k_hw_bitswap(1, 2);
992		} else
993			return -EINVAL;
994	} else {
995		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
996		data2 = ath5k_hw_bitswap(0, 2);
997	}
998
999	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1000
1001	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1002	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1003
1004	return 0;
1005}
1006
1007/*
1008 * Set the channel on the RF2425
1009 */
1010static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1011		struct ieee80211_channel *channel)
1012{
1013	u32 data, data0, data2;
1014	u16 c;
1015
1016	data = data0 = data2 = 0;
1017	c = channel->center_freq;
1018
1019	if (c < 4800) {
1020		data0 = ath5k_hw_bitswap((c - 2272), 8);
1021		data2 = 0;
1022	/* ? 5GHz ? */
1023	} else if ((c % 5) != 2 || c > 5435) {
1024		if (!(c % 20) && c < 5120)
1025			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1026		else if (!(c % 10))
1027			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1028		else if (!(c % 5))
1029			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1030		else
1031			return -EINVAL;
1032		data2 = ath5k_hw_bitswap(1, 2);
1033	} else {
1034		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1035		data2 = ath5k_hw_bitswap(0, 2);
1036	}
1037
1038	data = (data0 << 4) | data2 << 2 | 0x1001;
1039
1040	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1041	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1042
1043	return 0;
1044}
1045
1046/*
1047 * Set a channel on the radio chip
1048 */
1049int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1050{
1051	int ret;
1052	/*
1053	 * Check bounds supported by the PHY (we don't care about regultory
1054	 * restrictions at this point). Note: hw_value already has the band
1055	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1056	 * of the band by that */
1057	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1058		ATH5K_ERR(ah->ah_sc,
1059			"channel frequency (%u MHz) out of supported "
1060			"band range\n",
1061			channel->center_freq);
1062			return -EINVAL;
1063	}
1064
1065	/*
1066	 * Set the channel and wait
1067	 */
1068	switch (ah->ah_radio) {
1069	case AR5K_RF5110:
1070		ret = ath5k_hw_rf5110_channel(ah, channel);
1071		break;
1072	case AR5K_RF5111:
1073		ret = ath5k_hw_rf5111_channel(ah, channel);
1074		break;
1075	case AR5K_RF2425:
1076		ret = ath5k_hw_rf2425_channel(ah, channel);
1077		break;
1078	default:
1079		ret = ath5k_hw_rf5112_channel(ah, channel);
1080		break;
1081	}
1082
1083	if (ret)
1084		return ret;
1085
1086	/* Set JAPAN setting for channel 14 */
1087	if (channel->center_freq == 2484) {
1088		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1089				AR5K_PHY_CCKTXCTL_JAPAN);
1090	} else {
1091		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1092				AR5K_PHY_CCKTXCTL_WORLD);
1093	}
1094
1095	ah->ah_current_channel = channel;
1096	ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1097
1098	return 0;
1099}
1100
1101/*****************\
1102  PHY calibration
1103\*****************/
1104
1105static int sign_extend(int val, const int nbits)
1106{
1107	int order = BIT(nbits-1);
1108	return (val ^ order) - order;
1109}
1110
1111static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1112{
1113	s32 val;
1114
1115	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1116	return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1117}
1118
1119void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1120{
1121	int i;
1122
1123	ah->ah_nfcal_hist.index = 0;
1124	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1125		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1126}
1127
1128static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1129{
1130	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1131	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1132	hist->nfval[hist->index] = noise_floor;
1133}
1134
1135static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1136{
1137	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1138	s16 tmp;
1139	int i, j;
1140
1141	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1142	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1143		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1144			if (sort[j] > sort[j-1]) {
1145				tmp = sort[j];
1146				sort[j] = sort[j-1];
1147				sort[j-1] = tmp;
1148			}
1149		}
1150	}
1151	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1152		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1153			"cal %d:%d\n", i, sort[i]);
1154	}
1155	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1156}
1157
1158/*
1159 * When we tell the hardware to perform a noise floor calibration
1160 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1161 * sample-and-hold the minimum noise level seen at the antennas.
1162 * This value is then stored in a ring buffer of recently measured
1163 * noise floor values so we have a moving window of the last few
1164 * samples.
1165 *
1166 * The median of the values in the history is then loaded into the
1167 * hardware for its own use for RSSI and CCA measurements.
1168 */
1169static void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1170{
1171	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1172	u32 val;
1173	s16 nf, threshold;
1174	u8 ee_mode;
1175
1176	/* keep last value if calibration hasn't completed */
1177	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1178		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1179			"NF did not complete in calibration window\n");
1180
1181		return;
1182	}
1183
1184	switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1185	case CHANNEL_A:
1186	case CHANNEL_T:
1187	case CHANNEL_XR:
1188		ee_mode = AR5K_EEPROM_MODE_11A;
1189		break;
1190	case CHANNEL_G:
1191	case CHANNEL_TG:
1192		ee_mode = AR5K_EEPROM_MODE_11G;
1193		break;
1194	default:
1195	case CHANNEL_B:
1196		ee_mode = AR5K_EEPROM_MODE_11B;
1197		break;
1198	}
1199
1200
1201	/* completed NF calibration, test threshold */
1202	nf = ath5k_hw_read_measured_noise_floor(ah);
1203	threshold = ee->ee_noise_floor_thr[ee_mode];
1204
1205	if (nf > threshold) {
1206		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1207			"noise floor failure detected; "
1208			"read %d, threshold %d\n",
1209			nf, threshold);
1210
1211		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1212	}
1213
1214	ath5k_hw_update_nfcal_hist(ah, nf);
1215	nf = ath5k_hw_get_median_noise_floor(ah);
1216
1217	/* load noise floor (in .5 dBm) so the hardware will use it */
1218	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1219	val |= (nf * 2) & AR5K_PHY_NF_M;
1220	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1221
1222	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1223		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1224
1225	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1226		0, false);
1227
1228	/*
1229	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1230	 * so that we're not capped by the median we just loaded.
1231	 * This will be used as the initial value for the next noise
1232	 * floor calibration.
