[go: nahoru, domu]

phy.c revision 9320b5c4a7260d9593102f378201d17e3f030739
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
24#include <linux/slab.h>
25
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
29#include "rfbuffer.h"
30#include "rfgain.h"
31
32
33/******************\
34* Helper functions *
35\******************/
36
37/*
38 * Get the PHY Chip revision
39 */
40u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
41{
42	unsigned int i;
43	u32 srev;
44	u16 ret;
45
46	/*
47	 * Set the radio chip access register
48	 */
49	switch (chan) {
50	case CHANNEL_2GHZ:
51		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
52		break;
53	case CHANNEL_5GHZ:
54		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
55		break;
56	default:
57		return 0;
58	}
59
60	mdelay(2);
61
62	/* ...wait until PHY is ready and read the selected radio revision */
63	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
64
65	for (i = 0; i < 8; i++)
66		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
67
68	if (ah->ah_version == AR5K_AR5210) {
69		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
70		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
71	} else {
72		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
73		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
74				((srev & 0x0f) << 4), 8);
75	}
76
77	/* Reset to the 5GHz mode */
78	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
79
80	return ret;
81}
82
83/*
84 * Check if a channel is supported
85 */
86bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
87{
88	/* Check if the channel is in our supported range */
89	if (flags & CHANNEL_2GHZ) {
90		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
91		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
92			return true;
93	} else if (flags & CHANNEL_5GHZ)
94		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
95		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
96			return true;
97
98	return false;
99}
100
101bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
102				struct ieee80211_channel *channel)
103{
104	u8 refclk_freq;
105
106	if ((ah->ah_radio == AR5K_RF5112) ||
107	(ah->ah_radio == AR5K_RF5413) ||
108	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
109		refclk_freq = 40;
110	else
111		refclk_freq = 32;
112
113	if ((channel->center_freq % refclk_freq != 0) &&
114	((channel->center_freq % refclk_freq < 10) ||
115	(channel->center_freq % refclk_freq > 22)))
116		return true;
117	else
118		return false;
119}
120
121/*
122 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
123 */
124static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
125					const struct ath5k_rf_reg *rf_regs,
126					u32 val, u8 reg_id, bool set)
127{
128	const struct ath5k_rf_reg *rfreg = NULL;
129	u8 offset, bank, num_bits, col, position;
130	u16 entry;
131	u32 mask, data, last_bit, bits_shifted, first_bit;
132	u32 *rfb;
133	s32 bits_left;
134	int i;
135
136	data = 0;
137	rfb = ah->ah_rf_banks;
138
139	for (i = 0; i < ah->ah_rf_regs_count; i++) {
140		if (rf_regs[i].index == reg_id) {
141			rfreg = &rf_regs[i];
142			break;
143		}
144	}
145
146	if (rfb == NULL || rfreg == NULL) {
147		ATH5K_PRINTF("Rf register not found!\n");
148		/* should not happen */
149		return 0;
150	}
151
152	bank = rfreg->bank;
153	num_bits = rfreg->field.len;
154	first_bit = rfreg->field.pos;
155	col = rfreg->field.col;
156
157	/* first_bit is an offset from bank's
158	 * start. Since we have all banks on
159	 * the same array, we use this offset
160	 * to mark each bank's start */
161	offset = ah->ah_offset[bank];
162
163	/* Boundary check */
164	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
165		ATH5K_PRINTF("invalid values at offset %u\n", offset);
166		return 0;
167	}
168
169	entry = ((first_bit - 1) / 8) + offset;
170	position = (first_bit - 1) % 8;
171
172	if (set)
173		data = ath5k_hw_bitswap(val, num_bits);
174
175	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
176	position = 0, entry++) {
177
178		last_bit = (position + bits_left > 8) ? 8 :
179					position + bits_left;
180
181		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
182								(col * 8);
183
184		if (set) {
185			rfb[entry] &= ~mask;
186			rfb[entry] |= ((data << position) << (col * 8)) & mask;
187			data >>= (8 - position);
188		} else {
189			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
190				<< bits_shifted;
191			bits_shifted += last_bit - position;
192		}
193
194		bits_left -= 8 - position;
195	}
196
197	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
198
199	return data;
200}
201
202/**
203 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
204 *
205 * @ah: the &struct ath5k_hw
206 * @channel: the currently set channel upon reset
207 *
208 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
209 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
210 *
211 * Since delta slope is floating point we split it on its exponent and
212 * mantissa and provide these values on hw.
