[go: nahoru, domu]

phy.c revision 7919a57bc608140aa8614c19eac40c6916fb61d2
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
24#include <linux/slab.h>
25
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
29#include "rfbuffer.h"
30#include "rfgain.h"
31
32/*
33 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
34 */
35static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
36					const struct ath5k_rf_reg *rf_regs,
37					u32 val, u8 reg_id, bool set)
38{
39	const struct ath5k_rf_reg *rfreg = NULL;
40	u8 offset, bank, num_bits, col, position;
41	u16 entry;
42	u32 mask, data, last_bit, bits_shifted, first_bit;
43	u32 *rfb;
44	s32 bits_left;
45	int i;
46
47	data = 0;
48	rfb = ah->ah_rf_banks;
49
50	for (i = 0; i < ah->ah_rf_regs_count; i++) {
51		if (rf_regs[i].index == reg_id) {
52			rfreg = &rf_regs[i];
53			break;
54		}
55	}
56
57	if (rfb == NULL || rfreg == NULL) {
58		ATH5K_PRINTF("Rf register not found!\n");
59		/* should not happen */
60		return 0;
61	}
62
63	bank = rfreg->bank;
64	num_bits = rfreg->field.len;
65	first_bit = rfreg->field.pos;
66	col = rfreg->field.col;
67
68	/* first_bit is an offset from bank's
69	 * start. Since we have all banks on
70	 * the same array, we use this offset
71	 * to mark each bank's start */
72	offset = ah->ah_offset[bank];
73
74	/* Boundary check */
75	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
76		ATH5K_PRINTF("invalid values at offset %u\n", offset);
77		return 0;
78	}
79
80	entry = ((first_bit - 1) / 8) + offset;
81	position = (first_bit - 1) % 8;
82
83	if (set)
84		data = ath5k_hw_bitswap(val, num_bits);
85
86	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
87	position = 0, entry++) {
88
89		last_bit = (position + bits_left > 8) ? 8 :
90					position + bits_left;
91
92		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
93								(col * 8);
94
95		if (set) {
96			rfb[entry] &= ~mask;
97			rfb[entry] |= ((data << position) << (col * 8)) & mask;
98			data >>= (8 - position);
99		} else {
100			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
101				<< bits_shifted;
102			bits_shifted += last_bit - position;
103		}
104
105		bits_left -= 8 - position;
106	}
107
108	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
109
110	return data;
111}
112
113/**********************\
114* RF Gain optimization *
115\**********************/
116
117/*
118 * This code is used to optimize RF gain on different environments
119 * (temperature mostly) based on feedback from a power detector.
120 *
121 * It's only used on RF5111 and RF5112, later RF chips seem to have
122 * auto adjustment on hw -notice they have a much smaller BANK 7 and
123 * no gain optimization ladder-.
124 *
125 * For more infos check out this patent doc
126 * http://www.freepatentsonline.com/7400691.html
127 *
128 * This paper describes power drops as seen on the receiver due to
129 * probe packets
130 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
131 * %20of%20Power%20Control.pdf
132 *
133 * And this is the MadWiFi bug entry related to the above
134 * http://madwifi-project.org/ticket/1659
135 * with various measurements and diagrams
136 *
137 * TODO: Deal with power drops due to probes by setting an apropriate
138 * tx power on the probe packets ! Make this part of the calibration process.
139 */
140
141/* Initialize ah_gain durring attach */
142int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
143{
144	/* Initialize the gain optimization values */
145	switch (ah->ah_radio) {
146	case AR5K_RF5111:
147		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
148		ah->ah_gain.g_low = 20;
149		ah->ah_gain.g_high = 35;
150		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
151		break;
152	case AR5K_RF5112:
153		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
154		ah->ah_gain.g_low = 20;
155		ah->ah_gain.g_high = 85;
156		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
157		break;
158	default:
159		return -EINVAL;
160	}
161
162	return 0;
163}
164
165/* Schedule a gain probe check on the next transmited packet.
166 * That means our next packet is going to be sent with lower
167 * tx power and a Peak to Average Power Detector (PAPD) will try
168 * to measure the gain.
169 *
170 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
171 * just after we enable the probe so that we don't mess with
172 * standard traffic ? Maybe it's time to use sw interrupts and
173 * a probe tasklet !!!
174 */
175static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
176{
177
178	/* Skip if gain calibration is inactive or
179	 * we already handle a probe request */
180	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
181		return;
182
183	/* Send the packet with 2dB below max power as
184	 * patent doc suggest */
185	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
186			AR5K_PHY_PAPD_PROBE_TXPOWER) |
187			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
188
189	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
190
191}
192
193/* Calculate gain_F measurement correction
194 * based on the current step for RF5112 rev. 2 */
195static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
196{
197	u32 mix, step;
198	u32 *rf;
199	const struct ath5k_gain_opt *go;
200	const struct ath5k_gain_opt_step *g_step;
201	const struct ath5k_rf_reg *rf_regs;
202
203	/* Only RF5112 Rev. 2 supports it */
204	if ((ah->ah_radio != AR5K_RF5112) ||
205	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
206		return 0;
207
208	go = &rfgain_opt_5112;
209	rf_regs = rf_regs_5112a;
210	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
211
212	g_step = &go->go_step[ah->ah_gain.g_step_idx];
213
214	if (ah->ah_rf_banks == NULL)
215		return 0;
216
217	rf = ah->ah_rf_banks;
218	ah->ah_gain.g_f_corr = 0;
219
220	/* No VGA (Variable Gain Amplifier) override, skip */
221	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
222		return 0;
223
224	/* Mix gain stepping */
225	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
226
227	/* Mix gain override */
228	mix = g_step->gos_param[0];
229
230	switch (mix) {
231	case 3:
232		ah->ah_gain.g_f_corr = step * 2;
233		break;
234	case 2:
235		ah->ah_gain.g_f_corr = (step - 5) * 2;
236		break;
237	case 1:
238		ah->ah_gain.g_f_corr = step;
239		break;
240	default:
241		ah->ah_gain.g_f_corr = 0;
242		break;
243	}
244
245	return ah->ah_gain.g_f_corr;
246}
247
248/* Check if current gain_F measurement is in the range of our
249 * power detector windows. If we get a measurement outside range
250 * we know it's not accurate (detectors can't measure anything outside
251 * their detection window) so we must ignore it */
252static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
253{
254	const struct ath5k_rf_reg *rf_regs;
255	u32 step, mix_ovr, level[4];
256	u32 *rf;
257
258	if (ah->ah_rf_banks == NULL)
259		return false;
260
261	rf = ah->ah_rf_banks;
262
263	if (ah->ah_radio == AR5K_RF5111) {
264
265		rf_regs = rf_regs_5111;
266		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
267
268		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
269			false);
270
271		level[0] = 0;
272		level[1] = (step == 63) ? 50 : step + 4;
273		level[2] = (step != 63) ? 64 : level[0];
274		level[3] = level[2] + 50 ;
275
276		ah->ah_gain.g_high = level[3] -
277			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
278		ah->ah_gain.g_low = level[0] +
279			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
280	} else {
281
282		rf_regs = rf_regs_5112;
283		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
284
285		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
286			false);
287
288		level[0] = level[2] = 0;
289
290		if (mix_ovr == 1) {
291			level[1] = level[3] = 83;
292		} else {
293			level[1] = level[3] = 107;
294			ah->ah_gain.g_high = 55;
295		}
296	}
297
298	return (ah->ah_gain.g_current >= level[0] &&
299			ah->ah_gain.g_current <= level[1]) ||
300		(ah->ah_gain.g_current >= level[2] &&
301			ah->ah_gain.g_current <= level[3]);
302}
303
304/* Perform gain_F adjustment by choosing the right set
305 * of parameters from RF gain optimization ladder */
306static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
307{
308	const struct ath5k_gain_opt *go;
309	const struct ath5k_gain_opt_step *g_step;
310	int ret = 0;
311
312	switch (ah->ah_radio) {
313	case AR5K_RF5111:
314		go = &rfgain_opt_5111;
315		break;
316	case AR5K_RF5112:
317		go = &rfgain_opt_5112;
318		break;
319	default:
320		return 0;
321	}
322
323	g_step = &go->go_step[ah->ah_gain.g_step_idx];
324
325	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
326
327		/* Reached maximum */
328		if (ah->ah_gain.g_step_idx == 0)
329			return -1;
330
331		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
332				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
333				ah->ah_gain.g_step_idx > 0;
334				g_step = &go->go_step[ah->ah_gain.g_step_idx])
335			ah->ah_gain.g_target -= 2 *
336			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
337			    g_step->gos_gain);
338
339		ret = 1;
340		goto done;
341	}
342
343	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
344
345		/* Reached minimum */
346		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
347			return -2;
348
349		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
350				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
351				ah->ah_gain.g_step_idx < go->go_steps_count-1;
352				g_step = &go->go_step[ah->ah_gain.g_step_idx])
353			ah->ah_gain.g_target -= 2 *
354			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
355			    g_step->gos_gain);
356
357		ret = 2;
358		goto done;
359	}
360
361done:
362	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
363		"ret %d, gain step %u, current gain %u, target gain %u\n",
364		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
365		ah->ah_gain.g_target);
366
367	return ret;
368}
369
370/* Main callback for thermal RF gain calibration engine
371 * Check for a new gain reading and schedule an adjustment
372 * if needed.
