[go: nahoru, domu]

phy.c revision 6752ee90aa7c933294a10dbd9ea51f12dece7eb1
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#define _ATH5K_PHY
24
25#include <linux/delay.h>
26
27#include "ath5k.h"
28#include "reg.h"
29#include "base.h"
30#include "rfbuffer.h"
31#include "rfgain.h"
32
33/*
34 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
35 */
36static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
37					const struct ath5k_rf_reg *rf_regs,
38					u32 val, u8 reg_id, bool set)
39{
40	const struct ath5k_rf_reg *rfreg = NULL;
41	u8 offset, bank, num_bits, col, position;
42	u16 entry;
43	u32 mask, data, last_bit, bits_shifted, first_bit;
44	u32 *rfb;
45	s32 bits_left;
46	int i;
47
48	data = 0;
49	rfb = ah->ah_rf_banks;
50
51	for (i = 0; i < ah->ah_rf_regs_count; i++) {
52		if (rf_regs[i].index == reg_id) {
53			rfreg = &rf_regs[i];
54			break;
55		}
56	}
57
58	if (rfb == NULL || rfreg == NULL) {
59		ATH5K_PRINTF("Rf register not found!\n");
60		/* should not happen */
61		return 0;
62	}
63
64	bank = rfreg->bank;
65	num_bits = rfreg->field.len;
66	first_bit = rfreg->field.pos;
67	col = rfreg->field.col;
68
69	/* first_bit is an offset from bank's
70	 * start. Since we have all banks on
71	 * the same array, we use this offset
72	 * to mark each bank's start */
73	offset = ah->ah_offset[bank];
74
75	/* Boundary check */
76	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
77		ATH5K_PRINTF("invalid values at offset %u\n", offset);
78		return 0;
79	}
80
81	entry = ((first_bit - 1) / 8) + offset;
82	position = (first_bit - 1) % 8;
83
84	if (set)
85		data = ath5k_hw_bitswap(val, num_bits);
86
87	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
88	position = 0, entry++) {
89
90		last_bit = (position + bits_left > 8) ? 8 :
91					position + bits_left;
92
93		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
94								(col * 8);
95
96		if (set) {
97			rfb[entry] &= ~mask;
98			rfb[entry] |= ((data << position) << (col * 8)) & mask;
99			data >>= (8 - position);
100		} else {
101			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
102				<< bits_shifted;
103			bits_shifted += last_bit - position;
104		}
105
106		bits_left -= 8 - position;
107	}
108
109	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
110
111	return data;
112}
113
114/**********************\
115* RF Gain optimization *
116\**********************/
117
118/*
119 * This code is used to optimize rf gain on different environments
120 * (temprature mostly) based on feedback from a power detector.
121 *
122 * It's only used on RF5111 and RF5112, later RF chips seem to have
123 * auto adjustment on hw -notice they have a much smaller BANK 7 and
124 * no gain optimization ladder-.
125 *
126 * For more infos check out this patent doc
127 * http://www.freepatentsonline.com/7400691.html
128 *
129 * This paper describes power drops as seen on the receiver due to
130 * probe packets
131 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
132 * %20of%20Power%20Control.pdf
133 *
134 * And this is the MadWiFi bug entry related to the above
135 * http://madwifi-project.org/ticket/1659
136 * with various measurements and diagrams
137 *
138 * TODO: Deal with power drops due to probes by setting an apropriate
139 * tx power on the probe packets ! Make this part of the calibration process.
140 */
141
142/* Initialize ah_gain durring attach */
143int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
144{
145	/* Initialize the gain optimization values */
146	switch (ah->ah_radio) {
147	case AR5K_RF5111:
148		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
149		ah->ah_gain.g_low = 20;
150		ah->ah_gain.g_high = 35;
151		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
152		break;
153	case AR5K_RF5112:
154		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
155		ah->ah_gain.g_low = 20;
156		ah->ah_gain.g_high = 85;
157		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
158		break;
159	default:
160		return -EINVAL;
161	}
162
163	return 0;
164}
165
166/* Schedule a gain probe check on the next transmited packet.
167 * That means our next packet is going to be sent with lower
168 * tx power and a Peak to Average Power Detector (PAPD) will try
169 * to measure the gain.
170 *
171 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
172 * just after we enable the probe so that we don't mess with
173 * standard traffic ? Maybe it's time to use sw interrupts and
174 * a probe tasklet !!!
175 */
176static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
177{
178
179	/* Skip if gain calibration is inactive or
180	 * we already handle a probe request */
181	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
182		return;
183
184	/* Send the packet with 2dB below max power as
185	 * patent doc suggest */
186	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
187			AR5K_PHY_PAPD_PROBE_TXPOWER) |
188			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
189
190	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
191
192}
193
194/* Calculate gain_F measurement correction
195 * based on the current step for RF5112 rev. 2 */
196static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
197{
198	u32 mix, step;
199	u32 *rf;
200	const struct ath5k_gain_opt *go;
201	const struct ath5k_gain_opt_step *g_step;
202	const struct ath5k_rf_reg *rf_regs;
203
204	/* Only RF5112 Rev. 2 supports it */
205	if ((ah->ah_radio != AR5K_RF5112) ||
206	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
207		return 0;
208
209	go = &rfgain_opt_5112;
210	rf_regs = rf_regs_5112a;
211	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
212
213	g_step = &go->go_step[ah->ah_gain.g_step_idx];
214
215	if (ah->ah_rf_banks == NULL)
216		return 0;
217
218	rf = ah->ah_rf_banks;
219	ah->ah_gain.g_f_corr = 0;
220
221	/* No VGA (Variable Gain Amplifier) override, skip */
222	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
223		return 0;
224
225	/* Mix gain stepping */
226	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
227
228	/* Mix gain override */
229	mix = g_step->gos_param[0];
230
231	switch (mix) {
232	case 3:
233		ah->ah_gain.g_f_corr = step * 2;
234		break;
235	case 2:
236		ah->ah_gain.g_f_corr = (step - 5) * 2;
237		break;
238	case 1:
239		ah->ah_gain.g_f_corr = step;
240		break;
241	default:
242		ah->ah_gain.g_f_corr = 0;
243		break;
244	}
245
246	return ah->ah_gain.g_f_corr;
247}
248
249/* Check if current gain_F measurement is in the range of our
250 * power detector windows. If we get a measurement outside range
251 * we know it's not accurate (detectors can't measure anything outside
252 * their detection window) so we must ignore it */
253static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
254{
255	const struct ath5k_rf_reg *rf_regs;
256	u32 step, mix_ovr, level[4];
257	u32 *rf;
258
259	if (ah->ah_rf_banks == NULL)
260		return false;
261
262	rf = ah->ah_rf_banks;
263
264	if (ah->ah_radio == AR5K_RF5111) {
265
266		rf_regs = rf_regs_5111;
267		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
268
269		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
270			false);
271
272		level[0] = 0;
273		level[1] = (step == 63) ? 50 : step + 4;
274		level[2] = (step != 63) ? 64 : level[0];
275		level[3] = level[2] + 50 ;
276
277		ah->ah_gain.g_high = level[3] -
278			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
279		ah->ah_gain.g_low = level[0] +
280			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
281	} else {
282
283		rf_regs = rf_regs_5112;
284		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
285
286		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
287			false);
288
289		level[0] = level[2] = 0;
290
291		if (mix_ovr == 1) {
292			level[1] = level[3] = 83;
293		} else {
294			level[1] = level[3] = 107;
295			ah->ah_gain.g_high = 55;
296		}
297	}
298
299	return (ah->ah_gain.g_current >= level[0] &&
300			ah->ah_gain.g_current <= level[1]) ||
301		(ah->ah_gain.g_current >= level[2] &&
302			ah->ah_gain.g_current <= level[3]);
303}
304
305/* Perform gain_F adjustment by choosing the right set
306 * of parameters from rf gain optimization ladder */
307static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
308{
309	const struct ath5k_gain_opt *go;
310	const struct ath5k_gain_opt_step *g_step;
311	int ret = 0;
312
313	switch (ah->ah_radio) {
314	case AR5K_RF5111:
315		go = &rfgain_opt_5111;
316		break;
317	case AR5K_RF5112:
318		go = &rfgain_opt_5112;
319		break;
320	default:
321		return 0;
322	}
323
324	g_step = &go->go_step[ah->ah_gain.g_step_idx];
325
326	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
327
328		/* Reached maximum */
329		if (ah->ah_gain.g_step_idx == 0)
330			return -1;
331
332		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
333				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
334				ah->ah_gain.g_step_idx > 0;
335				g_step = &go->go_step[ah->ah_gain.g_step_idx])
336			ah->ah_gain.g_target -= 2 *
337			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
338			    g_step->gos_gain);
339
340		ret = 1;
341		goto done;
342	}
343
344	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
345
346		/* Reached minimum */
347		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
348			return -2;
349
350		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
351				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
352				ah->ah_gain.g_step_idx < go->go_steps_count-1;
353				g_step = &go->go_step[ah->ah_gain.g_step_idx])
354			ah->ah_gain.g_target -= 2 *
355			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
356			    g_step->gos_gain);
357
358		ret = 2;
359		goto done;
360	}
361
362done:
363	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
364		"ret %d, gain step %u, current gain %u, target gain %u\n",
365		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
366		ah->ah_gain.g_target);
367
368	return ret;
369}
370
371/* Main callback for thermal rf gain calibration engine
372 * Check for a new gain reading and schedule an adjustment
373 * if needed.