1233	 */
1234	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1235	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1236	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1237		AR5K_PHY_AGCCTL_NF_EN |
1238		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1239		AR5K_PHY_AGCCTL_NF);
1240
1241	ah->ah_noise_floor = nf;
1242
1243	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1244		"noise floor calibrated: %d\n", nf);
1245}
1246
1247/*
1248 * Perform a PHY calibration on RF5110
1249 * -Fix BPSK/QAM Constellation (I/Q correction)
1250 * -Calculate Noise Floor
1251 */
1252static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1253		struct ieee80211_channel *channel)
1254{
1255	u32 phy_sig, phy_agc, phy_sat, beacon;
1256	int ret;
1257
1258	/*
1259	 * Disable beacons and RX/TX queues, wait
1260	 */
1261	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1262		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1263	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1264	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1265
1266	mdelay(2);
1267
1268	/*
1269	 * Set the channel (with AGC turned off)
1270	 */
1271	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1272	udelay(10);
1273	ret = ath5k_hw_channel(ah, channel);
1274
1275	/*
1276	 * Activate PHY and wait
1277	 */
1278	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1279	mdelay(1);
1280
1281	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1282
1283	if (ret)
1284		return ret;
1285
1286	/*
1287	 * Calibrate the radio chip
1288	 */
1289
1290	/* Remember normal state */
1291	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1292	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1293	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1294
1295	/* Update radio registers */
1296	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1297		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1298
1299	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1300			AR5K_PHY_AGCCOARSE_LO)) |
1301		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1302		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1303
1304	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1305			AR5K_PHY_ADCSAT_THR)) |
1306		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1307		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1308
1309	udelay(20);
1310
1311	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1312	udelay(10);
1313	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1314	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1315
1316	mdelay(1);
1317
1318	/*
1319	 * Enable calibration and wait until completion
1320	 */
1321	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1322
1323	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1324			AR5K_PHY_AGCCTL_CAL, 0, false);
1325
1326	/* Reset to normal state */
1327	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1328	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1329	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1330
1331	if (ret) {
1332		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1333				channel->center_freq);
1334		return ret;
1335	}
1336
1337	ath5k_hw_update_noise_floor(ah);
1338
1339	/*
1340	 * Re-enable RX/TX and beacons
1341	 */
1342	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1343		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1344	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1345
1346	return 0;
1347}
1348
1349/*
1350 * Perform a PHY calibration on RF5111/5112 and newer chips
1351 */
1352static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1353		struct ieee80211_channel *channel)
1354{
1355	u32 i_pwr, q_pwr;
1356	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1357	int i;
1358	ATH5K_TRACE(ah->ah_sc);
1359
1360	if (!ah->ah_calibration ||
1361		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1362		goto done;
1363
1364	/* Calibration has finished, get the results and re-run */
1365
1366	/* work around empty results which can apparently happen on 5212 */
1367	for (i = 0; i <= 10; i++) {
1368		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1369		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1370		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1371		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1372			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1373		if (i_pwr && q_pwr)
1374			break;
1375	}
1376
1377	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1378
1379	if (ah->ah_version == AR5K_AR5211)
1380		q_coffd = q_pwr >> 6;
1381	else
1382		q_coffd = q_pwr >> 7;
1383
1384	/* protect against divide by 0 and loss of sign bits */
1385	if (i_coffd == 0 || q_coffd < 2)
1386		goto done;
1387
1388	i_coff = (-iq_corr) / i_coffd;
1389	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1390
1391	q_coff = (i_pwr / q_coffd) - 128;
1392	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1393
1394	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1395			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1396			i_coff, q_coff, i_coffd, q_coffd);
1397
1398	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1399	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1400	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1401	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1402
1403	/* Re-enable calibration -if we don't we'll commit
1404	 * the same values again and again */
1405	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1406			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1407	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1408
1409done:
1410
1411	/* TODO: Separate noise floor calibration from I/Q calibration
1412	 * since noise floor calibration interrupts rx path while I/Q
1413	 * calibration doesn't. We don't need to run noise floor calibration
1414	 * as often as I/Q calibration.*/
1415	ath5k_hw_update_noise_floor(ah);
1416
1417	/* Initiate a gain_F calibration */
1418	ath5k_hw_request_rfgain_probe(ah);
1419
1420	return 0;
1421}
1422
1423/*
1424 * Perform a PHY calibration
1425 */
1426int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1427		struct ieee80211_channel *channel)
1428{
1429	int ret;
1430
1431	if (ah->ah_radio == AR5K_RF5110)
1432		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1433	else
1434		ret = ath5k_hw_rf511x_calibrate(ah, channel);
1435
1436	return ret;
1437}
1438
1439/***************************\
1440* Spur mitigation functions *
1441\***************************/
1442
1443bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1444				struct ieee80211_channel *channel)
1445{
1446	u8 refclk_freq;
1447
1448	if ((ah->ah_radio == AR5K_RF5112) ||
1449	(ah->ah_radio == AR5K_RF5413) ||
1450	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1451		refclk_freq = 40;
1452	else
1453		refclk_freq = 32;
1454
1455	if ((channel->center_freq % refclk_freq != 0) &&
1456	((channel->center_freq % refclk_freq < 10) ||
1457	(channel->center_freq % refclk_freq > 22)))
1458		return true;
1459	else
1460		return false;
1461}
1462
1463void
1464ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1465				struct ieee80211_channel *channel)
1466{
1467	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1468	u32 mag_mask[4] = {0, 0, 0, 0};
1469	u32 pilot_mask[2] = {0, 0};
1470	/* Note: fbin values are scaled up by 2 */
1471	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1472	s32 spur_delta_phase, spur_freq_sigma_delta;
1473	s32 spur_offset, num_symbols_x16;
1474	u8 num_symbol_offsets, i, freq_band;
1475
1476	/* Convert current frequency to fbin value (the same way channels
1477	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1478	 * up by 2 so we can compare it later */
1479	if (channel->hw_value & CHANNEL_2GHZ) {
1480		chan_fbin = (channel->center_freq - 2300) * 10;
1481		freq_band = AR5K_EEPROM_BAND_2GHZ;
1482	} else {
1483		chan_fbin = (channel->center_freq - 4900) * 10;
1484		freq_band = AR5K_EEPROM_BAND_5GHZ;
1485	}
1486
1487	/* Check if any spur_chan_fbin from EEPROM is
1488	 * within our current channel's spur detection range */
1489	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1490	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1491	/* XXX: Half/Quarter channels ?*/
1492	if (channel->hw_value & CHANNEL_TURBO)
1493		spur_detection_window *= 2;
1494
1495	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1496		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1497
1498		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1499		 * so it's zero if we got nothing from EEPROM */
1500		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1501			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1502			break;
1503		}
1504
1505		if ((chan_fbin - spur_detection_window <=
1506		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1507		(chan_fbin + spur_detection_window >=