213 *
214 * For more infos i think this patent is related
215 * http://www.freepatentsonline.com/7184495.html
216 */
217static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
218	struct ieee80211_channel *channel)
219{
220	/* Get exponent and mantissa and set it */
221	u32 coef_scaled, coef_exp, coef_man,
222		ds_coef_exp, ds_coef_man, clock;
223
224	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
225		!(channel->hw_value & CHANNEL_OFDM));
226
227	/* Get coefficient
228	 * ALGO: coef = (5 * clock / carrier_freq) / 2
229	 * we scale coef by shifting clock value by 24 for
230	 * better precision since we use integers */
231	/* TODO: Half/quarter rate */
232	clock =  (channel->hw_value & CHANNEL_TURBO) ? 80 : 40;
233	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
234
235	/* Get exponent
236	 * ALGO: coef_exp = 14 - highest set bit position */
237	coef_exp = ilog2(coef_scaled);
238
239	/* Doesn't make sense if it's zero*/
240	if (!coef_scaled || !coef_exp)
241		return -EINVAL;
242
243	/* Note: we've shifted coef_scaled by 24 */
244	coef_exp = 14 - (coef_exp - 24);
245
246
247	/* Get mantissa (significant digits)
248	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
249	coef_man = coef_scaled +
250		(1 << (24 - coef_exp - 1));
251
252	/* Calculate delta slope coefficient exponent
253	 * and mantissa (remove scaling) and set them on hw */
254	ds_coef_man = coef_man >> (24 - coef_exp);
255	ds_coef_exp = coef_exp - 16;
256
257	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
258		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
259	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
260		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
261
262	return 0;
263}
264
265int ath5k_hw_phy_disable(struct ath5k_hw *ah)
266{
267	/*Just a try M.F.*/
268	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
269
270	return 0;
271}
272
273
274/**********************\
275* RF Gain optimization *
276\**********************/
277
278/*
279 * This code is used to optimize RF gain on different environments
280 * (temperature mostly) based on feedback from a power detector.
281 *
282 * It's only used on RF5111 and RF5112, later RF chips seem to have
283 * auto adjustment on hw -notice they have a much smaller BANK 7 and
284 * no gain optimization ladder-.
285 *
286 * For more infos check out this patent doc
287 * http://www.freepatentsonline.com/7400691.html
288 *
289 * This paper describes power drops as seen on the receiver due to
290 * probe packets
291 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
292 * %20of%20Power%20Control.pdf
293 *
294 * And this is the MadWiFi bug entry related to the above
295 * http://madwifi-project.org/ticket/1659
296 * with various measurements and diagrams
297 *
298 * TODO: Deal with power drops due to probes by setting an apropriate
299 * tx power on the probe packets ! Make this part of the calibration process.
300 */
301
302/* Initialize ah_gain durring attach */
303int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
304{
305	/* Initialize the gain optimization values */
306	switch (ah->ah_radio) {
307	case AR5K_RF5111:
308		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
309		ah->ah_gain.g_low = 20;
310		ah->ah_gain.g_high = 35;
311		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
312		break;
313	case AR5K_RF5112:
314		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
315		ah->ah_gain.g_low = 20;
316		ah->ah_gain.g_high = 85;
317		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
318		break;
319	default:
320		return -EINVAL;
321	}
322
323	return 0;
324}
325
326/* Schedule a gain probe check on the next transmited packet.
327 * That means our next packet is going to be sent with lower
328 * tx power and a Peak to Average Power Detector (PAPD) will try
329 * to measure the gain.
330 *
331 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
332 * just after we enable the probe so that we don't mess with
333 * standard traffic ? Maybe it's time to use sw interrupts and
334 * a probe tasklet !!!
335 */
336static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
337{
338
339	/* Skip if gain calibration is inactive or
340	 * we already handle a probe request */
341	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
342		return;
343
344	/* Send the packet with 2dB below max power as
345	 * patent doc suggest */
346	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
347			AR5K_PHY_PAPD_PROBE_TXPOWER) |
348			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
349
350	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
351
352}
353
354/* Calculate gain_F measurement correction
355 * based on the current step for RF5112 rev. 2 */
356static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
357{
358	u32 mix, step;
359	u32 *rf;
360	const struct ath5k_gain_opt *go;
361	const struct ath5k_gain_opt_step *g_step;
362	const struct ath5k_rf_reg *rf_regs;
363
364	/* Only RF5112 Rev. 2 supports it */
365	if ((ah->ah_radio != AR5K_RF5112) ||
366	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
367		return 0;
368
369	go = &rfgain_opt_5112;
370	rf_regs = rf_regs_5112a;
371	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
372
373	g_step = &go->go_step[ah->ah_gain.g_step_idx];
374
375	if (ah->ah_rf_banks == NULL)
376		return 0;
377
378	rf = ah->ah_rf_banks;
379	ah->ah_gain.g_f_corr = 0;
380
381	/* No VGA (Variable Gain Amplifier) override, skip */
382	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
383		return 0;
384
385	/* Mix gain stepping */
386	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
387
388	/* Mix gain override */
389	mix = g_step->gos_param[0];
390
391	switch (mix) {
392	case 3:
393		ah->ah_gain.g_f_corr = step * 2;
394		break;
395	case 2:
396		ah->ah_gain.g_f_corr = (step - 5) * 2;
397		break;
398	case 1:
399		ah->ah_gain.g_f_corr = step;
400		break;
401	default:
402		ah->ah_gain.g_f_corr = 0;
403		break;
404	}
405
406	return ah->ah_gain.g_f_corr;
407}
408
409/* Check if current gain_F measurement is in the range of our
410 * power detector windows. If we get a measurement outside range
411 * we know it's not accurate (detectors can't measure anything outside
412 * their detection window) so we must ignore it */
413static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
414{
415	const struct ath5k_rf_reg *rf_regs;
416	u32 step, mix_ovr, level[4];
417	u32 *rf;
418
419	if (ah->ah_rf_banks == NULL)
420		return false;
421
422	rf = ah->ah_rf_banks;
423
424	if (ah->ah_radio == AR5K_RF5111) {
425
426		rf_regs = rf_regs_5111;
427		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
428
429		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
430			false);
431
432		level[0] = 0;
433		level[1] = (step == 63) ? 50 : step + 4;
434		level[2] = (step != 63) ? 64 : level[0];
435		level[3] = level[2] + 50 ;
436
437		ah->ah_gain.g_high = level[3] -
438			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
439		ah->ah_gain.g_low = level[0] +
440			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
441	} else {
442
443		rf_regs = rf_regs_5112;
444		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
445
446		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
447			false);
448
449		level[0] = level[2] = 0;
450
451		if (mix_ovr == 1) {
452			level[1] = level[3] = 83;
453		} else {
454			level[1] = level[3] = 107;
455			ah->ah_gain.g_high = 55;
456		}
457	}
458
459	return (ah->ah_gain.g_current >= level[0] &&
460			ah->ah_gain.g_current <= level[1]) ||
461		(ah->ah_gain.g_current >= level[2] &&
462			ah->ah_gain.g_current <= level[3]);
463}
464
465/* Perform gain_F adjustment by choosing the right set
466 * of parameters from RF gain optimization ladder */
467static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
468{
469	const struct ath5k_gain_opt *go;
470	const struct ath5k_gain_opt_step *g_step;
471	int ret = 0;
472
473	switch (ah->ah_radio) {
474	case AR5K_RF5111:
475		go = &rfgain_opt_5111;
476		break;
477	case AR5K_RF5112:
478		go = &rfgain_opt_5112;
479		break;
480	default:
481		return 0;
482	}
483
484	g_step = &go->go_step[ah->ah_gain.g_step_idx];
485
486	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
487
488		/* Reached maximum */
489		if (ah->ah_gain.g_step_idx == 0)
490			return -1;
491
492		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
493				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
494				ah->ah_gain.g_step_idx > 0;
495				g_step = &go->go_step[ah->ah_gain.g_step_idx])
496			ah->ah_gain.g_target -= 2 *
497			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
498			    g_step->gos_gain);
499
500		ret = 1;
501		goto done;
502	}
503
504	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
505
506		/* Reached minimum */
507		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
508			return -2;
509
510		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
511				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
512				ah->ah_gain.g_step_idx < go->go_steps_count-1;
513				g_step = &go->go_step[ah->ah_gain.g_step_idx])
514			ah->ah_gain.g_target -= 2 *
515			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
516			    g_step->gos_gain);
517
518		ret = 2;
519		goto done;
520	}
521
522done:
523	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
524		"ret %d, gain step %u, current gain %u, target gain %u\n",
525		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
526		ah->ah_gain.g_target);
527
528	return ret;
529}
530
531/* Main callback for thermal RF gain calibration engine
532 * Check for a new gain reading and schedule an adjustment
533 * if needed.
534 *
535 * TODO: Use sw interrupt to schedule reset if gain_F needs
536 * adjustment */
537enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
538{
539	u32 data, type;
540	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
541
542	if (ah->ah_rf_banks == NULL ||
543	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
544		return AR5K_RFGAIN_INACTIVE;
545
546	/* No check requested, either engine is inactive
547	 * or an adjustment is already requested */
548	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
549		goto done;
550
551	/* Read the PAPD (Peak to Average Power Detector)
552	 * register */
553	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
554
555	/* No probe is scheduled, read gain_F measurement */
556	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
557		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
558		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
559
560		/* If tx packet is CCK correct the gain_F measurement
561		 * by cck ofdm gain delta */
562		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
563			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
564				ah->ah_gain.g_current +=
565					ee->ee_cck_ofdm_gain_delta;
566			else
567				ah->ah_gain.g_current +=
568					AR5K_GAIN_CCK_PROBE_CORR;
569		}
570
571		/* Further correct gain_F measurement for
572		 * RF5112A radios */
573		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
574			ath5k_hw_rf_gainf_corr(ah);
575			ah->ah_gain.g_current =
576				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
577				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
578				0;
579		}
580
581		/* Check if measurement is ok and if we need
582		 * to adjust gain, schedule a gain adjustment,
583		 * else switch back to the acive state */
584		if (ath5k_hw_rf_check_gainf_readback(ah) &&
585		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
586		ath5k_hw_rf_gainf_adjust(ah)) {
587			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
588		} else {
589			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
590		}
591	}
592