374 *
375 * TODO: Use sw interrupt to schedule reset if gain_F needs
376 * adjustment */
377enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
378{
379	u32 data, type;
380	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
381
382	ATH5K_TRACE(ah->ah_sc);
383
384	if (ah->ah_rf_banks == NULL ||
385	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
386		return AR5K_RFGAIN_INACTIVE;
387
388	/* No check requested, either engine is inactive
389	 * or an adjustment is already requested */
390	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
391		goto done;
392
393	/* Read the PAPD (Peak to Average Power Detector)
394	 * register */
395	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
396
397	/* No probe is scheduled, read gain_F measurement */
398	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
399		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
400		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
401
402		/* If tx packet is CCK correct the gain_F measurement
403		 * by cck ofdm gain delta */
404		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
405			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
406				ah->ah_gain.g_current +=
407					ee->ee_cck_ofdm_gain_delta;
408			else
409				ah->ah_gain.g_current +=
410					AR5K_GAIN_CCK_PROBE_CORR;
411		}
412
413		/* Further correct gain_F measurement for
414		 * RF5112A radios */
415		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
416			ath5k_hw_rf_gainf_corr(ah);
417			ah->ah_gain.g_current =
418				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
419				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
420				0;
421		}
422
423		/* Check if measurement is ok and if we need
424		 * to adjust gain, schedule a gain adjustment,
425		 * else switch back to the acive state */
426		if (ath5k_hw_rf_check_gainf_readback(ah) &&
427		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
428		ath5k_hw_rf_gainf_adjust(ah)) {
429			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
430		} else {
431			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
432		}
433	}
434
435done:
436	return ah->ah_gain.g_state;
437}
438
439/* Write initial rf gain table to set the RF sensitivity
440 * this one works on all RF chips and has nothing to do
441 * with gain_F calibration */
442int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
443{
444	const struct ath5k_ini_rfgain *ath5k_rfg;
445	unsigned int i, size;
446
447	switch (ah->ah_radio) {
448	case AR5K_RF5111:
449		ath5k_rfg = rfgain_5111;
450		size = ARRAY_SIZE(rfgain_5111);
451		break;
452	case AR5K_RF5112:
453		ath5k_rfg = rfgain_5112;
454		size = ARRAY_SIZE(rfgain_5112);
455		break;
456	case AR5K_RF2413:
457		ath5k_rfg = rfgain_2413;
458		size = ARRAY_SIZE(rfgain_2413);
459		break;
460	case AR5K_RF2316:
461		ath5k_rfg = rfgain_2316;
462		size = ARRAY_SIZE(rfgain_2316);
463		break;
464	case AR5K_RF5413:
465		ath5k_rfg = rfgain_5413;
466		size = ARRAY_SIZE(rfgain_5413);
467		break;
468	case AR5K_RF2317:
469	case AR5K_RF2425:
470		ath5k_rfg = rfgain_2425;
471		size = ARRAY_SIZE(rfgain_2425);
472		break;
473	default:
474		return -EINVAL;
475	}
476
477	switch (freq) {
478	case AR5K_INI_RFGAIN_2GHZ:
479	case AR5K_INI_RFGAIN_5GHZ:
480		break;
481	default:
482		return -EINVAL;
483	}
484
485	for (i = 0; i < size; i++) {
486		AR5K_REG_WAIT(i);
487		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
488			(u32)ath5k_rfg[i].rfg_register);
489	}
490
491	return 0;
492}
493
494
495
496/********************\
497* RF Registers setup *
498\********************/
499
500
501/*
502 * Setup RF registers by writing rf buffer on hw
503 */
504int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
505		unsigned int mode)
506{
507	const struct ath5k_rf_reg *rf_regs;
508	const struct ath5k_ini_rfbuffer *ini_rfb;
509	const struct ath5k_gain_opt *go = NULL;
510	const struct ath5k_gain_opt_step *g_step;
511	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
512	u8 ee_mode = 0;
513	u32 *rfb;
514	int i, obdb = -1, bank = -1;
515
516	switch (ah->ah_radio) {
517	case AR5K_RF5111:
518		rf_regs = rf_regs_5111;
519		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
520		ini_rfb = rfb_5111;
521		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
522		go = &rfgain_opt_5111;
523		break;
524	case AR5K_RF5112:
525		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
526			rf_regs = rf_regs_5112a;
527			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
528			ini_rfb = rfb_5112a;
529			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
530		} else {
531			rf_regs = rf_regs_5112;
532			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
533			ini_rfb = rfb_5112;
534			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
535		}
536		go = &rfgain_opt_5112;
537		break;
538	case AR5K_RF2413:
539		rf_regs = rf_regs_2413;
540		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
541		ini_rfb = rfb_2413;
542		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
543		break;
544	case AR5K_RF2316:
545		rf_regs = rf_regs_2316;
546		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
547		ini_rfb = rfb_2316;
548		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
549		break;
550	case AR5K_RF5413:
551		rf_regs = rf_regs_5413;
552		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
553		ini_rfb = rfb_5413;
554		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
555		break;
556	case AR5K_RF2317:
557		rf_regs = rf_regs_2425;
558		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
559		ini_rfb = rfb_2317;
560		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
561		break;
562	case AR5K_RF2425:
563		rf_regs = rf_regs_2425;
564		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
565		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
566			ini_rfb = rfb_2425;
567			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
568		} else {
569			ini_rfb = rfb_2417;
570			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
571		}
572		break;
573	default:
574		return -EINVAL;
575	}
576
577	/* If it's the first time we set rf buffer, allocate
578	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
579	 * we set above */
580	if (ah->ah_rf_banks == NULL) {
581		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
582								GFP_KERNEL);
583		if (ah->ah_rf_banks == NULL) {
584			ATH5K_ERR(ah->ah_sc, "out of memory\n");
585			return -ENOMEM;
586		}
587	}
588
589	/* Copy values to modify them */
590	rfb = ah->ah_rf_banks;
591
592	for (i = 0; i < ah->ah_rf_banks_size; i++) {
593		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
594			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
595			return -EINVAL;
596		}
597
598		/* Bank changed, write down the offset */
599		if (bank != ini_rfb[i].rfb_bank) {
600			bank = ini_rfb[i].rfb_bank;
601			ah->ah_offset[bank] = i;
602		}
603
604		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
605	}
606
607	/* Set Output and Driver bias current (OB/DB) */
608	if (channel->hw_value & CHANNEL_2GHZ) {
609
610		if (channel->hw_value & CHANNEL_CCK)
611			ee_mode = AR5K_EEPROM_MODE_11B;
612		else
613			ee_mode = AR5K_EEPROM_MODE_11G;
614
615		/* For RF511X/RF211X combination we
616		 * use b_OB and b_DB parameters stored
617		 * in eeprom on ee->ee_ob[ee_mode][0]
618		 *
619		 * For all other chips we use OB/DB for 2Ghz
620		 * stored in the b/g modal section just like
621		 * 802.11a on ee->ee_ob[ee_mode][1] */
622		if ((ah->ah_radio == AR5K_RF5111) ||
623		(ah->ah_radio == AR5K_RF5112))
624			obdb = 0;
625		else
626			obdb = 1;
627
628		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
629						AR5K_RF_OB_2GHZ, true);
630
631		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
632						AR5K_RF_DB_2GHZ, true);
633
634	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
635	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
636			(ah->ah_radio == AR5K_RF5111)) {
637
638		/* For 11a, Turbo and XR we need to choose
639		 * OB/DB based on frequency range */
640		ee_mode = AR5K_EEPROM_MODE_11A;
641		obdb =	 channel->center_freq >= 5725 ? 3 :
642			(channel->center_freq >= 5500 ? 2 :
643			(channel->center_freq >= 5260 ? 1 :
644			 (channel->center_freq > 4000 ? 0 : -1)));
645
646		if (obdb < 0)
647			return -EINVAL;
648
649		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
650						AR5K_RF_OB_5GHZ, true);
651
652		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
653						AR5K_RF_DB_5GHZ, true);
654	}
655
656	g_step = &go->go_step[ah->ah_gain.g_step_idx];
657
658	/* Bank Modifications (chip-specific) */
659	if (ah->ah_radio == AR5K_RF5111) {
660
661		/* Set gain_F settings according to current step */
662		if (channel->hw_value & CHANNEL_OFDM) {
663
664			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
665					AR5K_PHY_FRAME_CTL_TX_CLIP,
666					g_step->gos_param[0]);
667
668			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
669							AR5K_RF_PWD_90, true);
670
671			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
672							AR5K_RF_PWD_84, true);
673
674			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
675						AR5K_RF_RFGAIN_SEL, true);
676
677			/* We programmed gain_F parameters, switch back
678			 * to active state */
679			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
680
681		}
682
683		/* Bank 6/7 setup */
684
685		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
686						AR5K_RF_PWD_XPD, true);
687
688		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
689						AR5K_RF_XPD_GAIN, true);
690
691		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
692						AR5K_RF_GAIN_I, true);
693
694		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
695						AR5K_RF_PLO_SEL, true);
696
697		/* TODO: Half/quarter channel support */
698	}
699
700	if (ah->ah_radio == AR5K_RF5112) {
701
702		/* Set gain_F settings according to current step */
703		if (channel->hw_value & CHANNEL_OFDM) {
704
705			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
706						AR5K_RF_MIXGAIN_OVR, true);
707
708			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
709						AR5K_RF_PWD_138, true);
710
711			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
712						AR5K_RF_PWD_137, true);
713
714			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
715						AR5K_RF_PWD_136, true);
716
717			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
718						AR5K_RF_PWD_132, true);
719
720			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
721						AR5K_RF_PWD_131, true);
722
723			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
724						AR5K_RF_PWD_130, true);
725
726			/* We programmed gain_F parameters, switch back
727			 * to active state */
728			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
729		}
730
731		/* Bank 6/7 setup */
732
733		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
734						AR5K_RF_XPD_SEL, true);
735
736		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
737			/* Rev. 1 supports only one xpd */
738			ath5k_hw_rfb_op(ah, rf_regs,
739						ee->ee_x_gain[ee_mode],
740						AR5K_RF_XPD_GAIN, true);
741
742		} else {
743			/* TODO: Set high and low gain bits */
744			ath5k_hw_rfb_op(ah, rf_regs,
745						ee->ee_x_gain[ee_mode],
746						AR5K_RF_PD_GAIN_LO, true);
747			ath5k_hw_rfb_op(ah, rf_regs,
748						ee->ee_x_gain[ee_mode],
749						AR5K_RF_PD_GAIN_HI, true);
750
751			/* Lower synth voltage on Rev 2 */
752			ath5k_hw_rfb_op(ah, rf_regs, 2,
753					AR5K_RF_HIGH_VC_CP, true);
754
755			ath5k_hw_rfb_op(ah, rf_regs, 2,
756					AR5K_RF_MID_VC_CP, true);
757
758			ath5k_hw_rfb_op(ah, rf_regs, 2,
759					AR5K_RF_LOW_VC_CP, true);
760
761			ath5k_hw_rfb_op(ah, rf_regs, 2,
762					AR5K_RF_PUSH_UP, true);
763
764			/* Decrease power consumption on 5213+ BaseBand */
765			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
766				ath5k_hw_rfb_op(ah, rf_regs, 1,
767						AR5K_RF_PAD2GND, true);
768
769				ath5k_hw_rfb_op(ah, rf_regs, 1,
770						AR5K_RF_XB2_LVL, true);
771
772				ath5k_hw_rfb_op(ah, rf_regs, 1,
773						AR5K_RF_XB5_LVL, true);
774
775				ath5k_hw_rfb_op(ah, rf_regs, 1,
776						AR5K_RF_PWD_167, true);
777
778				ath5k_hw_rfb_op(ah, rf_regs, 1,
779						AR5K_RF_PWD_166, true);
780			}
781		}
782
783		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
784						AR5K_RF_GAIN_I, true);
785
786		/* TODO: Half/quarter channel support */
787
788	}
789
790	if (ah->ah_radio == AR5K_RF5413 &&
791	channel->hw_value & CHANNEL_2GHZ) {
792
793		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
794									true);
795
796		/* Set optimum value for early revisions (on pci-e chips) */
797		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
798		ah->ah_mac_srev < AR5K_SREV_AR5413)
799			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
800						AR5K_RF_PWD_ICLOBUF_2G, true);
801
802	}
803
804	/* Write RF banks on hw */
805	for (i = 0; i < ah->ah_rf_banks_size; i++) {
806		AR5K_REG_WAIT(i);
807		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
808	}
809
810	return 0;
811}
812
813
814/**************************\
815  PHY/RF channel functions
816\**************************/
817
818/*
819 * Check if a channel is supported
820 */
821bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
822{
823	/* Check if the channel is in our supported range */
824	if (flags & CHANNEL_2GHZ) {
825		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
826		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
827			return true;
828	} else if (flags & CHANNEL_5GHZ)
829		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
830		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
831			return true;
832
833	return false;
834}
835
836/*
837 * Convertion needed for RF5110
838 */
839static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
840{
841	u32 athchan;
842
843	/*
844	 * Convert IEEE channel/MHz to an internal channel value used
845	 * by the AR5210 chipset. This has not been verified with
846	 * newer chipsets like the AR5212A who have a completely
847	 * different RF/PHY part.