1508		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1509			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1510			break;
1511		}
1512	}
1513
1514	/* We need to enable spur filter for this channel */
1515	if (spur_chan_fbin) {
1516		spur_offset = spur_chan_fbin - chan_fbin;
1517		/*
1518		 * Calculate deltas:
1519		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1520		 * spur_delta_phase -> spur_offset / chip_freq << 11
1521		 * Note: Both values have 100KHz resolution
1522		 */
1523		/* XXX: Half/Quarter rate channels ? */
1524		switch (channel->hw_value) {
1525		case CHANNEL_A:
1526			/* Both sample_freq and chip_freq are 40MHz */
1527			spur_delta_phase = (spur_offset << 17) / 25;
1528			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1529			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1530			break;
1531		case CHANNEL_G:
1532			/* sample_freq -> 40MHz chip_freq -> 44MHz
1533			 * (for b compatibility) */
1534			spur_freq_sigma_delta = (spur_offset << 8) / 55;
1535			spur_delta_phase = (spur_offset << 17) / 25;
1536			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1537			break;
1538		case CHANNEL_T:
1539		case CHANNEL_TG:
1540			/* Both sample_freq and chip_freq are 80MHz */
1541			spur_delta_phase = (spur_offset << 16) / 25;
1542			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1543			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1544			break;
1545		default:
1546			return;
1547		}
1548
1549		/* Calculate pilot and magnitude masks */
1550
1551		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1552		 * and divide by symbol_width to find how many symbols we have
1553		 * Note: number of symbols is scaled up by 16 */
1554		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1555
1556		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1557		if (!(num_symbols_x16 & 0xF))
1558			/* _X_ */
1559			num_symbol_offsets = 3;
1560		else
1561			/* _xx_ */
1562			num_symbol_offsets = 4;
1563
1564		for (i = 0; i < num_symbol_offsets; i++) {
1565
1566			/* Calculate pilot mask */
1567			s32 curr_sym_off =
1568				(num_symbols_x16 / 16) + i + 25;
1569
1570			/* Pilot magnitude mask seems to be a way to
1571			 * declare the boundaries for our detection
1572			 * window or something, it's 2 for the middle
1573			 * value(s) where the symbol is expected to be
1574			 * and 1 on the boundary values */
1575			u8 plt_mag_map =
1576				(i == 0 || i == (num_symbol_offsets - 1))
1577								? 1 : 2;
1578
1579			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1580				if (curr_sym_off <= 25)
1581					pilot_mask[0] |= 1 << curr_sym_off;
1582				else if (curr_sym_off >= 27)
1583					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1584			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1585				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1586
1587			/* Calculate magnitude mask (for viterbi decoder) */
1588			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1589				mag_mask[0] |=
1590					plt_mag_map << (curr_sym_off + 1) * 2;
1591			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1592				mag_mask[1] |=
1593					plt_mag_map << (curr_sym_off - 15) * 2;
1594			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1595				mag_mask[2] |=
1596					plt_mag_map << (curr_sym_off - 31) * 2;
1597			else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1598				mag_mask[3] |=
1599					plt_mag_map << (curr_sym_off - 47) * 2;
1600
1601		}
1602
1603		/* Write settings on hw to enable spur filter */
1604		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1605					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1606		/* XXX: Self correlator also ? */
1607		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1608					AR5K_PHY_IQ_PILOT_MASK_EN |
1609					AR5K_PHY_IQ_CHAN_MASK_EN |
1610					AR5K_PHY_IQ_SPUR_FILT_EN);
1611
1612		/* Set delta phase and freq sigma delta */
1613		ath5k_hw_reg_write(ah,
1614				AR5K_REG_SM(spur_delta_phase,
1615					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1616				AR5K_REG_SM(spur_freq_sigma_delta,
1617				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1618				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1619				AR5K_PHY_TIMING_11);
1620
1621		/* Write pilot masks */
1622		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1623		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1624					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1625					pilot_mask[1]);
1626
1627		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1628		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1629					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1630					pilot_mask[1]);
1631
1632		/* Write magnitude masks */
1633		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1634		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1635		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1636		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1637					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1638					mag_mask[3]);
1639
1640		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1641		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1642		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1643		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1644					AR5K_PHY_BIN_MASK2_4_MASK_4,
1645					mag_mask[3]);
1646
1647	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1648	AR5K_PHY_IQ_SPUR_FILT_EN) {
1649		/* Clean up spur mitigation settings and disable fliter */
1650		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1651					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1652		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1653					AR5K_PHY_IQ_PILOT_MASK_EN |
1654					AR5K_PHY_IQ_CHAN_MASK_EN |
1655					AR5K_PHY_IQ_SPUR_FILT_EN);
1656		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1657
1658		/* Clear pilot masks */
1659		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1660		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1661					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1662					0);
1663
1664		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1665		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1666					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1667					0);
1668
1669		/* Clear magnitude masks */
1670		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1671		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1672		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1673		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1674					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1675					0);
1676
1677		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1678		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1679		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1680		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1681					AR5K_PHY_BIN_MASK2_4_MASK_4,
1682					0);
1683	}
1684}
1685
1686/********************\
1687  Misc PHY functions
1688\********************/
1689
1690int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1691{
1692	ATH5K_TRACE(ah->ah_sc);
1693	/*Just a try M.F.*/
1694	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1695
1696	return 0;
1697}
1698
1699/*
1700 * Get the PHY Chip revision
1701 */
1702u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1703{
1704	unsigned int i;
1705	u32 srev;
1706	u16 ret;
1707
1708	ATH5K_TRACE(ah->ah_sc);
1709
1710	/*
1711	 * Set the radio chip access register
1712	 */
1713	switch (chan) {
1714	case CHANNEL_2GHZ:
1715		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1716		break;
1717	case CHANNEL_5GHZ:
1718		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1719		break;
1720	default:
1721		return 0;
1722	}
1723
1724	mdelay(2);
1725
1726	/* ...wait until PHY is ready and read the selected radio revision */
1727	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1728
1729	for (i = 0; i < 8; i++)
1730		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1731
1732	if (ah->ah_version == AR5K_AR5210) {
1733		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1734		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1735	} else {
1736		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1737		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1738				((srev & 0x0f) << 4), 8);
1739	}
1740
1741	/* Reset to the 5GHz mode */
1742	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1743
1744	return ret;
1745}
1746
1747/*****************\
1748* Antenna control *
1749\*****************/
1750
1751static void /*TODO:Boundary check*/
1752ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1753{
1754	ATH5K_TRACE(ah->ah_sc);
1755
1756	if (ah->ah_version != AR5K_AR5210)
1757		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1758}