593done:
594	return ah->ah_gain.g_state;
595}
596
597/* Write initial RF gain table to set the RF sensitivity
598 * this one works on all RF chips and has nothing to do
599 * with gain_F calibration */
600static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
601{
602	const struct ath5k_ini_rfgain *ath5k_rfg;
603	unsigned int i, size;
604
605	switch (ah->ah_radio) {
606	case AR5K_RF5111:
607		ath5k_rfg = rfgain_5111;
608		size = ARRAY_SIZE(rfgain_5111);
609		break;
610	case AR5K_RF5112:
611		ath5k_rfg = rfgain_5112;
612		size = ARRAY_SIZE(rfgain_5112);
613		break;
614	case AR5K_RF2413:
615		ath5k_rfg = rfgain_2413;
616		size = ARRAY_SIZE(rfgain_2413);
617		break;
618	case AR5K_RF2316:
619		ath5k_rfg = rfgain_2316;
620		size = ARRAY_SIZE(rfgain_2316);
621		break;
622	case AR5K_RF5413:
623		ath5k_rfg = rfgain_5413;
624		size = ARRAY_SIZE(rfgain_5413);
625		break;
626	case AR5K_RF2317:
627	case AR5K_RF2425:
628		ath5k_rfg = rfgain_2425;
629		size = ARRAY_SIZE(rfgain_2425);
630		break;
631	default:
632		return -EINVAL;
633	}
634
635	switch (freq) {
636	case AR5K_INI_RFGAIN_2GHZ:
637	case AR5K_INI_RFGAIN_5GHZ:
638		break;
639	default:
640		return -EINVAL;
641	}
642
643	for (i = 0; i < size; i++) {
644		AR5K_REG_WAIT(i);
645		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
646			(u32)ath5k_rfg[i].rfg_register);
647	}
648
649	return 0;
650}
651
652
653
654/********************\
655* RF Registers setup *
656\********************/
657
658/*
659 * Setup RF registers by writing RF buffer on hw
660 */
661static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
662	struct ieee80211_channel *channel, unsigned int mode)
663{
664	const struct ath5k_rf_reg *rf_regs;
665	const struct ath5k_ini_rfbuffer *ini_rfb;
666	const struct ath5k_gain_opt *go = NULL;
667	const struct ath5k_gain_opt_step *g_step;
668	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
669	u8 ee_mode = 0;
670	u32 *rfb;
671	int i, obdb = -1, bank = -1;
672
673	switch (ah->ah_radio) {
674	case AR5K_RF5111:
675		rf_regs = rf_regs_5111;
676		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
677		ini_rfb = rfb_5111;
678		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
679		go = &rfgain_opt_5111;
680		break;
681	case AR5K_RF5112:
682		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
683			rf_regs = rf_regs_5112a;
684			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
685			ini_rfb = rfb_5112a;
686			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
687		} else {
688			rf_regs = rf_regs_5112;
689			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
690			ini_rfb = rfb_5112;
691			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
692		}
693		go = &rfgain_opt_5112;
694		break;
695	case AR5K_RF2413:
696		rf_regs = rf_regs_2413;
697		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
698		ini_rfb = rfb_2413;
699		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
700		break;
701	case AR5K_RF2316:
702		rf_regs = rf_regs_2316;
703		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
704		ini_rfb = rfb_2316;
705		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
706		break;
707	case AR5K_RF5413:
708		rf_regs = rf_regs_5413;
709		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
710		ini_rfb = rfb_5413;
711		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
712		break;
713	case AR5K_RF2317:
714		rf_regs = rf_regs_2425;
715		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
716		ini_rfb = rfb_2317;
717		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
718		break;
719	case AR5K_RF2425:
720		rf_regs = rf_regs_2425;
721		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
722		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
723			ini_rfb = rfb_2425;
724			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
725		} else {
726			ini_rfb = rfb_2417;
727			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
728		}
729		break;
730	default:
731		return -EINVAL;
732	}
733
734	/* If it's the first time we set RF buffer, allocate
735	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
736	 * we set above */
737	if (ah->ah_rf_banks == NULL) {
738		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
739								GFP_KERNEL);
740		if (ah->ah_rf_banks == NULL) {
741			ATH5K_ERR(ah->ah_sc, "out of memory\n");
742			return -ENOMEM;
743		}
744	}
745
746	/* Copy values to modify them */
747	rfb = ah->ah_rf_banks;
748
749	for (i = 0; i < ah->ah_rf_banks_size; i++) {
750		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
751			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
752			return -EINVAL;
753		}
754
755		/* Bank changed, write down the offset */
756		if (bank != ini_rfb[i].rfb_bank) {
757			bank = ini_rfb[i].rfb_bank;
758			ah->ah_offset[bank] = i;
759		}
760
761		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
762	}
763
764	/* Set Output and Driver bias current (OB/DB) */
765	if (channel->hw_value & CHANNEL_2GHZ) {
766
767		if (channel->hw_value & CHANNEL_CCK)
768			ee_mode = AR5K_EEPROM_MODE_11B;
769		else
770			ee_mode = AR5K_EEPROM_MODE_11G;
771
772		/* For RF511X/RF211X combination we
773		 * use b_OB and b_DB parameters stored
774		 * in eeprom on ee->ee_ob[ee_mode][0]
775		 *
776		 * For all other chips we use OB/DB for 2Ghz
777		 * stored in the b/g modal section just like
778		 * 802.11a on ee->ee_ob[ee_mode][1] */
779		if ((ah->ah_radio == AR5K_RF5111) ||
780		(ah->ah_radio == AR5K_RF5112))
781			obdb = 0;
782		else
783			obdb = 1;
784
785		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
786						AR5K_RF_OB_2GHZ, true);
787
788		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
789						AR5K_RF_DB_2GHZ, true);
790
791	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
792	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
793			(ah->ah_radio == AR5K_RF5111)) {
794