848	 */
849	athchan = (ath5k_hw_bitswap(
850			(ieee80211_frequency_to_channel(
851				channel->center_freq) - 24) / 2, 5)
852				<< 1) | (1 << 6) | 0x1;
853	return athchan;
854}
855
856/*
857 * Set channel on RF5110
858 */
859static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
860		struct ieee80211_channel *channel)
861{
862	u32 data;
863
864	/*
865	 * Set the channel and wait
866	 */
867	data = ath5k_hw_rf5110_chan2athchan(channel);
868	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
869	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
870	mdelay(1);
871
872	return 0;
873}
874
875/*
876 * Convertion needed for 5111
877 */
878static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
879		struct ath5k_athchan_2ghz *athchan)
880{
881	int channel;
882
883	/* Cast this value to catch negative channel numbers (>= -19) */
884	channel = (int)ieee;
885
886	/*
887	 * Map 2GHz IEEE channel to 5GHz Atheros channel
888	 */
889	if (channel <= 13) {
890		athchan->a2_athchan = 115 + channel;
891		athchan->a2_flags = 0x46;
892	} else if (channel == 14) {
893		athchan->a2_athchan = 124;
894		athchan->a2_flags = 0x44;
895	} else if (channel >= 15 && channel <= 26) {
896		athchan->a2_athchan = ((channel - 14) * 4) + 132;
897		athchan->a2_flags = 0x46;
898	} else
899		return -EINVAL;
900
901	return 0;
902}
903
904/*
905 * Set channel on 5111
906 */
907static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
908		struct ieee80211_channel *channel)
909{
910	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
911	unsigned int ath5k_channel =
912		ieee80211_frequency_to_channel(channel->center_freq);
913	u32 data0, data1, clock;
914	int ret;
915
916	/*
917	 * Set the channel on the RF5111 radio
918	 */
919	data0 = data1 = 0;
920
921	if (channel->hw_value & CHANNEL_2GHZ) {
922		/* Map 2GHz channel to 5GHz Atheros channel ID */
923		ret = ath5k_hw_rf5111_chan2athchan(
924			ieee80211_frequency_to_channel(channel->center_freq),
925			&ath5k_channel_2ghz);
926		if (ret)
927			return ret;
928
929		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
930		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
931		    << 5) | (1 << 4);
932	}
933
934	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
935		clock = 1;
936		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
937			(clock << 1) | (1 << 10) | 1;
938	} else {
939		clock = 0;
940		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
941			<< 2) | (clock << 1) | (1 << 10) | 1;
942	}
943
944	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
945			AR5K_RF_BUFFER);
946	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
947			AR5K_RF_BUFFER_CONTROL_3);
948
949	return 0;
950}
951
952/*
953 * Set channel on 5112 and newer
954 */
955static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
956		struct ieee80211_channel *channel)
957{
958	u32 data, data0, data1, data2;
959	u16 c;
960
961	data = data0 = data1 = data2 = 0;
962	c = channel->center_freq;
963
964	if (c < 4800) {
965		if (!((c - 2224) % 5)) {
966			data0 = ((2 * (c - 704)) - 3040) / 10;
967			data1 = 1;
968		} else if (!((c - 2192) % 5)) {
969			data0 = ((2 * (c - 672)) - 3040) / 10;
970			data1 = 0;
971		} else
972			return -EINVAL;
973
974		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
975	} else if ((c - (c % 5)) != 2 || c > 5435) {
976		if (!(c % 20) && c >= 5120) {
977			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
978			data2 = ath5k_hw_bitswap(3, 2);
979		} else if (!(c % 10)) {
980			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
981			data2 = ath5k_hw_bitswap(2, 2);
982		} else if (!(c % 5)) {
983			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
984			data2 = ath5k_hw_bitswap(1, 2);
985		} else
986			return -EINVAL;
987	} else {
988		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
989		data2 = ath5k_hw_bitswap(0, 2);
990	}
991
992	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
993
994	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
995	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
996
997	return 0;
998}
999
1000/*
1001 * Set the channel on the RF2425
1002 */
1003static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1004		struct ieee80211_channel *channel)
1005{
1006	u32 data, data0, data2;
1007	u16 c;
1008
1009	data = data0 = data2 = 0;
1010	c = channel->center_freq;
1011
1012	if (c < 4800) {
1013		data0 = ath5k_hw_bitswap((c - 2272), 8);
1014		data2 = 0;
1015	/* ? 5GHz ? */
1016	} else if ((c - (c % 5)) != 2 || c > 5435) {
1017		if (!(c % 20) && c < 5120)
1018			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1019		else if (!(c % 10))
1020			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1021		else if (!(c % 5))
1022			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1023		else
1024			return -EINVAL;
1025		data2 = ath5k_hw_bitswap(1, 2);
1026	} else {
1027		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1028		data2 = ath5k_hw_bitswap(0, 2);
1029	}
1030
1031	data = (data0 << 4) | data2 << 2 | 0x1001;
1032
1033	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1034	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1035
1036	return 0;
1037}
1038
1039/*
1040 * Set a channel on the radio chip
1041 */
1042int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1043{
1044	int ret;
1045	/*
1046	 * Check bounds supported by the PHY (we don't care about regultory
1047	 * restrictions at this point). Note: hw_value already has the band
1048	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1049	 * of the band by that */
1050	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1051		ATH5K_ERR(ah->ah_sc,
1052			"channel frequency (%u MHz) out of supported "
1053			"band range\n",
1054			channel->center_freq);
1055			return -EINVAL;
1056	}
1057
1058	/*
1059	 * Set the channel and wait
1060	 */
1061	switch (ah->ah_radio) {
1062	case AR5K_RF5110:
1063		ret = ath5k_hw_rf5110_channel(ah, channel);
1064		break;
1065	case AR5K_RF5111:
1066		ret = ath5k_hw_rf5111_channel(ah, channel);
1067		break;
1068	case AR5K_RF2425:
1069		ret = ath5k_hw_rf2425_channel(ah, channel);
1070		break;
1071	default:
1072		ret = ath5k_hw_rf5112_channel(ah, channel);
1073		break;
1074	}
1075
1076	if (ret)
1077		return ret;
1078
1079	/* Set JAPAN setting for channel 14 */
1080	if (channel->center_freq == 2484) {
1081		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1082				AR5K_PHY_CCKTXCTL_JAPAN);
1083	} else {
1084		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1085				AR5K_PHY_CCKTXCTL_WORLD);
1086	}
1087
1088	ah->ah_current_channel.center_freq = channel->center_freq;
1089	ah->ah_current_channel.hw_value = channel->hw_value;
1090	ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1091
1092	return 0;
1093}
1094
1095/*****************\
1096  PHY calibration
1097\*****************/
1098
1099/**
1100 * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
1101 *
1102 * @ah: struct ath5k_hw pointer we are operating on
1103 * @freq: the channel frequency, just used for error logging
1104 *
1105 * This function performs a noise floor calibration of the PHY and waits for
1106 * it to complete. Then the noise floor value is compared to some maximum
1107 * noise floor we consider valid.
1108 *
1109 * Note that this is different from what the madwifi HAL does: it reads the
1110 * noise floor and afterwards initiates the calibration. Since the noise floor
1111 * calibration can take some time to finish, depending on the current channel
1112 * use, that avoids the occasional timeout warnings we are seeing now.
1113 *
1114 * See the following link for an Atheros patent on noise floor calibration:
1115 * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
1116 * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
1117 *
1118 * XXX: Since during noise floor calibration antennas are detached according to
1119 * the patent, we should stop tx queues here.