373 *
374 * TODO: Use sw interrupt to schedule reset if gain_F needs
375 * adjustment */
376enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
377{
378	u32 data, type;
379	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
380
381	if (ah->ah_rf_banks == NULL ||
382	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
383		return AR5K_RFGAIN_INACTIVE;
384
385	/* No check requested, either engine is inactive
386	 * or an adjustment is already requested */
387	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
388		goto done;
389
390	/* Read the PAPD (Peak to Average Power Detector)
391	 * register */
392	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
393
394	/* No probe is scheduled, read gain_F measurement */
395	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
396		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
397		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
398
399		/* If tx packet is CCK correct the gain_F measurement
400		 * by cck ofdm gain delta */
401		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
402			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
403				ah->ah_gain.g_current +=
404					ee->ee_cck_ofdm_gain_delta;
405			else
406				ah->ah_gain.g_current +=
407					AR5K_GAIN_CCK_PROBE_CORR;
408		}
409
410		/* Further correct gain_F measurement for
411		 * RF5112A radios */
412		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
413			ath5k_hw_rf_gainf_corr(ah);
414			ah->ah_gain.g_current =
415				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
416				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
417				0;
418		}
419
420		/* Check if measurement is ok and if we need
421		 * to adjust gain, schedule a gain adjustment,
422		 * else switch back to the acive state */
423		if (ath5k_hw_rf_check_gainf_readback(ah) &&
424		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
425		ath5k_hw_rf_gainf_adjust(ah)) {
426			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
427		} else {
428			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
429		}
430	}
431
432done:
433	return ah->ah_gain.g_state;
434}
435
436/* Write initial RF gain table to set the RF sensitivity
437 * this one works on all RF chips and has nothing to do
438 * with gain_F calibration */
439int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
440{
441	const struct ath5k_ini_rfgain *ath5k_rfg;
442	unsigned int i, size;
443
444	switch (ah->ah_radio) {
445	case AR5K_RF5111:
446		ath5k_rfg = rfgain_5111;
447		size = ARRAY_SIZE(rfgain_5111);
448		break;
449	case AR5K_RF5112:
450		ath5k_rfg = rfgain_5112;
451		size = ARRAY_SIZE(rfgain_5112);
452		break;
453	case AR5K_RF2413:
454		ath5k_rfg = rfgain_2413;
455		size = ARRAY_SIZE(rfgain_2413);
456		break;
457	case AR5K_RF2316:
458		ath5k_rfg = rfgain_2316;
459		size = ARRAY_SIZE(rfgain_2316);
460		break;
461	case AR5K_RF5413:
462		ath5k_rfg = rfgain_5413;
463		size = ARRAY_SIZE(rfgain_5413);
464		break;
465	case AR5K_RF2317:
466	case AR5K_RF2425:
467		ath5k_rfg = rfgain_2425;
468		size = ARRAY_SIZE(rfgain_2425);
469		break;
470	default:
471		return -EINVAL;
472	}
473
474	switch (freq) {
475	case AR5K_INI_RFGAIN_2GHZ:
476	case AR5K_INI_RFGAIN_5GHZ:
477		break;
478	default:
479		return -EINVAL;
480	}
481
482	for (i = 0; i < size; i++) {
483		AR5K_REG_WAIT(i);
484		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
485			(u32)ath5k_rfg[i].rfg_register);
486	}
487
488	return 0;
489}
490
491
492
493/********************\
494* RF Registers setup *
495\********************/
496
497
498/*
499 * Setup RF registers by writing RF buffer on hw
500 */
501int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
502		unsigned int mode)
503{
504	const struct ath5k_rf_reg *rf_regs;
505	const struct ath5k_ini_rfbuffer *ini_rfb;
506	const struct ath5k_gain_opt *go = NULL;
507	const struct ath5k_gain_opt_step *g_step;
508	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
509	u8 ee_mode = 0;
510	u32 *rfb;
511	int i, obdb = -1, bank = -1;
512
513	switch (ah->ah_radio) {
514	case AR5K_RF5111:
515		rf_regs = rf_regs_5111;
516		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
517		ini_rfb = rfb_5111;
518		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
519		go = &rfgain_opt_5111;
520		break;
521	case AR5K_RF5112:
522		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
523			rf_regs = rf_regs_5112a;
524			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
525			ini_rfb = rfb_5112a;
526			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
527		} else {
528			rf_regs = rf_regs_5112;
529			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
530			ini_rfb = rfb_5112;
531			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
532		}
533		go = &rfgain_opt_5112;
534		break;
535	case AR5K_RF2413:
536		rf_regs = rf_regs_2413;
537		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
538		ini_rfb = rfb_2413;
539		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
540		break;
541	case AR5K_RF2316:
542		rf_regs = rf_regs_2316;
543		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
544		ini_rfb = rfb_2316;
545		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
546		break;
547	case AR5K_RF5413:
548		rf_regs = rf_regs_5413;
549		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
550		ini_rfb = rfb_5413;
551		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
552		break;
553	case AR5K_RF2317:
554		rf_regs = rf_regs_2425;
555		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
556		ini_rfb = rfb_2317;
557		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
558		break;
559	case AR5K_RF2425:
560		rf_regs = rf_regs_2425;
561		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
562		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
563			ini_rfb = rfb_2425;
564			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
565		} else {
566			ini_rfb = rfb_2417;
567			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
568		}
569		break;
570	default:
571		return -EINVAL;
572	}
573
574	/* If it's the first time we set RF buffer, allocate
575	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
576	 * we set above */
577	if (ah->ah_rf_banks == NULL) {
578		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
579								GFP_KERNEL);
580		if (ah->ah_rf_banks == NULL) {
581			ATH5K_ERR(ah->ah_sc, "out of memory\n");
582			return -ENOMEM;
583		}
584	}
585
586	/* Copy values to modify them */
587	rfb = ah->ah_rf_banks;
588
589	for (i = 0; i < ah->ah_rf_banks_size; i++) {
590		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
591			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
592			return -EINVAL;
593		}
594
595		/* Bank changed, write down the offset */
596		if (bank != ini_rfb[i].rfb_bank) {
597			bank = ini_rfb[i].rfb_bank;
598			ah->ah_offset[bank] = i;
599		}
600
601		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
602	}
603
604	/* Set Output and Driver bias current (OB/DB) */
605	if (channel->hw_value & CHANNEL_2GHZ) {
606
607		if (channel->hw_value & CHANNEL_CCK)
608			ee_mode = AR5K_EEPROM_MODE_11B;
609		else
610			ee_mode = AR5K_EEPROM_MODE_11G;
611
612		/* For RF511X/RF211X combination we
613		 * use b_OB and b_DB parameters stored
614		 * in eeprom on ee->ee_ob[ee_mode][0]
615		 *
616		 * For all other chips we use OB/DB for 2Ghz
617		 * stored in the b/g modal section just like
618		 * 802.11a on ee->ee_ob[ee_mode][1] */
619		if ((ah->ah_radio == AR5K_RF5111) ||
620		(ah->ah_radio == AR5K_RF5112))
621			obdb = 0;
622		else
623			obdb = 1;
624
625		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
626						AR5K_RF_OB_2GHZ, true);
627
628		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
629						AR5K_RF_DB_2GHZ, true);
630
631	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
632	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
633			(ah->ah_radio == AR5K_RF5111)) {
634
635		/* For 11a, Turbo and XR we need to choose
636		 * OB/DB based on frequency range */
637		ee_mode = AR5K_EEPROM_MODE_11A;
638		obdb =	 channel->center_freq >= 5725 ? 3 :
639			(channel->center_freq >= 5500 ? 2 :
640			(channel->center_freq >= 5260 ? 1 :
641			 (channel->center_freq > 4000 ? 0 : -1)));
642
643		if (obdb < 0)
644			return -EINVAL;
645
646		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
647						AR5K_RF_OB_5GHZ, true);
648
649		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
650						AR5K_RF_DB_5GHZ, true);
651	}
652
653	g_step = &go->go_step[ah->ah_gain.g_step_idx];
654
655	/* Bank Modifications (chip-specific) */
656	if (ah->ah_radio == AR5K_RF5111) {
657
658		/* Set gain_F settings according to current step */
659		if (channel->hw_value & CHANNEL_OFDM) {
660
661			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
662					AR5K_PHY_FRAME_CTL_TX_CLIP,
663					g_step->gos_param[0]);
664
665			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
666							AR5K_RF_PWD_90, true);
667
668			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
669							AR5K_RF_PWD_84, true);
670
671			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
672						AR5K_RF_RFGAIN_SEL, true);
673
674			/* We programmed gain_F parameters, switch back
675			 * to active state */
676			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
677
678		}
679
680		/* Bank 6/7 setup */
681
682		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
683						AR5K_RF_PWD_XPD, true);
684
685		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
686						AR5K_RF_XPD_GAIN, true);
687
688		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
689						AR5K_RF_GAIN_I, true);
690
691		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
692						AR5K_RF_PLO_SEL, true);
693
694		/* TODO: Half/quarter channel support */
695	}
696
697	if (ah->ah_radio == AR5K_RF5112) {
698
699		/* Set gain_F settings according to current step */
700		if (channel->hw_value & CHANNEL_OFDM) {
701
702			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
703						AR5K_RF_MIXGAIN_OVR, true);
704
705			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
706						AR5K_RF_PWD_138, true);
707
708			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
709						AR5K_RF_PWD_137, true);
710
711			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
712						AR5K_RF_PWD_136, true);
713
714			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
715						AR5K_RF_PWD_132, true);
716
717			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
718						AR5K_RF_PWD_131, true);
719
720			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
721						AR5K_RF_PWD_130, true);
722
723			/* We programmed gain_F parameters, switch back
724			 * to active state */
725			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
726		}
727
728		/* Bank 6/7 setup */
729
730		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
731						AR5K_RF_XPD_SEL, true);
732
733		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
734			/* Rev. 1 supports only one xpd */
735			ath5k_hw_rfb_op(ah, rf_regs,
736						ee->ee_x_gain[ee_mode],
737						AR5K_RF_XPD_GAIN, true);
738
739		} else {
740			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
741			if (ee->ee_pd_gains[ee_mode] > 1) {
742				ath5k_hw_rfb_op(ah, rf_regs,
743						pdg_curve_to_idx[0],
744						AR5K_RF_PD_GAIN_LO, true);
745				ath5k_hw_rfb_op(ah, rf_regs,
746						pdg_curve_to_idx[1],
747						AR5K_RF_PD_GAIN_HI, true);
748			} else {
749				ath5k_hw_rfb_op(ah, rf_regs,
750						pdg_curve_to_idx[0],
751						AR5K_RF_PD_GAIN_LO, true);
752				ath5k_hw_rfb_op(ah, rf_regs,
753						pdg_curve_to_idx[0],
754						AR5K_RF_PD_GAIN_HI, true);
755			}
756
757			/* Lower synth voltage on Rev 2 */
758			ath5k_hw_rfb_op(ah, rf_regs, 2,
759					AR5K_RF_HIGH_VC_CP, true);
760
761			ath5k_hw_rfb_op(ah, rf_regs, 2,
762					AR5K_RF_MID_VC_CP, true);
763
764			ath5k_hw_rfb_op(ah, rf_regs, 2,
765					AR5K_RF_LOW_VC_CP, true);
766
767			ath5k_hw_rfb_op(ah, rf_regs, 2,
768					AR5K_RF_PUSH_UP, true);
769
770			/* Decrease power consumption on 5213+ BaseBand */
771			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
772				ath5k_hw_rfb_op(ah, rf_regs, 1,
773						AR5K_RF_PAD2GND, true);
774
775				ath5k_hw_rfb_op(ah, rf_regs, 1,
776						AR5K_RF_XB2_LVL, true);
777
778				ath5k_hw_rfb_op(ah, rf_regs, 1,
779						AR5K_RF_XB5_LVL, true);
780
781				ath5k_hw_rfb_op(ah, rf_regs, 1,
782						AR5K_RF_PWD_167, true);
783
784				ath5k_hw_rfb_op(ah, rf_regs, 1,
785						AR5K_RF_PWD_166, true);
786			}
787		}
788
789		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
790						AR5K_RF_GAIN_I, true);
791
792		/* TODO: Half/quarter channel support */
793
794	}
795
796	if (ah->ah_radio == AR5K_RF5413 &&
797	channel->hw_value & CHANNEL_2GHZ) {
798
799		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
800									true);
801
802		/* Set optimum value for early revisions (on pci-e chips) */
803		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
804		ah->ah_mac_srev < AR5K_SREV_AR5413)
805			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
806						AR5K_RF_PWD_ICLOBUF_2G, true);
807
808	}
809
810	/* Write RF banks on hw */
811	for (i = 0; i < ah->ah_rf_banks_size; i++) {
812		AR5K_REG_WAIT(i);
813		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
814	}
815
816	return 0;
817}
818
819
820/**************************\
821  PHY/RF channel functions
822\**************************/
823
824/*
825 * Check if a channel is supported
826 */
827bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
828{
829	/* Check if the channel is in our supported range */
830	if (flags & CHANNEL_2GHZ) {
831		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
832		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
833			return true;
834	} else if (flags & CHANNEL_5GHZ)
835		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
836		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
837			return true;
838
839	return false;
840}
841
842/*
843 * Convertion needed for RF5110
844 */
845static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
846{
847	u32 athchan;
848
849	/*
850	 * Convert IEEE channel/MHz to an internal channel value used
851	 * by the AR5210 chipset. This has not been verified with
852	 * newer chipsets like the AR5212A who have a completely
853	 * different RF/PHY part.