795		/* For 11a, Turbo and XR we need to choose
796		 * OB/DB based on frequency range */
797		ee_mode = AR5K_EEPROM_MODE_11A;
798		obdb =	 channel->center_freq >= 5725 ? 3 :
799			(channel->center_freq >= 5500 ? 2 :
800			(channel->center_freq >= 5260 ? 1 :
801			 (channel->center_freq > 4000 ? 0 : -1)));
802
803		if (obdb < 0)
804			return -EINVAL;
805
806		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
807						AR5K_RF_OB_5GHZ, true);
808
809		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
810						AR5K_RF_DB_5GHZ, true);
811	}
812
813	g_step = &go->go_step[ah->ah_gain.g_step_idx];
814
815	/* Bank Modifications (chip-specific) */
816	if (ah->ah_radio == AR5K_RF5111) {
817
818		/* Set gain_F settings according to current step */
819		if (channel->hw_value & CHANNEL_OFDM) {
820
821			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
822					AR5K_PHY_FRAME_CTL_TX_CLIP,
823					g_step->gos_param[0]);
824
825			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
826							AR5K_RF_PWD_90, true);
827
828			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
829							AR5K_RF_PWD_84, true);
830
831			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
832						AR5K_RF_RFGAIN_SEL, true);
833
834			/* We programmed gain_F parameters, switch back
835			 * to active state */
836			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
837
838		}
839
840		/* Bank 6/7 setup */
841
842		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
843						AR5K_RF_PWD_XPD, true);
844
845		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
846						AR5K_RF_XPD_GAIN, true);
847
848		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
849						AR5K_RF_GAIN_I, true);
850
851		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
852						AR5K_RF_PLO_SEL, true);
853
854		/* TODO: Half/quarter channel support */
855	}
856
857	if (ah->ah_radio == AR5K_RF5112) {
858
859		/* Set gain_F settings according to current step */
860		if (channel->hw_value & CHANNEL_OFDM) {
861
862			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
863						AR5K_RF_MIXGAIN_OVR, true);
864
865			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
866						AR5K_RF_PWD_138, true);
867
868			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
869						AR5K_RF_PWD_137, true);
870
871			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
872						AR5K_RF_PWD_136, true);
873
874			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
875						AR5K_RF_PWD_132, true);
876
877			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
878						AR5K_RF_PWD_131, true);
879
880			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
881						AR5K_RF_PWD_130, true);
882
883			/* We programmed gain_F parameters, switch back
884			 * to active state */
885			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
886		}
887
888		/* Bank 6/7 setup */
889
890		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
891						AR5K_RF_XPD_SEL, true);
892
893		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
894			/* Rev. 1 supports only one xpd */
895			ath5k_hw_rfb_op(ah, rf_regs,
896						ee->ee_x_gain[ee_mode],
897						AR5K_RF_XPD_GAIN, true);
898
899		} else {
900			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
901			if (ee->ee_pd_gains[ee_mode] > 1) {
902				ath5k_hw_rfb_op(ah, rf_regs,
903						pdg_curve_to_idx[0],
904						AR5K_RF_PD_GAIN_LO, true);
905				ath5k_hw_rfb_op(ah, rf_regs,
906						pdg_curve_to_idx[1],
907						AR5K_RF_PD_GAIN_HI, true);
908			} else {
909				ath5k_hw_rfb_op(ah, rf_regs,
910						pdg_curve_to_idx[0],
911						AR5K_RF_PD_GAIN_LO, true);
912				ath5k_hw_rfb_op(ah, rf_regs,
913						pdg_curve_to_idx[0],
914						AR5K_RF_PD_GAIN_HI, true);
915			}
916
917			/* Lower synth voltage on Rev 2 */
918			ath5k_hw_rfb_op(ah, rf_regs, 2,
919					AR5K_RF_HIGH_VC_CP, true);
920
921			ath5k_hw_rfb_op(ah, rf_regs, 2,
922					AR5K_RF_MID_VC_CP, true);
923
924			ath5k_hw_rfb_op(ah, rf_regs, 2,
925					AR5K_RF_LOW_VC_CP, true);
926
927			ath5k_hw_rfb_op(ah, rf_regs, 2,
928					AR5K_RF_PUSH_UP, true);
929
930			/* Decrease power consumption on 5213+ BaseBand */
931			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
932				ath5k_hw_rfb_op(ah, rf_regs, 1,
933						AR5K_RF_PAD2GND, true);
934
935				ath5k_hw_rfb_op(ah, rf_regs, 1,
936						AR5K_RF_XB2_LVL, true);
937
938				ath5k_hw_rfb_op(ah, rf_regs, 1,
939						AR5K_RF_XB5_LVL, true);
940
941				ath5k_hw_rfb_op(ah, rf_regs, 1,
942						AR5K_RF_PWD_167, true);
943
944				ath5k_hw_rfb_op(ah, rf_regs, 1,
945						AR5K_RF_PWD_166, true);
946			}
947		}
948
949		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
950						AR5K_RF_GAIN_I, true);
951
952		/* TODO: Half/quarter channel support */
953
954	}
955
956	if (ah->ah_radio == AR5K_RF5413 &&
957	channel->hw_value & CHANNEL_2GHZ) {
958
959		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
960									true);
961
962		/* Set optimum value for early revisions (on pci-e chips) */
963		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
964		ah->ah_mac_srev < AR5K_SREV_AR5413)
965			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
966						AR5K_RF_PWD_ICLOBUF_2G, true);
967
968	}
969
970	/* Write RF banks on hw */
971	for (i = 0; i < ah->ah_rf_banks_size; i++) {
972		AR5K_REG_WAIT(i);
973		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
974	}
975
976	return 0;
977}
978
979
980/**************************\
981  PHY/RF channel functions
982\**************************/
983
984/*
985 * Convertion needed for RF5110
986 */
987static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
988{
989	u32 athchan;
990
991	/*
992	 * Convert IEEE channel/MHz to an internal channel value used
993	 * by the AR5210 chipset. This has not been verified with
994	 * newer chipsets like the AR5212A who have a completely
995	 * different RF/PHY part.