1120 */
1121int
1122ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
1123{
1124	int ret;
1125	unsigned int i;
1126	s32 noise_floor;
1127
1128	/*
1129	 * Enable noise floor calibration
1130	 */
1131	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1132				AR5K_PHY_AGCCTL_NF);
1133
1134	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1135			AR5K_PHY_AGCCTL_NF, 0, false);
1136	if (ret) {
1137		ATH5K_ERR(ah->ah_sc,
1138			"noise floor calibration timeout (%uMHz)\n", freq);
1139		return -EAGAIN;
1140	}
1141
1142	/* Wait until the noise floor is calibrated and read the value */
1143	for (i = 20; i > 0; i--) {
1144		mdelay(1);
1145		noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1146		noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
1147		if (noise_floor & AR5K_PHY_NF_ACTIVE) {
1148			noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
1149
1150			if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
1151				break;
1152		}
1153	}
1154
1155	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1156		"noise floor %d\n", noise_floor);
1157
1158	if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
1159		ATH5K_ERR(ah->ah_sc,
1160			"noise floor calibration failed (%uMHz)\n", freq);
1161		return -EAGAIN;
1162	}
1163
1164	ah->ah_noise_floor = noise_floor;
1165
1166	return 0;
1167}
1168
1169/*
1170 * Perform a PHY calibration on RF5110
1171 * -Fix BPSK/QAM Constellation (I/Q correction)
1172 * -Calculate Noise Floor
1173 */
1174static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1175		struct ieee80211_channel *channel)
1176{
1177	u32 phy_sig, phy_agc, phy_sat, beacon;
1178	int ret;
1179
1180	/*
1181	 * Disable beacons and RX/TX queues, wait
1182	 */
1183	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1184		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1185	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1186	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1187
1188	mdelay(2);
1189
1190	/*
1191	 * Set the channel (with AGC turned off)
1192	 */
1193	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1194	udelay(10);
1195	ret = ath5k_hw_channel(ah, channel);
1196
1197	/*
1198	 * Activate PHY and wait
1199	 */
1200	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1201	mdelay(1);
1202
1203	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1204
1205	if (ret)
1206		return ret;
1207
1208	/*
1209	 * Calibrate the radio chip
1210	 */
1211
1212	/* Remember normal state */
1213	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1214	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1215	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1216
1217	/* Update radio registers */
1218	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1219		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1220
1221	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1222			AR5K_PHY_AGCCOARSE_LO)) |
1223		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1224		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1225
1226	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1227			AR5K_PHY_ADCSAT_THR)) |
1228		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1229		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1230
1231	udelay(20);
1232
1233	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1234	udelay(10);
1235	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1236	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1237
1238	mdelay(1);
1239
1240	/*
1241	 * Enable calibration and wait until completion
1242	 */
1243	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1244
1245	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1246			AR5K_PHY_AGCCTL_CAL, 0, false);
1247
1248	/* Reset to normal state */
1249	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1250	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1251	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1252
1253	if (ret) {
1254		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1255				channel->center_freq);
1256		return ret;
1257	}
1258
1259	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1260
1261	/*
1262	 * Re-enable RX/TX and beacons
1263	 */
1264	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1265		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1266	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1267
1268	return 0;
1269}
1270
1271/*
1272 * Perform a PHY calibration on RF5111/5112 and newer chips
1273 */
1274static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1275		struct ieee80211_channel *channel)
1276{
1277	u32 i_pwr, q_pwr;
1278	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1279	int i;
1280	ATH5K_TRACE(ah->ah_sc);
1281
1282	if (!ah->ah_calibration ||
1283		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1284		goto done;
1285
1286	/* Calibration has finished, get the results and re-run */
1287	for (i = 0; i <= 10; i++) {
1288		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1289		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1290		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1291	}
1292
1293	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1294	q_coffd = q_pwr >> 7;
1295
1296	/* No correction */
1297	if (i_coffd == 0 || q_coffd == 0)
1298		goto done;
1299
1300	i_coff = ((-iq_corr) / i_coffd) & 0x3f;
1301
1302	/* Boundary check */
1303	if (i_coff > 31)
1304		i_coff = 31;
1305	if (i_coff < -32)
1306		i_coff = -32;
1307
1308	q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
1309
1310	/* Boundary check */
1311	if (q_coff > 15)
1312		q_coff = 15;
1313	if (q_coff < -16)
1314		q_coff = -16;
1315
1316	/* Commit new I/Q value */
1317	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1318		((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1319
1320	/* Re-enable calibration -if we don't we'll commit
1321	 * the same values again and again */
1322	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1323			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1324	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1325
1326done:
1327
1328	/* TODO: Separate noise floor calibration from I/Q calibration
1329	 * since noise floor calibration interrupts rx path while I/Q
1330	 * calibration doesn't. We don't need to run noise floor calibration
1331	 * as often as I/Q calibration.*/
1332	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1333
1334	/* Initiate a gain_F calibration */
1335	ath5k_hw_request_rfgain_probe(ah);
1336
1337	return 0;
1338}
1339
1340/*
1341 * Perform a PHY calibration
1342 */
1343int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1344		struct ieee80211_channel *channel)
1345{
1346	int ret;
1347
1348	if (ah->ah_radio == AR5K_RF5110)
1349		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1350	else
1351		ret = ath5k_hw_rf511x_calibrate(ah, channel);
1352
1353	return ret;
1354}
1355
1356/***************************\
1357* Spur mitigation functions *
1358\***************************/
1359
1360bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1361				struct ieee80211_channel *channel)
1362{
1363	u8 refclk_freq;
1364
1365	if ((ah->ah_radio == AR5K_RF5112) ||
1366	(ah->ah_radio == AR5K_RF5413) ||
1367	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1368		refclk_freq = 40;
1369	else
1370		refclk_freq = 32;
1371
1372	if ((channel->center_freq % refclk_freq != 0) &&
1373	((channel->center_freq % refclk_freq < 10) ||
1374	(channel->center_freq % refclk_freq > 22)))
1375		return true;
1376	else
1377		return false;
1378}
1379
1380void
1381ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1382				struct ieee80211_channel *channel)
1383{
1384	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1385	u32 mag_mask[4] = {0, 0, 0, 0};
1386	u32 pilot_mask[2] = {0, 0};
1387	/* Note: fbin values are scaled up by 2 */
1388	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1389	s32 spur_delta_phase, spur_freq_sigma_delta;
1390	s32 spur_offset, num_symbols_x16;
1391	u8 num_symbol_offsets, i, freq_band;
1392
1393	/* Convert current frequency to fbin value (the same way channels
1394	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1395	 * up by 2 so we can compare it later */
1396	if (channel->hw_value & CHANNEL_2GHZ) {
1397		chan_fbin = (channel->center_freq - 2300) * 10;
1398		freq_band = AR5K_EEPROM_BAND_2GHZ;
1399	} else {
1400		chan_fbin = (channel->center_freq - 4900) * 10;
1401		freq_band = AR5K_EEPROM_BAND_5GHZ;
1402	}
1403
1404	/* Check if any spur_chan_fbin from EEPROM is
1405	 * within our current channel's spur detection range */
1406	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1407	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1408	/* XXX: Half/Quarter channels ?*/
1409	if (channel->hw_value & CHANNEL_TURBO)
1410		spur_detection_window *= 2;
1411
1412	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1413		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1414
1415		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1416		 * so it's zero if we got nothing from EEPROM */
1417		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1418			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1419			break;
1420		}
1421
1422		if ((chan_fbin - spur_detection_window <=
1423		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1424		(chan_fbin + spur_detection_window >=
1425		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1426			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1427			break;
1428		}
1429	}
1430
1431	/* We need to enable spur filter for this channel */
1432	if (spur_chan_fbin) {
1433		spur_offset = spur_chan_fbin - chan_fbin;
1434		/*
1435		 * Calculate deltas:
1436		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1437		 * spur_delta_phase -> spur_offset / chip_freq << 11
1438		 * Note: Both values have 100KHz resolution
1439		 */
1440		/* XXX: Half/Quarter rate channels ? */
1441		switch (channel->hw_value) {
1442		case CHANNEL_A:
1443			/* Both sample_freq and chip_freq are 40MHz */
1444			spur_delta_phase = (spur_offset << 17) / 25;
1445			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1446			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1447			break;
1448		case CHANNEL_G:
1449			/* sample_freq -> 40MHz chip_freq -> 44MHz
1450			 * (for b compatibility) */
1451			spur_freq_sigma_delta = (spur_offset << 8) / 55;
1452			spur_delta_phase = (spur_offset << 17) / 25;
1453			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1454			break;
1455		case CHANNEL_T:
1456		case CHANNEL_TG:
1457			/* Both sample_freq and chip_freq are 80MHz */
1458			spur_delta_phase = (spur_offset << 16) / 25;
1459			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1460			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1461			break;
1462		default:
1463			return;
1464		}
1465
1466		/* Calculate pilot and magnitude masks */
1467
1468		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1469		 * and divide by symbol_width to find how many symbols we have
1470		 * Note: number of symbols is scaled up by 16 */
1471		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1472
1473		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1474		if (!(num_symbols_x16 & 0xF))
1475			/* _X_ */
1476			num_symbol_offsets = 3;
1477		else
1478			/* _xx_ */
1479			num_symbol_offsets = 4;
1480
1481		for (i = 0; i < num_symbol_offsets; i++) {
1482
1483			/* Calculate pilot mask */
1484			s32 curr_sym_off =
1485				(num_symbols_x16 / 16) + i + 25;
1486
1487			/* Pilot magnitude mask seems to be a way to
1488			 * declare the boundaries for our detection
1489			 * window or something, it's 2 for the middle
1490			 * value(s) where the symbol is expected to be
1491			 * and 1 on the boundary values */
1492			u8 plt_mag_map =
1493				(i == 0 || i == (num_symbol_offsets - 1))
1494								? 1 : 2;
1495
1496			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1497				if (curr_sym_off <= 25)
1498					pilot_mask[0] |= 1 << curr_sym_off;
1499				else if (curr_sym_off >= 27)
1500					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1501			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1502				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1503
1504			/* Calculate magnitude mask (for viterbi decoder) */
1505			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1506				mag_mask[0] |=
1507					plt_mag_map << (curr_sym_off + 1) * 2;
1508			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1509				mag_mask[1] |=
1510					plt_mag_map << (curr_sym_off - 15) * 2;
1511			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1512				mag_mask[2] |=
1513					plt_mag_map << (curr_sym_off - 31) * 2;
1514			else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1515				mag_mask[3] |=
1516					plt_mag_map << (curr_sym_off - 47) * 2;
1517
1518		}
1519
1520		/* Write settings on hw to enable spur filter */
1521		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1522					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1523		/* XXX: Self correlator also ? */
1524		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1525					AR5K_PHY_IQ_PILOT_MASK_EN |
1526					AR5K_PHY_IQ_CHAN_MASK_EN |
1527					AR5K_PHY_IQ_SPUR_FILT_EN);
1528
1529		/* Set delta phase and freq sigma delta */
1530		ath5k_hw_reg_write(ah,
1531				AR5K_REG_SM(spur_delta_phase,
1532					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1533				AR5K_REG_SM(spur_freq_sigma_delta,
1534				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1535				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1536				AR5K_PHY_TIMING_11);
