[go: nahoru, domu]

phy.c revision 73a06a683455f472cc09ad249064c66a41e29e39
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
24#include <linux/slab.h>
25
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
29#include "rfbuffer.h"
30#include "rfgain.h"
31
32
33/******************\
34* Helper functions *
35\******************/
36
37/*
38 * Get the PHY Chip revision
39 */
40u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
41{
42	unsigned int i;
43	u32 srev;
44	u16 ret;
45
46	/*
47	 * Set the radio chip access register
48	 */
49	switch (chan) {
50	case CHANNEL_2GHZ:
51		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
52		break;
53	case CHANNEL_5GHZ:
54		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
55		break;
56	default:
57		return 0;
58	}
59
60	mdelay(2);
61
62	/* ...wait until PHY is ready and read the selected radio revision */
63	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
64
65	for (i = 0; i < 8; i++)
66		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
67
68	if (ah->ah_version == AR5K_AR5210) {
69		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
70		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
71	} else {
72		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
73		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
74				((srev & 0x0f) << 4), 8);
75	}
76
77	/* Reset to the 5GHz mode */
78	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
79
80	return ret;
81}
82
83/*
84 * Check if a channel is supported
85 */
86bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
87{
88	/* Check if the channel is in our supported range */
89	if (flags & CHANNEL_2GHZ) {
90		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
91		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
92			return true;
93	} else if (flags & CHANNEL_5GHZ)
94		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
95		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
96			return true;
97
98	return false;
99}
100
101bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
102				struct ieee80211_channel *channel)
103{
104	u8 refclk_freq;
105
106	if ((ah->ah_radio == AR5K_RF5112) ||
107	(ah->ah_radio == AR5K_RF5413) ||
108	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
109		refclk_freq = 40;
110	else
111		refclk_freq = 32;
112
113	if ((channel->center_freq % refclk_freq != 0) &&
114	((channel->center_freq % refclk_freq < 10) ||
115	(channel->center_freq % refclk_freq > 22)))
116		return true;
117	else
118		return false;
119}
120
121/*
122 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
123 */
124static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
125					const struct ath5k_rf_reg *rf_regs,
126					u32 val, u8 reg_id, bool set)
127{
128	const struct ath5k_rf_reg *rfreg = NULL;
129	u8 offset, bank, num_bits, col, position;
130	u16 entry;
131	u32 mask, data, last_bit, bits_shifted, first_bit;
132	u32 *rfb;
133	s32 bits_left;
134	int i;
135
136	data = 0;
137	rfb = ah->ah_rf_banks;
138
139	for (i = 0; i < ah->ah_rf_regs_count; i++) {
140		if (rf_regs[i].index == reg_id) {
141			rfreg = &rf_regs[i];
142			break;
143		}
144	}
145
146	if (rfb == NULL || rfreg == NULL) {
147		ATH5K_PRINTF("Rf register not found!\n");
148		/* should not happen */
149		return 0;
150	}
151
152	bank = rfreg->bank;
153	num_bits = rfreg->field.len;
154	first_bit = rfreg->field.pos;
155	col = rfreg->field.col;
156
157	/* first_bit is an offset from bank's
158	 * start. Since we have all banks on
159	 * the same array, we use this offset
160	 * to mark each bank's start */
161	offset = ah->ah_offset[bank];
162
163	/* Boundary check */
164	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
165		ATH5K_PRINTF("invalid values at offset %u\n", offset);
166		return 0;
167	}
168
169	entry = ((first_bit - 1) / 8) + offset;
170	position = (first_bit - 1) % 8;
171
172	if (set)
173		data = ath5k_hw_bitswap(val, num_bits);
174
175	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
176	position = 0, entry++) {
177
178		last_bit = (position + bits_left > 8) ? 8 :
179					position + bits_left;
180
181		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
182								(col * 8);
183
184		if (set) {
185			rfb[entry] &= ~mask;
186			rfb[entry] |= ((data << position) << (col * 8)) & mask;
187			data >>= (8 - position);
188		} else {
189			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
190				<< bits_shifted;
191			bits_shifted += last_bit - position;
192		}
193
194		bits_left -= 8 - position;
195	}
196
197	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
198
199	return data;
200}
201
202/**
203 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
204 *
205 * @ah: the &struct ath5k_hw
206 * @channel: the currently set channel upon reset
207 *
208 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
209 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
210 *
211 * Since delta slope is floating point we split it on its exponent and
212 * mantissa and provide these values on hw.
213 *
214 * For more infos i think this patent is related
215 * http://www.freepatentsonline.com/7184495.html
216 */
217static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
218	struct ieee80211_channel *channel)
219{
220	/* Get exponent and mantissa and set it */
221	u32 coef_scaled, coef_exp, coef_man,
222		ds_coef_exp, ds_coef_man, clock;
223
224	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
225		!(channel->hw_value & CHANNEL_OFDM));
226
227	/* Get coefficient
228	 * ALGO: coef = (5 * clock / carrier_freq) / 2
229	 * we scale coef by shifting clock value by 24 for
230	 * better precision since we use integers */
231	switch (ah->ah_bwmode) {
232	case AR5K_BWMODE_40MHZ:
233		clock = 40 * 2;
234		break;
235	case AR5K_BWMODE_10MHZ:
236		clock = 40 / 2;
237		break;
238	case AR5K_BWMODE_5MHZ:
239		clock = 40 / 4;
240		break;
241	default:
242		clock = 40;
243		break;
244	}
245	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
246
247	/* Get exponent
248	 * ALGO: coef_exp = 14 - highest set bit position */
249	coef_exp = ilog2(coef_scaled);
250
251	/* Doesn't make sense if it's zero*/
252	if (!coef_scaled || !coef_exp)
253		return -EINVAL;
254
255	/* Note: we've shifted coef_scaled by 24 */
256	coef_exp = 14 - (coef_exp - 24);
257
258
259	/* Get mantissa (significant digits)
260	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
261	coef_man = coef_scaled +
262		(1 << (24 - coef_exp - 1));
263
264	/* Calculate delta slope coefficient exponent
265	 * and mantissa (remove scaling) and set them on hw */
266	ds_coef_man = coef_man >> (24 - coef_exp);
267	ds_coef_exp = coef_exp - 16;
268
269	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
270		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
271	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
272		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
273
274	return 0;
275}
276
277int ath5k_hw_phy_disable(struct ath5k_hw *ah)
278{
279	/*Just a try M.F.*/
280	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
281
282	return 0;
283}
284
285
286/**********************\
287* RF Gain optimization *
288\**********************/
289
290/*
291 * This code is used to optimize RF gain on different environments
292 * (temperature mostly) based on feedback from a power detector.
293 *
294 * It's only used on RF5111 and RF5112, later RF chips seem to have
295 * auto adjustment on hw -notice they have a much smaller BANK 7 and
296 * no gain optimization ladder-.
297 *
298 * For more infos check out this patent doc
299 * http://www.freepatentsonline.com/7400691.html
300 *
301 * This paper describes power drops as seen on the receiver due to
302 * probe packets
303 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
304 * %20of%20Power%20Control.pdf
305 *
306 * And this is the MadWiFi bug entry related to the above
307 * http://madwifi-project.org/ticket/1659
308 * with various measurements and diagrams
309 *
310 * TODO: Deal with power drops due to probes by setting an apropriate
311 * tx power on the probe packets ! Make this part of the calibration process.
312 */
313
314/* Initialize ah_gain durring attach */
315int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
316{
317	/* Initialize the gain optimization values */
318	switch (ah->ah_radio) {
319	case AR5K_RF5111:
320		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
321		ah->ah_gain.g_low = 20;
322		ah->ah_gain.g_high = 35;
323		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
324		break;
325	case AR5K_RF5112:
326		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
327		ah->ah_gain.g_low = 20;
328		ah->ah_gain.g_high = 85;
329		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
330		break;
331	default:
332		return -EINVAL;
333	}
334
335	return 0;
336}
337
338/* Schedule a gain probe check on the next transmited packet.
339 * That means our next packet is going to be sent with lower
340 * tx power and a Peak to Average Power Detector (PAPD) will try
341 * to measure the gain.
342 *
343 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
344 * just after we enable the probe so that we don't mess with
345 * standard traffic ? Maybe it's time to use sw interrupts and
346 * a probe tasklet !!!
347 */
348static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
349{
350
351	/* Skip if gain calibration is inactive or
352	 * we already handle a probe request */
353	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
354		return;
355
356	/* Send the packet with 2dB below max power as
357	 * patent doc suggest */
358	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
359			AR5K_PHY_PAPD_PROBE_TXPOWER) |
360			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
361
362	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
363
364}
365
366/* Calculate gain_F measurement correction
367 * based on the current step for RF5112 rev. 2 */
368static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
369{
370	u32 mix, step;
371	u32 *rf;
372	const struct ath5k_gain_opt *go;
373	const struct ath5k_gain_opt_step *g_step;
374	const struct ath5k_rf_reg *rf_regs;
375
376	/* Only RF5112 Rev. 2 supports it */
377	if ((ah->ah_radio != AR5K_RF5112) ||
378	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
379		return 0;
380
381	go = &rfgain_opt_5112;
382	rf_regs = rf_regs_5112a;
383	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
384
385	g_step = &go->go_step[ah->ah_gain.g_step_idx];
386
387	if (ah->ah_rf_banks == NULL)
388		return 0;
389
390	rf = ah->ah_rf_banks;
391	ah->ah_gain.g_f_corr = 0;
392
393	/* No VGA (Variable Gain Amplifier) override, skip */
394	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
395		return 0;
396
397	/* Mix gain stepping */
398	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
399
400	/* Mix gain override */
401	mix = g_step->gos_param[0];
402
403	switch (mix) {
404	case 3:
405		ah->ah_gain.g_f_corr = step * 2;
406		break;
407	case 2:
408		ah->ah_gain.g_f_corr = (step - 5) * 2;
409		break;
410	case 1:
411		ah->ah_gain.g_f_corr = step;
412		break;
413	default:
414		ah->ah_gain.g_f_corr = 0;
415		break;
416	}
417
418	return ah->ah_gain.g_f_corr;
419}
420
421/* Check if current gain_F measurement is in the range of our
422 * power detector windows. If we get a measurement outside range
423 * we know it's not accurate (detectors can't measure anything outside
424 * their detection window) so we must ignore it */
425static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
426{
427	const struct ath5k_rf_reg *rf_regs;
428	u32 step, mix_ovr, level[4];
429	u32 *rf;
430
431	if (ah->ah_rf_banks == NULL)
432		return false;
433
434	rf = ah->ah_rf_banks;
435
436	if (ah->ah_radio == AR5K_RF5111) {
437
438		rf_regs = rf_regs_5111;
439		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
440
441		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
442			false);
443
444		level[0] = 0;
445		level[1] = (step == 63) ? 50 : step + 4;
446		level[2] = (step != 63) ? 64 : level[0];
447		level[3] = level[2] + 50 ;
448
449		ah->ah_gain.g_high = level[3] -
450			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
451		ah->ah_gain.g_low = level[0] +
452			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
453	} else {
454
455		rf_regs = rf_regs_5112;
456		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
457
458		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
459			false);
460
461		level[0] = level[2] = 0;
462
463		if (mix_ovr == 1) {
464			level[1] = level[3] = 83;
465		} else {
466			level[1] = level[3] = 107;
467			ah->ah_gain.g_high = 55;
468		}
469	}
470
471	return (ah->ah_gain.g_current >= level[0] &&
472			ah->ah_gain.g_current <= level[1]) ||
473		(ah->ah_gain.g_current >= level[2] &&
474			ah->ah_gain.g_current <= level[3]);
475}
476
477/* Perform gain_F adjustment by choosing the right set
478 * of parameters from RF gain optimization ladder */
479static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
480{
481	const struct ath5k_gain_opt *go;
482	const struct ath5k_gain_opt_step *g_step;
483	int ret = 0;
484
485	switch (ah->ah_radio) {
486	case AR5K_RF5111:
487		go = &rfgain_opt_5111;
488		break;
489	case AR5K_RF5112:
490		go = &rfgain_opt_5112;
491		break;
492	default:
493		return 0;
494	}
495
496	g_step = &go->go_step[ah->ah_gain.g_step_idx];
497
498	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
499
500		/* Reached maximum */
501		if (ah->ah_gain.g_step_idx == 0)
502			return -1;
503
504		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
505				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
506				ah->ah_gain.g_step_idx > 0;
507				g_step = &go->go_step[ah->ah_gain.g_step_idx])
508			ah->ah_gain.g_target -= 2 *
509			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
510			    g_step->gos_gain);
511
512		ret = 1;
513		goto done;
514	}
515
516	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
517
518		/* Reached minimum */
519		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
520			return -2;
521
522		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
523				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
524				ah->ah_gain.g_step_idx < go->go_steps_count-1;
525				g_step = &go->go_step[ah->ah_gain.g_step_idx])
526			ah->ah_gain.g_target -= 2 *
527			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
528			    g_step->gos_gain);
529
530		ret = 2;
531		goto done;
532	}
533
534done:
535	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
536		"ret %d, gain step %u, current gain %u, target gain %u\n",
537		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
538		ah->ah_gain.g_target);
539
540	return ret;
541}
542
543/* Main callback for thermal RF gain calibration engine
544 * Check for a new gain reading and schedule an adjustment
545 * if needed.