996	 */
997	athchan = (ath5k_hw_bitswap(
998			(ieee80211_frequency_to_channel(
999				channel->center_freq) - 24) / 2, 5)
1000				<< 1) | (1 << 6) | 0x1;
1001	return athchan;
1002}
1003
1004/*
1005 * Set channel on RF5110
1006 */
1007static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1008		struct ieee80211_channel *channel)
1009{
1010	u32 data;
1011
1012	/*
1013	 * Set the channel and wait
1014	 */
1015	data = ath5k_hw_rf5110_chan2athchan(channel);
1016	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1017	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1018	mdelay(1);
1019
1020	return 0;
1021}
1022
1023/*
1024 * Convertion needed for 5111
1025 */
1026static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1027		struct ath5k_athchan_2ghz *athchan)
1028{
1029	int channel;
1030
1031	/* Cast this value to catch negative channel numbers (>= -19) */
1032	channel = (int)ieee;
1033
1034	/*
1035	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1036	 */
1037	if (channel <= 13) {
1038		athchan->a2_athchan = 115 + channel;
1039		athchan->a2_flags = 0x46;
1040	} else if (channel == 14) {
1041		athchan->a2_athchan = 124;
1042		athchan->a2_flags = 0x44;
1043	} else if (channel >= 15 && channel <= 26) {
1044		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1045		athchan->a2_flags = 0x46;
1046	} else
1047		return -EINVAL;
1048
1049	return 0;
1050}
1051
1052/*
1053 * Set channel on 5111
1054 */
1055static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1056		struct ieee80211_channel *channel)
1057{
1058	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1059	unsigned int ath5k_channel =
1060		ieee80211_frequency_to_channel(channel->center_freq);
1061	u32 data0, data1, clock;
1062	int ret;
1063
1064	/*
1065	 * Set the channel on the RF5111 radio
1066	 */
1067	data0 = data1 = 0;
1068
1069	if (channel->hw_value & CHANNEL_2GHZ) {
1070		/* Map 2GHz channel to 5GHz Atheros channel ID */
1071		ret = ath5k_hw_rf5111_chan2athchan(
1072			ieee80211_frequency_to_channel(channel->center_freq),
1073			&ath5k_channel_2ghz);
1074		if (ret)
1075			return ret;
1076
1077		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1078		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1079		    << 5) | (1 << 4);
1080	}
1081
1082	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1083		clock = 1;
1084		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1085			(clock << 1) | (1 << 10) | 1;
1086	} else {
1087		clock = 0;
1088		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1089			<< 2) | (clock << 1) | (1 << 10) | 1;
1090	}
1091
1092	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1093			AR5K_RF_BUFFER);
1094	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1095			AR5K_RF_BUFFER_CONTROL_3);
1096
1097	return 0;
1098}
1099
1100/*
1101 * Set channel on 5112 and newer
1102 */
1103static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1104		struct ieee80211_channel *channel)
1105{
1106	u32 data, data0, data1, data2;
1107	u16 c;
1108
1109	data = data0 = data1 = data2 = 0;
1110	c = channel->center_freq;
1111
1112	if (c < 4800) {
1113		if (!((c - 2224) % 5)) {
1114			data0 = ((2 * (c - 704)) - 3040) / 10;
1115			data1 = 1;
1116		} else if (!((c - 2192) % 5)) {
1117			data0 = ((2 * (c - 672)) - 3040) / 10;
1118			data1 = 0;
1119		} else
1120			return -EINVAL;
1121
1122		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1123	} else if ((c % 5) != 2 || c > 5435) {
1124		if (!(c % 20) && c >= 5120) {
1125			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1126			data2 = ath5k_hw_bitswap(3, 2);
1127		} else if (!(c % 10)) {
1128			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1129			data2 = ath5k_hw_bitswap(2, 2);
1130		} else if (!(c % 5)) {
1131			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1132			data2 = ath5k_hw_bitswap(1, 2);
1133		} else
1134			return -EINVAL;
1135	} else {
1136		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1137		data2 = ath5k_hw_bitswap(0, 2);
1138	}
1139
1140	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1141
1142	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1143	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1144
1145	return 0;
1146}
1147
1148/*
1149 * Set the channel on the RF2425
1150 */
1151static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1152		struct ieee80211_channel *channel)
1153{
1154	u32 data, data0, data2;
1155	u16 c;
1156
1157	data = data0 = data2 = 0;
1158	c = channel->center_freq;
1159
1160	if (c < 4800) {
1161		data0 = ath5k_hw_bitswap((c - 2272), 8);
1162		data2 = 0;
1163	/* ? 5GHz ? */
1164	} else if ((c % 5) != 2 || c > 5435) {
1165		if (!(c % 20) && c < 5120)
1166			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1167		else if (!(c % 10))
1168			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1169		else if (!(c % 5))
1170			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1171		else
1172			return -EINVAL;
1173		data2 = ath5k_hw_bitswap(1, 2);
1174	} else {
1175		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1176		data2 = ath5k_hw_bitswap(0, 2);
1177	}
1178
1179	data = (data0 << 4) | data2 << 2 | 0x1001;
1180
1181	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1182	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1183
1184	return 0;
1185}
1186
1187/*
1188 * Set a channel on the radio chip
1189 */