1537
1538		/* Write pilot masks */
1539		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1540		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1541					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1542					pilot_mask[1]);
1543
1544		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1545		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1546					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1547					pilot_mask[1]);
1548
1549		/* Write magnitude masks */
1550		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1551		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1552		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1553		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1554					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1555					mag_mask[3]);
1556
1557		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1558		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1559		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1560		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1561					AR5K_PHY_BIN_MASK2_4_MASK_4,
1562					mag_mask[3]);
1563
1564	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1565	AR5K_PHY_IQ_SPUR_FILT_EN) {
1566		/* Clean up spur mitigation settings and disable fliter */
1567		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1568					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1569		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1570					AR5K_PHY_IQ_PILOT_MASK_EN |
1571					AR5K_PHY_IQ_CHAN_MASK_EN |
1572					AR5K_PHY_IQ_SPUR_FILT_EN);
1573		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1574
1575		/* Clear pilot masks */
1576		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1577		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1578					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1579					0);
1580
1581		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1582		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1583					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1584					0);
1585
1586		/* Clear magnitude masks */
1587		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1588		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1589		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1590		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1591					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1592					0);
1593
1594		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1595		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1596		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1597		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1598					AR5K_PHY_BIN_MASK2_4_MASK_4,
1599					0);
1600	}
1601}
1602
1603/********************\
1604  Misc PHY functions
1605\********************/
1606
1607int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1608{
1609	ATH5K_TRACE(ah->ah_sc);
1610	/*Just a try M.F.*/
1611	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1612
1613	return 0;
1614}
1615
1616/*
1617 * Get the PHY Chip revision
1618 */
1619u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1620{
1621	unsigned int i;
1622	u32 srev;
1623	u16 ret;
1624
1625	ATH5K_TRACE(ah->ah_sc);
1626
1627	/*
1628	 * Set the radio chip access register
1629	 */
1630	switch (chan) {
1631	case CHANNEL_2GHZ:
1632		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1633		break;
1634	case CHANNEL_5GHZ:
1635		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1636		break;
1637	default:
1638		return 0;
1639	}
1640
1641	mdelay(2);
1642
1643	/* ...wait until PHY is ready and read the selected radio revision */
1644	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1645
1646	for (i = 0; i < 8; i++)
1647		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1648
1649	if (ah->ah_version == AR5K_AR5210) {
1650		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1651		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1652	} else {
1653		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1654		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1655				((srev & 0x0f) << 4), 8);
1656	}
1657
1658	/* Reset to the 5GHz mode */
1659	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1660
1661	return ret;
1662}
1663
1664/*****************\
1665* Antenna control *
1666\*****************/
1667
1668void /*TODO:Boundary check*/
1669ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1670{
1671	ATH5K_TRACE(ah->ah_sc);
1672
1673	if (ah->ah_version != AR5K_AR5210)
1674		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1675}
1676
1677unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1678{
1679	ATH5K_TRACE(ah->ah_sc);
1680
1681	if (ah->ah_version != AR5K_AR5210)
1682		return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
1683
1684	return false; /*XXX: What do we return for 5210 ?*/
1685}
1686
1687/*
1688 * Enable/disable fast rx antenna diversity
1689 */
1690static void
1691ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1692{
1693	switch (ee_mode) {
1694	case AR5K_EEPROM_MODE_11G:
1695		/* XXX: This is set to
1696		 * disabled on initvals !!! */
1697	case AR5K_EEPROM_MODE_11A:
1698		if (enable)
1699			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1700					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1701		else
1702			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1703					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1704		break;
1705	case AR5K_EEPROM_MODE_11B:
1706		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1707					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1708		break;
1709	default:
1710		return;
1711	}
1712
1713	if (enable) {
1714		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1715				AR5K_PHY_RESTART_DIV_GC, 0xc);
1716
1717		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1718					AR5K_PHY_FAST_ANT_DIV_EN);
1719	} else {
1720		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1721				AR5K_PHY_RESTART_DIV_GC, 0x8);
1722
1723		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1724					AR5K_PHY_FAST_ANT_DIV_EN);
1725	}
1726}
1727
1728/*
1729 * Set antenna operating mode
1730 */
1731void
1732ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1733{
1734	struct ieee80211_channel *channel = &ah->ah_current_channel;
1735	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1736	bool use_def_for_sg;
1737	u8 def_ant, tx_ant, ee_mode;
1738	u32 sta_id1 = 0;
1739
1740	def_ant = ah->ah_def_ant;
1741
1742	ATH5K_TRACE(ah->ah_sc);
1743
1744	switch (channel->hw_value & CHANNEL_MODES) {
1745	case CHANNEL_A:
1746	case CHANNEL_T:
1747	case CHANNEL_XR:
1748		ee_mode = AR5K_EEPROM_MODE_11A;
1749		break;
1750	case CHANNEL_G:
1751	case CHANNEL_TG:
1752		ee_mode = AR5K_EEPROM_MODE_11G;
1753		break;
1754	case CHANNEL_B:
1755		ee_mode = AR5K_EEPROM_MODE_11B;
1756		break;
1757	default:
1758		ATH5K_ERR(ah->ah_sc,
1759			"invalid channel: %d\n", channel->center_freq);
1760		return;
1761	}
1762
1763	switch (ant_mode) {
1764	case AR5K_ANTMODE_DEFAULT:
1765		tx_ant = 0;
1766		use_def_for_tx = false;
1767		update_def_on_tx = false;
1768		use_def_for_rts = false;
1769		use_def_for_sg = false;
1770		fast_div = true;
1771		break;
1772	case AR5K_ANTMODE_FIXED_A:
1773		def_ant = 1;
1774		tx_ant = 0;
1775		use_def_for_tx = true;
1776		update_def_on_tx = false;
1777		use_def_for_rts = true;
1778		use_def_for_sg = true;
1779		fast_div = false;
1780		break;
1781	case AR5K_ANTMODE_FIXED_B:
1782		def_ant = 2;
1783		tx_ant = 0;
1784		use_def_for_tx = true;
1785		update_def_on_tx = false;
1786		use_def_for_rts = true;
1787		use_def_for_sg = true;
1788		fast_div = false;
1789		break;
1790	case AR5K_ANTMODE_SINGLE_AP:
1791		def_ant = 1;	/* updated on tx */
1792		tx_ant = 0;
1793		use_def_for_tx = true;
1794		update_def_on_tx = true;
1795		use_def_for_rts = true;
1796		use_def_for_sg = true;
1797		fast_div = true;
1798		break;
1799	case AR5K_ANTMODE_SECTOR_AP:
1800		tx_ant = 1;	/* variable */
1801		use_def_for_tx = false;
1802		update_def_on_tx = false;
1803		use_def_for_rts = true;
1804		use_def_for_sg = false;
1805		fast_div = false;
1806		break;
1807	case AR5K_ANTMODE_SECTOR_STA:
1808		tx_ant = 1;	/* variable */
1809		use_def_for_tx = true;
1810		update_def_on_tx = false;
1811		use_def_for_rts = true;
1812		use_def_for_sg = false;
1813		fast_div = true;
1814		break;
1815	case AR5K_ANTMODE_DEBUG:
1816		def_ant = 1;
1817		tx_ant = 2;
1818		use_def_for_tx = false;
1819		update_def_on_tx = false;
1820		use_def_for_rts = false;
1821		use_def_for_sg = false;
1822		fast_div = false;
1823		break;
1824	default:
1825		return;
1826	}
1827
1828	ah->ah_tx_ant = tx_ant;
1829	ah->ah_ant_mode = ant_mode;
1830
1831	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1832	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1833	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1834	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1835
1836	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1837
1838	if (sta_id1)
1839		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1840
1841	/* Note: set diversity before default antenna
1842	 * because it won't work correctly */
1843	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1844	ath5k_hw_set_def_antenna(ah, def_ant);
1845}
1846
1847
1848/****************\
1849* TX power setup *
1850\****************/
1851
1852/*
1853 * Helper functions
1854 */
1855
1856/*
1857 * Do linear interpolation between two given (x, y) points
1858 */
1859static s16
1860ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1861					s16 y_left, s16 y_right)
1862{
1863	s16 ratio, result;
1864
1865	/* Avoid divide by zero and skip interpolation
1866	 * if we have the same point */
1867	if ((x_left == x_right) || (y_left == y_right))
1868		return y_left;
1869
1870	/*
1871	 * Since we use ints and not fps, we need to scale up in
1872	 * order to get a sane ratio value (or else we 'll eg. get
1873	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1874	 * to have some accuracy both for 0.5 and 0.25 steps.
1875	 */
1876	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1877
1878	/* Now scale down to be in range */
1879	result = y_left + (ratio * (target - x_left) / 100);
1880
1881	return result;
1882}
1883
1884/*
1885 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1886 *
1887 * Since we have the top of the curve and we draw the line below
1888 * until we reach 1 (1 pcdac step) we need to know which point
1889 * (x value) that is so that we don't go below y axis and have negative
1890 * pcdac values when creating the curve, or fill the table with zeroes.
1891 */
1892static s16
1893ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1894				const s16 *pwrL, const s16 *pwrR)
1895{
1896	s8 tmp;
1897	s16 min_pwrL, min_pwrR;
1898	s16 pwr_i;
1899
1900	if (pwrL[0] == pwrL[1])
1901		min_pwrL = pwrL[0];
1902	else {
1903		pwr_i = pwrL[0];
1904		do {
1905			pwr_i--;
1906			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1907							pwrL[0], pwrL[1],
1908							stepL[0], stepL[1]);
1909		} while (tmp > 1);
1910
1911		min_pwrL = pwr_i;
1912	}
1913
1914	if (pwrR[0] == pwrR[1])
1915		min_pwrR = pwrR[0];
1916	else {
1917		pwr_i = pwrR[0];
1918		do {
1919			pwr_i--;
1920			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1921							pwrR[0], pwrR[1],
1922							stepR[0], stepR[1]);
1923		} while (tmp > 1);
1924
1925		min_pwrR = pwr_i;
1926	}
1927
1928	/* Keep the right boundary so that it works for both curves */
1929	return max(min_pwrL, min_pwrR);
1930}
1931
1932/*
1933 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1934 * Power to PCDAC curve.
1935 *
1936 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1937 * steps (offsets) on y axis. Power can go up to 31.5dB and max
1938 * PCDAC/PDADC step for each curve is 64 but we can write more than
1939 * one curves on hw so we can go up to 128 (which is the max step we
1940 * can write on the final table).
1941 *
1942 * We write y values (PCDAC/PDADC steps) on hw.
1943 */
1944static void
1945ath5k_create_power_curve(s16 pmin, s16 pmax,
1946			const s16 *pwr, const u8 *vpd,
1947			u8 num_points,
1948			u8 *vpd_table, u8 type)
1949{
1950	u8 idx[2] = { 0, 1 };
1951	s16 pwr_i = 2*pmin;
1952	int i;
1953
1954	if (num_points < 2)
1955		return;
1956
1957	/* We want the whole line, so adjust boundaries
1958	 * to cover the entire power range. Note that
1959	 * power values are already 0.25dB so no need
1960	 * to multiply pwr_i by 2 */
1961	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
1962		pwr_i = pmin;
1963		pmin = 0;
1964		pmax = 63;
1965	}
1966
1967	/* Find surrounding turning points (TPs)
1968	 * and interpolate between them */
1969	for (i = 0; (i <= (u16) (pmax - pmin)) &&
1970	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
1971
1972		/* We passed the right TP, move to the next set of TPs
1973		 * if we pass the last TP, extrapolate above using the last
1974		 * two TPs for ratio */
1975		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
1976			idx[0]++;
1977			idx[1]++;
1978		}
1979
1980		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
1981						pwr[idx[0]], pwr[idx[1]],
1982						vpd[idx[0]], vpd[idx[1]]);
1983
1984		/* Increase by 0.5dB
1985		 * (0.25 dB units) */
1986		pwr_i += 2;
1987	}
1988}
1989
1990/*
1991 * Get the surrounding per-channel power calibration piers
1992 * for a given frequency so that we can interpolate between
1993 * them and come up with an apropriate dataset for our current
1994 * channel.