546 *
547 * TODO: Use sw interrupt to schedule reset if gain_F needs
548 * adjustment */
549enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
550{
551	u32 data, type;
552	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
553
554	if (ah->ah_rf_banks == NULL ||
555	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
556		return AR5K_RFGAIN_INACTIVE;
557
558	/* No check requested, either engine is inactive
559	 * or an adjustment is already requested */
560	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
561		goto done;
562
563	/* Read the PAPD (Peak to Average Power Detector)
564	 * register */
565	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
566
567	/* No probe is scheduled, read gain_F measurement */
568	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
569		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
570		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
571
572		/* If tx packet is CCK correct the gain_F measurement
573		 * by cck ofdm gain delta */
574		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
575			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
576				ah->ah_gain.g_current +=
577					ee->ee_cck_ofdm_gain_delta;
578			else
579				ah->ah_gain.g_current +=
580					AR5K_GAIN_CCK_PROBE_CORR;
581		}
582
583		/* Further correct gain_F measurement for
584		 * RF5112A radios */
585		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
586			ath5k_hw_rf_gainf_corr(ah);
587			ah->ah_gain.g_current =
588				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
589				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
590				0;
591		}
592
593		/* Check if measurement is ok and if we need
594		 * to adjust gain, schedule a gain adjustment,
595		 * else switch back to the acive state */
596		if (ath5k_hw_rf_check_gainf_readback(ah) &&
597		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
598		ath5k_hw_rf_gainf_adjust(ah)) {
599			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
600		} else {
601			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
602		}
603	}
604
605done:
606	return ah->ah_gain.g_state;
607}
608
609/* Write initial RF gain table to set the RF sensitivity
610 * this one works on all RF chips and has nothing to do
611 * with gain_F calibration */
612static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
613{
614	const struct ath5k_ini_rfgain *ath5k_rfg;
615	unsigned int i, size;
616
617	switch (ah->ah_radio) {
618	case AR5K_RF5111:
619		ath5k_rfg = rfgain_5111;
620		size = ARRAY_SIZE(rfgain_5111);
621		break;
622	case AR5K_RF5112:
623		ath5k_rfg = rfgain_5112;
624		size = ARRAY_SIZE(rfgain_5112);
625		break;
626	case AR5K_RF2413:
627		ath5k_rfg = rfgain_2413;
628		size = ARRAY_SIZE(rfgain_2413);
629		break;
630	case AR5K_RF2316:
631		ath5k_rfg = rfgain_2316;
632		size = ARRAY_SIZE(rfgain_2316);
633		break;
634	case AR5K_RF5413:
635		ath5k_rfg = rfgain_5413;
636		size = ARRAY_SIZE(rfgain_5413);
637		break;
638	case AR5K_RF2317:
639	case AR5K_RF2425:
640		ath5k_rfg = rfgain_2425;
641		size = ARRAY_SIZE(rfgain_2425);
642		break;
643	default:
644		return -EINVAL;
645	}
646
647	switch (freq) {
648	case AR5K_INI_RFGAIN_2GHZ:
649	case AR5K_INI_RFGAIN_5GHZ:
650		break;
651	default:
652		return -EINVAL;
653	}
654
655	for (i = 0; i < size; i++) {
656		AR5K_REG_WAIT(i);
657		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
658			(u32)ath5k_rfg[i].rfg_register);
659	}
660
661	return 0;
662}
663
664
665
666/********************\
667* RF Registers setup *
668\********************/
669
670/*
671 * Setup RF registers by writing RF buffer on hw
672 */
673static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
674	struct ieee80211_channel *channel, unsigned int mode)
675{
676	const struct ath5k_rf_reg *rf_regs;
677	const struct ath5k_ini_rfbuffer *ini_rfb;
678	const struct ath5k_gain_opt *go = NULL;
679	const struct ath5k_gain_opt_step *g_step;
680	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
681	u8 ee_mode = 0;
682	u32 *rfb;
683	int i, obdb = -1, bank = -1;
684
685	switch (ah->ah_radio) {
686	case AR5K_RF5111:
687		rf_regs = rf_regs_5111;
688		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
689		ini_rfb = rfb_5111;
690		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
691		go = &rfgain_opt_5111;
692		break;
693	case AR5K_RF5112:
694		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
695			rf_regs = rf_regs_5112a;
696			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
697			ini_rfb = rfb_5112a;
698			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
699		} else {
700			rf_regs = rf_regs_5112;
701			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
702			ini_rfb = rfb_5112;
703			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
704		}
705		go = &rfgain_opt_5112;
706		break;
707	case AR5K_RF2413:
708		rf_regs = rf_regs_2413;
709		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
710		ini_rfb = rfb_2413;
711		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
712		break;
713	case AR5K_RF2316:
714		rf_regs = rf_regs_2316;
715		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
716		ini_rfb = rfb_2316;
717		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
718		break;
719	case AR5K_RF5413:
720		rf_regs = rf_regs_5413;
721		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
722		ini_rfb = rfb_5413;
723		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
724		break;
725	case AR5K_RF2317:
726		rf_regs = rf_regs_2425;
727		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
728		ini_rfb = rfb_2317;
729		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
730		break;
731	case AR5K_RF2425:
732		rf_regs = rf_regs_2425;
733		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
734		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
735			ini_rfb = rfb_2425;
736			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
737		} else {
738			ini_rfb = rfb_2417;
739			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
740		}
741		break;
742	default:
743		return -EINVAL;
744	}
745
746	/* If it's the first time we set RF buffer, allocate
747	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
748	 * we set above */
749	if (ah->ah_rf_banks == NULL) {
750		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
751								GFP_KERNEL);
752		if (ah->ah_rf_banks == NULL) {
753			ATH5K_ERR(ah->ah_sc, "out of memory\n");
754			return -ENOMEM;
755		}
756	}
757
758	/* Copy values to modify them */
759	rfb = ah->ah_rf_banks;
760
761	for (i = 0; i < ah->ah_rf_banks_size; i++) {
762		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
763			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
764			return -EINVAL;
765		}
766
767		/* Bank changed, write down the offset */
768		if (bank != ini_rfb[i].rfb_bank) {
769			bank = ini_rfb[i].rfb_bank;
770			ah->ah_offset[bank] = i;
771		}
772
773		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
774	}
775
776	/* Set Output and Driver bias current (OB/DB) */
777	if (channel->hw_value & CHANNEL_2GHZ) {
778
779		if (channel->hw_value & CHANNEL_CCK)
780			ee_mode = AR5K_EEPROM_MODE_11B;
781		else
782			ee_mode = AR5K_EEPROM_MODE_11G;
783
784		/* For RF511X/RF211X combination we
785		 * use b_OB and b_DB parameters stored
786		 * in eeprom on ee->ee_ob[ee_mode][0]
787		 *
788		 * For all other chips we use OB/DB for 2Ghz
789		 * stored in the b/g modal section just like
790		 * 802.11a on ee->ee_ob[ee_mode][1] */
791		if ((ah->ah_radio == AR5K_RF5111) ||
792		(ah->ah_radio == AR5K_RF5112))
793			obdb = 0;
794		else
795			obdb = 1;
796
797		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
798						AR5K_RF_OB_2GHZ, true);
799
800		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
801						AR5K_RF_DB_2GHZ, true);
802
803	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
804	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
805			(ah->ah_radio == AR5K_RF5111)) {
806
807		/* For 11a, Turbo and XR we need to choose
808		 * OB/DB based on frequency range */
809		ee_mode = AR5K_EEPROM_MODE_11A;
810		obdb =	 channel->center_freq >= 5725 ? 3 :
811			(channel->center_freq >= 5500 ? 2 :
812			(channel->center_freq >= 5260 ? 1 :
813			 (channel->center_freq > 4000 ? 0 : -1)));
814
815		if (obdb < 0)
816			return -EINVAL;
817
818		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
819						AR5K_RF_OB_5GHZ, true);
820
821		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
822						AR5K_RF_DB_5GHZ, true);
823	}
824
825	g_step = &go->go_step[ah->ah_gain.g_step_idx];
826
827	/* Bank Modifications (chip-specific) */
828	if (ah->ah_radio == AR5K_RF5111) {
829
830		/* Set gain_F settings according to current step */
831		if (channel->hw_value & CHANNEL_OFDM) {
832
833			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
834					AR5K_PHY_FRAME_CTL_TX_CLIP,
835					g_step->gos_param[0]);
836
837			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
838							AR5K_RF_PWD_90, true);
839
840			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
841							AR5K_RF_PWD_84, true);
842
843			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
844						AR5K_RF_RFGAIN_SEL, true);
845
846			/* We programmed gain_F parameters, switch back
847			 * to active state */
848			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
849
850		}
851
852		/* Bank 6/7 setup */
853
854		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
855						AR5K_RF_PWD_XPD, true);
856
857		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
858						AR5K_RF_XPD_GAIN, true);
859
860		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
861						AR5K_RF_GAIN_I, true);
862
863		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
864						AR5K_RF_PLO_SEL, true);
865
866		/* Tweak power detectors for half/quarter rate support */
867		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
868		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
869			u8 wait_i;
870
871			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
872						AR5K_RF_WAIT_S, true);
873
874			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
875							0x1f : 0x10;
876
877			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
878						AR5K_RF_WAIT_I, true);
879			ath5k_hw_rfb_op(ah, rf_regs, 3,
880						AR5K_RF_MAX_TIME, true);
881
882		}
883	}
884
885	if (ah->ah_radio == AR5K_RF5112) {
886
887		/* Set gain_F settings according to current step */
888		if (channel->hw_value & CHANNEL_OFDM) {
889
890			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
891						AR5K_RF_MIXGAIN_OVR, true);
892
893			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
894						AR5K_RF_PWD_138, true);
895
896			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
897						AR5K_RF_PWD_137, true);
898
899			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
900						AR5K_RF_PWD_136, true);
901
902			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
903						AR5K_RF_PWD_132, true);
904
905			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
906						AR5K_RF_PWD_131, true);
907
908			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
909						AR5K_RF_PWD_130, true);
910
911			/* We programmed gain_F parameters, switch back
912			 * to active state */
913			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
914		}
915
916		/* Bank 6/7 setup */
917
918		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
919						AR5K_RF_XPD_SEL, true);
920
921		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
922			/* Rev. 1 supports only one xpd */
923			ath5k_hw_rfb_op(ah, rf_regs,
924						ee->ee_x_gain[ee_mode],
925						AR5K_RF_XPD_GAIN, true);
926
927		} else {
928			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
929			if (ee->ee_pd_gains[ee_mode] > 1) {
930				ath5k_hw_rfb_op(ah, rf_regs,
931						pdg_curve_to_idx[0],
932						AR5K_RF_PD_GAIN_LO, true);
933				ath5k_hw_rfb_op(ah, rf_regs,
934						pdg_curve_to_idx[1],
935						AR5K_RF_PD_GAIN_HI, true);
936			} else {
937				ath5k_hw_rfb_op(ah, rf_regs,
938						pdg_curve_to_idx[0],
939						AR5K_RF_PD_GAIN_LO, true);
940				ath5k_hw_rfb_op(ah, rf_regs,
941						pdg_curve_to_idx[0],
942						AR5K_RF_PD_GAIN_HI, true);
943			}
944
945			/* Lower synth voltage on Rev 2 */
946			ath5k_hw_rfb_op(ah, rf_regs, 2,
947					AR5K_RF_HIGH_VC_CP, true);
948
949			ath5k_hw_rfb_op(ah, rf_regs, 2,
950					AR5K_RF_MID_VC_CP, true);
951
952			ath5k_hw_rfb_op(ah, rf_regs, 2,
953					AR5K_RF_LOW_VC_CP, true);
954
955			ath5k_hw_rfb_op(ah, rf_regs, 2,
956					AR5K_RF_PUSH_UP, true);
957
958			/* Decrease power consumption on 5213+ BaseBand */
959			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
960				ath5k_hw_rfb_op(ah, rf_regs, 1,
961						AR5K_RF_PAD2GND, true);
962
963				ath5k_hw_rfb_op(ah, rf_regs, 1,
964						AR5K_RF_XB2_LVL, true);
965
966				ath5k_hw_rfb_op(ah, rf_regs, 1,
967						AR5K_RF_XB5_LVL, true);
968
969				ath5k_hw_rfb_op(ah, rf_regs, 1,
970						AR5K_RF_PWD_167, true);
971
972				ath5k_hw_rfb_op(ah, rf_regs, 1,
973						AR5K_RF_PWD_166, true);
974			}
975		}
976
977		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
978						AR5K_RF_GAIN_I, true);
979
980		/* Tweak power detector for half/quarter rates */
981		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
982		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
983			u8 pd_delay;
984
985			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
986							0xf : 0x8;
987
988			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
989						AR5K_RF_PD_PERIOD_A, true);
990			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
991						AR5K_RF_PD_DELAY_A, true);
992
993		}
994	}
995
996	if (ah->ah_radio == AR5K_RF5413 &&
997	channel->hw_value & CHANNEL_2GHZ) {
998
999		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1000									true);
1001
1002		/* Set optimum value for early revisions (on pci-e chips) */
1003		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1004		ah->ah_mac_srev < AR5K_SREV_AR5413)
1005			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1006						AR5K_RF_PWD_ICLOBUF_2G, true);
1007
1008	}
1009
1010	/* Write RF banks on hw */
1011	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1012		AR5K_REG_WAIT(i);
1013		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1014	}
1015
1016	return 0;
1017}
1018
1019
1020/**************************\
1021  PHY/RF channel functions
1022\**************************/
1023
1024/*
1025 * Convertion needed for RF5110
1026 */
1027static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1028{
1029	u32 athchan;
1030
1031	/*
1032	 * Convert IEEE channel/MHz to an internal channel value used
1033	 * by the AR5210 chipset. This has not been verified with
1034	 * newer chipsets like the AR5212A who have a completely
1035	 * different RF/PHY part.