1759
1760/*
1761 * Enable/disable fast rx antenna diversity
1762 */
1763static void
1764ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1765{
1766	switch (ee_mode) {
1767	case AR5K_EEPROM_MODE_11G:
1768		/* XXX: This is set to
1769		 * disabled on initvals !!! */
1770	case AR5K_EEPROM_MODE_11A:
1771		if (enable)
1772			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1773					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1774		else
1775			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1776					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1777		break;
1778	case AR5K_EEPROM_MODE_11B:
1779		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1780					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1781		break;
1782	default:
1783		return;
1784	}
1785
1786	if (enable) {
1787		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1788				AR5K_PHY_RESTART_DIV_GC, 0xc);
1789
1790		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1791					AR5K_PHY_FAST_ANT_DIV_EN);
1792	} else {
1793		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1794				AR5K_PHY_RESTART_DIV_GC, 0x8);
1795
1796		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1797					AR5K_PHY_FAST_ANT_DIV_EN);
1798	}
1799}
1800
1801/*
1802 * Set antenna operating mode
1803 */
1804void
1805ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1806{
1807	struct ieee80211_channel *channel = ah->ah_current_channel;
1808	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1809	bool use_def_for_sg;
1810	u8 def_ant, tx_ant, ee_mode;
1811	u32 sta_id1 = 0;
1812
1813	def_ant = ah->ah_def_ant;
1814
1815	ATH5K_TRACE(ah->ah_sc);
1816
1817	switch (channel->hw_value & CHANNEL_MODES) {
1818	case CHANNEL_A:
1819	case CHANNEL_T:
1820	case CHANNEL_XR:
1821		ee_mode = AR5K_EEPROM_MODE_11A;
1822		break;
1823	case CHANNEL_G:
1824	case CHANNEL_TG:
1825		ee_mode = AR5K_EEPROM_MODE_11G;
1826		break;
1827	case CHANNEL_B:
1828		ee_mode = AR5K_EEPROM_MODE_11B;
1829		break;
1830	default:
1831		ATH5K_ERR(ah->ah_sc,
1832			"invalid channel: %d\n", channel->center_freq);
1833		return;
1834	}
1835
1836	switch (ant_mode) {
1837	case AR5K_ANTMODE_DEFAULT:
1838		tx_ant = 0;
1839		use_def_for_tx = false;
1840		update_def_on_tx = false;
1841		use_def_for_rts = false;
1842		use_def_for_sg = false;
1843		fast_div = true;
1844		break;
1845	case AR5K_ANTMODE_FIXED_A:
1846		def_ant = 1;
1847		tx_ant = 1;
1848		use_def_for_tx = true;
1849		update_def_on_tx = false;
1850		use_def_for_rts = true;
1851		use_def_for_sg = true;
1852		fast_div = false;
1853		break;
1854	case AR5K_ANTMODE_FIXED_B:
1855		def_ant = 2;
1856		tx_ant = 2;
1857		use_def_for_tx = true;
1858		update_def_on_tx = false;
1859		use_def_for_rts = true;
1860		use_def_for_sg = true;
1861		fast_div = false;
1862		break;
1863	case AR5K_ANTMODE_SINGLE_AP:
1864		def_ant = 1;	/* updated on tx */
1865		tx_ant = 0;
1866		use_def_for_tx = true;
1867		update_def_on_tx = true;
1868		use_def_for_rts = true;
1869		use_def_for_sg = true;
1870		fast_div = true;
1871		break;
1872	case AR5K_ANTMODE_SECTOR_AP:
1873		tx_ant = 1;	/* variable */
1874		use_def_for_tx = false;
1875		update_def_on_tx = false;
1876		use_def_for_rts = true;
1877		use_def_for_sg = false;
1878		fast_div = false;
1879		break;
1880	case AR5K_ANTMODE_SECTOR_STA:
1881		tx_ant = 1;	/* variable */
1882		use_def_for_tx = true;
1883		update_def_on_tx = false;
1884		use_def_for_rts = true;
1885		use_def_for_sg = false;
1886		fast_div = true;
1887		break;
1888	case AR5K_ANTMODE_DEBUG:
1889		def_ant = 1;
1890		tx_ant = 2;
1891		use_def_for_tx = false;
1892		update_def_on_tx = false;
1893		use_def_for_rts = false;
1894		use_def_for_sg = false;
1895		fast_div = false;
1896		break;
1897	default:
1898		return;
1899	}
1900
1901	ah->ah_tx_ant = tx_ant;
1902	ah->ah_ant_mode = ant_mode;
1903	ah->ah_def_ant = def_ant;
1904
1905	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1906	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1907	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1908	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1909
1910	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1911
1912	if (sta_id1)
1913		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1914
1915	/* Note: set diversity before default antenna
1916	 * because it won't work correctly */
1917	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1918	ath5k_hw_set_def_antenna(ah, def_ant);
1919}
1920
1921
1922/****************\
1923* TX power setup *
1924\****************/
1925
1926/*
1927 * Helper functions
1928 */
1929
1930/*
1931 * Do linear interpolation between two given (x, y) points
1932 */
1933static s16
1934ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1935					s16 y_left, s16 y_right)
1936{
1937	s16 ratio, result;
1938
1939	/* Avoid divide by zero and skip interpolation
1940	 * if we have the same point */
1941	if ((x_left == x_right) || (y_left == y_right))
1942		return y_left;
1943
1944	/*
1945	 * Since we use ints and not fps, we need to scale up in
1946	 * order to get a sane ratio value (or else we 'll eg. get
1947	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1948	 * to have some accuracy both for 0.5 and 0.25 steps.
1949	 */
1950	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1951
1952	/* Now scale down to be in range */
1953	result = y_left + (ratio * (target - x_left) / 100);
1954
1955	return result;
1956}
1957
1958/*
1959 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1960 *
1961 * Since we have the top of the curve and we draw the line below
1962 * until we reach 1 (1 pcdac step) we need to know which point
1963 * (x value) that is so that we don't go below y axis and have negative
1964 * pcdac values when creating the curve, or fill the table with zeroes.
1965 */
1966static s16
1967ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1968				const s16 *pwrL, const s16 *pwrR)
1969{
1970	s8 tmp;
1971	s16 min_pwrL, min_pwrR;
1972	s16 pwr_i;
1973
1974	/* Some vendors write the same pcdac value twice !!! */
1975	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1976		return max(pwrL[0], pwrR[0]);
1977
1978	if (pwrL[0] == pwrL[1])
1979		min_pwrL = pwrL[0];
1980	else {
1981		pwr_i = pwrL[0];
1982		do {
1983			pwr_i--;
1984			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1985							pwrL[0], pwrL[1],
1986							stepL[0], stepL[1]);
1987		} while (tmp > 1);
1988
1989		min_pwrL = pwr_i;
1990	}
1991
1992	if (pwrR[0] == pwrR[1])
1993		min_pwrR = pwrR[0];
1994	else {
1995		pwr_i = pwrR[0];
1996		do {
1997			pwr_i--;
1998			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1999							pwrR[0], pwrR[1],
2000							stepR[0], stepR[1]);
2001		} while (tmp > 1);
2002
2003		min_pwrR = pwr_i;
2004	}
2005
2006	/* Keep the right boundary so that it works for both curves */
2007	return max(min_pwrL, min_pwrR);
2008}
2009
2010/*
2011 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2012 * Power to PCDAC curve.
2013 *
2014 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2015 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2016 * PCDAC/PDADC step for each curve is 64 but we can write more than
2017 * one curves on hw so we can go up to 128 (which is the max step we
2018 * can write on the final table).
2019 *
2020 * We write y values (PCDAC/PDADC steps) on hw.
2021 */
2022static void
2023ath5k_create_power_curve(s16 pmin, s16 pmax,
2024			const s16 *pwr, const u8 *vpd,
2025			u8 num_points,
2026			u8 *vpd_table, u8 type)
2027{
2028	u8 idx[2] = { 0, 1 };
2029	s16 pwr_i = 2*pmin;
2030	int i;
2031
2032	if (num_points < 2)
2033		return;
2034
2035	/* We want the whole line, so adjust boundaries
2036	 * to cover the entire power range. Note that
2037	 * power values are already 0.25dB so no need
2038	 * to multiply pwr_i by 2 */
2039	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2040		pwr_i = pmin;
2041		pmin = 0;
2042		pmax = 63;
2043	}
2044
2045	/* Find surrounding turning points (TPs)
2046	 * and interpolate between them */
2047	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2048	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2049
2050		/* We passed the right TP, move to the next set of TPs
2051		 * if we pass the last TP, extrapolate above using the last
2052		 * two TPs for ratio */
2053		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2054			idx[0]++;
2055			idx[1]++;
2056		}
2057
2058		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2059						pwr[idx[0]], pwr[idx[1]],
2060						vpd[idx[0]], vpd[idx[1]]);
2061
2062		/* Increase by 0.5dB
2063		 * (0.25 dB units) */
2064		pwr_i += 2;
2065	}
2066}
2067
2068/*
2069 * Get the surrounding per-channel power calibration piers
2070 * for a given frequency so that we can interpolate between
2071 * them and come up with an apropriate dataset for our current
2072 * channel.