1995 */
1996static void
1997ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
1998			struct ieee80211_channel *channel,
1999			struct ath5k_chan_pcal_info **pcinfo_l,
2000			struct ath5k_chan_pcal_info **pcinfo_r)
2001{
2002	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2003	struct ath5k_chan_pcal_info *pcinfo;
2004	u8 idx_l, idx_r;
2005	u8 mode, max, i;
2006	u32 target = channel->center_freq;
2007
2008	idx_l = 0;
2009	idx_r = 0;
2010
2011	if (!(channel->hw_value & CHANNEL_OFDM)) {
2012		pcinfo = ee->ee_pwr_cal_b;
2013		mode = AR5K_EEPROM_MODE_11B;
2014	} else if (channel->hw_value & CHANNEL_2GHZ) {
2015		pcinfo = ee->ee_pwr_cal_g;
2016		mode = AR5K_EEPROM_MODE_11G;
2017	} else {
2018		pcinfo = ee->ee_pwr_cal_a;
2019		mode = AR5K_EEPROM_MODE_11A;
2020	}
2021	max = ee->ee_n_piers[mode] - 1;
2022
2023	/* Frequency is below our calibrated
2024	 * range. Use the lowest power curve
2025	 * we have */
2026	if (target < pcinfo[0].freq) {
2027		idx_l = idx_r = 0;
2028		goto done;
2029	}
2030
2031	/* Frequency is above our calibrated
2032	 * range. Use the highest power curve
2033	 * we have */
2034	if (target > pcinfo[max].freq) {
2035		idx_l = idx_r = max;
2036		goto done;
2037	}
2038
2039	/* Frequency is inside our calibrated
2040	 * channel range. Pick the surrounding
2041	 * calibration piers so that we can
2042	 * interpolate */
2043	for (i = 0; i <= max; i++) {
2044
2045		/* Frequency matches one of our calibration
2046		 * piers, no need to interpolate, just use
2047		 * that calibration pier */
2048		if (pcinfo[i].freq == target) {
2049			idx_l = idx_r = i;
2050			goto done;
2051		}
2052
2053		/* We found a calibration pier that's above
2054		 * frequency, use this pier and the previous
2055		 * one to interpolate */
2056		if (target < pcinfo[i].freq) {
2057			idx_r = i;
2058			idx_l = idx_r - 1;
2059			goto done;
2060		}
2061	}
2062
2063done:
2064	*pcinfo_l = &pcinfo[idx_l];
2065	*pcinfo_r = &pcinfo[idx_r];
2066
2067	return;
2068}
2069
2070/*
2071 * Get the surrounding per-rate power calibration data
2072 * for a given frequency and interpolate between power
2073 * values to set max target power supported by hw for
2074 * each rate.
2075 */
2076static void
2077ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2078			struct ieee80211_channel *channel,
2079			struct ath5k_rate_pcal_info *rates)
2080{
2081	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2082	struct ath5k_rate_pcal_info *rpinfo;
2083	u8 idx_l, idx_r;
2084	u8 mode, max, i;
2085	u32 target = channel->center_freq;
2086
2087	idx_l = 0;
2088	idx_r = 0;
2089
2090	if (!(channel->hw_value & CHANNEL_OFDM)) {
2091		rpinfo = ee->ee_rate_tpwr_b;
2092		mode = AR5K_EEPROM_MODE_11B;
2093	} else if (channel->hw_value & CHANNEL_2GHZ) {
2094		rpinfo = ee->ee_rate_tpwr_g;
2095		mode = AR5K_EEPROM_MODE_11G;
2096	} else {
2097		rpinfo = ee->ee_rate_tpwr_a;
2098		mode = AR5K_EEPROM_MODE_11A;
2099	}
2100	max = ee->ee_rate_target_pwr_num[mode] - 1;
2101
2102	/* Get the surrounding calibration
2103	 * piers - same as above */
2104	if (target < rpinfo[0].freq) {
2105		idx_l = idx_r = 0;
2106		goto done;
2107	}
2108
2109	if (target > rpinfo[max].freq) {
2110		idx_l = idx_r = max;
2111		goto done;
2112	}
2113
2114	for (i = 0; i <= max; i++) {
2115
2116		if (rpinfo[i].freq == target) {
2117			idx_l = idx_r = i;
2118			goto done;
2119		}
2120
2121		if (target < rpinfo[i].freq) {
2122			idx_r = i;
2123			idx_l = idx_r - 1;
2124			goto done;
2125		}
2126	}
2127
2128done:
2129	/* Now interpolate power value, based on the frequency */
2130	rates->freq = target;
2131
2132	rates->target_power_6to24 =
2133		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2134					rpinfo[idx_r].freq,
2135					rpinfo[idx_l].target_power_6to24,
2136					rpinfo[idx_r].target_power_6to24);
2137
2138	rates->target_power_36 =
2139		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2140					rpinfo[idx_r].freq,
2141					rpinfo[idx_l].target_power_36,
2142					rpinfo[idx_r].target_power_36);
2143
2144	rates->target_power_48 =
2145		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2146					rpinfo[idx_r].freq,
2147					rpinfo[idx_l].target_power_48,
2148					rpinfo[idx_r].target_power_48);
2149
2150	rates->target_power_54 =
2151		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2152					rpinfo[idx_r].freq,
2153					rpinfo[idx_l].target_power_54,
2154					rpinfo[idx_r].target_power_54);
2155}
2156
2157/*
2158 * Get the max edge power for this channel if
2159 * we have such data from EEPROM's Conformance Test
2160 * Limits (CTL), and limit max power if needed.
2161 */
2162static void
2163ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2164			struct ieee80211_channel *channel)
2165{
2166	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2167	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2168	u8 *ctl_val = ee->ee_ctl;
2169	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2170	s16 edge_pwr = 0;
2171	u8 rep_idx;
2172	u8 i, ctl_mode;
2173	u8 ctl_idx = 0xFF;
2174	u32 target = channel->center_freq;
2175
2176	ctl_mode = ath_regd_get_band_ctl(&ah->ah_regulatory, channel->band);
2177
2178	switch (channel->hw_value & CHANNEL_MODES) {
2179	case CHANNEL_A:
2180		ctl_mode |= AR5K_CTL_11A;
2181		break;
2182	case CHANNEL_G:
2183		ctl_mode |= AR5K_CTL_11G;
2184		break;
2185	case CHANNEL_B:
2186		ctl_mode |= AR5K_CTL_11B;
2187		break;
2188	case CHANNEL_T:
2189		ctl_mode |= AR5K_CTL_TURBO;
2190		break;
2191	case CHANNEL_TG:
2192		ctl_mode |= AR5K_CTL_TURBOG;
2193		break;
2194	case CHANNEL_XR:
2195		/* Fall through */
2196	default:
2197		return;
2198	}
2199
2200	for (i = 0; i < ee->ee_ctls; i++) {
2201		if (ctl_val[i] == ctl_mode) {
2202			ctl_idx = i;
2203			break;
2204		}
2205	}
2206
2207	/* If we have a CTL dataset available grab it and find the
2208	 * edge power for our frequency */
2209	if (ctl_idx == 0xFF)
2210		return;
2211
2212	/* Edge powers are sorted by frequency from lower
2213	 * to higher. Each CTL corresponds to 8 edge power
2214	 * measurements. */
2215	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2216
2217	/* Don't do boundaries check because we
2218	 * might have more that one bands defined
2219	 * for this mode */
2220
2221	/* Get the edge power that's closer to our
2222	 * frequency */
2223	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2224		rep_idx += i;
2225		if (target <= rep[rep_idx].freq)
2226			edge_pwr = (s16) rep[rep_idx].edge;
2227	}
2228
2229	if (edge_pwr)
2230		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2231}
2232
2233
2234/*
2235 * Power to PCDAC table functions
2236 */
2237
2238/*
2239 * Fill Power to PCDAC table on RF5111
2240 *
2241 * No further processing is needed for RF5111, the only thing we have to
2242 * do is fill the values below and above calibration range since eeprom data
2243 * may not cover the entire PCDAC table.
2244 */
2245static void
2246ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2247							s16 *table_max)
2248{
2249	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2250	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2251	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2252	s16	min_pwr, max_pwr;
2253
2254	/* Get table boundaries */
2255	min_pwr = table_min[0];
2256	pcdac_0 = pcdac_tmp[0];
2257
2258	max_pwr = table_max[0];
2259	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2260
2261	/* Extrapolate below minimum using pcdac_0 */
2262	pcdac_i = 0;
2263	for (i = 0; i < min_pwr; i++)
2264		pcdac_out[pcdac_i++] = pcdac_0;
2265
2266	/* Copy values from pcdac_tmp */
2267	pwr_idx = min_pwr;
2268	for (i = 0 ; pwr_idx <= max_pwr &&
2269	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2270		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2271		pwr_idx++;
2272	}
2273
2274	/* Extrapolate above maximum */
2275	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2276		pcdac_out[pcdac_i++] = pcdac_n;
2277
2278}
2279
2280/*
2281 * Combine available XPD Curves and fill Linear Power to PCDAC table
2282 * on RF5112
2283 *
2284 * RFX112 can have up to 2 curves (one for low txpower range and one for
2285 * higher txpower range). We need to put them both on pcdac_out and place
2286 * them in the correct location. In case we only have one curve available
2287 * just fit it on pcdac_out (it's supposed to cover the entire range of
2288 * available pwr levels since it's always the higher power curve). Extrapolate
2289 * below and above final table if needed.
2290 */
2291static void
2292ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2293						s16 *table_max, u8 pdcurves)
2294{
2295	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2296	u8	*pcdac_low_pwr;
2297	u8	*pcdac_high_pwr;
2298	u8	*pcdac_tmp;
2299	u8	pwr;
2300	s16	max_pwr_idx;
2301	s16	min_pwr_idx;
2302	s16	mid_pwr_idx = 0;
2303	/* Edge flag turs on the 7nth bit on the PCDAC
2304	 * to delcare the higher power curve (force values
2305	 * to be greater than 64). If we only have one curve
2306	 * we don't need to set this, if we have 2 curves and
2307	 * fill the table backwards this can also be used to
2308	 * switch from higher power curve to lower power curve */
2309	u8	edge_flag;
2310	int	i;
2311
2312	/* When we have only one curve available
2313	 * that's the higher power curve. If we have
2314	 * two curves the first is the high power curve
2315	 * and the next is the low power curve. */
2316	if (pdcurves > 1) {
2317		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2318		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2319		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2320		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2321
2322		/* If table size goes beyond 31.5dB, keep the
2323		 * upper 31.5dB range when setting tx power.