1036	 */
1037	athchan = (ath5k_hw_bitswap(
1038			(ieee80211_frequency_to_channel(
1039				channel->center_freq) - 24) / 2, 5)
1040				<< 1) | (1 << 6) | 0x1;
1041	return athchan;
1042}
1043
1044/*
1045 * Set channel on RF5110
1046 */
1047static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1048		struct ieee80211_channel *channel)
1049{
1050	u32 data;
1051
1052	/*
1053	 * Set the channel and wait
1054	 */
1055	data = ath5k_hw_rf5110_chan2athchan(channel);
1056	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1057	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1058	mdelay(1);
1059
1060	return 0;
1061}
1062
1063/*
1064 * Convertion needed for 5111
1065 */
1066static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1067		struct ath5k_athchan_2ghz *athchan)
1068{
1069	int channel;
1070
1071	/* Cast this value to catch negative channel numbers (>= -19) */
1072	channel = (int)ieee;
1073
1074	/*
1075	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1076	 */
1077	if (channel <= 13) {
1078		athchan->a2_athchan = 115 + channel;
1079		athchan->a2_flags = 0x46;
1080	} else if (channel == 14) {
1081		athchan->a2_athchan = 124;
1082		athchan->a2_flags = 0x44;
1083	} else if (channel >= 15 && channel <= 26) {
1084		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1085		athchan->a2_flags = 0x46;
1086	} else
1087		return -EINVAL;
1088
1089	return 0;
1090}
1091
1092/*
1093 * Set channel on 5111
1094 */
1095static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1096		struct ieee80211_channel *channel)
1097{
1098	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1099	unsigned int ath5k_channel =
1100		ieee80211_frequency_to_channel(channel->center_freq);
1101	u32 data0, data1, clock;
1102	int ret;
1103
1104	/*
1105	 * Set the channel on the RF5111 radio
1106	 */
1107	data0 = data1 = 0;
1108
1109	if (channel->hw_value & CHANNEL_2GHZ) {
1110		/* Map 2GHz channel to 5GHz Atheros channel ID */
1111		ret = ath5k_hw_rf5111_chan2athchan(
1112			ieee80211_frequency_to_channel(channel->center_freq),
1113			&ath5k_channel_2ghz);
1114		if (ret)
1115			return ret;
1116
1117		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1118		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1119		    << 5) | (1 << 4);
1120	}
1121
1122	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1123		clock = 1;
1124		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1125			(clock << 1) | (1 << 10) | 1;
1126	} else {
1127		clock = 0;
1128		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1129			<< 2) | (clock << 1) | (1 << 10) | 1;
1130	}
1131
1132	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1133			AR5K_RF_BUFFER);
1134	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1135			AR5K_RF_BUFFER_CONTROL_3);
1136
1137	return 0;
1138}
1139
1140/*
1141 * Set channel on 5112 and newer
1142 */
1143static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1144		struct ieee80211_channel *channel)
1145{
1146	u32 data, data0, data1, data2;
1147	u16 c;
1148
1149	data = data0 = data1 = data2 = 0;
1150	c = channel->center_freq;
1151
1152	if (c < 4800) {
1153		if (!((c - 2224) % 5)) {
1154			data0 = ((2 * (c - 704)) - 3040) / 10;
1155			data1 = 1;
1156		} else if (!((c - 2192) % 5)) {
1157			data0 = ((2 * (c - 672)) - 3040) / 10;
1158			data1 = 0;
1159		} else
1160			return -EINVAL;
1161
1162		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1163	} else if ((c % 5) != 2 || c > 5435) {
1164		if (!(c % 20) && c >= 5120) {
1165			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1166			data2 = ath5k_hw_bitswap(3, 2);
1167		} else if (!(c % 10)) {
1168			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1169			data2 = ath5k_hw_bitswap(2, 2);
1170		} else if (!(c % 5)) {
1171			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1172			data2 = ath5k_hw_bitswap(1, 2);
1173		} else
1174			return -EINVAL;
1175	} else {
1176		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1177		data2 = ath5k_hw_bitswap(0, 2);
1178	}
1179
1180	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1181
1182	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1183	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1184
1185	return 0;
1186}
1187
1188/*
1189 * Set the channel on the RF2425
1190 */
1191static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1192		struct ieee80211_channel *channel)
1193{
1194	u32 data, data0, data2;
1195	u16 c;
1196
1197	data = data0 = data2 = 0;
1198	c = channel->center_freq;
1199
1200	if (c < 4800) {
1201		data0 = ath5k_hw_bitswap((c - 2272), 8);
1202		data2 = 0;
1203	/* ? 5GHz ? */
1204	} else if ((c % 5) != 2 || c > 5435) {
1205		if (!(c % 20) && c < 5120)
1206			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1207		else if (!(c % 10))
1208			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1209		else if (!(c % 5))
1210			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1211		else
1212			return -EINVAL;
1213		data2 = ath5k_hw_bitswap(1, 2);
1214	} else {
1215		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1216		data2 = ath5k_hw_bitswap(0, 2);
1217	}
1218
1219	data = (data0 << 4) | data2 << 2 | 0x1001;
1220
1221	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1222	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1223
1224	return 0;
1225}
1226
1227/*
1228 * Set a channel on the radio chip
1229 */
1230static int ath5k_hw_channel(struct ath5k_hw *ah,
1231		struct ieee80211_channel *channel)
1232{
1233	int ret;
1234	/*
1235	 * Check bounds supported by the PHY (we don't care about regultory
1236	 * restrictions at this point). Note: hw_value already has the band
1237	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1238	 * of the band by that */
1239	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1240		ATH5K_ERR(ah->ah_sc,
1241			"channel frequency (%u MHz) out of supported "
1242			"band range\n",
1243			channel->center_freq);
1244			return -EINVAL;
1245	}
1246
1247	/*
1248	 * Set the channel and wait
1249	 */
1250	switch (ah->ah_radio) {
1251	case AR5K_RF5110:
1252		ret = ath5k_hw_rf5110_channel(ah, channel);
1253		break;
1254	case AR5K_RF5111:
1255		ret = ath5k_hw_rf5111_channel(ah, channel);
1256		break;
1257	case AR5K_RF2425:
1258		ret = ath5k_hw_rf2425_channel(ah, channel);
1259		break;
1260	default:
1261		ret = ath5k_hw_rf5112_channel(ah, channel);
1262		break;
1263	}
1264
1265	if (ret)
1266		return ret;
1267
1268	/* Set JAPAN setting for channel 14 */
1269	if (channel->center_freq == 2484) {
1270		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1271				AR5K_PHY_CCKTXCTL_JAPAN);
1272	} else {
1273		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1274				AR5K_PHY_CCKTXCTL_WORLD);
1275	}
1276
1277	ah->ah_current_channel = channel;
1278
1279	return 0;
1280}
1281
1282/*****************\
1283  PHY calibration
1284\*****************/
1285
1286static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1287{
1288	s32 val;
1289
1290	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1291	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1292}
1293
1294void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1295{
1296	int i;
1297
1298	ah->ah_nfcal_hist.index = 0;
1299	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1300		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1301}
1302
1303static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1304{
1305	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1306	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1307	hist->nfval[hist->index] = noise_floor;
1308}
1309
1310static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1311{
1312	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1313	s16 tmp;
1314	int i, j;
1315
1316	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1317	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1318		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1319			if (sort[j] > sort[j-1]) {
1320				tmp = sort[j];
1321				sort[j] = sort[j-1];
1322				sort[j-1] = tmp;
1323			}
1324		}
1325	}
1326	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1327		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1328			"cal %d:%d\n", i, sort[i]);
1329	}
1330	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1331}
1332
1333/*
1334 * When we tell the hardware to perform a noise floor calibration
1335 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1336 * sample-and-hold the minimum noise level seen at the antennas.
1337 * This value is then stored in a ring buffer of recently measured
1338 * noise floor values so we have a moving window of the last few
1339 * samples.
1340 *
1341 * The median of the values in the history is then loaded into the
1342 * hardware for its own use for RSSI and CCA measurements.
1343 */
1344void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1345{
1346	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1347	u32 val;
1348	s16 nf, threshold;
1349	u8 ee_mode;
1350
1351	/* keep last value if calibration hasn't completed */
1352	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1353		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1354			"NF did not complete in calibration window\n");
1355
1356		return;
1357	}
1358
1359	switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1360	case CHANNEL_A:
1361	case CHANNEL_T:
1362	case CHANNEL_XR:
1363		ee_mode = AR5K_EEPROM_MODE_11A;
1364		break;
1365	case CHANNEL_G:
1366	case CHANNEL_TG:
1367		ee_mode = AR5K_EEPROM_MODE_11G;
1368		break;
1369	default:
1370	case CHANNEL_B:
1371		ee_mode = AR5K_EEPROM_MODE_11B;
1372		break;
1373	}
1374
1375
1376	/* completed NF calibration, test threshold */
1377	nf = ath5k_hw_read_measured_noise_floor(ah);
1378	threshold = ee->ee_noise_floor_thr[ee_mode];
1379
1380	if (nf > threshold) {
1381		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1382			"noise floor failure detected; "
1383			"read %d, threshold %d\n",
1384			nf, threshold);
1385
1386		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1387	}
1388
1389	ath5k_hw_update_nfcal_hist(ah, nf);
1390	nf = ath5k_hw_get_median_noise_floor(ah);
1391
1392	/* load noise floor (in .5 dBm) so the hardware will use it */
1393	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1394	val |= (nf * 2) & AR5K_PHY_NF_M;
1395	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1396
1397	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1398		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1399
1400	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1401		0, false);
1402
1403	/*
1404	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1405	 * so that we're not capped by the median we just loaded.