854	 */
855	athchan = (ath5k_hw_bitswap(
856			(ieee80211_frequency_to_channel(
857				channel->center_freq) - 24) / 2, 5)
858				<< 1) | (1 << 6) | 0x1;
859	return athchan;
860}
861
862/*
863 * Set channel on RF5110
864 */
865static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
866		struct ieee80211_channel *channel)
867{
868	u32 data;
869
870	/*
871	 * Set the channel and wait
872	 */
873	data = ath5k_hw_rf5110_chan2athchan(channel);
874	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
875	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
876	mdelay(1);
877
878	return 0;
879}
880
881/*
882 * Convertion needed for 5111
883 */
884static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
885		struct ath5k_athchan_2ghz *athchan)
886{
887	int channel;
888
889	/* Cast this value to catch negative channel numbers (>= -19) */
890	channel = (int)ieee;
891
892	/*
893	 * Map 2GHz IEEE channel to 5GHz Atheros channel
894	 */
895	if (channel <= 13) {
896		athchan->a2_athchan = 115 + channel;
897		athchan->a2_flags = 0x46;
898	} else if (channel == 14) {
899		athchan->a2_athchan = 124;
900		athchan->a2_flags = 0x44;
901	} else if (channel >= 15 && channel <= 26) {
902		athchan->a2_athchan = ((channel - 14) * 4) + 132;
903		athchan->a2_flags = 0x46;
904	} else
905		return -EINVAL;
906
907	return 0;
908}
909
910/*
911 * Set channel on 5111
912 */
913static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
914		struct ieee80211_channel *channel)
915{
916	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
917	unsigned int ath5k_channel =
918		ieee80211_frequency_to_channel(channel->center_freq);
919	u32 data0, data1, clock;
920	int ret;
921
922	/*
923	 * Set the channel on the RF5111 radio
924	 */
925	data0 = data1 = 0;
926
927	if (channel->hw_value & CHANNEL_2GHZ) {
928		/* Map 2GHz channel to 5GHz Atheros channel ID */
929		ret = ath5k_hw_rf5111_chan2athchan(
930			ieee80211_frequency_to_channel(channel->center_freq),
931			&ath5k_channel_2ghz);
932		if (ret)
933			return ret;
934
935		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
936		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
937		    << 5) | (1 << 4);
938	}
939
940	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
941		clock = 1;
942		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
943			(clock << 1) | (1 << 10) | 1;
944	} else {
945		clock = 0;
946		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
947			<< 2) | (clock << 1) | (1 << 10) | 1;
948	}
949
950	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
951			AR5K_RF_BUFFER);
952	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
953			AR5K_RF_BUFFER_CONTROL_3);
954
955	return 0;
956}
957
958/*
959 * Set channel on 5112 and newer
960 */
961static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
962		struct ieee80211_channel *channel)
963{
964	u32 data, data0, data1, data2;
965	u16 c;
966
967	data = data0 = data1 = data2 = 0;
968	c = channel->center_freq;
969
970	if (c < 4800) {
971		if (!((c - 2224) % 5)) {
972			data0 = ((2 * (c - 704)) - 3040) / 10;
973			data1 = 1;
974		} else if (!((c - 2192) % 5)) {
975			data0 = ((2 * (c - 672)) - 3040) / 10;
976			data1 = 0;
977		} else
978			return -EINVAL;
979
980		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
981	} else if ((c % 5) != 2 || c > 5435) {
982		if (!(c % 20) && c >= 5120) {
983			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
984			data2 = ath5k_hw_bitswap(3, 2);
985		} else if (!(c % 10)) {
986			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
987			data2 = ath5k_hw_bitswap(2, 2);
988		} else if (!(c % 5)) {
989			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
990			data2 = ath5k_hw_bitswap(1, 2);
991		} else
992			return -EINVAL;
993	} else {
994		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
995		data2 = ath5k_hw_bitswap(0, 2);
996	}
997
998	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
999
1000	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1001	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1002
1003	return 0;
1004}
1005
1006/*
1007 * Set the channel on the RF2425
1008 */
1009static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1010		struct ieee80211_channel *channel)
1011{
1012	u32 data, data0, data2;
1013	u16 c;
1014
1015	data = data0 = data2 = 0;
1016	c = channel->center_freq;
1017
1018	if (c < 4800) {
1019		data0 = ath5k_hw_bitswap((c - 2272), 8);
1020		data2 = 0;
1021	/* ? 5GHz ? */
1022	} else if ((c % 5) != 2 || c > 5435) {
1023		if (!(c % 20) && c < 5120)
1024			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1025		else if (!(c % 10))
1026			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1027		else if (!(c % 5))
1028			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1029		else
1030			return -EINVAL;
1031		data2 = ath5k_hw_bitswap(1, 2);
1032	} else {
1033		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1034		data2 = ath5k_hw_bitswap(0, 2);
1035	}
1036
1037	data = (data0 << 4) | data2 << 2 | 0x1001;
1038
1039	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1040	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1041
1042	return 0;
1043}
1044
1045/*
1046 * Set a channel on the radio chip
1047 */
1048int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1049{
1050	int ret;
1051	/*
1052	 * Check bounds supported by the PHY (we don't care about regultory
1053	 * restrictions at this point). Note: hw_value already has the band
1054	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1055	 * of the band by that */
1056	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1057		ATH5K_ERR(ah->ah_sc,
1058			"channel frequency (%u MHz) out of supported "
1059			"band range\n",
1060			channel->center_freq);
1061			return -EINVAL;
1062	}
1063
1064	/*
1065	 * Set the channel and wait
1066	 */
1067	switch (ah->ah_radio) {
1068	case AR5K_RF5110:
1069		ret = ath5k_hw_rf5110_channel(ah, channel);
1070		break;
1071	case AR5K_RF5111:
1072		ret = ath5k_hw_rf5111_channel(ah, channel);
1073		break;
1074	case AR5K_RF2425:
1075		ret = ath5k_hw_rf2425_channel(ah, channel);
1076		break;
1077	default:
1078		ret = ath5k_hw_rf5112_channel(ah, channel);
1079		break;
1080	}
1081
1082	if (ret)
1083		return ret;
1084
1085	/* Set JAPAN setting for channel 14 */
1086	if (channel->center_freq == 2484) {
1087		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1088				AR5K_PHY_CCKTXCTL_JAPAN);
1089	} else {
1090		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1091				AR5K_PHY_CCKTXCTL_WORLD);
1092	}
1093
1094	ah->ah_current_channel = channel;
1095	ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1096	ath5k_hw_set_clockrate(ah);
1097
1098	return 0;
1099}
1100
1101/*****************\
1102  PHY calibration
1103\*****************/
1104
1105static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1106{
1107	s32 val;
1108
1109	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1110	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1111}
1112
1113void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1114{
1115	int i;
1116
1117	ah->ah_nfcal_hist.index = 0;
1118	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1119		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1120}
1121
1122static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1123{
1124	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1125	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1126	hist->nfval[hist->index] = noise_floor;
1127}
1128
1129static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1130{
1131	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1132	s16 tmp;
1133	int i, j;
1134
1135	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1136	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1137		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1138			if (sort[j] > sort[j-1]) {
1139				tmp = sort[j];
1140				sort[j] = sort[j-1];
1141				sort[j-1] = tmp;
1142			}
1143		}
1144	}
1145	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1146		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1147			"cal %d:%d\n", i, sort[i]);
1148	}
1149	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1150}
1151
1152/*
1153 * When we tell the hardware to perform a noise floor calibration
1154 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1155 * sample-and-hold the minimum noise level seen at the antennas.
1156 * This value is then stored in a ring buffer of recently measured
1157 * noise floor values so we have a moving window of the last few
1158 * samples.
1159 *
1160 * The median of the values in the history is then loaded into the
1161 * hardware for its own use for RSSI and CCA measurements.
1162 */
1163void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1164{
1165	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1166	u32 val;
1167	s16 nf, threshold;
1168	u8 ee_mode;
1169
1170	/* keep last value if calibration hasn't completed */
1171	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1172		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1173			"NF did not complete in calibration window\n");
1174
1175		return;
1176	}
1177
1178	switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1179	case CHANNEL_A:
1180	case CHANNEL_T:
1181	case CHANNEL_XR:
1182		ee_mode = AR5K_EEPROM_MODE_11A;
1183		break;
1184	case CHANNEL_G:
1185	case CHANNEL_TG:
1186		ee_mode = AR5K_EEPROM_MODE_11G;
1187		break;
1188	default:
1189	case CHANNEL_B:
1190		ee_mode = AR5K_EEPROM_MODE_11B;
1191		break;
1192	}
1193
1194
1195	/* completed NF calibration, test threshold */
1196	nf = ath5k_hw_read_measured_noise_floor(ah);
1197	threshold = ee->ee_noise_floor_thr[ee_mode];
1198
1199	if (nf > threshold) {
1200		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1201			"noise floor failure detected; "
1202			"read %d, threshold %d\n",
1203			nf, threshold);
1204
1205		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1206	}
1207
1208	ath5k_hw_update_nfcal_hist(ah, nf);
1209	nf = ath5k_hw_get_median_noise_floor(ah);
1210
1211	/* load noise floor (in .5 dBm) so the hardware will use it */
1212	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1213	val |= (nf * 2) & AR5K_PHY_NF_M;
1214	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1215
1216	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1217		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1218
1219	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1220		0, false);
1221
1222	/*
1223	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1224	 * so that we're not capped by the median we just loaded.