1190static int ath5k_hw_channel(struct ath5k_hw *ah,
1191		struct ieee80211_channel *channel)
1192{
1193	int ret;
1194	/*
1195	 * Check bounds supported by the PHY (we don't care about regultory
1196	 * restrictions at this point). Note: hw_value already has the band
1197	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1198	 * of the band by that */
1199	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1200		ATH5K_ERR(ah->ah_sc,
1201			"channel frequency (%u MHz) out of supported "
1202			"band range\n",
1203			channel->center_freq);
1204			return -EINVAL;
1205	}
1206
1207	/*
1208	 * Set the channel and wait
1209	 */
1210	switch (ah->ah_radio) {
1211	case AR5K_RF5110:
1212		ret = ath5k_hw_rf5110_channel(ah, channel);
1213		break;
1214	case AR5K_RF5111:
1215		ret = ath5k_hw_rf5111_channel(ah, channel);
1216		break;
1217	case AR5K_RF2425:
1218		ret = ath5k_hw_rf2425_channel(ah, channel);
1219		break;
1220	default:
1221		ret = ath5k_hw_rf5112_channel(ah, channel);
1222		break;
1223	}
1224
1225	if (ret)
1226		return ret;
1227
1228	/* Set JAPAN setting for channel 14 */
1229	if (channel->center_freq == 2484) {
1230		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1231				AR5K_PHY_CCKTXCTL_JAPAN);
1232	} else {
1233		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1234				AR5K_PHY_CCKTXCTL_WORLD);
1235	}
1236
1237	ah->ah_current_channel = channel;
1238	ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1239	ath5k_hw_set_clockrate(ah);
1240
1241	return 0;
1242}
1243
1244/*****************\
1245  PHY calibration
1246\*****************/
1247
1248static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1249{
1250	s32 val;
1251
1252	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1253	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1254}
1255
1256void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1257{
1258	int i;
1259
1260	ah->ah_nfcal_hist.index = 0;
1261	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1262		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1263}
1264
1265static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1266{
1267	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1268	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1269	hist->nfval[hist->index] = noise_floor;
1270}
1271
1272static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1273{
1274	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1275	s16 tmp;
1276	int i, j;
1277
1278	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1279	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1280		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1281			if (sort[j] > sort[j-1]) {
1282				tmp = sort[j];
1283				sort[j] = sort[j-1];
1284				sort[j-1] = tmp;
1285			}
1286		}
1287	}
1288	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1289		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1290			"cal %d:%d\n", i, sort[i]);
1291	}
1292	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1293}
1294
1295/*
1296 * When we tell the hardware to perform a noise floor calibration
1297 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1298 * sample-and-hold the minimum noise level seen at the antennas.
1299 * This value is then stored in a ring buffer of recently measured
1300 * noise floor values so we have a moving window of the last few
1301 * samples.
1302 *
1303 * The median of the values in the history is then loaded into the
1304 * hardware for its own use for RSSI and CCA measurements.
1305 */
1306void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1307{
1308	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1309	u32 val;
1310	s16 nf, threshold;
1311	u8 ee_mode;
1312
1313	/* keep last value if calibration hasn't completed */
1314	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1315		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1316			"NF did not complete in calibration window\n");
1317
1318		return;
1319	}
1320
1321	switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1322	case CHANNEL_A:
1323	case CHANNEL_T:
1324	case CHANNEL_XR:
1325		ee_mode = AR5K_EEPROM_MODE_11A;
1326		break;
1327	case CHANNEL_G:
1328	case CHANNEL_TG:
1329		ee_mode = AR5K_EEPROM_MODE_11G;
1330		break;
1331	default:
1332	case CHANNEL_B:
1333		ee_mode = AR5K_EEPROM_MODE_11B;
1334		break;
1335	}
1336
1337
1338	/* completed NF calibration, test threshold */
1339	nf = ath5k_hw_read_measured_noise_floor(ah);
1340	threshold = ee->ee_noise_floor_thr[ee_mode];
1341
1342	if (nf > threshold) {
1343		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1344			"noise floor failure detected; "
1345			"read %d, threshold %d\n",
1346			nf, threshold);
1347
1348		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1349	}
1350
1351	ath5k_hw_update_nfcal_hist(ah, nf);
1352	nf = ath5k_hw_get_median_noise_floor(ah);
1353
1354	/* load noise floor (in .5 dBm) so the hardware will use it */
1355	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1356	val |= (nf * 2) & AR5K_PHY_NF_M;
1357	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1358
1359	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1360		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1361
1362	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1363		0, false);
1364
1365	/*
1366	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1367	 * so that we're not capped by the median we just loaded.