1406	 * This will be used as the initial value for the next noise
1407	 * floor calibration.
1408	 */
1409	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1410	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1411	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1412		AR5K_PHY_AGCCTL_NF_EN |
1413		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1414		AR5K_PHY_AGCCTL_NF);
1415
1416	ah->ah_noise_floor = nf;
1417
1418	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1419		"noise floor calibrated: %d\n", nf);
1420}
1421
1422/*
1423 * Perform a PHY calibration on RF5110
1424 * -Fix BPSK/QAM Constellation (I/Q correction)
1425 */
1426static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1427		struct ieee80211_channel *channel)
1428{
1429	u32 phy_sig, phy_agc, phy_sat, beacon;
1430	int ret;
1431
1432	/*
1433	 * Disable beacons and RX/TX queues, wait
1434	 */
1435	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1436		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1437	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1438	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1439
1440	mdelay(2);
1441
1442	/*
1443	 * Set the channel (with AGC turned off)
1444	 */
1445	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1446	udelay(10);
1447	ret = ath5k_hw_channel(ah, channel);
1448
1449	/*
1450	 * Activate PHY and wait
1451	 */
1452	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1453	mdelay(1);
1454
1455	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1456
1457	if (ret)
1458		return ret;
1459
1460	/*
1461	 * Calibrate the radio chip
1462	 */
1463
1464	/* Remember normal state */
1465	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1466	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1467	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1468
1469	/* Update radio registers */
1470	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1471		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1472
1473	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1474			AR5K_PHY_AGCCOARSE_LO)) |
1475		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1476		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1477
1478	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1479			AR5K_PHY_ADCSAT_THR)) |
1480		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1481		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1482
1483	udelay(20);
1484
1485	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1486	udelay(10);
1487	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1488	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1489
1490	mdelay(1);
1491
1492	/*
1493	 * Enable calibration and wait until completion
1494	 */
1495	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1496
1497	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1498			AR5K_PHY_AGCCTL_CAL, 0, false);
1499
1500	/* Reset to normal state */
1501	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1502	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1503	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1504
1505	if (ret) {
1506		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1507				channel->center_freq);
1508		return ret;
1509	}
1510
1511	/*
1512	 * Re-enable RX/TX and beacons
1513	 */
1514	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1515		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1516	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1517
1518	return 0;
1519}
1520
1521/*
1522 * Perform I/Q calibration on RF5111/5112 and newer chips
1523 */
1524static int
1525ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1526{
1527	u32 i_pwr, q_pwr;
1528	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1529	int i;
1530
1531	if (!ah->ah_calibration ||
1532		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1533		return 0;
1534
1535	/* Calibration has finished, get the results and re-run */
1536	/* work around empty results which can apparently happen on 5212 */
1537	for (i = 0; i <= 10; i++) {
1538		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1539		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1540		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1541		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1542			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1543		if (i_pwr && q_pwr)
1544			break;
1545	}
1546
1547	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1548
1549	if (ah->ah_version == AR5K_AR5211)
1550		q_coffd = q_pwr >> 6;
1551	else
1552		q_coffd = q_pwr >> 7;
1553
1554	/* protect against divide by 0 and loss of sign bits */
1555	if (i_coffd == 0 || q_coffd < 2)
1556		return 0;
1557
1558	i_coff = (-iq_corr) / i_coffd;
1559	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1560
1561	if (ah->ah_version == AR5K_AR5211)
1562		q_coff = (i_pwr / q_coffd) - 64;
1563	else
1564		q_coff = (i_pwr / q_coffd) - 128;
1565	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1566
1567	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1568			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1569			i_coff, q_coff, i_coffd, q_coffd);
1570
1571	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1572	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1573	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1574	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1575
1576	/* Re-enable calibration -if we don't we'll commit
1577	 * the same values again and again */
1578	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1579			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1580	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1581
1582	return 0;
1583}
1584
1585/*
1586 * Perform a PHY calibration
1587 */
1588int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1589		struct ieee80211_channel *channel)
1590{
1591	int ret;
1592
1593	if (ah->ah_radio == AR5K_RF5110)
1594		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1595	else {
1596		ret = ath5k_hw_rf511x_iq_calibrate(ah);
1597		ath5k_hw_request_rfgain_probe(ah);
1598	}
1599
1600	return ret;
1601}
1602
1603
1604/***************************\
1605* Spur mitigation functions *
1606\***************************/
1607
1608static void
1609ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1610				struct ieee80211_channel *channel)
1611{
1612	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1613	u32 mag_mask[4] = {0, 0, 0, 0};
1614	u32 pilot_mask[2] = {0, 0};
1615	/* Note: fbin values are scaled up by 2 */
1616	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1617	s32 spur_delta_phase, spur_freq_sigma_delta;
1618	s32 spur_offset, num_symbols_x16;
1619	u8 num_symbol_offsets, i, freq_band;
1620
1621	/* Convert current frequency to fbin value (the same way channels
1622	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1623	 * up by 2 so we can compare it later */
1624	if (channel->hw_value & CHANNEL_2GHZ) {
1625		chan_fbin = (channel->center_freq - 2300) * 10;
1626		freq_band = AR5K_EEPROM_BAND_2GHZ;
1627	} else {
1628		chan_fbin = (channel->center_freq - 4900) * 10;
1629		freq_band = AR5K_EEPROM_BAND_5GHZ;
1630	}
1631
1632	/* Check if any spur_chan_fbin from EEPROM is
1633	 * within our current channel's spur detection range */
1634	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1635	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1636	/* XXX: Half/Quarter channels ?*/
1637	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1638		spur_detection_window *= 2;
1639
1640	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1641		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1642
1643		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1644		 * so it's zero if we got nothing from EEPROM */
1645		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1646			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1647			break;
1648		}
1649
1650		if ((chan_fbin - spur_detection_window <=
1651		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1652		(chan_fbin + spur_detection_window >=
1653		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1654			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1655			break;
1656		}
1657	}
1658
1659	/* We need to enable spur filter for this channel */
1660	if (spur_chan_fbin) {
1661		spur_offset = spur_chan_fbin - chan_fbin;
1662		/*
1663		 * Calculate deltas:
1664		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1665		 * spur_delta_phase -> spur_offset / chip_freq << 11
1666		 * Note: Both values have 100Hz resolution
1667		 */
1668		switch (ah->ah_bwmode) {
1669		case AR5K_BWMODE_40MHZ:
1670			/* Both sample_freq and chip_freq are 80MHz */
1671			spur_delta_phase = (spur_offset << 16) / 25;
1672			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1673			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1674			break;
1675		case AR5K_BWMODE_10MHZ:
1676			/* Both sample_freq and chip_freq are 20MHz (?) */
1677			spur_delta_phase = (spur_offset << 18) / 25;
1678			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1679			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1680		case AR5K_BWMODE_5MHZ:
1681			/* Both sample_freq and chip_freq are 10MHz (?) */
1682			spur_delta_phase = (spur_offset << 19) / 25;
1683			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1684			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1685		default:
1686			if (channel->hw_value == CHANNEL_A) {
1687				/* Both sample_freq and chip_freq are 40MHz */
1688				spur_delta_phase = (spur_offset << 17) / 25;
1689				spur_freq_sigma_delta =
1690						(spur_delta_phase >> 10);
1691				symbol_width =
1692					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1693			} else {
1694				/* sample_freq -> 40MHz chip_freq -> 44MHz
1695				 * (for b compatibility) */
1696				spur_delta_phase = (spur_offset << 17) / 25;
1697				spur_freq_sigma_delta =
1698						(spur_offset << 8) / 55;
1699				symbol_width =
1700					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1701			}
1702			break;
1703		}
1704
1705		/* Calculate pilot and magnitude masks */
1706
1707		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1708		 * and divide by symbol_width to find how many symbols we have
1709		 * Note: number of symbols is scaled up by 16 */
1710		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1711
1712		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1713		if (!(num_symbols_x16 & 0xF))
1714			/* _X_ */
1715			num_symbol_offsets = 3;
1716		else
1717			/* _xx_ */
1718			num_symbol_offsets = 4;
1719
1720		for (i = 0; i < num_symbol_offsets; i++) {
1721
1722			/* Calculate pilot mask */
1723			s32 curr_sym_off =
1724				(num_symbols_x16 / 16) + i + 25;
1725
1726			/* Pilot magnitude mask seems to be a way to
1727			 * declare the boundaries for our detection
1728			 * window or something, it's 2 for the middle
1729			 * value(s) where the symbol is expected to be
1730			 * and 1 on the boundary values */
1731			u8 plt_mag_map =
1732				(i == 0 || i == (num_symbol_offsets - 1))
1733								? 1 : 2;
1734
1735			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1736				if (curr_sym_off <= 25)
1737					pilot_mask[0] |= 1 << curr_sym_off;
1738				else if (curr_sym_off >= 27)
1739					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1740			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1741				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1742
1743			/* Calculate magnitude mask (for viterbi decoder) */
1744			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1745				mag_mask[0] |=
1746					plt_mag_map << (curr_sym_off + 1) * 2;
1747			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1748				mag_mask[1] |=
1749					plt_mag_map << (curr_sym_off - 15) * 2;
1750			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1751				mag_mask[2] |=
1752					plt_mag_map << (curr_sym_off - 31) * 2;
1753			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1754				mag_mask[3] |=
1755					plt_mag_map << (curr_sym_off - 47) * 2;
1756
1757		}
1758
1759		/* Write settings on hw to enable spur filter */
1760		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1761					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1762		/* XXX: Self correlator also ? */
1763		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1764					AR5K_PHY_IQ_PILOT_MASK_EN |
1765					AR5K_PHY_IQ_CHAN_MASK_EN |
1766					AR5K_PHY_IQ_SPUR_FILT_EN);
1767
1768		/* Set delta phase and freq sigma delta */
1769		ath5k_hw_reg_write(ah,
1770				AR5K_REG_SM(spur_delta_phase,
1771					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1772				AR5K_REG_SM(spur_freq_sigma_delta,
1773				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1774				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1775				AR5K_PHY_TIMING_11);
1776
1777		/* Write pilot masks */
1778		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1779		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1780					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1781					pilot_mask[1]);
1782
1783		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1784		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1785					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1786					pilot_mask[1]);
1787
1788		/* Write magnitude masks */
1789		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1790		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1791		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1792		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1793					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1794					mag_mask[3]);
1795
1796		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1797		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1798		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1799		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1800					AR5K_PHY_BIN_MASK2_4_MASK_4,
1801					mag_mask[3]);
1802
1803	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1804	AR5K_PHY_IQ_SPUR_FILT_EN) {
1805		/* Clean up spur mitigation settings and disable fliter */
1806		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1807					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1808		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1809					AR5K_PHY_IQ_PILOT_MASK_EN |
1810					AR5K_PHY_IQ_CHAN_MASK_EN |
1811					AR5K_PHY_IQ_SPUR_FILT_EN);
1812		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1813
1814		/* Clear pilot masks */
1815		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1816		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1817					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1818					0);
1819
1820		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1821		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1822					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1823					0);
1824
1825		/* Clear magnitude masks */
1826		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1827		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1828		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1829		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1830					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1831					0);
1832
1833		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1834		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1835		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1836		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1837					AR5K_PHY_BIN_MASK2_4_MASK_4,
1838					0);
1839	}
1840}
1841
1842
1843/*****************\
1844* Antenna control *
1845\*****************/
1846
1847static void /*TODO:Boundary check*/
1848ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1849{
1850	if (ah->ah_version != AR5K_AR5210)
1851		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1852}
1853
1854/*
1855 * Enable/disable fast rx antenna diversity
1856 */
1857static void
1858ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1859{
1860	switch (ee_mode) {
1861	case AR5K_EEPROM_MODE_11G:
1862		/* XXX: This is set to
1863		 * disabled on initvals !!! */
1864	case AR5K_EEPROM_MODE_11A:
1865		if (enable)
1866			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1867					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1868		else
1869			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1870					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1871		break;
1872	case AR5K_EEPROM_MODE_11B:
1873		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1874					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1875		break;
1876	default:
1877		return;
1878	}
1879
1880	if (enable) {
1881		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1882				AR5K_PHY_RESTART_DIV_GC, 4);
1883
1884		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1885					AR5K_PHY_FAST_ANT_DIV_EN);
1886	} else {
1887		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1888				AR5K_PHY_RESTART_DIV_GC, 0);
1889
1890		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1891					AR5K_PHY_FAST_ANT_DIV_EN);
1892	}
1893}
1894
1895void
1896ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1897{
1898	u8 ant0, ant1;
1899
1900	/*
1901	 * In case a fixed antenna was set as default
1902	 * use the same switch table twice.