1225	 * This will be used as the initial value for the next noise
1226	 * floor calibration.
1227	 */
1228	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1229	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1230	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1231		AR5K_PHY_AGCCTL_NF_EN |
1232		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1233		AR5K_PHY_AGCCTL_NF);
1234
1235	ah->ah_noise_floor = nf;
1236
1237	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1238		"noise floor calibrated: %d\n", nf);
1239}
1240
1241/*
1242 * Perform a PHY calibration on RF5110
1243 * -Fix BPSK/QAM Constellation (I/Q correction)
1244 */
1245static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1246		struct ieee80211_channel *channel)
1247{
1248	u32 phy_sig, phy_agc, phy_sat, beacon;
1249	int ret;
1250
1251	/*
1252	 * Disable beacons and RX/TX queues, wait
1253	 */
1254	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1255		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1256	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1257	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1258
1259	mdelay(2);
1260
1261	/*
1262	 * Set the channel (with AGC turned off)
1263	 */
1264	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1265	udelay(10);
1266	ret = ath5k_hw_channel(ah, channel);
1267
1268	/*
1269	 * Activate PHY and wait
1270	 */
1271	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1272	mdelay(1);
1273
1274	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1275
1276	if (ret)
1277		return ret;
1278
1279	/*
1280	 * Calibrate the radio chip
1281	 */
1282
1283	/* Remember normal state */
1284	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1285	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1286	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1287
1288	/* Update radio registers */
1289	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1290		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1291
1292	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1293			AR5K_PHY_AGCCOARSE_LO)) |
1294		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1295		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1296
1297	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1298			AR5K_PHY_ADCSAT_THR)) |
1299		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1300		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1301
1302	udelay(20);
1303
1304	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1305	udelay(10);
1306	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1307	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1308
1309	mdelay(1);
1310
1311	/*
1312	 * Enable calibration and wait until completion
1313	 */
1314	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1315
1316	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1317			AR5K_PHY_AGCCTL_CAL, 0, false);
1318
1319	/* Reset to normal state */
1320	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1321	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1322	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1323
1324	if (ret) {
1325		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1326				channel->center_freq);
1327		return ret;
1328	}
1329
1330	/*
1331	 * Re-enable RX/TX and beacons
1332	 */
1333	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1334		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1335	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1336
1337	return 0;
1338}
1339
1340/*
1341 * Perform I/Q calibration on RF5111/5112 and newer chips
1342 */
1343static int
1344ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1345{
1346	u32 i_pwr, q_pwr;
1347	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1348	int i;
1349
1350	if (!ah->ah_calibration ||
1351		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1352		return 0;
1353
1354	/* Calibration has finished, get the results and re-run */
1355	/* work around empty results which can apparently happen on 5212 */
1356	for (i = 0; i <= 10; i++) {
1357		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1358		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1359		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1360		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1361			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1362		if (i_pwr && q_pwr)
1363			break;
1364	}
1365
1366	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1367
1368	if (ah->ah_version == AR5K_AR5211)
1369		q_coffd = q_pwr >> 6;
1370	else
1371		q_coffd = q_pwr >> 7;
1372
1373	/* protect against divide by 0 and loss of sign bits */
1374	if (i_coffd == 0 || q_coffd < 2)
1375		return 0;
1376
1377	i_coff = (-iq_corr) / i_coffd;
1378	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1379
1380	if (ah->ah_version == AR5K_AR5211)
1381		q_coff = (i_pwr / q_coffd) - 64;
1382	else
1383		q_coff = (i_pwr / q_coffd) - 128;
1384	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1385
1386	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1387			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1388			i_coff, q_coff, i_coffd, q_coffd);
1389
1390	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1391	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1392	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1393	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1394
1395	/* Re-enable calibration -if we don't we'll commit
1396	 * the same values again and again */
1397	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1398			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1399	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1400
1401	return 0;
1402}
1403
1404/*
1405 * Perform a PHY calibration
1406 */
1407int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1408		struct ieee80211_channel *channel)
1409{
1410	int ret;
1411
1412	if (ah->ah_radio == AR5K_RF5110)
1413		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1414	else {
1415		ret = ath5k_hw_rf511x_iq_calibrate(ah);
1416		ath5k_hw_request_rfgain_probe(ah);
1417	}
1418
1419	return ret;
1420}
1421
1422/***************************\
1423* Spur mitigation functions *
1424\***************************/
1425
1426bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1427				struct ieee80211_channel *channel)
1428{
1429	u8 refclk_freq;
1430
1431	if ((ah->ah_radio == AR5K_RF5112) ||
1432	(ah->ah_radio == AR5K_RF5413) ||
1433	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1434		refclk_freq = 40;
1435	else
1436		refclk_freq = 32;
1437
1438	if ((channel->center_freq % refclk_freq != 0) &&
1439	((channel->center_freq % refclk_freq < 10) ||
1440	(channel->center_freq % refclk_freq > 22)))
1441		return true;
1442	else
1443		return false;
1444}
1445
1446void
1447ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1448				struct ieee80211_channel *channel)
1449{
1450	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1451	u32 mag_mask[4] = {0, 0, 0, 0};
1452	u32 pilot_mask[2] = {0, 0};
1453	/* Note: fbin values are scaled up by 2 */
1454	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1455	s32 spur_delta_phase, spur_freq_sigma_delta;
1456	s32 spur_offset, num_symbols_x16;
1457	u8 num_symbol_offsets, i, freq_band;
1458
1459	/* Convert current frequency to fbin value (the same way channels
1460	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1461	 * up by 2 so we can compare it later */
1462	if (channel->hw_value & CHANNEL_2GHZ) {
1463		chan_fbin = (channel->center_freq - 2300) * 10;
1464		freq_band = AR5K_EEPROM_BAND_2GHZ;
1465	} else {
1466		chan_fbin = (channel->center_freq - 4900) * 10;
1467		freq_band = AR5K_EEPROM_BAND_5GHZ;
1468	}
1469
1470	/* Check if any spur_chan_fbin from EEPROM is
1471	 * within our current channel's spur detection range */
1472	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1473	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1474	/* XXX: Half/Quarter channels ?*/
1475	if (channel->hw_value & CHANNEL_TURBO)
1476		spur_detection_window *= 2;
1477
1478	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1479		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1480
1481		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1482		 * so it's zero if we got nothing from EEPROM */
1483		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1484			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1485			break;
1486		}
1487
1488		if ((chan_fbin - spur_detection_window <=
1489		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1490		(chan_fbin + spur_detection_window >=
1491		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1492			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1493			break;
1494		}
1495	}
1496
1497	/* We need to enable spur filter for this channel */
1498	if (spur_chan_fbin) {
1499		spur_offset = spur_chan_fbin - chan_fbin;
1500		/*
1501		 * Calculate deltas:
1502		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1503		 * spur_delta_phase -> spur_offset / chip_freq << 11
1504		 * Note: Both values have 100KHz resolution
1505		 */
1506		/* XXX: Half/Quarter rate channels ? */
1507		switch (channel->hw_value) {
1508		case CHANNEL_A:
1509			/* Both sample_freq and chip_freq are 40MHz */
1510			spur_delta_phase = (spur_offset << 17) / 25;
1511			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1512			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1513			break;
1514		case CHANNEL_G:
1515			/* sample_freq -> 40MHz chip_freq -> 44MHz
1516			 * (for b compatibility) */
1517			spur_freq_sigma_delta = (spur_offset << 8) / 55;
1518			spur_delta_phase = (spur_offset << 17) / 25;
1519			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1520			break;
1521		case CHANNEL_T:
1522		case CHANNEL_TG:
1523			/* Both sample_freq and chip_freq are 80MHz */
1524			spur_delta_phase = (spur_offset << 16) / 25;
1525			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1526			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1527			break;
1528		default:
1529			return;
1530		}
1531
1532		/* Calculate pilot and magnitude masks */
1533
1534		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1535		 * and divide by symbol_width to find how many symbols we have
1536		 * Note: number of symbols is scaled up by 16 */
1537		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1538
1539		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1540		if (!(num_symbols_x16 & 0xF))
1541			/* _X_ */
1542			num_symbol_offsets = 3;
1543		else
1544			/* _xx_ */
1545			num_symbol_offsets = 4;
1546
1547		for (i = 0; i < num_symbol_offsets; i++) {
1548
1549			/* Calculate pilot mask */
1550			s32 curr_sym_off =
1551				(num_symbols_x16 / 16) + i + 25;
1552
1553			/* Pilot magnitude mask seems to be a way to
1554			 * declare the boundaries for our detection
1555			 * window or something, it's 2 for the middle
1556			 * value(s) where the symbol is expected to be
1557			 * and 1 on the boundary values */
1558			u8 plt_mag_map =
1559				(i == 0 || i == (num_symbol_offsets - 1))
1560								? 1 : 2;
1561
1562			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1563				if (curr_sym_off <= 25)
1564					pilot_mask[0] |= 1 << curr_sym_off;
1565				else if (curr_sym_off >= 27)
1566					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1567			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1568				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1569
1570			/* Calculate magnitude mask (for viterbi decoder) */
1571			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1572				mag_mask[0] |=
1573					plt_mag_map << (curr_sym_off + 1) * 2;
1574			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1575				mag_mask[1] |=
1576					plt_mag_map << (curr_sym_off - 15) * 2;
1577			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1578				mag_mask[2] |=
1579					plt_mag_map << (curr_sym_off - 31) * 2;
1580			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1581				mag_mask[3] |=
1582					plt_mag_map << (curr_sym_off - 47) * 2;
1583
1584		}
1585
1586		/* Write settings on hw to enable spur filter */
1587		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1588					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1589		/* XXX: Self correlator also ? */
1590		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1591					AR5K_PHY_IQ_PILOT_MASK_EN |
1592					AR5K_PHY_IQ_CHAN_MASK_EN |
1593					AR5K_PHY_IQ_SPUR_FILT_EN);
1594
1595		/* Set delta phase and freq sigma delta */
1596		ath5k_hw_reg_write(ah,
1597				AR5K_REG_SM(spur_delta_phase,
1598					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1599				AR5K_REG_SM(spur_freq_sigma_delta,
1600				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1601				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1602				AR5K_PHY_TIMING_11);
1603
1604		/* Write pilot masks */