2324		 * Note: 126 = 31.5 dB in quarter dB steps */
2325		if (table_max[0] - table_min[1] > 126)
2326			min_pwr_idx = table_max[0] - 126;
2327		else
2328			min_pwr_idx = table_min[1];
2329
2330		/* Since we fill table backwards
2331		 * start from high power curve */
2332		pcdac_tmp = pcdac_high_pwr;
2333
2334		edge_flag = 0x40;
2335#if 0
2336		/* If both min and max power limits are in lower
2337		 * power curve's range, only use the low power curve.
2338		 * TODO: min/max levels are related to target
2339		 * power values requested from driver/user
2340		 * XXX: Is this really needed ? */
2341		if (min_pwr < table_max[1] &&
2342		max_pwr < table_max[1]) {
2343			edge_flag = 0;
2344			pcdac_tmp = pcdac_low_pwr;
2345			max_pwr_idx = (table_max[1] - table_min[1])/2;
2346		}
2347#endif
2348	} else {
2349		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2350		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2351		min_pwr_idx = table_min[0];
2352		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2353		pcdac_tmp = pcdac_high_pwr;
2354		edge_flag = 0;
2355	}
2356
2357	/* This is used when setting tx power*/
2358	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2359
2360	/* Fill Power to PCDAC table backwards */
2361	pwr = max_pwr_idx;
2362	for (i = 63; i >= 0; i--) {
2363		/* Entering lower power range, reset
2364		 * edge flag and set pcdac_tmp to lower
2365		 * power curve.*/
2366		if (edge_flag == 0x40 &&
2367		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2368			edge_flag = 0x00;
2369			pcdac_tmp = pcdac_low_pwr;
2370			pwr = mid_pwr_idx/2;
2371		}
2372
2373		/* Don't go below 1, extrapolate below if we have
2374		 * already swithced to the lower power curve -or
2375		 * we only have one curve and edge_flag is zero
2376		 * anyway */
2377		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2378			while (i >= 0) {
2379				pcdac_out[i] = pcdac_out[i + 1];
2380				i--;
2381			}
2382			break;
2383		}
2384
2385		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2386
2387		/* Extrapolate above if pcdac is greater than
2388		 * 126 -this can happen because we OR pcdac_out
2389		 * value with edge_flag on high power curve */
2390		if (pcdac_out[i] > 126)
2391			pcdac_out[i] = 126;
2392
2393		/* Decrease by a 0.5dB step */
2394		pwr--;
2395	}
2396}
2397
2398/* Write PCDAC values on hw */
2399static void
2400ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2401{
2402	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2403	int	i;
2404
2405	/*
2406	 * Write TX power values
2407	 */
2408	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2409		ath5k_hw_reg_write(ah,
2410			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2411			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2412			AR5K_PHY_PCDAC_TXPOWER(i));
2413	}
2414}
2415
2416
2417/*
2418 * Power to PDADC table functions
2419 */
2420
2421/*
2422 * Set the gain boundaries and create final Power to PDADC table
2423 *
2424 * We can have up to 4 pd curves, we need to do a simmilar process
2425 * as we do for RF5112. This time we don't have an edge_flag but we
2426 * set the gain boundaries on a separate register.
2427 */
2428static void
2429ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2430			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2431{
2432	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2433	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2434	u8 *pdadc_tmp;
2435	s16 pdadc_0;
2436	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2437	u8 pd_gain_overlap;
2438
2439	/* Note: Register value is initialized on initvals
2440	 * there is no feedback from hw.
2441	 * XXX: What about pd_gain_overlap from EEPROM ? */
2442	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2443		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2444
2445	/* Create final PDADC table */
2446	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2447		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2448
2449		if (pdg == pdcurves - 1)
2450			/* 2 dB boundary stretch for last
2451			 * (higher power) curve */
2452			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2453		else
2454			/* Set gain boundary in the middle
2455			 * between this curve and the next one */
2456			gain_boundaries[pdg] =
2457				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2458
2459		/* Sanity check in case our 2 db stretch got out of
2460		 * range. */
2461		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2462			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2463
2464		/* For the first curve (lower power)
2465		 * start from 0 dB */
2466		if (pdg == 0)
2467			pdadc_0 = 0;
2468		else
2469			/* For the other curves use the gain overlap */
2470			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2471							pd_gain_overlap;
2472
2473		/* Force each power step to be at least 0.5 dB */
2474		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2475			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2476		else
2477			pwr_step = 1;
2478
2479		/* If pdadc_0 is negative, we need to extrapolate
2480		 * below this pdgain by a number of pwr_steps */
2481		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2482			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2483			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2484			pdadc_0++;
2485		}
2486
2487		/* Set last pwr level, using gain boundaries */
2488		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2489		/* Limit it to be inside pwr range */
2490		table_size = pwr_max[pdg] - pwr_min[pdg];
2491		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2492
2493		/* Fill pdadc_out table */
2494		while (pdadc_0 < max_idx)
2495			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2496
2497		/* Need to extrapolate above this pdgain? */
2498		if (pdadc_n <= max_idx)
2499			continue;
2500
2501		/* Force each power step to be at least 0.5 dB */
2502		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2503			pwr_step = pdadc_tmp[table_size - 1] -
2504						pdadc_tmp[table_size - 2];
2505		else
2506			pwr_step = 1;
2507
2508		/* Extrapolate above */
2509		while ((pdadc_0 < (s16) pdadc_n) &&
2510		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2511			s16 tmp = pdadc_tmp[table_size - 1] +
2512					(pdadc_0 - max_idx) * pwr_step;
2513			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2514			pdadc_0++;
2515		}
2516	}
2517
2518	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2519		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2520		pdg++;
2521	}
2522
2523	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2524		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2525		pdadc_i++;
2526	}
2527
2528	/* Set gain boundaries */
2529	ath5k_hw_reg_write(ah,
2530		AR5K_REG_SM(pd_gain_overlap,
2531			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2532		AR5K_REG_SM(gain_boundaries[0],
2533			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2534		AR5K_REG_SM(gain_boundaries[1],
2535			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2536		AR5K_REG_SM(gain_boundaries[2],
2537			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2538		AR5K_REG_SM(gain_boundaries[3],
2539			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2540		AR5K_PHY_TPC_RG5);
2541
2542	/* Used for setting rate power table */
2543	ah->ah_txpower.txp_min_idx = pwr_min[0];
2544
2545}
2546
2547/* Write PDADC values on hw */
2548static void
2549ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2550			u8 pdcurves, u8 *pdg_to_idx)
2551{
2552	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2553	u32 reg;
2554	u8 i;
2555
2556	/* Select the right pdgain curves */
2557
2558	/* Clear current settings */
2559	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2560	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2561		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2562		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2563		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2564
2565	/*
2566	 * Use pd_gains curve from eeprom
2567	 *
2568	 * This overrides the default setting from initvals
2569	 * in case some vendors (e.g. Zcomax) don't use the default
2570	 * curves. If we don't honor their settings we 'll get a
2571	 * 5dB (1 * gain overlap ?) drop.
2572	 */
2573	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2574
2575	switch (pdcurves) {
2576	case 3:
2577		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2578		/* Fall through */
2579	case 2:
2580		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2581		/* Fall through */
2582	case 1:
2583		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2584		break;
2585	}
2586	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2587
2588	/*
2589	 * Write TX power values
2590	 */
2591	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2592		ath5k_hw_reg_write(ah,
2593			((pdadc_out[4*i + 0] & 0xff) << 0) |
2594			((pdadc_out[4*i + 1] & 0xff) << 8) |
2595			((pdadc_out[4*i + 2] & 0xff) << 16) |
2596			((pdadc_out[4*i + 3] & 0xff) << 24),
2597			AR5K_PHY_PDADC_TXPOWER(i));
2598	}
2599}
2600
2601
2602/*
2603 * Common code for PCDAC/PDADC tables
2604 */
2605
2606/*
2607 * This is the main function that uses all of the above
2608 * to set PCDAC/PDADC table on hw for the current channel.
2609 * This table is used for tx power calibration on the basband,
2610 * without it we get weird tx power levels and in some cases
2611 * distorted spectral mask
2612 */
2613static int
2614ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2615			struct ieee80211_channel *channel,
2616			u8 ee_mode, u8 type)
2617{
2618	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2619	struct ath5k_chan_pcal_info *pcinfo_L;
2620	struct ath5k_chan_pcal_info *pcinfo_R;
2621	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2622	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2623	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2624	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2625	u8 *tmpL;
2626	u8 *tmpR;
2627	u32 target = channel->center_freq;
2628	int pdg, i;
2629
2630	/* Get surounding freq piers for this channel */
2631	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2632						&pcinfo_L,
2633						&pcinfo_R);
2634
2635	/* Loop over pd gain curves on
2636	 * surounding freq piers by index */
2637	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2638
2639		/* Fill curves in reverse order
2640		 * from lower power (max gain)
2641		 * to higher power. Use curve -> idx
2642		 * backmaping we did on eeprom init */
2643		u8 idx = pdg_curve_to_idx[pdg];
2644
2645		/* Grab the needed curves by index */
2646		pdg_L = &pcinfo_L->pd_curves[idx];
2647		pdg_R = &pcinfo_R->pd_curves[idx];
2648
2649		/* Initialize the temp tables */
2650		tmpL = ah->ah_txpower.tmpL[pdg];
2651		tmpR = ah->ah_txpower.tmpR[pdg];
2652
2653		/* Set curve's x boundaries and create
2654		 * curves so that they cover the same
2655		 * range (if we don't do that one table
2656		 * will have values on some range and the
2657		 * other one won't have any so interpolation
2658		 * will fail) */
2659		table_min[pdg] = min(pdg_L->pd_pwr[0],
2660					pdg_R->pd_pwr[0]) / 2;
2661
2662		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2663				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2664
2665		/* Now create the curves on surrounding channels
2666		 * and interpolate if needed to get the final
2667		 * curve for this gain on this channel */
2668		switch (type) {
2669		case AR5K_PWRTABLE_LINEAR_PCDAC:
2670			/* Override min/max so that we don't loose
2671			 * accuracy (don't divide by 2) */
2672			table_min[pdg] = min(pdg_L->pd_pwr[0],
2673						pdg_R->pd_pwr[0]);
2674
2675			table_max[pdg] =
2676				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2677					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2678
2679			/* Override minimum so that we don't get
2680			 * out of bounds while extrapolating
2681			 * below. Don't do this when we have 2
2682			 * curves and we are on the high power curve
2683			 * because table_min is ok in this case */
2684			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2685
2686				table_min[pdg] =
2687					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2688								pdg_R->pd_step,
2689								pdg_L->pd_pwr,
2690								pdg_R->pd_pwr);
2691
2692				/* Don't go too low because we will
2693				 * miss the upper part of the curve.