1903	 */
1904	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1905		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1906	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1907		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1908	else {
1909		ant0 = AR5K_ANT_SWTABLE_A;
1910		ant1 = AR5K_ANT_SWTABLE_B;
1911	}
1912
1913	/* Set antenna idle switch table */
1914	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1915			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1916			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1917			AR5K_PHY_ANT_CTL_TXRX_EN));
1918
1919	/* Set antenna switch tables */
1920	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1921		AR5K_PHY_ANT_SWITCH_TABLE_0);
1922	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1923		AR5K_PHY_ANT_SWITCH_TABLE_1);
1924}
1925
1926/*
1927 * Set antenna operating mode
1928 */
1929void
1930ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1931{
1932	struct ieee80211_channel *channel = ah->ah_current_channel;
1933	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1934	bool use_def_for_sg;
1935	u8 def_ant, tx_ant, ee_mode;
1936	u32 sta_id1 = 0;
1937
1938	/* if channel is not initialized yet we can't set the antennas
1939	 * so just store the mode. it will be set on the next reset */
1940	if (channel == NULL) {
1941		ah->ah_ant_mode = ant_mode;
1942		return;
1943	}
1944
1945	def_ant = ah->ah_def_ant;
1946
1947	switch (channel->hw_value & CHANNEL_MODES) {
1948	case CHANNEL_A:
1949	case CHANNEL_T:
1950	case CHANNEL_XR:
1951		ee_mode = AR5K_EEPROM_MODE_11A;
1952		break;
1953	case CHANNEL_G:
1954	case CHANNEL_TG:
1955		ee_mode = AR5K_EEPROM_MODE_11G;
1956		break;
1957	case CHANNEL_B:
1958		ee_mode = AR5K_EEPROM_MODE_11B;
1959		break;
1960	default:
1961		ATH5K_ERR(ah->ah_sc,
1962			"invalid channel: %d\n", channel->center_freq);
1963		return;
1964	}
1965
1966	switch (ant_mode) {
1967	case AR5K_ANTMODE_DEFAULT:
1968		tx_ant = 0;
1969		use_def_for_tx = false;
1970		update_def_on_tx = false;
1971		use_def_for_rts = false;
1972		use_def_for_sg = false;
1973		fast_div = true;
1974		break;
1975	case AR5K_ANTMODE_FIXED_A:
1976		def_ant = 1;
1977		tx_ant = 1;
1978		use_def_for_tx = true;
1979		update_def_on_tx = false;
1980		use_def_for_rts = true;
1981		use_def_for_sg = true;
1982		fast_div = false;
1983		break;
1984	case AR5K_ANTMODE_FIXED_B:
1985		def_ant = 2;
1986		tx_ant = 2;
1987		use_def_for_tx = true;
1988		update_def_on_tx = false;
1989		use_def_for_rts = true;
1990		use_def_for_sg = true;
1991		fast_div = false;
1992		break;
1993	case AR5K_ANTMODE_SINGLE_AP:
1994		def_ant = 1;	/* updated on tx */
1995		tx_ant = 0;
1996		use_def_for_tx = true;
1997		update_def_on_tx = true;
1998		use_def_for_rts = true;
1999		use_def_for_sg = true;
2000		fast_div = true;
2001		break;
2002	case AR5K_ANTMODE_SECTOR_AP:
2003		tx_ant = 1;	/* variable */
2004		use_def_for_tx = false;
2005		update_def_on_tx = false;
2006		use_def_for_rts = true;
2007		use_def_for_sg = false;
2008		fast_div = false;
2009		break;
2010	case AR5K_ANTMODE_SECTOR_STA:
2011		tx_ant = 1;	/* variable */
2012		use_def_for_tx = true;
2013		update_def_on_tx = false;
2014		use_def_for_rts = true;
2015		use_def_for_sg = false;
2016		fast_div = true;
2017		break;
2018	case AR5K_ANTMODE_DEBUG:
2019		def_ant = 1;
2020		tx_ant = 2;
2021		use_def_for_tx = false;
2022		update_def_on_tx = false;
2023		use_def_for_rts = false;
2024		use_def_for_sg = false;
2025		fast_div = false;
2026		break;
2027	default:
2028		return;
2029	}
2030
2031	ah->ah_tx_ant = tx_ant;
2032	ah->ah_ant_mode = ant_mode;
2033	ah->ah_def_ant = def_ant;
2034
2035	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2036	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2037	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2038	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2039
2040	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2041
2042	if (sta_id1)
2043		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2044
2045	ath5k_hw_set_antenna_switch(ah, ee_mode);
2046	/* Note: set diversity before default antenna
2047	 * because it won't work correctly */
2048	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2049	ath5k_hw_set_def_antenna(ah, def_ant);
2050}
2051
2052
2053/****************\
2054* TX power setup *
2055\****************/
2056
2057/*
2058 * Helper functions
2059 */
2060
2061/*
2062 * Do linear interpolation between two given (x, y) points
2063 */
2064static s16
2065ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2066					s16 y_left, s16 y_right)
2067{
2068	s16 ratio, result;
2069
2070	/* Avoid divide by zero and skip interpolation
2071	 * if we have the same point */
2072	if ((x_left == x_right) || (y_left == y_right))
2073		return y_left;
2074
2075	/*
2076	 * Since we use ints and not fps, we need to scale up in
2077	 * order to get a sane ratio value (or else we 'll eg. get
2078	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2079	 * to have some accuracy both for 0.5 and 0.25 steps.
2080	 */
2081	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
2082
2083	/* Now scale down to be in range */
2084	result = y_left + (ratio * (target - x_left) / 100);
2085
2086	return result;
2087}
2088
2089/*
2090 * Find vertical boundary (min pwr) for the linear PCDAC curve.
2091 *
2092 * Since we have the top of the curve and we draw the line below
2093 * until we reach 1 (1 pcdac step) we need to know which point
2094 * (x value) that is so that we don't go below y axis and have negative
2095 * pcdac values when creating the curve, or fill the table with zeroes.
2096 */
2097static s16
2098ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2099				const s16 *pwrL, const s16 *pwrR)
2100{
2101	s8 tmp;
2102	s16 min_pwrL, min_pwrR;
2103	s16 pwr_i;
2104
2105	/* Some vendors write the same pcdac value twice !!! */
2106	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2107		return max(pwrL[0], pwrR[0]);
2108
2109	if (pwrL[0] == pwrL[1])
2110		min_pwrL = pwrL[0];
2111	else {
2112		pwr_i = pwrL[0];
2113		do {
2114			pwr_i--;
2115			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2116							pwrL[0], pwrL[1],
2117							stepL[0], stepL[1]);
2118		} while (tmp > 1);
2119
2120		min_pwrL = pwr_i;
2121	}
2122
2123	if (pwrR[0] == pwrR[1])
2124		min_pwrR = pwrR[0];
2125	else {
2126		pwr_i = pwrR[0];
2127		do {
2128			pwr_i--;
2129			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2130							pwrR[0], pwrR[1],
2131							stepR[0], stepR[1]);
2132		} while (tmp > 1);
2133
2134		min_pwrR = pwr_i;
2135	}
2136
2137	/* Keep the right boundary so that it works for both curves */
2138	return max(min_pwrL, min_pwrR);
2139}
2140
2141/*
2142 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2143 * Power to PCDAC curve.
2144 *
2145 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2146 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2147 * PCDAC/PDADC step for each curve is 64 but we can write more than
2148 * one curves on hw so we can go up to 128 (which is the max step we
2149 * can write on the final table).
2150 *
2151 * We write y values (PCDAC/PDADC steps) on hw.
2152 */
2153static void
2154ath5k_create_power_curve(s16 pmin, s16 pmax,
2155			const s16 *pwr, const u8 *vpd,
2156			u8 num_points,
2157			u8 *vpd_table, u8 type)
2158{
2159	u8 idx[2] = { 0, 1 };
2160	s16 pwr_i = 2*pmin;
2161	int i;
2162
2163	if (num_points < 2)
2164		return;
2165
2166	/* We want the whole line, so adjust boundaries
2167	 * to cover the entire power range. Note that
2168	 * power values are already 0.25dB so no need
2169	 * to multiply pwr_i by 2 */
2170	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2171		pwr_i = pmin;
2172		pmin = 0;
2173		pmax = 63;
2174	}
2175
2176	/* Find surrounding turning points (TPs)
2177	 * and interpolate between them */
2178	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2179	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2180
2181		/* We passed the right TP, move to the next set of TPs
2182		 * if we pass the last TP, extrapolate above using the last
2183		 * two TPs for ratio */
2184		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2185			idx[0]++;
2186			idx[1]++;
2187		}
2188
2189		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2190						pwr[idx[0]], pwr[idx[1]],
2191						vpd[idx[0]], vpd[idx[1]]);
2192
2193		/* Increase by 0.5dB
2194		 * (0.25 dB units) */
2195		pwr_i += 2;
2196	}
2197}
2198
2199/*
2200 * Get the surrounding per-channel power calibration piers
2201 * for a given frequency so that we can interpolate between
2202 * them and come up with an apropriate dataset for our current
2203 * channel.
2204 */
2205static void
2206ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2207			struct ieee80211_channel *channel,
2208			struct ath5k_chan_pcal_info **pcinfo_l,
2209			struct ath5k_chan_pcal_info **pcinfo_r)
2210{
2211	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2212	struct ath5k_chan_pcal_info *pcinfo;
2213	u8 idx_l, idx_r;
2214	u8 mode, max, i;
2215	u32 target = channel->center_freq;
2216
2217	idx_l = 0;
2218	idx_r = 0;
2219
2220	if (!(channel->hw_value & CHANNEL_OFDM)) {
2221		pcinfo = ee->ee_pwr_cal_b;
2222		mode = AR5K_EEPROM_MODE_11B;
2223	} else if (channel->hw_value & CHANNEL_2GHZ) {
2224		pcinfo = ee->ee_pwr_cal_g;
2225		mode = AR5K_EEPROM_MODE_11G;
2226	} else {
2227		pcinfo = ee->ee_pwr_cal_a;
2228		mode = AR5K_EEPROM_MODE_11A;
2229	}
2230	max = ee->ee_n_piers[mode] - 1;
2231
2232	/* Frequency is below our calibrated
2233	 * range. Use the lowest power curve
2234	 * we have */
2235	if (target < pcinfo[0].freq) {
2236		idx_l = idx_r = 0;
2237		goto done;
2238	}
2239
2240	/* Frequency is above our calibrated
2241	 * range. Use the highest power curve
2242	 * we have */
2243	if (target > pcinfo[max].freq) {
2244		idx_l = idx_r = max;
2245		goto done;
2246	}
2247
2248	/* Frequency is inside our calibrated
2249	 * channel range. Pick the surrounding
2250	 * calibration piers so that we can
2251	 * interpolate */
2252	for (i = 0; i <= max; i++) {
2253
2254		/* Frequency matches one of our calibration
2255		 * piers, no need to interpolate, just use
2256		 * that calibration pier */
2257		if (pcinfo[i].freq == target) {
2258			idx_l = idx_r = i;
2259			goto done;
2260		}
2261
2262		/* We found a calibration pier that's above
2263		 * frequency, use this pier and the previous
2264		 * one to interpolate */
2265		if (target < pcinfo[i].freq) {
2266			idx_r = i;
2267			idx_l = idx_r - 1;
2268			goto done;
2269		}
2270	}
2271
2272done:
2273	*pcinfo_l = &pcinfo[idx_l];
2274	*pcinfo_r = &pcinfo[idx_r];
2275}
2276
2277/*
2278 * Get the surrounding per-rate power calibration data
2279 * for a given frequency and interpolate between power
2280 * values to set max target power supported by hw for
2281 * each rate.