1605		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1606		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1607					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1608					pilot_mask[1]);
1609
1610		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1611		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1612					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1613					pilot_mask[1]);
1614
1615		/* Write magnitude masks */
1616		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1617		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1618		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1619		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1620					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1621					mag_mask[3]);
1622
1623		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1624		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1625		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1626		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1627					AR5K_PHY_BIN_MASK2_4_MASK_4,
1628					mag_mask[3]);
1629
1630	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1631	AR5K_PHY_IQ_SPUR_FILT_EN) {
1632		/* Clean up spur mitigation settings and disable fliter */
1633		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1634					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1635		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1636					AR5K_PHY_IQ_PILOT_MASK_EN |
1637					AR5K_PHY_IQ_CHAN_MASK_EN |
1638					AR5K_PHY_IQ_SPUR_FILT_EN);
1639		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1640
1641		/* Clear pilot masks */
1642		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1643		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1644					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1645					0);
1646
1647		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1648		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1649					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1650					0);
1651
1652		/* Clear magnitude masks */
1653		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1654		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1655		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1656		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1657					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1658					0);
1659
1660		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1661		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1662		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1663		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1664					AR5K_PHY_BIN_MASK2_4_MASK_4,
1665					0);
1666	}
1667}
1668
1669/********************\
1670  Misc PHY functions
1671\********************/
1672
1673int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1674{
1675	/*Just a try M.F.*/
1676	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1677
1678	return 0;
1679}
1680
1681/*
1682 * Get the PHY Chip revision
1683 */
1684u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1685{
1686	unsigned int i;
1687	u32 srev;
1688	u16 ret;
1689
1690	/*
1691	 * Set the radio chip access register
1692	 */
1693	switch (chan) {
1694	case CHANNEL_2GHZ:
1695		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1696		break;
1697	case CHANNEL_5GHZ:
1698		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1699		break;
1700	default:
1701		return 0;
1702	}
1703
1704	mdelay(2);
1705
1706	/* ...wait until PHY is ready and read the selected radio revision */
1707	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1708
1709	for (i = 0; i < 8; i++)
1710		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1711
1712	if (ah->ah_version == AR5K_AR5210) {
1713		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1714		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1715	} else {
1716		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1717		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1718				((srev & 0x0f) << 4), 8);
1719	}
1720
1721	/* Reset to the 5GHz mode */
1722	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1723
1724	return ret;
1725}
1726
1727/*****************\
1728* Antenna control *
1729\*****************/
1730
1731static void /*TODO:Boundary check*/
1732ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1733{
1734	if (ah->ah_version != AR5K_AR5210)
1735		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1736}
1737
1738/*
1739 * Enable/disable fast rx antenna diversity
1740 */
1741static void
1742ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1743{
1744	switch (ee_mode) {
1745	case AR5K_EEPROM_MODE_11G:
1746		/* XXX: This is set to
1747		 * disabled on initvals !!! */
1748	case AR5K_EEPROM_MODE_11A:
1749		if (enable)
1750			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1751					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1752		else
1753			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1754					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1755		break;
1756	case AR5K_EEPROM_MODE_11B:
1757		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1758					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1759		break;
1760	default:
1761		return;
1762	}
1763
1764	if (enable) {
1765		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1766				AR5K_PHY_RESTART_DIV_GC, 4);
1767
1768		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1769					AR5K_PHY_FAST_ANT_DIV_EN);
1770	} else {
1771		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1772				AR5K_PHY_RESTART_DIV_GC, 0);
1773
1774		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1775					AR5K_PHY_FAST_ANT_DIV_EN);
1776	}
1777}
1778
1779void
1780ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1781{
1782	u8 ant0, ant1;
1783
1784	/*
1785	 * In case a fixed antenna was set as default
1786	 * use the same switch table twice.
1787	 */
1788	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1789		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1790	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1791		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1792	else {
1793		ant0 = AR5K_ANT_SWTABLE_A;
1794		ant1 = AR5K_ANT_SWTABLE_B;
1795	}
1796
1797	/* Set antenna idle switch table */
1798	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1799			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1800			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1801			AR5K_PHY_ANT_CTL_TXRX_EN));
1802
1803	/* Set antenna switch tables */
1804	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1805		AR5K_PHY_ANT_SWITCH_TABLE_0);
1806	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1807		AR5K_PHY_ANT_SWITCH_TABLE_1);
1808}
1809
1810/*
1811 * Set antenna operating mode
1812 */
1813void
1814ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1815{
1816	struct ieee80211_channel *channel = ah->ah_current_channel;
1817	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1818	bool use_def_for_sg;
1819	u8 def_ant, tx_ant, ee_mode;
1820	u32 sta_id1 = 0;
1821
1822	/* if channel is not initialized yet we can't set the antennas
1823	 * so just store the mode. it will be set on the next reset */
1824	if (channel == NULL) {
1825		ah->ah_ant_mode = ant_mode;
1826		return;
1827	}
1828
1829	def_ant = ah->ah_def_ant;
1830
1831	switch (channel->hw_value & CHANNEL_MODES) {
1832	case CHANNEL_A:
1833	case CHANNEL_T:
1834	case CHANNEL_XR:
1835		ee_mode = AR5K_EEPROM_MODE_11A;
1836		break;
1837	case CHANNEL_G:
1838	case CHANNEL_TG:
1839		ee_mode = AR5K_EEPROM_MODE_11G;
1840		break;
1841	case CHANNEL_B:
1842		ee_mode = AR5K_EEPROM_MODE_11B;
1843		break;
1844	default:
1845		ATH5K_ERR(ah->ah_sc,
1846			"invalid channel: %d\n", channel->center_freq);
1847		return;
1848	}
1849
1850	switch (ant_mode) {
1851	case AR5K_ANTMODE_DEFAULT:
1852		tx_ant = 0;
1853		use_def_for_tx = false;
1854		update_def_on_tx = false;
1855		use_def_for_rts = false;
1856		use_def_for_sg = false;
1857		fast_div = true;
1858		break;
1859	case AR5K_ANTMODE_FIXED_A:
1860		def_ant = 1;
1861		tx_ant = 1;
1862		use_def_for_tx = true;
1863		update_def_on_tx = false;
1864		use_def_for_rts = true;
1865		use_def_for_sg = true;
1866		fast_div = false;
1867		break;
1868	case AR5K_ANTMODE_FIXED_B:
1869		def_ant = 2;
1870		tx_ant = 2;
1871		use_def_for_tx = true;
1872		update_def_on_tx = false;
1873		use_def_for_rts = true;
1874		use_def_for_sg = true;
1875		fast_div = false;
1876		break;
1877	case AR5K_ANTMODE_SINGLE_AP:
1878		def_ant = 1;	/* updated on tx */
1879		tx_ant = 0;
1880		use_def_for_tx = true;
1881		update_def_on_tx = true;
1882		use_def_for_rts = true;
1883		use_def_for_sg = true;
1884		fast_div = true;
1885		break;
1886	case AR5K_ANTMODE_SECTOR_AP:
1887		tx_ant = 1;	/* variable */
1888		use_def_for_tx = false;
1889		update_def_on_tx = false;
1890		use_def_for_rts = true;
1891		use_def_for_sg = false;
1892		fast_div = false;
1893		break;
1894	case AR5K_ANTMODE_SECTOR_STA:
1895		tx_ant = 1;	/* variable */
1896		use_def_for_tx = true;
1897		update_def_on_tx = false;
1898		use_def_for_rts = true;
1899		use_def_for_sg = false;
1900		fast_div = true;
1901		break;
1902	case AR5K_ANTMODE_DEBUG:
1903		def_ant = 1;
1904		tx_ant = 2;
1905		use_def_for_tx = false;
1906		update_def_on_tx = false;
1907		use_def_for_rts = false;
1908		use_def_for_sg = false;
1909		fast_div = false;
1910		break;
1911	default:
1912		return;
1913	}
1914
1915	ah->ah_tx_ant = tx_ant;
1916	ah->ah_ant_mode = ant_mode;
1917	ah->ah_def_ant = def_ant;
1918
1919	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1920	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1921	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1922	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1923
1924	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1925
1926	if (sta_id1)
1927		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1928
1929	ath5k_hw_set_antenna_switch(ah, ee_mode);
1930	/* Note: set diversity before default antenna
1931	 * because it won't work correctly */
1932	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1933	ath5k_hw_set_def_antenna(ah, def_ant);
1934}
1935
1936
1937/****************\
1938* TX power setup *
1939\****************/
1940
1941/*
1942 * Helper functions
1943 */
1944
1945/*
1946 * Do linear interpolation between two given (x, y) points
1947 */
1948static s16
1949ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1950					s16 y_left, s16 y_right)
1951{
1952	s16 ratio, result;
1953
1954	/* Avoid divide by zero and skip interpolation
1955	 * if we have the same point */
1956	if ((x_left == x_right) || (y_left == y_right))
1957		return y_left;
1958
1959	/*
1960	 * Since we use ints and not fps, we need to scale up in
1961	 * order to get a sane ratio value (or else we 'll eg. get
1962	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1963	 * to have some accuracy both for 0.5 and 0.25 steps.
1964	 */
1965	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1966
1967	/* Now scale down to be in range */
1968	result = y_left + (ratio * (target - x_left) / 100);
1969
1970	return result;
1971}
1972
1973/*
1974 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1975 *
1976 * Since we have the top of the curve and we draw the line below
1977 * until we reach 1 (1 pcdac step) we need to know which point
1978 * (x value) that is so that we don't go below y axis and have negative
1979 * pcdac values when creating the curve, or fill the table with zeroes.
1980 */
1981static s16
1982ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1983				const s16 *pwrL, const s16 *pwrR)
1984{
1985	s8 tmp;
1986	s16 min_pwrL, min_pwrR;
1987	s16 pwr_i;
1988
1989	/* Some vendors write the same pcdac value twice !!! */
1990	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1991		return max(pwrL[0], pwrR[0]);
1992
1993	if (pwrL[0] == pwrL[1])
1994		min_pwrL = pwrL[0];
1995	else {
1996		pwr_i = pwrL[0];
1997		do {
1998			pwr_i--;
1999			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2000							pwrL[0], pwrL[1],
2001							stepL[0], stepL[1]);
2002		} while (tmp > 1);
2003
2004		min_pwrL = pwr_i;
2005	}
2006
2007	if (pwrR[0] == pwrR[1])
2008		min_pwrR = pwrR[0];
2009	else {
2010		pwr_i = pwrR[0];
2011		do {
2012			pwr_i--;
2013			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2014							pwrR[0], pwrR[1],
2015							stepR[0], stepR[1]);
2016		} while (tmp > 1);
2017
2018		min_pwrR = pwr_i;
2019	}
2020
2021	/* Keep the right boundary so that it works for both curves */
2022	return max(min_pwrL, min_pwrR);
2023}
2024
2025/*
2026 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2027 * Power to PCDAC curve.
2028 *
2029 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2030 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2031 * PCDAC/PDADC step for each curve is 64 but we can write more than
2032 * one curves on hw so we can go up to 128 (which is the max step we
2033 * can write on the final table).
2034 *
2035 * We write y values (PCDAC/PDADC steps) on hw.