2073 */
2074static void
2075ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2076			struct ieee80211_channel *channel,
2077			struct ath5k_chan_pcal_info **pcinfo_l,
2078			struct ath5k_chan_pcal_info **pcinfo_r)
2079{
2080	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2081	struct ath5k_chan_pcal_info *pcinfo;
2082	u8 idx_l, idx_r;
2083	u8 mode, max, i;
2084	u32 target = channel->center_freq;
2085
2086	idx_l = 0;
2087	idx_r = 0;
2088
2089	if (!(channel->hw_value & CHANNEL_OFDM)) {
2090		pcinfo = ee->ee_pwr_cal_b;
2091		mode = AR5K_EEPROM_MODE_11B;
2092	} else if (channel->hw_value & CHANNEL_2GHZ) {
2093		pcinfo = ee->ee_pwr_cal_g;
2094		mode = AR5K_EEPROM_MODE_11G;
2095	} else {
2096		pcinfo = ee->ee_pwr_cal_a;
2097		mode = AR5K_EEPROM_MODE_11A;
2098	}
2099	max = ee->ee_n_piers[mode] - 1;
2100
2101	/* Frequency is below our calibrated
2102	 * range. Use the lowest power curve
2103	 * we have */
2104	if (target < pcinfo[0].freq) {
2105		idx_l = idx_r = 0;
2106		goto done;
2107	}
2108
2109	/* Frequency is above our calibrated
2110	 * range. Use the highest power curve
2111	 * we have */
2112	if (target > pcinfo[max].freq) {
2113		idx_l = idx_r = max;
2114		goto done;
2115	}
2116
2117	/* Frequency is inside our calibrated
2118	 * channel range. Pick the surrounding
2119	 * calibration piers so that we can
2120	 * interpolate */
2121	for (i = 0; i <= max; i++) {
2122
2123		/* Frequency matches one of our calibration
2124		 * piers, no need to interpolate, just use
2125		 * that calibration pier */
2126		if (pcinfo[i].freq == target) {
2127			idx_l = idx_r = i;
2128			goto done;
2129		}
2130
2131		/* We found a calibration pier that's above
2132		 * frequency, use this pier and the previous
2133		 * one to interpolate */
2134		if (target < pcinfo[i].freq) {
2135			idx_r = i;
2136			idx_l = idx_r - 1;
2137			goto done;
2138		}
2139	}
2140
2141done:
2142	*pcinfo_l = &pcinfo[idx_l];
2143	*pcinfo_r = &pcinfo[idx_r];
2144
2145	return;
2146}
2147
2148/*
2149 * Get the surrounding per-rate power calibration data
2150 * for a given frequency and interpolate between power
2151 * values to set max target power supported by hw for
2152 * each rate.
2153 */
2154static void
2155ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2156			struct ieee80211_channel *channel,
2157			struct ath5k_rate_pcal_info *rates)
2158{
2159	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2160	struct ath5k_rate_pcal_info *rpinfo;
2161	u8 idx_l, idx_r;
2162	u8 mode, max, i;
2163	u32 target = channel->center_freq;
2164
2165	idx_l = 0;
2166	idx_r = 0;
2167
2168	if (!(channel->hw_value & CHANNEL_OFDM)) {
2169		rpinfo = ee->ee_rate_tpwr_b;
2170		mode = AR5K_EEPROM_MODE_11B;
2171	} else if (channel->hw_value & CHANNEL_2GHZ) {
2172		rpinfo = ee->ee_rate_tpwr_g;
2173		mode = AR5K_EEPROM_MODE_11G;
2174	} else {
2175		rpinfo = ee->ee_rate_tpwr_a;
2176		mode = AR5K_EEPROM_MODE_11A;
2177	}
2178	max = ee->ee_rate_target_pwr_num[mode] - 1;
2179
2180	/* Get the surrounding calibration
2181	 * piers - same as above */
2182	if (target < rpinfo[0].freq) {
2183		idx_l = idx_r = 0;
2184		goto done;
2185	}
2186
2187	if (target > rpinfo[max].freq) {
2188		idx_l = idx_r = max;
2189		goto done;
2190	}
2191
2192	for (i = 0; i <= max; i++) {
2193
2194		if (rpinfo[i].freq == target) {
2195			idx_l = idx_r = i;
2196			goto done;
2197		}
2198
2199		if (target < rpinfo[i].freq) {
2200			idx_r = i;
2201			idx_l = idx_r - 1;
2202			goto done;
2203		}
2204	}
2205
2206done:
2207	/* Now interpolate power value, based on the frequency */
2208	rates->freq = target;
2209
2210	rates->target_power_6to24 =
2211		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2212					rpinfo[idx_r].freq,
2213					rpinfo[idx_l].target_power_6to24,
2214					rpinfo[idx_r].target_power_6to24);
2215
2216	rates->target_power_36 =
2217		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2218					rpinfo[idx_r].freq,
2219					rpinfo[idx_l].target_power_36,
2220					rpinfo[idx_r].target_power_36);
2221
2222	rates->target_power_48 =
2223		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2224					rpinfo[idx_r].freq,
2225					rpinfo[idx_l].target_power_48,
2226					rpinfo[idx_r].target_power_48);
2227
2228	rates->target_power_54 =
2229		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2230					rpinfo[idx_r].freq,
2231					rpinfo[idx_l].target_power_54,
2232					rpinfo[idx_r].target_power_54);
2233}
2234
2235/*
2236 * Get the max edge power for this channel if
2237 * we have such data from EEPROM's Conformance Test
2238 * Limits (CTL), and limit max power if needed.
2239 */
2240static void
2241ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2242			struct ieee80211_channel *channel)
2243{
2244	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2245	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2246	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2247	u8 *ctl_val = ee->ee_ctl;
2248	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2249	s16 edge_pwr = 0;
2250	u8 rep_idx;
2251	u8 i, ctl_mode;
2252	u8 ctl_idx = 0xFF;
2253	u32 target = channel->center_freq;
2254
2255	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2256
2257	switch (channel->hw_value & CHANNEL_MODES) {
2258	case CHANNEL_A:
2259		ctl_mode |= AR5K_CTL_11A;
2260		break;
2261	case CHANNEL_G:
2262		ctl_mode |= AR5K_CTL_11G;
2263		break;
2264	case CHANNEL_B:
2265		ctl_mode |= AR5K_CTL_11B;
2266		break;
2267	case CHANNEL_T:
2268		ctl_mode |= AR5K_CTL_TURBO;
2269		break;
2270	case CHANNEL_TG:
2271		ctl_mode |= AR5K_CTL_TURBOG;
2272		break;
2273	case CHANNEL_XR:
2274		/* Fall through */
2275	default:
2276		return;
2277	}
2278
2279	for (i = 0; i < ee->ee_ctls; i++) {
2280		if (ctl_val[i] == ctl_mode) {
2281			ctl_idx = i;
2282			break;
2283		}
2284	}
2285
2286	/* If we have a CTL dataset available grab it and find the
2287	 * edge power for our frequency */
2288	if (ctl_idx == 0xFF)
2289		return;
2290
2291	/* Edge powers are sorted by frequency from lower
2292	 * to higher. Each CTL corresponds to 8 edge power
2293	 * measurements. */
2294	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2295
2296	/* Don't do boundaries check because we
2297	 * might have more that one bands defined
2298	 * for this mode */
2299
2300	/* Get the edge power that's closer to our
2301	 * frequency */
2302	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2303		rep_idx += i;
2304		if (target <= rep[rep_idx].freq)
2305			edge_pwr = (s16) rep[rep_idx].edge;
2306	}
2307
2308	if (edge_pwr)
2309		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2310}
2311
2312
2313/*
2314 * Power to PCDAC table functions
2315 */
2316
2317/*
2318 * Fill Power to PCDAC table on RF5111
2319 *
2320 * No further processing is needed for RF5111, the only thing we have to
2321 * do is fill the values below and above calibration range since eeprom data
2322 * may not cover the entire PCDAC table.
2323 */
2324static void
2325ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2326							s16 *table_max)
2327{
2328	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2329	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2330	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2331	s16	min_pwr, max_pwr;
2332
2333	/* Get table boundaries */
2334	min_pwr = table_min[0];
2335	pcdac_0 = pcdac_tmp[0];
2336
2337	max_pwr = table_max[0];
2338	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2339
2340	/* Extrapolate below minimum using pcdac_0 */
2341	pcdac_i = 0;
2342	for (i = 0; i < min_pwr; i++)
2343		pcdac_out[pcdac_i++] = pcdac_0;
2344
2345	/* Copy values from pcdac_tmp */
2346	pwr_idx = min_pwr;
2347	for (i = 0 ; pwr_idx <= max_pwr &&
2348	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2349		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2350		pwr_idx++;
2351	}
2352
2353	/* Extrapolate above maximum */
2354	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2355		pcdac_out[pcdac_i++] = pcdac_n;
2356
2357}
2358
2359/*
2360 * Combine available XPD Curves and fill Linear Power to PCDAC table
2361 * on RF5112
2362 *
2363 * RFX112 can have up to 2 curves (one for low txpower range and one for
2364 * higher txpower range). We need to put them both on pcdac_out and place
2365 * them in the correct location. In case we only have one curve available
2366 * just fit it on pcdac_out (it's supposed to cover the entire range of
2367 * available pwr levels since it's always the higher power curve). Extrapolate
2368 * below and above final table if needed.