2282 */
2283static void
2284ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2285			struct ieee80211_channel *channel,
2286			struct ath5k_rate_pcal_info *rates)
2287{
2288	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2289	struct ath5k_rate_pcal_info *rpinfo;
2290	u8 idx_l, idx_r;
2291	u8 mode, max, i;
2292	u32 target = channel->center_freq;
2293
2294	idx_l = 0;
2295	idx_r = 0;
2296
2297	if (!(channel->hw_value & CHANNEL_OFDM)) {
2298		rpinfo = ee->ee_rate_tpwr_b;
2299		mode = AR5K_EEPROM_MODE_11B;
2300	} else if (channel->hw_value & CHANNEL_2GHZ) {
2301		rpinfo = ee->ee_rate_tpwr_g;
2302		mode = AR5K_EEPROM_MODE_11G;
2303	} else {
2304		rpinfo = ee->ee_rate_tpwr_a;
2305		mode = AR5K_EEPROM_MODE_11A;
2306	}
2307	max = ee->ee_rate_target_pwr_num[mode] - 1;
2308
2309	/* Get the surrounding calibration
2310	 * piers - same as above */
2311	if (target < rpinfo[0].freq) {
2312		idx_l = idx_r = 0;
2313		goto done;
2314	}
2315
2316	if (target > rpinfo[max].freq) {
2317		idx_l = idx_r = max;
2318		goto done;
2319	}
2320
2321	for (i = 0; i <= max; i++) {
2322
2323		if (rpinfo[i].freq == target) {
2324			idx_l = idx_r = i;
2325			goto done;
2326		}
2327
2328		if (target < rpinfo[i].freq) {
2329			idx_r = i;
2330			idx_l = idx_r - 1;
2331			goto done;
2332		}
2333	}
2334
2335done:
2336	/* Now interpolate power value, based on the frequency */
2337	rates->freq = target;
2338
2339	rates->target_power_6to24 =
2340		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2341					rpinfo[idx_r].freq,
2342					rpinfo[idx_l].target_power_6to24,
2343					rpinfo[idx_r].target_power_6to24);
2344
2345	rates->target_power_36 =
2346		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2347					rpinfo[idx_r].freq,
2348					rpinfo[idx_l].target_power_36,
2349					rpinfo[idx_r].target_power_36);
2350
2351	rates->target_power_48 =
2352		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2353					rpinfo[idx_r].freq,
2354					rpinfo[idx_l].target_power_48,
2355					rpinfo[idx_r].target_power_48);
2356
2357	rates->target_power_54 =
2358		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2359					rpinfo[idx_r].freq,
2360					rpinfo[idx_l].target_power_54,
2361					rpinfo[idx_r].target_power_54);
2362}
2363
2364/*
2365 * Get the max edge power for this channel if
2366 * we have such data from EEPROM's Conformance Test
2367 * Limits (CTL), and limit max power if needed.
2368 */
2369static void
2370ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2371			struct ieee80211_channel *channel)
2372{
2373	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2374	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2375	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2376	u8 *ctl_val = ee->ee_ctl;
2377	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2378	s16 edge_pwr = 0;
2379	u8 rep_idx;
2380	u8 i, ctl_mode;
2381	u8 ctl_idx = 0xFF;
2382	u32 target = channel->center_freq;
2383
2384	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2385
2386	switch (channel->hw_value & CHANNEL_MODES) {
2387	case CHANNEL_A:
2388		ctl_mode |= AR5K_CTL_11A;
2389		break;
2390	case CHANNEL_G:
2391		ctl_mode |= AR5K_CTL_11G;
2392		break;
2393	case CHANNEL_B:
2394		ctl_mode |= AR5K_CTL_11B;
2395		break;
2396	case CHANNEL_T:
2397		ctl_mode |= AR5K_CTL_TURBO;
2398		break;
2399	case CHANNEL_TG:
2400		ctl_mode |= AR5K_CTL_TURBOG;
2401		break;
2402	case CHANNEL_XR:
2403		/* Fall through */
2404	default:
2405		return;
2406	}
2407
2408	for (i = 0; i < ee->ee_ctls; i++) {
2409		if (ctl_val[i] == ctl_mode) {
2410			ctl_idx = i;
2411			break;
2412		}
2413	}
2414
2415	/* If we have a CTL dataset available grab it and find the
2416	 * edge power for our frequency */
2417	if (ctl_idx == 0xFF)
2418		return;
2419
2420	/* Edge powers are sorted by frequency from lower
2421	 * to higher. Each CTL corresponds to 8 edge power
2422	 * measurements. */
2423	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2424
2425	/* Don't do boundaries check because we
2426	 * might have more that one bands defined
2427	 * for this mode */
2428
2429	/* Get the edge power that's closer to our
2430	 * frequency */
2431	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2432		rep_idx += i;
2433		if (target <= rep[rep_idx].freq)
2434			edge_pwr = (s16) rep[rep_idx].edge;
2435	}
2436
2437	if (edge_pwr)
2438		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2439}
2440
2441
2442/*
2443 * Power to PCDAC table functions
2444 */
2445
2446/*
2447 * Fill Power to PCDAC table on RF5111
2448 *
2449 * No further processing is needed for RF5111, the only thing we have to
2450 * do is fill the values below and above calibration range since eeprom data
2451 * may not cover the entire PCDAC table.
2452 */
2453static void
2454ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2455							s16 *table_max)
2456{
2457	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2458	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2459	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2460	s16	min_pwr, max_pwr;
2461
2462	/* Get table boundaries */
2463	min_pwr = table_min[0];
2464	pcdac_0 = pcdac_tmp[0];
2465
2466	max_pwr = table_max[0];
2467	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2468
2469	/* Extrapolate below minimum using pcdac_0 */
2470	pcdac_i = 0;
2471	for (i = 0; i < min_pwr; i++)
2472		pcdac_out[pcdac_i++] = pcdac_0;
2473
2474	/* Copy values from pcdac_tmp */
2475	pwr_idx = min_pwr;
2476	for (i = 0 ; pwr_idx <= max_pwr &&
2477	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2478		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2479		pwr_idx++;
2480	}
2481
2482	/* Extrapolate above maximum */
2483	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2484		pcdac_out[pcdac_i++] = pcdac_n;
2485
2486}
2487
2488/*
2489 * Combine available XPD Curves and fill Linear Power to PCDAC table
2490 * on RF5112
2491 *
2492 * RFX112 can have up to 2 curves (one for low txpower range and one for
2493 * higher txpower range). We need to put them both on pcdac_out and place
2494 * them in the correct location. In case we only have one curve available
2495 * just fit it on pcdac_out (it's supposed to cover the entire range of
2496 * available pwr levels since it's always the higher power curve). Extrapolate
2497 * below and above final table if needed.
2498 */
2499static void
2500ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2501						s16 *table_max, u8 pdcurves)
2502{
2503	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2504	u8	*pcdac_low_pwr;
2505	u8	*pcdac_high_pwr;
2506	u8	*pcdac_tmp;
2507	u8	pwr;
2508	s16	max_pwr_idx;
2509	s16	min_pwr_idx;
2510	s16	mid_pwr_idx = 0;
2511	/* Edge flag turs on the 7nth bit on the PCDAC
2512	 * to delcare the higher power curve (force values
2513	 * to be greater than 64). If we only have one curve
2514	 * we don't need to set this, if we have 2 curves and
2515	 * fill the table backwards this can also be used to
2516	 * switch from higher power curve to lower power curve */
2517	u8	edge_flag;
2518	int	i;
2519
2520	/* When we have only one curve available
2521	 * that's the higher power curve. If we have
2522	 * two curves the first is the high power curve
2523	 * and the next is the low power curve. */
2524	if (pdcurves > 1) {
2525		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2526		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2527		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2528		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2529
2530		/* If table size goes beyond 31.5dB, keep the
2531		 * upper 31.5dB range when setting tx power.
2532		 * Note: 126 = 31.5 dB in quarter dB steps */
2533		if (table_max[0] - table_min[1] > 126)
2534			min_pwr_idx = table_max[0] - 126;
2535		else
2536			min_pwr_idx = table_min[1];
2537
2538		/* Since we fill table backwards
2539		 * start from high power curve */
2540		pcdac_tmp = pcdac_high_pwr;
2541
2542		edge_flag = 0x40;
2543	} else {
2544		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2545		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2546		min_pwr_idx = table_min[0];
2547		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2548		pcdac_tmp = pcdac_high_pwr;
2549		edge_flag = 0;
2550	}
2551
2552	/* This is used when setting tx power*/
2553	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2554
2555	/* Fill Power to PCDAC table backwards */
2556	pwr = max_pwr_idx;
2557	for (i = 63; i >= 0; i--) {
2558		/* Entering lower power range, reset
2559		 * edge flag and set pcdac_tmp to lower
2560		 * power curve.*/
2561		if (edge_flag == 0x40 &&
2562		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2563			edge_flag = 0x00;
2564			pcdac_tmp = pcdac_low_pwr;
2565			pwr = mid_pwr_idx/2;
2566		}
2567
2568		/* Don't go below 1, extrapolate below if we have
2569		 * already swithced to the lower power curve -or
2570		 * we only have one curve and edge_flag is zero
2571		 * anyway */
2572		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2573			while (i >= 0) {
2574				pcdac_out[i] = pcdac_out[i + 1];
2575				i--;
2576			}
2577			break;
2578		}
2579
2580		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2581
2582		/* Extrapolate above if pcdac is greater than
2583		 * 126 -this can happen because we OR pcdac_out
2584		 * value with edge_flag on high power curve */
2585		if (pcdac_out[i] > 126)
2586			pcdac_out[i] = 126;
2587
2588		/* Decrease by a 0.5dB step */
2589		pwr--;
2590	}
2591}
2592
2593/* Write PCDAC values on hw */
2594static void
2595ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2596{
2597	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2598	int	i;
2599
2600	/*
2601	 * Write TX power values
2602	 */
2603	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2604		ath5k_hw_reg_write(ah,
2605			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2606			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2607			AR5K_PHY_PCDAC_TXPOWER(i));
2608	}
2609}
2610
2611
2612/*
2613 * Power to PDADC table functions
2614 */
2615
2616/*
2617 * Set the gain boundaries and create final Power to PDADC table
2618 *
2619 * We can have up to 4 pd curves, we need to do a simmilar process
2620 * as we do for RF5112. This time we don't have an edge_flag but we
2621 * set the gain boundaries on a separate register.
2622 */
2623static void
2624ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2625			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2626{
2627	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2628	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2629	u8 *pdadc_tmp;
2630	s16 pdadc_0;
2631	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2632	u8 pd_gain_overlap;
2633
2634	/* Note: Register value is initialized on initvals
2635	 * there is no feedback from hw.