2036 */
2037static void
2038ath5k_create_power_curve(s16 pmin, s16 pmax,
2039			const s16 *pwr, const u8 *vpd,
2040			u8 num_points,
2041			u8 *vpd_table, u8 type)
2042{
2043	u8 idx[2] = { 0, 1 };
2044	s16 pwr_i = 2*pmin;
2045	int i;
2046
2047	if (num_points < 2)
2048		return;
2049
2050	/* We want the whole line, so adjust boundaries
2051	 * to cover the entire power range. Note that
2052	 * power values are already 0.25dB so no need
2053	 * to multiply pwr_i by 2 */
2054	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2055		pwr_i = pmin;
2056		pmin = 0;
2057		pmax = 63;
2058	}
2059
2060	/* Find surrounding turning points (TPs)
2061	 * and interpolate between them */
2062	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2063	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2064
2065		/* We passed the right TP, move to the next set of TPs
2066		 * if we pass the last TP, extrapolate above using the last
2067		 * two TPs for ratio */
2068		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2069			idx[0]++;
2070			idx[1]++;
2071		}
2072
2073		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2074						pwr[idx[0]], pwr[idx[1]],
2075						vpd[idx[0]], vpd[idx[1]]);
2076
2077		/* Increase by 0.5dB
2078		 * (0.25 dB units) */
2079		pwr_i += 2;
2080	}
2081}
2082
2083/*
2084 * Get the surrounding per-channel power calibration piers
2085 * for a given frequency so that we can interpolate between
2086 * them and come up with an apropriate dataset for our current
2087 * channel.
2088 */
2089static void
2090ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2091			struct ieee80211_channel *channel,
2092			struct ath5k_chan_pcal_info **pcinfo_l,
2093			struct ath5k_chan_pcal_info **pcinfo_r)
2094{
2095	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2096	struct ath5k_chan_pcal_info *pcinfo;
2097	u8 idx_l, idx_r;
2098	u8 mode, max, i;
2099	u32 target = channel->center_freq;
2100
2101	idx_l = 0;
2102	idx_r = 0;
2103
2104	if (!(channel->hw_value & CHANNEL_OFDM)) {
2105		pcinfo = ee->ee_pwr_cal_b;
2106		mode = AR5K_EEPROM_MODE_11B;
2107	} else if (channel->hw_value & CHANNEL_2GHZ) {
2108		pcinfo = ee->ee_pwr_cal_g;
2109		mode = AR5K_EEPROM_MODE_11G;
2110	} else {
2111		pcinfo = ee->ee_pwr_cal_a;
2112		mode = AR5K_EEPROM_MODE_11A;
2113	}
2114	max = ee->ee_n_piers[mode] - 1;
2115
2116	/* Frequency is below our calibrated
2117	 * range. Use the lowest power curve
2118	 * we have */
2119	if (target < pcinfo[0].freq) {
2120		idx_l = idx_r = 0;
2121		goto done;
2122	}
2123
2124	/* Frequency is above our calibrated
2125	 * range. Use the highest power curve
2126	 * we have */
2127	if (target > pcinfo[max].freq) {
2128		idx_l = idx_r = max;
2129		goto done;
2130	}
2131
2132	/* Frequency is inside our calibrated
2133	 * channel range. Pick the surrounding
2134	 * calibration piers so that we can
2135	 * interpolate */
2136	for (i = 0; i <= max; i++) {
2137
2138		/* Frequency matches one of our calibration
2139		 * piers, no need to interpolate, just use
2140		 * that calibration pier */
2141		if (pcinfo[i].freq == target) {
2142			idx_l = idx_r = i;
2143			goto done;
2144		}
2145
2146		/* We found a calibration pier that's above
2147		 * frequency, use this pier and the previous
2148		 * one to interpolate */
2149		if (target < pcinfo[i].freq) {
2150			idx_r = i;
2151			idx_l = idx_r - 1;
2152			goto done;
2153		}
2154	}
2155
2156done:
2157	*pcinfo_l = &pcinfo[idx_l];
2158	*pcinfo_r = &pcinfo[idx_r];
2159}
2160
2161/*
2162 * Get the surrounding per-rate power calibration data
2163 * for a given frequency and interpolate between power
2164 * values to set max target power supported by hw for
2165 * each rate.
2166 */
2167static void
2168ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2169			struct ieee80211_channel *channel,
2170			struct ath5k_rate_pcal_info *rates)
2171{
2172	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2173	struct ath5k_rate_pcal_info *rpinfo;
2174	u8 idx_l, idx_r;
2175	u8 mode, max, i;
2176	u32 target = channel->center_freq;
2177
2178	idx_l = 0;
2179	idx_r = 0;
2180
2181	if (!(channel->hw_value & CHANNEL_OFDM)) {
2182		rpinfo = ee->ee_rate_tpwr_b;
2183		mode = AR5K_EEPROM_MODE_11B;
2184	} else if (channel->hw_value & CHANNEL_2GHZ) {
2185		rpinfo = ee->ee_rate_tpwr_g;
2186		mode = AR5K_EEPROM_MODE_11G;
2187	} else {
2188		rpinfo = ee->ee_rate_tpwr_a;
2189		mode = AR5K_EEPROM_MODE_11A;
2190	}
2191	max = ee->ee_rate_target_pwr_num[mode] - 1;
2192
2193	/* Get the surrounding calibration
2194	 * piers - same as above */
2195	if (target < rpinfo[0].freq) {
2196		idx_l = idx_r = 0;
2197		goto done;
2198	}
2199
2200	if (target > rpinfo[max].freq) {
2201		idx_l = idx_r = max;
2202		goto done;
2203	}
2204
2205	for (i = 0; i <= max; i++) {
2206
2207		if (rpinfo[i].freq == target) {
2208			idx_l = idx_r = i;
2209			goto done;
2210		}
2211
2212		if (target < rpinfo[i].freq) {
2213			idx_r = i;
2214			idx_l = idx_r - 1;
2215			goto done;
2216		}
2217	}
2218
2219done:
2220	/* Now interpolate power value, based on the frequency */
2221	rates->freq = target;
2222
2223	rates->target_power_6to24 =
2224		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2225					rpinfo[idx_r].freq,
2226					rpinfo[idx_l].target_power_6to24,
2227					rpinfo[idx_r].target_power_6to24);
2228
2229	rates->target_power_36 =
2230		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2231					rpinfo[idx_r].freq,
2232					rpinfo[idx_l].target_power_36,
2233					rpinfo[idx_r].target_power_36);
2234
2235	rates->target_power_48 =
2236		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2237					rpinfo[idx_r].freq,
2238					rpinfo[idx_l].target_power_48,
2239					rpinfo[idx_r].target_power_48);
2240
2241	rates->target_power_54 =
2242		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2243					rpinfo[idx_r].freq,
2244					rpinfo[idx_l].target_power_54,
2245					rpinfo[idx_r].target_power_54);
2246}
2247
2248/*
2249 * Get the max edge power for this channel if
2250 * we have such data from EEPROM's Conformance Test
2251 * Limits (CTL), and limit max power if needed.
2252 */
2253static void
2254ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2255			struct ieee80211_channel *channel)
2256{
2257	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2258	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2259	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2260	u8 *ctl_val = ee->ee_ctl;
2261	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2262	s16 edge_pwr = 0;
2263	u8 rep_idx;
2264	u8 i, ctl_mode;
2265	u8 ctl_idx = 0xFF;
2266	u32 target = channel->center_freq;
2267
2268	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2269
2270	switch (channel->hw_value & CHANNEL_MODES) {
2271	case CHANNEL_A:
2272		ctl_mode |= AR5K_CTL_11A;
2273		break;
2274	case CHANNEL_G:
2275		ctl_mode |= AR5K_CTL_11G;
2276		break;
2277	case CHANNEL_B:
2278		ctl_mode |= AR5K_CTL_11B;
2279		break;
2280	case CHANNEL_T:
2281		ctl_mode |= AR5K_CTL_TURBO;
2282		break;
2283	case CHANNEL_TG:
2284		ctl_mode |= AR5K_CTL_TURBOG;
2285		break;
2286	case CHANNEL_XR:
2287		/* Fall through */
2288	default:
2289		return;
2290	}
2291
2292	for (i = 0; i < ee->ee_ctls; i++) {
2293		if (ctl_val[i] == ctl_mode) {
2294			ctl_idx = i;
2295			break;
2296		}
2297	}
2298
2299	/* If we have a CTL dataset available grab it and find the
2300	 * edge power for our frequency */
2301	if (ctl_idx == 0xFF)
2302		return;
2303
2304	/* Edge powers are sorted by frequency from lower
2305	 * to higher. Each CTL corresponds to 8 edge power
2306	 * measurements. */
2307	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2308
2309	/* Don't do boundaries check because we
2310	 * might have more that one bands defined
2311	 * for this mode */
2312
2313	/* Get the edge power that's closer to our
2314	 * frequency */
2315	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2316		rep_idx += i;
2317		if (target <= rep[rep_idx].freq)
2318			edge_pwr = (s16) rep[rep_idx].edge;
2319	}
2320
2321	if (edge_pwr)
2322		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2323}
2324
2325
2326/*
2327 * Power to PCDAC table functions
2328 */
2329
2330/*
2331 * Fill Power to PCDAC table on RF5111
2332 *
2333 * No further processing is needed for RF5111, the only thing we have to
2334 * do is fill the values below and above calibration range since eeprom data
2335 * may not cover the entire PCDAC table.
2336 */
2337static void
2338ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2339							s16 *table_max)
2340{
2341	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2342	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2343	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2344	s16	min_pwr, max_pwr;
2345
2346	/* Get table boundaries */
2347	min_pwr = table_min[0];
2348	pcdac_0 = pcdac_tmp[0];
2349
2350	max_pwr = table_max[0];
2351	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2352
2353	/* Extrapolate below minimum using pcdac_0 */
2354	pcdac_i = 0;
2355	for (i = 0; i < min_pwr; i++)
2356		pcdac_out[pcdac_i++] = pcdac_0;
2357
2358	/* Copy values from pcdac_tmp */
2359	pwr_idx = min_pwr;
2360	for (i = 0 ; pwr_idx <= max_pwr &&
2361	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2362		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2363		pwr_idx++;
2364	}
2365
2366	/* Extrapolate above maximum */
2367	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2368		pcdac_out[pcdac_i++] = pcdac_n;
2369
2370}
2371
2372/*
2373 * Combine available XPD Curves and fill Linear Power to PCDAC table
2374 * on RF5112
2375 *
2376 * RFX112 can have up to 2 curves (one for low txpower range and one for
2377 * higher txpower range). We need to put them both on pcdac_out and place
2378 * them in the correct location. In case we only have one curve available
2379 * just fit it on pcdac_out (it's supposed to cover the entire range of
2380 * available pwr levels since it's always the higher power curve). Extrapolate
2381 * below and above final table if needed.