2369 */
2370static void
2371ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2372						s16 *table_max, u8 pdcurves)
2373{
2374	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2375	u8	*pcdac_low_pwr;
2376	u8	*pcdac_high_pwr;
2377	u8	*pcdac_tmp;
2378	u8	pwr;
2379	s16	max_pwr_idx;
2380	s16	min_pwr_idx;
2381	s16	mid_pwr_idx = 0;
2382	/* Edge flag turs on the 7nth bit on the PCDAC
2383	 * to delcare the higher power curve (force values
2384	 * to be greater than 64). If we only have one curve
2385	 * we don't need to set this, if we have 2 curves and
2386	 * fill the table backwards this can also be used to
2387	 * switch from higher power curve to lower power curve */
2388	u8	edge_flag;
2389	int	i;
2390
2391	/* When we have only one curve available
2392	 * that's the higher power curve. If we have
2393	 * two curves the first is the high power curve
2394	 * and the next is the low power curve. */
2395	if (pdcurves > 1) {
2396		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2397		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2398		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2399		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2400
2401		/* If table size goes beyond 31.5dB, keep the
2402		 * upper 31.5dB range when setting tx power.
2403		 * Note: 126 = 31.5 dB in quarter dB steps */
2404		if (table_max[0] - table_min[1] > 126)
2405			min_pwr_idx = table_max[0] - 126;
2406		else
2407			min_pwr_idx = table_min[1];
2408
2409		/* Since we fill table backwards
2410		 * start from high power curve */
2411		pcdac_tmp = pcdac_high_pwr;
2412
2413		edge_flag = 0x40;
2414	} else {
2415		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2416		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2417		min_pwr_idx = table_min[0];
2418		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2419		pcdac_tmp = pcdac_high_pwr;
2420		edge_flag = 0;
2421	}
2422
2423	/* This is used when setting tx power*/
2424	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2425
2426	/* Fill Power to PCDAC table backwards */
2427	pwr = max_pwr_idx;
2428	for (i = 63; i >= 0; i--) {
2429		/* Entering lower power range, reset
2430		 * edge flag and set pcdac_tmp to lower
2431		 * power curve.*/
2432		if (edge_flag == 0x40 &&
2433		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2434			edge_flag = 0x00;
2435			pcdac_tmp = pcdac_low_pwr;
2436			pwr = mid_pwr_idx/2;
2437		}
2438
2439		/* Don't go below 1, extrapolate below if we have
2440		 * already swithced to the lower power curve -or
2441		 * we only have one curve and edge_flag is zero
2442		 * anyway */
2443		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2444			while (i >= 0) {
2445				pcdac_out[i] = pcdac_out[i + 1];
2446				i--;
2447			}
2448			break;
2449		}
2450
2451		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2452
2453		/* Extrapolate above if pcdac is greater than
2454		 * 126 -this can happen because we OR pcdac_out
2455		 * value with edge_flag on high power curve */
2456		if (pcdac_out[i] > 126)
2457			pcdac_out[i] = 126;
2458
2459		/* Decrease by a 0.5dB step */
2460		pwr--;
2461	}
2462}
2463
2464/* Write PCDAC values on hw */
2465static void
2466ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2467{
2468	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2469	int	i;
2470
2471	/*
2472	 * Write TX power values
2473	 */
2474	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2475		ath5k_hw_reg_write(ah,
2476			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2477			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2478			AR5K_PHY_PCDAC_TXPOWER(i));
2479	}
2480}
2481
2482
2483/*
2484 * Power to PDADC table functions
2485 */
2486
2487/*
2488 * Set the gain boundaries and create final Power to PDADC table
2489 *
2490 * We can have up to 4 pd curves, we need to do a simmilar process
2491 * as we do for RF5112. This time we don't have an edge_flag but we
2492 * set the gain boundaries on a separate register.
2493 */
2494static void
2495ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2496			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2497{
2498	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2499	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2500	u8 *pdadc_tmp;
2501	s16 pdadc_0;
2502	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2503	u8 pd_gain_overlap;
2504
2505	/* Note: Register value is initialized on initvals
2506	 * there is no feedback from hw.
2507	 * XXX: What about pd_gain_overlap from EEPROM ? */
2508	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2509		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2510
2511	/* Create final PDADC table */
2512	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2513		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2514
2515		if (pdg == pdcurves - 1)
2516			/* 2 dB boundary stretch for last
2517			 * (higher power) curve */
2518			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2519		else
2520			/* Set gain boundary in the middle
2521			 * between this curve and the next one */
2522			gain_boundaries[pdg] =
2523				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2524
2525		/* Sanity check in case our 2 db stretch got out of
2526		 * range. */
2527		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2528			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2529
2530		/* For the first curve (lower power)
2531		 * start from 0 dB */
2532		if (pdg == 0)
2533			pdadc_0 = 0;
2534		else
2535			/* For the other curves use the gain overlap */
2536			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2537							pd_gain_overlap;
2538
2539		/* Force each power step to be at least 0.5 dB */
2540		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2541			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2542		else
2543			pwr_step = 1;
2544
2545		/* If pdadc_0 is negative, we need to extrapolate
2546		 * below this pdgain by a number of pwr_steps */
2547		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2548			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2549			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2550			pdadc_0++;
2551		}
2552
2553		/* Set last pwr level, using gain boundaries */
2554		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2555		/* Limit it to be inside pwr range */
2556		table_size = pwr_max[pdg] - pwr_min[pdg];
2557		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2558
2559		/* Fill pdadc_out table */
2560		while (pdadc_0 < max_idx && pdadc_i < 128)
2561			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2562
2563		/* Need to extrapolate above this pdgain? */
2564		if (pdadc_n <= max_idx)
2565			continue;
2566
2567		/* Force each power step to be at least 0.5 dB */
2568		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2569			pwr_step = pdadc_tmp[table_size - 1] -
2570						pdadc_tmp[table_size - 2];
2571		else
2572			pwr_step = 1;
2573
2574		/* Extrapolate above */
2575		while ((pdadc_0 < (s16) pdadc_n) &&
2576		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2577			s16 tmp = pdadc_tmp[table_size - 1] +
2578					(pdadc_0 - max_idx) * pwr_step;
2579			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2580			pdadc_0++;
2581		}
2582	}
2583
2584	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2585		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2586		pdg++;
2587	}
2588
2589	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2590		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2591		pdadc_i++;
2592	}
2593
2594	/* Set gain boundaries */
2595	ath5k_hw_reg_write(ah,
2596		AR5K_REG_SM(pd_gain_overlap,
2597			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2598		AR5K_REG_SM(gain_boundaries[0],
2599			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2600		AR5K_REG_SM(gain_boundaries[1],
2601			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2602		AR5K_REG_SM(gain_boundaries[2],
2603			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2604		AR5K_REG_SM(gain_boundaries[3],
2605			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2606		AR5K_PHY_TPC_RG5);
2607
2608	/* Used for setting rate power table */
2609	ah->ah_txpower.txp_min_idx = pwr_min[0];
2610
2611}
2612
2613/* Write PDADC values on hw */
2614static void
2615ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2616			u8 pdcurves, u8 *pdg_to_idx)
2617{
2618	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2619	u32 reg;
2620	u8 i;
2621
2622	/* Select the right pdgain curves */
2623
2624	/* Clear current settings */
2625	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2626	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2627		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2628		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2629		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2630
2631	/*
2632	 * Use pd_gains curve from eeprom
2633	 *
2634	 * This overrides the default setting from initvals
2635	 * in case some vendors (e.g. Zcomax) don't use the default
2636	 * curves. If we don't honor their settings we 'll get a
2637	 * 5dB (1 * gain overlap ?) drop.