2636	 * XXX: What about pd_gain_overlap from EEPROM ? */
2637	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2638		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2639
2640	/* Create final PDADC table */
2641	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2642		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2643
2644		if (pdg == pdcurves - 1)
2645			/* 2 dB boundary stretch for last
2646			 * (higher power) curve */
2647			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2648		else
2649			/* Set gain boundary in the middle
2650			 * between this curve and the next one */
2651			gain_boundaries[pdg] =
2652				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2653
2654		/* Sanity check in case our 2 db stretch got out of
2655		 * range. */
2656		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2657			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2658
2659		/* For the first curve (lower power)
2660		 * start from 0 dB */
2661		if (pdg == 0)
2662			pdadc_0 = 0;
2663		else
2664			/* For the other curves use the gain overlap */
2665			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2666							pd_gain_overlap;
2667
2668		/* Force each power step to be at least 0.5 dB */
2669		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2670			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2671		else
2672			pwr_step = 1;
2673
2674		/* If pdadc_0 is negative, we need to extrapolate
2675		 * below this pdgain by a number of pwr_steps */
2676		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2677			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2678			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2679			pdadc_0++;
2680		}
2681
2682		/* Set last pwr level, using gain boundaries */
2683		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2684		/* Limit it to be inside pwr range */
2685		table_size = pwr_max[pdg] - pwr_min[pdg];
2686		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2687
2688		/* Fill pdadc_out table */
2689		while (pdadc_0 < max_idx && pdadc_i < 128)
2690			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2691
2692		/* Need to extrapolate above this pdgain? */
2693		if (pdadc_n <= max_idx)
2694			continue;
2695
2696		/* Force each power step to be at least 0.5 dB */
2697		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2698			pwr_step = pdadc_tmp[table_size - 1] -
2699						pdadc_tmp[table_size - 2];
2700		else
2701			pwr_step = 1;
2702
2703		/* Extrapolate above */
2704		while ((pdadc_0 < (s16) pdadc_n) &&
2705		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2706			s16 tmp = pdadc_tmp[table_size - 1] +
2707					(pdadc_0 - max_idx) * pwr_step;
2708			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2709			pdadc_0++;
2710		}
2711	}
2712
2713	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2714		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2715		pdg++;
2716	}
2717
2718	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2719		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2720		pdadc_i++;
2721	}
2722
2723	/* Set gain boundaries */
2724	ath5k_hw_reg_write(ah,
2725		AR5K_REG_SM(pd_gain_overlap,
2726			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2727		AR5K_REG_SM(gain_boundaries[0],
2728			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2729		AR5K_REG_SM(gain_boundaries[1],
2730			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2731		AR5K_REG_SM(gain_boundaries[2],
2732			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2733		AR5K_REG_SM(gain_boundaries[3],
2734			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2735		AR5K_PHY_TPC_RG5);
2736
2737	/* Used for setting rate power table */
2738	ah->ah_txpower.txp_min_idx = pwr_min[0];
2739
2740}
2741
2742/* Write PDADC values on hw */
2743static void
2744ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2745			u8 pdcurves, u8 *pdg_to_idx)
2746{
2747	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2748	u32 reg;
2749	u8 i;
2750
2751	/* Select the right pdgain curves */
2752
2753	/* Clear current settings */
2754	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2755	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2756		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2757		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2758		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2759
2760	/*
2761	 * Use pd_gains curve from eeprom
2762	 *
2763	 * This overrides the default setting from initvals
2764	 * in case some vendors (e.g. Zcomax) don't use the default
2765	 * curves. If we don't honor their settings we 'll get a
2766	 * 5dB (1 * gain overlap ?) drop.
2767	 */
2768	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2769
2770	switch (pdcurves) {
2771	case 3:
2772		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2773		/* Fall through */
2774	case 2:
2775		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2776		/* Fall through */
2777	case 1:
2778		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2779		break;
2780	}
2781	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2782
2783	/*
2784	 * Write TX power values
2785	 */
2786	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2787		ath5k_hw_reg_write(ah,
2788			((pdadc_out[4*i + 0] & 0xff) << 0) |
2789			((pdadc_out[4*i + 1] & 0xff) << 8) |
2790			((pdadc_out[4*i + 2] & 0xff) << 16) |
2791			((pdadc_out[4*i + 3] & 0xff) << 24),
2792			AR5K_PHY_PDADC_TXPOWER(i));
2793	}
2794}
2795
2796
2797/*
2798 * Common code for PCDAC/PDADC tables
2799 */
2800
2801/*
2802 * This is the main function that uses all of the above
2803 * to set PCDAC/PDADC table on hw for the current channel.
2804 * This table is used for tx power calibration on the basband,
2805 * without it we get weird tx power levels and in some cases
2806 * distorted spectral mask
2807 */
2808static int
2809ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2810			struct ieee80211_channel *channel,
2811			u8 ee_mode, u8 type)
2812{
2813	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2814	struct ath5k_chan_pcal_info *pcinfo_L;
2815	struct ath5k_chan_pcal_info *pcinfo_R;
2816	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2817	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2818	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2819	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2820	u8 *tmpL;
2821	u8 *tmpR;
2822	u32 target = channel->center_freq;
2823	int pdg, i;
2824
2825	/* Get surounding freq piers for this channel */
2826	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2827						&pcinfo_L,
2828						&pcinfo_R);
2829
2830	/* Loop over pd gain curves on
2831	 * surounding freq piers by index */
2832	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2833
2834		/* Fill curves in reverse order
2835		 * from lower power (max gain)
2836		 * to higher power. Use curve -> idx
2837		 * backmapping we did on eeprom init */
2838		u8 idx = pdg_curve_to_idx[pdg];
2839
2840		/* Grab the needed curves by index */
2841		pdg_L = &pcinfo_L->pd_curves[idx];
2842		pdg_R = &pcinfo_R->pd_curves[idx];
2843
2844		/* Initialize the temp tables */
2845		tmpL = ah->ah_txpower.tmpL[pdg];
2846		tmpR = ah->ah_txpower.tmpR[pdg];
2847
2848		/* Set curve's x boundaries and create
2849		 * curves so that they cover the same
2850		 * range (if we don't do that one table
2851		 * will have values on some range and the
2852		 * other one won't have any so interpolation
2853		 * will fail) */
2854		table_min[pdg] = min(pdg_L->pd_pwr[0],
2855					pdg_R->pd_pwr[0]) / 2;
2856
2857		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2858				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2859
2860		/* Now create the curves on surrounding channels
2861		 * and interpolate if needed to get the final
2862		 * curve for this gain on this channel */
2863		switch (type) {
2864		case AR5K_PWRTABLE_LINEAR_PCDAC:
2865			/* Override min/max so that we don't loose
2866			 * accuracy (don't divide by 2) */
2867			table_min[pdg] = min(pdg_L->pd_pwr[0],
2868						pdg_R->pd_pwr[0]);
2869
2870			table_max[pdg] =
2871				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2872					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2873
2874			/* Override minimum so that we don't get
2875			 * out of bounds while extrapolating
2876			 * below. Don't do this when we have 2
2877			 * curves and we are on the high power curve
2878			 * because table_min is ok in this case */
2879			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2880
2881				table_min[pdg] =
2882					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2883								pdg_R->pd_step,
2884								pdg_L->pd_pwr,
2885								pdg_R->pd_pwr);
2886
2887				/* Don't go too low because we will
2888				 * miss the upper part of the curve.
2889				 * Note: 126 = 31.5dB (max power supported)
2890				 * in 0.25dB units */
2891				if (table_max[pdg] - table_min[pdg] > 126)
2892					table_min[pdg] = table_max[pdg] - 126;
2893			}
2894
2895			/* Fall through */
2896		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2897		case AR5K_PWRTABLE_PWR_TO_PDADC:
2898
2899			ath5k_create_power_curve(table_min[pdg],
2900						table_max[pdg],
2901						pdg_L->pd_pwr,
2902						pdg_L->pd_step,
2903						pdg_L->pd_points, tmpL, type);
2904
2905			/* We are in a calibration
2906			 * pier, no need to interpolate
2907			 * between freq piers */
2908			if (pcinfo_L == pcinfo_R)
2909				continue;
2910
2911			ath5k_create_power_curve(table_min[pdg],
2912						table_max[pdg],
2913						pdg_R->pd_pwr,
2914						pdg_R->pd_step,
2915						pdg_R->pd_points, tmpR, type);
2916			break;
2917		default:
2918			return -EINVAL;
2919		}
2920
2921		/* Interpolate between curves
2922		 * of surounding freq piers to
2923		 * get the final curve for this
2924		 * pd gain. Re-use tmpL for interpolation
2925		 * output */
2926		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2927		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2928			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2929							(s16) pcinfo_L->freq,
2930							(s16) pcinfo_R->freq,
2931							(s16) tmpL[i],
2932							(s16) tmpR[i]);
2933		}
2934	}
2935
2936	/* Now we have a set of curves for this
2937	 * channel on tmpL (x range is table_max - table_min
2938	 * and y values are tmpL[pdg][]) sorted in the same
2939	 * order as EEPROM (because we've used the backmapping).
2940	 * So for RF5112 it's from higher power to lower power
2941	 * and for RF2413 it's from lower power to higher power.
2942	 * For RF5111 we only have one curve. */
2943
2944	/* Fill min and max power levels for this
2945	 * channel by interpolating the values on
2946	 * surounding channels to complete the dataset */
2947	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2948					(s16) pcinfo_L->freq,
2949					(s16) pcinfo_R->freq,
2950					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2951
2952	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2953					(s16) pcinfo_L->freq,
2954					(s16) pcinfo_R->freq,
2955					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2956
2957	/* We are ready to go, fill PCDAC/PDADC
2958	 * table and write settings on hardware */
2959	switch (type) {
2960	case AR5K_PWRTABLE_LINEAR_PCDAC:
2961		/* For RF5112 we can have one or two curves
2962		 * and each curve covers a certain power lvl
2963		 * range so we need to do some more processing */
2964		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2965						ee->ee_pd_gains[ee_mode]);
2966
2967		/* Set txp.offset so that we can
2968		 * match max power value with max
2969		 * table index */
2970		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2971
2972		/* Write settings on hw */
2973		ath5k_setup_pcdac_table(ah);
2974		break;
2975	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2976		/* We are done for RF5111 since it has only
2977		 * one curve, just fit the curve on the table */
2978		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2979
2980		/* No rate powertable adjustment for RF5111 */
2981		ah->ah_txpower.txp_min_idx = 0;
2982		ah->ah_txpower.txp_offset = 0;
2983
2984		/* Write settings on hw */
2985		ath5k_setup_pcdac_table(ah);
2986		break;
2987	case AR5K_PWRTABLE_PWR_TO_PDADC:
2988		/* Set PDADC boundaries and fill
2989		 * final PDADC table */
2990		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2991						ee->ee_pd_gains[ee_mode]);
2992
2993		/* Write settings on hw */
2994		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2995
2996		/* Set txp.offset, note that table_min
2997		 * can be negative */
2998		ah->ah_txpower.txp_offset = table_min[0];
2999		break;
3000	default:
3001		return -EINVAL;
3002	}
3003
3004	return 0;
3005}
3006
3007
3008/*
3009 * Per-rate tx power setting
3010 *
3011 * This is the code that sets the desired tx power (below
3012 * maximum) on hw for each rate (we also have TPC that sets
3013 * power per packet). We do that by providing an index on the
3014 * PCDAC/PDADC table we set up.
3015 */
3016
3017/*
3018 * Set rate power table
3019 *
3020 * For now we only limit txpower based on maximum tx power
3021 * supported by hw (what's inside rate_info). We need to limit
3022 * this even more, based on regulatory domain etc.