2382 */
2383static void
2384ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2385						s16 *table_max, u8 pdcurves)
2386{
2387	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2388	u8	*pcdac_low_pwr;
2389	u8	*pcdac_high_pwr;
2390	u8	*pcdac_tmp;
2391	u8	pwr;
2392	s16	max_pwr_idx;
2393	s16	min_pwr_idx;
2394	s16	mid_pwr_idx = 0;
2395	/* Edge flag turs on the 7nth bit on the PCDAC
2396	 * to delcare the higher power curve (force values
2397	 * to be greater than 64). If we only have one curve
2398	 * we don't need to set this, if we have 2 curves and
2399	 * fill the table backwards this can also be used to
2400	 * switch from higher power curve to lower power curve */
2401	u8	edge_flag;
2402	int	i;
2403
2404	/* When we have only one curve available
2405	 * that's the higher power curve. If we have
2406	 * two curves the first is the high power curve
2407	 * and the next is the low power curve. */
2408	if (pdcurves > 1) {
2409		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2410		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2411		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2412		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2413
2414		/* If table size goes beyond 31.5dB, keep the
2415		 * upper 31.5dB range when setting tx power.
2416		 * Note: 126 = 31.5 dB in quarter dB steps */
2417		if (table_max[0] - table_min[1] > 126)
2418			min_pwr_idx = table_max[0] - 126;
2419		else
2420			min_pwr_idx = table_min[1];
2421
2422		/* Since we fill table backwards
2423		 * start from high power curve */
2424		pcdac_tmp = pcdac_high_pwr;
2425
2426		edge_flag = 0x40;
2427	} else {
2428		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2429		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2430		min_pwr_idx = table_min[0];
2431		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2432		pcdac_tmp = pcdac_high_pwr;
2433		edge_flag = 0;
2434	}
2435
2436	/* This is used when setting tx power*/
2437	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2438
2439	/* Fill Power to PCDAC table backwards */
2440	pwr = max_pwr_idx;
2441	for (i = 63; i >= 0; i--) {
2442		/* Entering lower power range, reset
2443		 * edge flag and set pcdac_tmp to lower
2444		 * power curve.*/
2445		if (edge_flag == 0x40 &&
2446		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2447			edge_flag = 0x00;
2448			pcdac_tmp = pcdac_low_pwr;
2449			pwr = mid_pwr_idx/2;
2450		}
2451
2452		/* Don't go below 1, extrapolate below if we have
2453		 * already swithced to the lower power curve -or
2454		 * we only have one curve and edge_flag is zero
2455		 * anyway */
2456		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2457			while (i >= 0) {
2458				pcdac_out[i] = pcdac_out[i + 1];
2459				i--;
2460			}
2461			break;
2462		}
2463
2464		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2465
2466		/* Extrapolate above if pcdac is greater than
2467		 * 126 -this can happen because we OR pcdac_out
2468		 * value with edge_flag on high power curve */
2469		if (pcdac_out[i] > 126)
2470			pcdac_out[i] = 126;
2471
2472		/* Decrease by a 0.5dB step */
2473		pwr--;
2474	}
2475}
2476
2477/* Write PCDAC values on hw */
2478static void
2479ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2480{
2481	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2482	int	i;
2483
2484	/*
2485	 * Write TX power values
2486	 */
2487	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2488		ath5k_hw_reg_write(ah,
2489			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2490			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2491			AR5K_PHY_PCDAC_TXPOWER(i));
2492	}
2493}
2494
2495
2496/*
2497 * Power to PDADC table functions
2498 */
2499
2500/*
2501 * Set the gain boundaries and create final Power to PDADC table
2502 *
2503 * We can have up to 4 pd curves, we need to do a simmilar process
2504 * as we do for RF5112. This time we don't have an edge_flag but we
2505 * set the gain boundaries on a separate register.
2506 */
2507static void
2508ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2509			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2510{
2511	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2512	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2513	u8 *pdadc_tmp;
2514	s16 pdadc_0;
2515	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2516	u8 pd_gain_overlap;
2517
2518	/* Note: Register value is initialized on initvals
2519	 * there is no feedback from hw.
2520	 * XXX: What about pd_gain_overlap from EEPROM ? */
2521	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2522		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2523
2524	/* Create final PDADC table */
2525	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2526		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2527
2528		if (pdg == pdcurves - 1)
2529			/* 2 dB boundary stretch for last
2530			 * (higher power) curve */
2531			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2532		else
2533			/* Set gain boundary in the middle
2534			 * between this curve and the next one */
2535			gain_boundaries[pdg] =
2536				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2537
2538		/* Sanity check in case our 2 db stretch got out of
2539		 * range. */
2540		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2541			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2542
2543		/* For the first curve (lower power)
2544		 * start from 0 dB */
2545		if (pdg == 0)
2546			pdadc_0 = 0;
2547		else
2548			/* For the other curves use the gain overlap */
2549			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2550							pd_gain_overlap;
2551
2552		/* Force each power step to be at least 0.5 dB */
2553		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2554			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2555		else
2556			pwr_step = 1;
2557
2558		/* If pdadc_0 is negative, we need to extrapolate
2559		 * below this pdgain by a number of pwr_steps */
2560		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2561			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2562			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2563			pdadc_0++;
2564		}
2565
2566		/* Set last pwr level, using gain boundaries */
2567		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2568		/* Limit it to be inside pwr range */
2569		table_size = pwr_max[pdg] - pwr_min[pdg];
2570		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2571
2572		/* Fill pdadc_out table */
2573		while (pdadc_0 < max_idx && pdadc_i < 128)
2574			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2575
2576		/* Need to extrapolate above this pdgain? */
2577		if (pdadc_n <= max_idx)
2578			continue;
2579
2580		/* Force each power step to be at least 0.5 dB */
2581		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2582			pwr_step = pdadc_tmp[table_size - 1] -
2583						pdadc_tmp[table_size - 2];
2584		else
2585			pwr_step = 1;
2586
2587		/* Extrapolate above */
2588		while ((pdadc_0 < (s16) pdadc_n) &&
2589		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2590			s16 tmp = pdadc_tmp[table_size - 1] +
2591					(pdadc_0 - max_idx) * pwr_step;
2592			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2593			pdadc_0++;
2594		}
2595	}
2596
2597	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2598		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2599		pdg++;
2600	}
2601
2602	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2603		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2604		pdadc_i++;
2605	}
2606
2607	/* Set gain boundaries */
2608	ath5k_hw_reg_write(ah,
2609		AR5K_REG_SM(pd_gain_overlap,
2610			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2611		AR5K_REG_SM(gain_boundaries[0],
2612			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2613		AR5K_REG_SM(gain_boundaries[1],
2614			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2615		AR5K_REG_SM(gain_boundaries[2],
2616			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2617		AR5K_REG_SM(gain_boundaries[3],
2618			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2619		AR5K_PHY_TPC_RG5);
2620
2621	/* Used for setting rate power table */
2622	ah->ah_txpower.txp_min_idx = pwr_min[0];
2623
2624}
2625
2626/* Write PDADC values on hw */
2627static void
2628ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2629			u8 pdcurves, u8 *pdg_to_idx)
2630{
2631	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2632	u32 reg;
2633	u8 i;
2634
2635	/* Select the right pdgain curves */
2636
2637	/* Clear current settings */
2638	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2639	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2640		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2641		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2642		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2643
2644	/*
2645	 * Use pd_gains curve from eeprom
2646	 *
2647	 * This overrides the default setting from initvals
2648	 * in case some vendors (e.g. Zcomax) don't use the default
2649	 * curves. If we don't honor their settings we 'll get a
2650	 * 5dB (1 * gain overlap ?) drop.
2651	 */
2652	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2653
2654	switch (pdcurves) {
2655	case 3:
2656		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2657		/* Fall through */
2658	case 2:
2659		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2660		/* Fall through */
2661	case 1:
2662		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2663		break;
2664	}
2665	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2666
2667	/*
2668	 * Write TX power values
2669	 */
2670	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2671		ath5k_hw_reg_write(ah,
2672			((pdadc_out[4*i + 0] & 0xff) << 0) |
2673			((pdadc_out[4*i + 1] & 0xff) << 8) |
2674			((pdadc_out[4*i + 2] & 0xff) << 16) |
2675			((pdadc_out[4*i + 3] & 0xff) << 24),
2676			AR5K_PHY_PDADC_TXPOWER(i));
2677	}
2678}
2679
2680
2681/*
2682 * Common code for PCDAC/PDADC tables
2683 */
2684
2685/*
2686 * This is the main function that uses all of the above
2687 * to set PCDAC/PDADC table on hw for the current channel.
2688 * This table is used for tx power calibration on the basband,
2689 * without it we get weird tx power levels and in some cases
2690 * distorted spectral mask
2691 */
2692static int
2693ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2694			struct ieee80211_channel *channel,
2695			u8 ee_mode, u8 type)
2696{
2697	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2698	struct ath5k_chan_pcal_info *pcinfo_L;
2699	struct ath5k_chan_pcal_info *pcinfo_R;
2700	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2701	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2702	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2703	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2704	u8 *tmpL;
2705	u8 *tmpR;
2706	u32 target = channel->center_freq;
2707	int pdg, i;
2708
2709	/* Get surounding freq piers for this channel */
2710	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2711						&pcinfo_L,
2712						&pcinfo_R);
2713
2714	/* Loop over pd gain curves on
2715	 * surounding freq piers by index */
2716	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2717
2718		/* Fill curves in reverse order
2719		 * from lower power (max gain)
2720		 * to higher power. Use curve -> idx
2721		 * backmapping we did on eeprom init */
2722		u8 idx = pdg_curve_to_idx[pdg];
2723
2724		/* Grab the needed curves by index */
2725		pdg_L = &pcinfo_L->pd_curves[idx];
2726		pdg_R = &pcinfo_R->pd_curves[idx];
2727
2728		/* Initialize the temp tables */
2729		tmpL = ah->ah_txpower.tmpL[pdg];
2730		tmpR = ah->ah_txpower.tmpR[pdg];
2731
2732		/* Set curve's x boundaries and create
2733		 * curves so that they cover the same
2734		 * range (if we don't do that one table
2735		 * will have values on some range and the
2736		 * other one won't have any so interpolation
2737		 * will fail) */
2738		table_min[pdg] = min(pdg_L->pd_pwr[0],
2739					pdg_R->pd_pwr[0]) / 2;
2740
2741		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2742				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2743
2744		/* Now create the curves on surrounding channels
2745		 * and interpolate if needed to get the final
2746		 * curve for this gain on this channel */
2747		switch (type) {
2748		case AR5K_PWRTABLE_LINEAR_PCDAC:
2749			/* Override min/max so that we don't loose
2750			 * accuracy (don't divide by 2) */
2751			table_min[pdg] = min(pdg_L->pd_pwr[0],
2752						pdg_R->pd_pwr[0]);
2753
2754			table_max[pdg] =
2755				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2756					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2757
2758			/* Override minimum so that we don't get
2759			 * out of bounds while extrapolating
2760			 * below. Don't do this when we have 2
2761			 * curves and we are on the high power curve
2762			 * because table_min is ok in this case */
2763			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2764
2765				table_min[pdg] =
2766					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2767								pdg_R->pd_step,
2768								pdg_L->pd_pwr,
2769								pdg_R->pd_pwr);
2770
2771				/* Don't go too low because we will
2772				 * miss the upper part of the curve.