2638	 */
2639	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2640
2641	switch (pdcurves) {
2642	case 3:
2643		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2644		/* Fall through */
2645	case 2:
2646		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2647		/* Fall through */
2648	case 1:
2649		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2650		break;
2651	}
2652	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2653
2654	/*
2655	 * Write TX power values
2656	 */
2657	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2658		ath5k_hw_reg_write(ah,
2659			((pdadc_out[4*i + 0] & 0xff) << 0) |
2660			((pdadc_out[4*i + 1] & 0xff) << 8) |
2661			((pdadc_out[4*i + 2] & 0xff) << 16) |
2662			((pdadc_out[4*i + 3] & 0xff) << 24),
2663			AR5K_PHY_PDADC_TXPOWER(i));
2664	}
2665}
2666
2667
2668/*
2669 * Common code for PCDAC/PDADC tables
2670 */
2671
2672/*
2673 * This is the main function that uses all of the above
2674 * to set PCDAC/PDADC table on hw for the current channel.
2675 * This table is used for tx power calibration on the basband,
2676 * without it we get weird tx power levels and in some cases
2677 * distorted spectral mask
2678 */
2679static int
2680ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2681			struct ieee80211_channel *channel,
2682			u8 ee_mode, u8 type)
2683{
2684	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2685	struct ath5k_chan_pcal_info *pcinfo_L;
2686	struct ath5k_chan_pcal_info *pcinfo_R;
2687	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2688	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2689	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2690	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2691	u8 *tmpL;
2692	u8 *tmpR;
2693	u32 target = channel->center_freq;
2694	int pdg, i;
2695
2696	/* Get surounding freq piers for this channel */
2697	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2698						&pcinfo_L,
2699						&pcinfo_R);
2700
2701	/* Loop over pd gain curves on
2702	 * surounding freq piers by index */
2703	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2704
2705		/* Fill curves in reverse order
2706		 * from lower power (max gain)
2707		 * to higher power. Use curve -> idx
2708		 * backmapping we did on eeprom init */
2709		u8 idx = pdg_curve_to_idx[pdg];
2710
2711		/* Grab the needed curves by index */
2712		pdg_L = &pcinfo_L->pd_curves[idx];
2713		pdg_R = &pcinfo_R->pd_curves[idx];
2714
2715		/* Initialize the temp tables */
2716		tmpL = ah->ah_txpower.tmpL[pdg];
2717		tmpR = ah->ah_txpower.tmpR[pdg];
2718
2719		/* Set curve's x boundaries and create
2720		 * curves so that they cover the same
2721		 * range (if we don't do that one table
2722		 * will have values on some range and the
2723		 * other one won't have any so interpolation
2724		 * will fail) */
2725		table_min[pdg] = min(pdg_L->pd_pwr[0],
2726					pdg_R->pd_pwr[0]) / 2;
2727
2728		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2729				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2730
2731		/* Now create the curves on surrounding channels
2732		 * and interpolate if needed to get the final
2733		 * curve for this gain on this channel */
2734		switch (type) {
2735		case AR5K_PWRTABLE_LINEAR_PCDAC:
2736			/* Override min/max so that we don't loose
2737			 * accuracy (don't divide by 2) */
2738			table_min[pdg] = min(pdg_L->pd_pwr[0],
2739						pdg_R->pd_pwr[0]);
2740
2741			table_max[pdg] =
2742				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2743					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2744
2745			/* Override minimum so that we don't get
2746			 * out of bounds while extrapolating
2747			 * below. Don't do this when we have 2
2748			 * curves and we are on the high power curve
2749			 * because table_min is ok in this case */
2750			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2751
2752				table_min[pdg] =
2753					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2754								pdg_R->pd_step,
2755								pdg_L->pd_pwr,
2756								pdg_R->pd_pwr);
2757
2758				/* Don't go too low because we will
2759				 * miss the upper part of the curve.
2760				 * Note: 126 = 31.5dB (max power supported)
2761				 * in 0.25dB units */
2762				if (table_max[pdg] - table_min[pdg] > 126)
2763					table_min[pdg] = table_max[pdg] - 126;
2764			}
2765
2766			/* Fall through */
2767		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2768		case AR5K_PWRTABLE_PWR_TO_PDADC:
2769
2770			ath5k_create_power_curve(table_min[pdg],
2771						table_max[pdg],
2772						pdg_L->pd_pwr,
2773						pdg_L->pd_step,
2774						pdg_L->pd_points, tmpL, type);
2775
2776			/* We are in a calibration
2777			 * pier, no need to interpolate
2778			 * between freq piers */
2779			if (pcinfo_L == pcinfo_R)
2780				continue;
2781
2782			ath5k_create_power_curve(table_min[pdg],
2783						table_max[pdg],
2784						pdg_R->pd_pwr,
2785						pdg_R->pd_step,
2786						pdg_R->pd_points, tmpR, type);
2787			break;
2788		default:
2789			return -EINVAL;
2790		}
2791
2792		/* Interpolate between curves
2793		 * of surounding freq piers to
2794		 * get the final curve for this
2795		 * pd gain. Re-use tmpL for interpolation
2796		 * output */
2797		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2798		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2799			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2800							(s16) pcinfo_L->freq,
2801							(s16) pcinfo_R->freq,
2802							(s16) tmpL[i],
2803							(s16) tmpR[i]);
2804		}
2805	}
2806
2807	/* Now we have a set of curves for this
2808	 * channel on tmpL (x range is table_max - table_min
2809	 * and y values are tmpL[pdg][]) sorted in the same
2810	 * order as EEPROM (because we've used the backmapping).
2811	 * So for RF5112 it's from higher power to lower power
2812	 * and for RF2413 it's from lower power to higher power.