3023 *
3024 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3025 * and is indexed as follows:
3026 * rates[0] - rates[7] -> OFDM rates
3027 * rates[8] - rates[14] -> CCK rates
3028 * rates[15] -> XR rates (they all have the same power)
3029 */
3030static void
3031ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3032			struct ath5k_rate_pcal_info *rate_info,
3033			u8 ee_mode)
3034{
3035	unsigned int i;
3036	u16 *rates;
3037
3038	/* max_pwr is power level we got from driver/user in 0.5dB
3039	 * units, switch to 0.25dB units so we can compare */
3040	max_pwr *= 2;
3041	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3042
3043	/* apply rate limits */
3044	rates = ah->ah_txpower.txp_rates_power_table;
3045
3046	/* OFDM rates 6 to 24Mb/s */
3047	for (i = 0; i < 5; i++)
3048		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3049
3050	/* Rest OFDM rates */
3051	rates[5] = min(rates[0], rate_info->target_power_36);
3052	rates[6] = min(rates[0], rate_info->target_power_48);
3053	rates[7] = min(rates[0], rate_info->target_power_54);
3054
3055	/* CCK rates */
3056	/* 1L */
3057	rates[8] = min(rates[0], rate_info->target_power_6to24);
3058	/* 2L */
3059	rates[9] = min(rates[0], rate_info->target_power_36);
3060	/* 2S */
3061	rates[10] = min(rates[0], rate_info->target_power_36);
3062	/* 5L */
3063	rates[11] = min(rates[0], rate_info->target_power_48);
3064	/* 5S */
3065	rates[12] = min(rates[0], rate_info->target_power_48);
3066	/* 11L */
3067	rates[13] = min(rates[0], rate_info->target_power_54);
3068	/* 11S */
3069	rates[14] = min(rates[0], rate_info->target_power_54);
3070
3071	/* XR rates */
3072	rates[15] = min(rates[0], rate_info->target_power_6to24);
3073
3074	/* CCK rates have different peak to average ratio
3075	 * so we have to tweak their power so that gainf
3076	 * correction works ok. For this we use OFDM to
3077	 * CCK delta from eeprom */
3078	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3079	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3080		for (i = 8; i <= 15; i++)
3081			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3082
3083	/* Now that we have all rates setup use table offset to
3084	 * match the power range set by user with the power indices
3085	 * on PCDAC/PDADC table */
3086	for (i = 0; i < 16; i++) {
3087		rates[i] += ah->ah_txpower.txp_offset;
3088		/* Don't get out of bounds */
3089		if (rates[i] > 63)
3090			rates[i] = 63;
3091	}
3092
3093	/* Min/max in 0.25dB units */
3094	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3095	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
3096	ah->ah_txpower.txp_ofdm = rates[7];
3097}
3098
3099
3100/*
3101 * Set transmission power
3102 */
3103static int
3104ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3105		u8 ee_mode, u8 txpower, bool fast)
3106{
3107	struct ath5k_rate_pcal_info rate_info;
3108	u8 type;
3109	int ret;
3110
3111	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3112		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3113		return -EINVAL;
3114	}
3115
3116	/* Reset TX power values */
3117	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3118	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3119	ah->ah_txpower.txp_min_pwr = 0;
3120	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3121
3122	/* Initialize TX power table */
3123	switch (ah->ah_radio) {
3124	case AR5K_RF5110:
3125		/* TODO */
3126		return 0;
3127	case AR5K_RF5111:
3128		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3129		break;
3130	case AR5K_RF5112:
3131		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3132		break;
3133	case AR5K_RF2413:
3134	case AR5K_RF5413:
3135	case AR5K_RF2316:
3136	case AR5K_RF2317:
3137	case AR5K_RF2425:
3138		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3139		break;
3140	default:
3141		return -EINVAL;
3142	}
3143
3144	/* If fast is set it means we are on the same channel/mode
3145	 * so there is no need to recalculate the powertable, we 'll
3146	 * just use the cached one */
3147	if (!fast) {
3148		ret = ath5k_setup_channel_powertable(ah, channel,
3149							ee_mode, type);
3150			if (ret)
3151				return ret;
3152	}
3153
3154	/* Limit max power if we have a CTL available */
3155	ath5k_get_max_ctl_power(ah, channel);
3156
3157	/* FIXME: Antenna reduction stuff */
3158
3159	/* FIXME: Limit power on turbo modes */
3160
3161	/* FIXME: TPC scale reduction */
3162
3163	/* Get surounding channels for per-rate power table
3164	 * calibration */
3165	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3166
3167	/* Setup rate power table */
3168	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3169
3170	/* Write rate power table on hw */
3171	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3172		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3173		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3174
3175	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3176		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3177		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3178
3179	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3180		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3181		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3182
3183	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3184		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3185		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3186
3187	/* FIXME: TPC support */
3188	if (ah->ah_txpower.txp_tpc) {
3189		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3190			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3191
3192		ath5k_hw_reg_write(ah,
3193			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3194			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3195			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3196			AR5K_TPC);
3197	} else {
3198		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3199			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3200	}
3201
3202	return 0;
3203}
3204
3205int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3206{
3207	/*Just a try M.F.*/
3208	struct ieee80211_channel *channel = ah->ah_current_channel;
3209	u8 ee_mode;
3210
3211	switch (channel->hw_value & CHANNEL_MODES) {
3212	case CHANNEL_A:
3213	case CHANNEL_T:
3214	case CHANNEL_XR:
3215		ee_mode = AR5K_EEPROM_MODE_11A;
3216		break;
3217	case CHANNEL_G:
3218	case CHANNEL_TG:
3219		ee_mode = AR5K_EEPROM_MODE_11G;
3220		break;
3221	case CHANNEL_B:
3222		ee_mode = AR5K_EEPROM_MODE_11B;
3223		break;
3224	default:
3225		ATH5K_ERR(ah->ah_sc,
3226			"invalid channel: %d\n", channel->center_freq);
3227		return -EINVAL;
3228	}
3229
3230	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3231		"changing txpower to %d\n", txpower);
3232
3233	return ath5k_hw_txpower(ah, channel, ee_mode, txpower, true);
3234}
3235
3236/*************\
3237 Init function
3238\*************/
3239
3240int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3241				u8 mode, u8 ee_mode, u8 freq, bool fast)
3242{
3243	struct ieee80211_channel *curr_channel;
3244	int ret, i;
3245	u32 phy_tst1;
3246	bool fast_txp;
3247	ret = 0;
3248
3249	/*
3250	 * Sanity check for fast flag
3251	 * Don't try fast channel change when changing modulation
3252	 * mode/band. We check for chip compatibility on
3253	 * ath5k_hw_reset.
3254	 */
3255	curr_channel = ah->ah_current_channel;
3256	if (fast && (channel->hw_value != curr_channel->hw_value))
3257		return -EINVAL;
3258
3259	/*
3260	 * On fast channel change we only set the synth parameters
3261	 * while PHY is running, enable calibration and skip the rest.
3262	 */
3263	if (fast) {
3264		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3265				    AR5K_PHY_RFBUS_REQ_REQUEST);
3266		for (i = 0; i < 100; i++) {
3267			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3268				break;
3269			udelay(5);
3270		}
3271		/* Failed */
3272		if (i >= 100)
3273			return -EIO;
3274	}
3275
3276	/*
3277	 * If we don't change channel/mode skip
3278	 * tx powertable calculation and use the
3279	 * cached one.
3280	 */
3281	if ((channel->hw_value == curr_channel->hw_value) &&
3282	(channel->center_freq == curr_channel->center_freq))
3283		fast_txp = true;
3284	else
3285		fast_txp = false;
3286
3287	/*
3288	 * Set TX power
3289	 *
3290	 * Note: We need to do that before we set
3291	 * RF buffer settings on 5211/5212+ so that we
3292	 * properly set curve indices.
3293	 */
3294	ret = ath5k_hw_txpower(ah, channel, ee_mode,
3295				ah->ah_txpower.txp_max_pwr / 2,
3296				fast_txp);
3297	if (ret)
3298		return ret;
3299
3300	/*
3301	 * For 5210 we do all initialization using
3302	 * initvals, so we don't have to modify
3303	 * any settings (5210 also only supports
3304	 * a/aturbo modes)
3305	 */
3306	if ((ah->ah_version != AR5K_AR5210) && !fast) {
3307
3308		/*
3309		 * Write initial RF gain settings
3310		 * This should work for both 5111/5112
3311		 */
3312		ret = ath5k_hw_rfgain_init(ah, freq);
3313		if (ret)
3314			return ret;
3315
3316		mdelay(1);
3317
3318		/*
3319		 * Write RF buffer
3320		 */
3321		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3322		if (ret)
3323			return ret;
3324
3325		/* Write OFDM timings on 5212*/
3326		if (ah->ah_version == AR5K_AR5212 &&
3327			channel->hw_value & CHANNEL_OFDM) {
3328
3329			ret = ath5k_hw_write_ofdm_timings(ah, channel);
3330			if (ret)
3331				return ret;
3332
3333			/* Spur info is available only from EEPROM versions
3334			 * greater than 5.3, but the EEPROM routines will use
3335			 * static values for older versions */
3336			if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3337				ath5k_hw_set_spur_mitigation_filter(ah,
3338								    channel);
3339		}
3340
3341		/*Enable/disable 802.11b mode on 5111
3342		(enable 2111 frequency converter + CCK)*/
3343		if (ah->ah_radio == AR5K_RF5111) {
3344			if (mode == AR5K_MODE_11B)
3345				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3346				    AR5K_TXCFG_B_MODE);
3347			else
3348				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3349				    AR5K_TXCFG_B_MODE);
3350		}
3351
3352	} else if (ah->ah_version == AR5K_AR5210) {
3353		mdelay(1);
3354		/* Disable phy and wait */
3355		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3356		mdelay(1);
3357	}
3358
3359	/* Set channel on PHY */
3360	ret = ath5k_hw_channel(ah, channel);
3361	if (ret)
3362		return ret;
3363
3364	/*
3365	 * Enable the PHY and wait until completion
3366	 * This includes BaseBand and Synthesizer
3367	 * activation.
3368	 */
3369	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3370
3371	/*
3372	 * On 5211+ read activation -> rx delay
3373	 * and use it.
3374	 */
3375	if (ah->ah_version != AR5K_AR5210) {
3376		u32 delay;
3377		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
3378			AR5K_PHY_RX_DELAY_M;
3379		delay = (channel->hw_value & CHANNEL_CCK) ?
3380			((delay << 2) / 22) : (delay / 10);
3381		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
3382			delay = delay << 1;
3383		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
3384			delay = delay << 2;
3385		/* XXX: /2 on turbo ? Let's be safe
3386		 * for now */
3387		udelay(100 + delay);
3388	} else {
3389		mdelay(1);
3390	}
3391
3392	if (fast)
3393		/*
3394		 * Release RF Bus grant
3395		 */
3396		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3397				    AR5K_PHY_RFBUS_REQ_REQUEST);
3398	else {
3399		/*
3400		 * Perform ADC test to see if baseband is ready
3401		 * Set tx hold and check adc test register
3402		 */
3403		phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3404		ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3405		for (i = 0; i <= 20; i++) {
3406			if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3407				break;
3408			udelay(200);
3409		}
3410		ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3411	}
3412
3413	/*
3414	 * Start automatic gain control calibration
3415	 *
3416	 * During AGC calibration RX path is re-routed to
3417	 * a power detector so we don't receive anything.
3418	 *
3419	 * This method is used to calibrate some static offsets
3420	 * used together with on-the fly I/Q calibration (the
3421	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3422	 * interrupt rx path.
3423	 *
3424	 * While rx path is re-routed to the power detector we also
3425	 * start a noise floor calibration to measure the
3426	 * card's noise floor (the noise we measure when we are not
3427	 * transmitting or receiving anything).
3428	 *
3429	 * If we are in a noisy environment, AGC calibration may time
3430	 * out and/or noise floor calibration might timeout.
3431	 */
3432	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3433				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3434
3435	/* At the same time start I/Q calibration for QAM constellation
3436	 * -no need for CCK- */
3437	ah->ah_calibration = false;
3438	if (!(mode == AR5K_MODE_11B)) {
3439		ah->ah_calibration = true;
3440		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3441				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3442		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3443				AR5K_PHY_IQ_RUN);
3444	}
3445
3446	/* Wait for gain calibration to finish (we check for I/Q calibration
3447	 * during ath5k_phy_calibrate) */
3448	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3449			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3450		ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
3451			channel->center_freq);
3452	}
3453
3454	/* Restore antenna mode */
3455	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3456
3457	return ret;
3458}
3459