2773				 * Note: 126 = 31.5dB (max power supported)
2774				 * in 0.25dB units */
2775				if (table_max[pdg] - table_min[pdg] > 126)
2776					table_min[pdg] = table_max[pdg] - 126;
2777			}
2778
2779			/* Fall through */
2780		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2781		case AR5K_PWRTABLE_PWR_TO_PDADC:
2782
2783			ath5k_create_power_curve(table_min[pdg],
2784						table_max[pdg],
2785						pdg_L->pd_pwr,
2786						pdg_L->pd_step,
2787						pdg_L->pd_points, tmpL, type);
2788
2789			/* We are in a calibration
2790			 * pier, no need to interpolate
2791			 * between freq piers */
2792			if (pcinfo_L == pcinfo_R)
2793				continue;
2794
2795			ath5k_create_power_curve(table_min[pdg],
2796						table_max[pdg],
2797						pdg_R->pd_pwr,
2798						pdg_R->pd_step,
2799						pdg_R->pd_points, tmpR, type);
2800			break;
2801		default:
2802			return -EINVAL;
2803		}
2804
2805		/* Interpolate between curves
2806		 * of surounding freq piers to
2807		 * get the final curve for this
2808		 * pd gain. Re-use tmpL for interpolation
2809		 * output */
2810		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2811		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2812			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2813							(s16) pcinfo_L->freq,
2814							(s16) pcinfo_R->freq,
2815							(s16) tmpL[i],
2816							(s16) tmpR[i]);
2817		}
2818	}
2819
2820	/* Now we have a set of curves for this
2821	 * channel on tmpL (x range is table_max - table_min
2822	 * and y values are tmpL[pdg][]) sorted in the same
2823	 * order as EEPROM (because we've used the backmapping).
2824	 * So for RF5112 it's from higher power to lower power
2825	 * and for RF2413 it's from lower power to higher power.
2826	 * For RF5111 we only have one curve. */
2827
2828	/* Fill min and max power levels for this
2829	 * channel by interpolating the values on
2830	 * surounding channels to complete the dataset */
2831	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2832					(s16) pcinfo_L->freq,
2833					(s16) pcinfo_R->freq,
2834					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2835
2836	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2837					(s16) pcinfo_L->freq,
2838					(s16) pcinfo_R->freq,
2839					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2840
2841	/* We are ready to go, fill PCDAC/PDADC
2842	 * table and write settings on hardware */
2843	switch (type) {
2844	case AR5K_PWRTABLE_LINEAR_PCDAC:
2845		/* For RF5112 we can have one or two curves
2846		 * and each curve covers a certain power lvl
2847		 * range so we need to do some more processing */
2848		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2849						ee->ee_pd_gains[ee_mode]);
2850
2851		/* Set txp.offset so that we can
2852		 * match max power value with max
2853		 * table index */
2854		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2855
2856		/* Write settings on hw */
2857		ath5k_setup_pcdac_table(ah);
2858		break;
2859	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2860		/* We are done for RF5111 since it has only
2861		 * one curve, just fit the curve on the table */
2862		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2863
2864		/* No rate powertable adjustment for RF5111 */
2865		ah->ah_txpower.txp_min_idx = 0;
2866		ah->ah_txpower.txp_offset = 0;
2867
2868		/* Write settings on hw */
2869		ath5k_setup_pcdac_table(ah);
2870		break;
2871	case AR5K_PWRTABLE_PWR_TO_PDADC:
2872		/* Set PDADC boundaries and fill
2873		 * final PDADC table */
2874		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2875						ee->ee_pd_gains[ee_mode]);
2876
2877		/* Write settings on hw */
2878		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2879
2880		/* Set txp.offset, note that table_min
2881		 * can be negative */
2882		ah->ah_txpower.txp_offset = table_min[0];
2883		break;
2884	default:
2885		return -EINVAL;
2886	}
2887
2888	return 0;
2889}
2890
2891
2892/*
2893 * Per-rate tx power setting
2894 *
2895 * This is the code that sets the desired tx power (below
2896 * maximum) on hw for each rate (we also have TPC that sets
2897 * power per packet). We do that by providing an index on the
2898 * PCDAC/PDADC table we set up.
2899 */
2900
2901/*
2902 * Set rate power table
2903 *
2904 * For now we only limit txpower based on maximum tx power
2905 * supported by hw (what's inside rate_info). We need to limit
2906 * this even more, based on regulatory domain etc.
2907 *
2908 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2909 * and is indexed as follows:
2910 * rates[0] - rates[7] -> OFDM rates
2911 * rates[8] - rates[14] -> CCK rates
2912 * rates[15] -> XR rates (they all have the same power)
2913 */
2914static void
2915ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2916			struct ath5k_rate_pcal_info *rate_info,
2917			u8 ee_mode)
2918{
2919	unsigned int i;
2920	u16 *rates;
2921
2922	/* max_pwr is power level we got from driver/user in 0.5dB
2923	 * units, switch to 0.25dB units so we can compare */
2924	max_pwr *= 2;
2925	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2926
2927	/* apply rate limits */
2928	rates = ah->ah_txpower.txp_rates_power_table;
2929
2930	/* OFDM rates 6 to 24Mb/s */
2931	for (i = 0; i < 5; i++)
2932		rates[i] = min(max_pwr, rate_info->target_power_6to24);
2933
2934	/* Rest OFDM rates */
2935	rates[5] = min(rates[0], rate_info->target_power_36);
2936	rates[6] = min(rates[0], rate_info->target_power_48);
2937	rates[7] = min(rates[0], rate_info->target_power_54);
2938
2939	/* CCK rates */
2940	/* 1L */
2941	rates[8] = min(rates[0], rate_info->target_power_6to24);
2942	/* 2L */
2943	rates[9] = min(rates[0], rate_info->target_power_36);
2944	/* 2S */
2945	rates[10] = min(rates[0], rate_info->target_power_36);
2946	/* 5L */
2947	rates[11] = min(rates[0], rate_info->target_power_48);
2948	/* 5S */
2949	rates[12] = min(rates[0], rate_info->target_power_48);
2950	/* 11L */
2951	rates[13] = min(rates[0], rate_info->target_power_54);
2952	/* 11S */
2953	rates[14] = min(rates[0], rate_info->target_power_54);
2954
2955	/* XR rates */
2956	rates[15] = min(rates[0], rate_info->target_power_6to24);
2957
2958	/* CCK rates have different peak to average ratio
2959	 * so we have to tweak their power so that gainf
2960	 * correction works ok. For this we use OFDM to
2961	 * CCK delta from eeprom */
2962	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2963	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2964		for (i = 8; i <= 15; i++)
2965			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2966
2967	/* Now that we have all rates setup use table offset to
2968	 * match the power range set by user with the power indices
2969	 * on PCDAC/PDADC table */
2970	for (i = 0; i < 16; i++) {
2971		rates[i] += ah->ah_txpower.txp_offset;
2972		/* Don't get out of bounds */
2973		if (rates[i] > 63)
2974			rates[i] = 63;
2975	}
2976
2977	/* Min/max in 0.25dB units */
2978	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2979	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2980	ah->ah_txpower.txp_ofdm = rates[7];
2981}
2982
2983
2984/*
2985 * Set transmission power
2986 */
2987int
2988ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2989		u8 ee_mode, u8 txpower)
2990{
2991	struct ath5k_rate_pcal_info rate_info;
2992	u8 type;
2993	int ret;
2994
2995	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2996		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2997		return -EINVAL;
2998	}
2999
3000	/* Reset TX power values */
3001	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3002	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3003	ah->ah_txpower.txp_min_pwr = 0;
3004	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3005
3006	/* Initialize TX power table */
3007	switch (ah->ah_radio) {
3008	case AR5K_RF5111:
3009		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3010		break;
3011	case AR5K_RF5112:
3012		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3013		break;
3014	case AR5K_RF2413:
3015	case AR5K_RF5413:
3016	case AR5K_RF2316:
3017	case AR5K_RF2317:
3018	case AR5K_RF2425:
3019		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3020		break;
3021	default:
3022		return -EINVAL;
3023	}
3024
3025	/* FIXME: Only on channel/mode change */
3026	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3027	if (ret)
3028		return ret;
3029
3030	/* Limit max power if we have a CTL available */
3031	ath5k_get_max_ctl_power(ah, channel);
3032
3033	/* FIXME: Antenna reduction stuff */
3034
3035	/* FIXME: Limit power on turbo modes */
3036
3037	/* FIXME: TPC scale reduction */
3038
3039	/* Get surounding channels for per-rate power table
3040	 * calibration */
3041	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3042
3043	/* Setup rate power table */
3044	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3045
3046	/* Write rate power table on hw */
3047	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3048		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3049		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3050
3051	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3052		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3053		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3054
3055	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3056		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3057		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3058
3059	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3060		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3061		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3062
3063	/* FIXME: TPC support */
3064	if (ah->ah_txpower.txp_tpc) {
3065		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3066			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3067
3068		ath5k_hw_reg_write(ah,
3069			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3070			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3071			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3072			AR5K_TPC);
3073	} else {
3074		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3075			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3076	}
3077
3078	return 0;
3079}
3080
3081int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3082{
3083	/*Just a try M.F.*/
3084	struct ieee80211_channel *channel = ah->ah_current_channel;
3085	u8 ee_mode;
3086
3087	switch (channel->hw_value & CHANNEL_MODES) {
3088	case CHANNEL_A:
3089	case CHANNEL_T:
3090	case CHANNEL_XR:
3091		ee_mode = AR5K_EEPROM_MODE_11A;
3092		break;
3093	case CHANNEL_G:
3094	case CHANNEL_TG:
3095		ee_mode = AR5K_EEPROM_MODE_11G;
3096		break;
3097	case CHANNEL_B:
3098		ee_mode = AR5K_EEPROM_MODE_11B;
3099		break;
3100	default:
3101		ATH5K_ERR(ah->ah_sc,
3102			"invalid channel: %d\n", channel->center_freq);
3103		return -EINVAL;
3104	}
3105
3106	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3107		"changing txpower to %d\n", txpower);
3108
3109	return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3110}
3111