2694				 * Note: 126 = 31.5dB (max power supported)
2695				 * in 0.25dB units */
2696				if (table_max[pdg] - table_min[pdg] > 126)
2697					table_min[pdg] = table_max[pdg] - 126;
2698			}
2699
2700			/* Fall through */
2701		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2702		case AR5K_PWRTABLE_PWR_TO_PDADC:
2703
2704			ath5k_create_power_curve(table_min[pdg],
2705						table_max[pdg],
2706						pdg_L->pd_pwr,
2707						pdg_L->pd_step,
2708						pdg_L->pd_points, tmpL, type);
2709
2710			/* We are in a calibration
2711			 * pier, no need to interpolate
2712			 * between freq piers */
2713			if (pcinfo_L == pcinfo_R)
2714				continue;
2715
2716			ath5k_create_power_curve(table_min[pdg],
2717						table_max[pdg],
2718						pdg_R->pd_pwr,
2719						pdg_R->pd_step,
2720						pdg_R->pd_points, tmpR, type);
2721			break;
2722		default:
2723			return -EINVAL;
2724		}
2725
2726		/* Interpolate between curves
2727		 * of surounding freq piers to
2728		 * get the final curve for this
2729		 * pd gain. Re-use tmpL for interpolation
2730		 * output */
2731		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2732		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2733			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2734							(s16) pcinfo_L->freq,
2735							(s16) pcinfo_R->freq,
2736							(s16) tmpL[i],
2737							(s16) tmpR[i]);
2738		}
2739	}
2740
2741	/* Now we have a set of curves for this
2742	 * channel on tmpL (x range is table_max - table_min
2743	 * and y values are tmpL[pdg][]) sorted in the same
2744	 * order as EEPROM (because we've used the backmaping).
2745	 * So for RF5112 it's from higher power to lower power
2746	 * and for RF2413 it's from lower power to higher power.
2747	 * For RF5111 we only have one curve. */
2748
2749	/* Fill min and max power levels for this
2750	 * channel by interpolating the values on
2751	 * surounding channels to complete the dataset */
2752	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2753					(s16) pcinfo_L->freq,
2754					(s16) pcinfo_R->freq,
2755					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2756
2757	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2758					(s16) pcinfo_L->freq,
2759					(s16) pcinfo_R->freq,
2760					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2761
2762	/* We are ready to go, fill PCDAC/PDADC
2763	 * table and write settings on hardware */
2764	switch (type) {
2765	case AR5K_PWRTABLE_LINEAR_PCDAC:
2766		/* For RF5112 we can have one or two curves
2767		 * and each curve covers a certain power lvl
2768		 * range so we need to do some more processing */
2769		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2770						ee->ee_pd_gains[ee_mode]);
2771
2772		/* Set txp.offset so that we can
2773		 * match max power value with max
2774		 * table index */
2775		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2776
2777		/* Write settings on hw */
2778		ath5k_setup_pcdac_table(ah);
2779		break;
2780	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2781		/* We are done for RF5111 since it has only
2782		 * one curve, just fit the curve on the table */
2783		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2784
2785		/* No rate powertable adjustment for RF5111 */
2786		ah->ah_txpower.txp_min_idx = 0;
2787		ah->ah_txpower.txp_offset = 0;
2788
2789		/* Write settings on hw */
2790		ath5k_setup_pcdac_table(ah);
2791		break;
2792	case AR5K_PWRTABLE_PWR_TO_PDADC:
2793		/* Set PDADC boundaries and fill
2794		 * final PDADC table */
2795		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2796						ee->ee_pd_gains[ee_mode]);
2797
2798		/* Write settings on hw */
2799		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2800
2801		/* Set txp.offset, note that table_min
2802		 * can be negative */
2803		ah->ah_txpower.txp_offset = table_min[0];
2804		break;
2805	default:
2806		return -EINVAL;
2807	}
2808
2809	return 0;
2810}
2811
2812
2813/*
2814 * Per-rate tx power setting
2815 *
2816 * This is the code that sets the desired tx power (below
2817 * maximum) on hw for each rate (we also have TPC that sets
2818 * power per packet). We do that by providing an index on the
2819 * PCDAC/PDADC table we set up.
2820 */
2821
2822/*
2823 * Set rate power table
2824 *
2825 * For now we only limit txpower based on maximum tx power
2826 * supported by hw (what's inside rate_info). We need to limit
2827 * this even more, based on regulatory domain etc.
2828 *
2829 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2830 * and is indexed as follows:
2831 * rates[0] - rates[7] -> OFDM rates
2832 * rates[8] - rates[14] -> CCK rates
2833 * rates[15] -> XR rates (they all have the same power)
2834 */
2835static void
2836ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2837			struct ath5k_rate_pcal_info *rate_info,
2838			u8 ee_mode)
2839{
2840	unsigned int i;
2841	u16 *rates;
2842
2843	/* max_pwr is power level we got from driver/user in 0.5dB
2844	 * units, switch to 0.25dB units so we can compare */
2845	max_pwr *= 2;
2846	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2847
2848	/* apply rate limits */
2849	rates = ah->ah_txpower.txp_rates_power_table;
2850
2851	/* OFDM rates 6 to 24Mb/s */
2852	for (i = 0; i < 5; i++)
2853		rates[i] = min(max_pwr, rate_info->target_power_6to24);
2854
2855	/* Rest OFDM rates */
2856	rates[5] = min(rates[0], rate_info->target_power_36);
2857	rates[6] = min(rates[0], rate_info->target_power_48);
2858	rates[7] = min(rates[0], rate_info->target_power_54);
2859
2860	/* CCK rates */
2861	/* 1L */
2862	rates[8] = min(rates[0], rate_info->target_power_6to24);
2863	/* 2L */
2864	rates[9] = min(rates[0], rate_info->target_power_36);
2865	/* 2S */
2866	rates[10] = min(rates[0], rate_info->target_power_36);
2867	/* 5L */
2868	rates[11] = min(rates[0], rate_info->target_power_48);
2869	/* 5S */
2870	rates[12] = min(rates[0], rate_info->target_power_48);
2871	/* 11L */
2872	rates[13] = min(rates[0], rate_info->target_power_54);
2873	/* 11S */
2874	rates[14] = min(rates[0], rate_info->target_power_54);
2875
2876	/* XR rates */
2877	rates[15] = min(rates[0], rate_info->target_power_6to24);
2878
2879	/* CCK rates have different peak to average ratio
2880	 * so we have to tweak their power so that gainf
2881	 * correction works ok. For this we use OFDM to
2882	 * CCK delta from eeprom */
2883	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2884	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2885		for (i = 8; i <= 15; i++)
2886			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2887
2888	/* Now that we have all rates setup use table offset to
2889	 * match the power range set by user with the power indices
2890	 * on PCDAC/PDADC table */
2891	for (i = 0; i < 16; i++) {
2892		rates[i] += ah->ah_txpower.txp_offset;
2893		/* Don't get out of bounds */
2894		if (rates[i] > 63)
2895			rates[i] = 63;
2896	}
2897
2898	/* Min/max in 0.25dB units */
2899	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2900	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2901	ah->ah_txpower.txp_ofdm = rates[7];
2902}
2903
2904
2905/*
2906 * Set transmition power
2907 */
2908int
2909ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2910		u8 ee_mode, u8 txpower)
2911{
2912	struct ath5k_rate_pcal_info rate_info;
2913	u8 type;
2914	int ret;
2915
2916	ATH5K_TRACE(ah->ah_sc);
2917	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2918		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2919		return -EINVAL;
2920	}
2921	if (txpower == 0)
2922		txpower = AR5K_TUNE_DEFAULT_TXPOWER;
2923
2924	/* Reset TX power values */
2925	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2926	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2927	ah->ah_txpower.txp_min_pwr = 0;
2928	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2929
2930	/* Initialize TX power table */
2931	switch (ah->ah_radio) {
2932	case AR5K_RF5111:
2933		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
2934		break;
2935	case AR5K_RF5112:
2936		type = AR5K_PWRTABLE_LINEAR_PCDAC;
2937		break;
2938	case AR5K_RF2413:
2939	case AR5K_RF5413:
2940	case AR5K_RF2316:
2941	case AR5K_RF2317:
2942	case AR5K_RF2425:
2943		type = AR5K_PWRTABLE_PWR_TO_PDADC;
2944		break;
2945	default:
2946		return -EINVAL;
2947	}
2948
2949	/* FIXME: Only on channel/mode change */
2950	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
2951	if (ret)
2952		return ret;
2953
2954	/* Limit max power if we have a CTL available */
2955	ath5k_get_max_ctl_power(ah, channel);
2956
2957	/* FIXME: Tx power limit for this regdomain
2958	 * XXX: Mac80211/CRDA will do that anyway ? */
2959
2960	/* FIXME: Antenna reduction stuff */
2961
2962	/* FIXME: Limit power on turbo modes */
2963
2964	/* FIXME: TPC scale reduction */
2965
2966	/* Get surounding channels for per-rate power table
2967	 * calibration */
2968	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
2969
2970	/* Setup rate power table */
2971	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
2972
2973	/* Write rate power table on hw */
2974	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
2975		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
2976		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
2977
2978	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
2979		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
2980		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
2981
2982	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
2983		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
2984		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
2985
2986	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
2987		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
2988		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
2989
2990	/* FIXME: TPC support */
2991	if (ah->ah_txpower.txp_tpc) {
2992		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
2993			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
2994
2995		ath5k_hw_reg_write(ah,
2996			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
2997			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
2998			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
2999			AR5K_TPC);
3000	} else {
3001		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3002			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3003	}
3004
3005	return 0;
3006}
3007
3008int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3009{
3010	/*Just a try M.F.*/
3011	struct ieee80211_channel *channel = &ah->ah_current_channel;
3012	u8 ee_mode;
3013
3014	ATH5K_TRACE(ah->ah_sc);
3015
3016	switch (channel->hw_value & CHANNEL_MODES) {
3017	case CHANNEL_A:
3018	case CHANNEL_T:
3019	case CHANNEL_XR:
3020		ee_mode = AR5K_EEPROM_MODE_11A;
3021		break;
3022	case CHANNEL_G:
3023	case CHANNEL_TG:
3024		ee_mode = AR5K_EEPROM_MODE_11G;
3025		break;
3026	case CHANNEL_B:
3027		ee_mode = AR5K_EEPROM_MODE_11B;
3028		break;
3029	default:
3030		ATH5K_ERR(ah->ah_sc,
3031			"invalid channel: %d\n", channel->center_freq);
3032		return -EINVAL;
3033	}
3034
3035	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3036		"changing txpower to %d\n", txpower);
3037
3038	return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3039}
3040
3041#undef _ATH5K_PHY
3042