2813	 * For RF5111 we only have one curve. */
2814
2815	/* Fill min and max power levels for this
2816	 * channel by interpolating the values on
2817	 * surounding channels to complete the dataset */
2818	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2819					(s16) pcinfo_L->freq,
2820					(s16) pcinfo_R->freq,
2821					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2822
2823	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2824					(s16) pcinfo_L->freq,
2825					(s16) pcinfo_R->freq,
2826					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2827
2828	/* We are ready to go, fill PCDAC/PDADC
2829	 * table and write settings on hardware */
2830	switch (type) {
2831	case AR5K_PWRTABLE_LINEAR_PCDAC:
2832		/* For RF5112 we can have one or two curves
2833		 * and each curve covers a certain power lvl
2834		 * range so we need to do some more processing */
2835		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2836						ee->ee_pd_gains[ee_mode]);
2837
2838		/* Set txp.offset so that we can
2839		 * match max power value with max
2840		 * table index */
2841		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2842
2843		/* Write settings on hw */
2844		ath5k_setup_pcdac_table(ah);
2845		break;
2846	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2847		/* We are done for RF5111 since it has only
2848		 * one curve, just fit the curve on the table */
2849		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2850
2851		/* No rate powertable adjustment for RF5111 */
2852		ah->ah_txpower.txp_min_idx = 0;
2853		ah->ah_txpower.txp_offset = 0;
2854
2855		/* Write settings on hw */
2856		ath5k_setup_pcdac_table(ah);
2857		break;
2858	case AR5K_PWRTABLE_PWR_TO_PDADC:
2859		/* Set PDADC boundaries and fill
2860		 * final PDADC table */
2861		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2862						ee->ee_pd_gains[ee_mode]);
2863
2864		/* Write settings on hw */
2865		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2866
2867		/* Set txp.offset, note that table_min
2868		 * can be negative */
2869		ah->ah_txpower.txp_offset = table_min[0];
2870		break;
2871	default:
2872		return -EINVAL;
2873	}
2874
2875	return 0;
2876}
2877
2878
2879/*
2880 * Per-rate tx power setting
2881 *
2882 * This is the code that sets the desired tx power (below
2883 * maximum) on hw for each rate (we also have TPC that sets
2884 * power per packet). We do that by providing an index on the
2885 * PCDAC/PDADC table we set up.
2886 */
2887
2888/*
2889 * Set rate power table
2890 *
2891 * For now we only limit txpower based on maximum tx power
2892 * supported by hw (what's inside rate_info). We need to limit
2893 * this even more, based on regulatory domain etc.
2894 *
2895 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2896 * and is indexed as follows:
2897 * rates[0] - rates[7] -> OFDM rates
2898 * rates[8] - rates[14] -> CCK rates
2899 * rates[15] -> XR rates (they all have the same power)
2900 */
2901static void
2902ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2903			struct ath5k_rate_pcal_info *rate_info,
2904			u8 ee_mode)
2905{
2906	unsigned int i;
2907	u16 *rates;
2908
2909	/* max_pwr is power level we got from driver/user in 0.5dB
2910	 * units, switch to 0.25dB units so we can compare */
2911	max_pwr *= 2;
2912	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2913
2914	/* apply rate limits */
2915	rates = ah->ah_txpower.txp_rates_power_table;
2916
2917	/* OFDM rates 6 to 24Mb/s */
2918	for (i = 0; i < 5; i++)
2919		rates[i] = min(max_pwr, rate_info->target_power_6to24);
2920
2921	/* Rest OFDM rates */
2922	rates[5] = min(rates[0], rate_info->target_power_36);
2923	rates[6] = min(rates[0], rate_info->target_power_48);
2924	rates[7] = min(rates[0], rate_info->target_power_54);
2925
2926	/* CCK rates */
2927	/* 1L */
2928	rates[8] = min(rates[0], rate_info->target_power_6to24);
2929	/* 2L */
2930	rates[9] = min(rates[0], rate_info->target_power_36);
2931	/* 2S */
2932	rates[10] = min(rates[0], rate_info->target_power_36);
2933	/* 5L */
2934	rates[11] = min(rates[0], rate_info->target_power_48);
2935	/* 5S */
2936	rates[12] = min(rates[0], rate_info->target_power_48);
2937	/* 11L */
2938	rates[13] = min(rates[0], rate_info->target_power_54);
2939	/* 11S */
2940	rates[14] = min(rates[0], rate_info->target_power_54);
2941
2942	/* XR rates */
2943	rates[15] = min(rates[0], rate_info->target_power_6to24);
2944
2945	/* CCK rates have different peak to average ratio
2946	 * so we have to tweak their power so that gainf
2947	 * correction works ok. For this we use OFDM to
2948	 * CCK delta from eeprom */
2949	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2950	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2951		for (i = 8; i <= 15; i++)
2952			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2953
2954	/* Now that we have all rates setup use table offset to
2955	 * match the power range set by user with the power indices
2956	 * on PCDAC/PDADC table */
2957	for (i = 0; i < 16; i++) {
2958		rates[i] += ah->ah_txpower.txp_offset;
2959		/* Don't get out of bounds */
2960		if (rates[i] > 63)
2961			rates[i] = 63;
2962	}
2963
2964	/* Min/max in 0.25dB units */
2965	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2966	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2967	ah->ah_txpower.txp_ofdm = rates[7];
2968}
2969
2970
2971/*
2972 * Set transmition power
2973 */
2974int
2975ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2976		u8 ee_mode, u8 txpower)
2977{
2978	struct ath5k_rate_pcal_info rate_info;
2979	u8 type;
2980	int ret;
2981
2982	ATH5K_TRACE(ah->ah_sc);
2983	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2984		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2985		return -EINVAL;
2986	}
2987
2988	/* Reset TX power values */
2989	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2990	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2991	ah->ah_txpower.txp_min_pwr = 0;
2992	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2993
2994	/* Initialize TX power table */
2995	switch (ah->ah_radio) {
2996	case AR5K_RF5111:
2997		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
2998		break;
2999	case AR5K_RF5112:
3000		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3001		break;
3002	case AR5K_RF2413:
3003	case AR5K_RF5413:
3004	case AR5K_RF2316:
3005	case AR5K_RF2317:
3006	case AR5K_RF2425:
3007		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3008		break;
3009	default:
3010		return -EINVAL;
3011	}
3012
3013	/* FIXME: Only on channel/mode change */
3014	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3015	if (ret)
3016		return ret;
3017
3018	/* Limit max power if we have a CTL available */
3019	ath5k_get_max_ctl_power(ah, channel);
3020
3021	/* FIXME: Tx power limit for this regdomain
3022	 * XXX: Mac80211/CRDA will do that anyway ? */
3023
3024	/* FIXME: Antenna reduction stuff */
3025
3026	/* FIXME: Limit power on turbo modes */
3027
3028	/* FIXME: TPC scale reduction */
3029
3030	/* Get surounding channels for per-rate power table
3031	 * calibration */
3032	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3033
3034	/* Setup rate power table */
3035	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3036
3037	/* Write rate power table on hw */
3038	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3039		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3040		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3041
3042	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3043		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3044		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3045
3046	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3047		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3048		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3049
3050	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3051		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3052		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3053
3054	/* FIXME: TPC support */
3055	if (ah->ah_txpower.txp_tpc) {
3056		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3057			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3058
3059		ath5k_hw_reg_write(ah,
3060			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3061			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3062			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3063			AR5K_TPC);
3064	} else {
3065		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3066			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3067	}
3068
3069	return 0;
3070}
3071
3072int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3073{
3074	/*Just a try M.F.*/
3075	struct ieee80211_channel *channel = ah->ah_current_channel;
3076	u8 ee_mode;
3077
3078	ATH5K_TRACE(ah->ah_sc);
3079
3080	switch (channel->hw_value & CHANNEL_MODES) {
3081	case CHANNEL_A:
3082	case CHANNEL_T:
3083	case CHANNEL_XR:
3084		ee_mode = AR5K_EEPROM_MODE_11A;
3085		break;
3086	case CHANNEL_G:
3087	case CHANNEL_TG:
3088		ee_mode = AR5K_EEPROM_MODE_11G;
3089		break;
3090	case CHANNEL_B:
3091		ee_mode = AR5K_EEPROM_MODE_11B;
3092		break;
3093	default:
3094		ATH5K_ERR(ah->ah_sc,
3095			"invalid channel: %d\n", channel->center_freq);
3096		return -EINVAL;
3097	}
3098
3099	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3100		"changing txpower to %d\n", txpower);
3101
3102	return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3103}
3104