1368	 * This will be used as the initial value for the next noise
1369	 * floor calibration.
1370	 */
1371	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1372	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1373	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1374		AR5K_PHY_AGCCTL_NF_EN |
1375		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1376		AR5K_PHY_AGCCTL_NF);
1377
1378	ah->ah_noise_floor = nf;
1379
1380	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1381		"noise floor calibrated: %d\n", nf);
1382}
1383
1384/*
1385 * Perform a PHY calibration on RF5110
1386 * -Fix BPSK/QAM Constellation (I/Q correction)
1387 */
1388static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1389		struct ieee80211_channel *channel)
1390{
1391	u32 phy_sig, phy_agc, phy_sat, beacon;
1392	int ret;
1393
1394	/*
1395	 * Disable beacons and RX/TX queues, wait
1396	 */
1397	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1398		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1399	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1400	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1401
1402	mdelay(2);
1403
1404	/*
1405	 * Set the channel (with AGC turned off)
1406	 */
1407	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1408	udelay(10);
1409	ret = ath5k_hw_channel(ah, channel);
1410
1411	/*
1412	 * Activate PHY and wait
1413	 */
1414	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1415	mdelay(1);
1416
1417	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1418
1419	if (ret)
1420		return ret;
1421
1422	/*
1423	 * Calibrate the radio chip
1424	 */
1425
1426	/* Remember normal state */
1427	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1428	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1429	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1430
1431	/* Update radio registers */
1432	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1433		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1434
1435	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1436			AR5K_PHY_AGCCOARSE_LO)) |
1437		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1438		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1439
1440	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1441			AR5K_PHY_ADCSAT_THR)) |
1442		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1443		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1444
1445	udelay(20);
1446
1447	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1448	udelay(10);
1449	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1450	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1451
1452	mdelay(1);
1453
1454	/*
1455	 * Enable calibration and wait until completion
1456	 */
1457	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1458
1459	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1460			AR5K_PHY_AGCCTL_CAL, 0, false);
1461
1462	/* Reset to normal state */
1463	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1464	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1465	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1466
1467	if (ret) {
1468		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1469				channel->center_freq);
1470		return ret;
1471	}
1472
1473	/*
1474	 * Re-enable RX/TX and beacons
1475	 */
1476	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1477		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1478	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1479
1480	return 0;
1481}
1482
1483/*
1484 * Perform I/Q calibration on RF5111/5112 and newer chips
1485 */
1486static int
1487ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1488{
1489	u32 i_pwr, q_pwr;
1490	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1491	int i;
1492
1493	if (!ah->ah_calibration ||
1494		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1495		return 0;
1496
1497	/* Calibration has finished, get the results and re-run */
1498	/* work around empty results which can apparently happen on 5212 */
1499	for (i = 0; i <= 10; i++) {
1500		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1501		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1502		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1503		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1504			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1505		if (i_pwr && q_pwr)
1506			break;
1507	}
1508
1509	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1510
1511	if (ah->ah_version == AR5K_AR5211)
1512		q_coffd = q_pwr >> 6;
1513	else
1514		q_coffd = q_pwr >> 7;
1515
1516	/* protect against divide by 0 and loss of sign bits */
1517	if (i_coffd == 0 || q_coffd < 2)
1518		return 0;
1519
1520	i_coff = (-iq_corr) / i_coffd;
1521	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1522
1523	if (ah->ah_version == AR5K_AR5211)
1524		q_coff = (i_pwr / q_coffd) - 64;
1525	else
1526		q_coff = (i_pwr / q_coffd) - 128;
1527	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1528
1529	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1530			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1531			i_coff, q_coff, i_coffd, q_coffd);
1532
1533	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1534	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1535	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1536	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1537
1538	/* Re-enable calibration -if we don't we'll commit
1539	 * the same values again and again */
1540	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1541			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1542	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1543
1544	return 0;
1545}
1546
1547/*
1548 * Perform a PHY calibration
1549 */
1550int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1551		struct ieee80211_channel *channel)
1552{
1553	int ret;
1554
1555	if (ah->ah_radio == AR5K_RF5110)
1556		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1557	else {
1558		ret = ath5k_hw_rf511x_iq_calibrate(ah);
1559		ath5k_hw_request_rfgain_probe(ah);
1560	}
1561
1562	return ret;
1563}
1564
1565
1566/***************************\
1567* Spur mitigation functions *
1568\***************************/
1569
1570static void
1571ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1572				struct ieee80211_channel *channel)
1573{
1574	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1575	u32 mag_mask[4] = {0, 0, 0, 0};
1576	u32 pilot_mask[2] = {0, 0};
1577	/* Note: fbin values are scaled up by 2 */
1578	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1579	s32 spur_delta_phase, spur_freq_sigma_delta;
1580	s32 spur_offset, num_symbols_x16;
1581	u8 num_symbol_offsets, i, freq_band;
1582
1583	/* Convert current frequency to fbin value (the same way channels
1584	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1585	 * up by 2 so we can compare it later */
1586	if (channel->hw_value & CHANNEL_2GHZ) {
1587		chan_fbin = (channel->center_freq - 2300) * 10;
1588		freq_band = AR5K_EEPROM_BAND_2GHZ;
1589	} else {
1590		chan_fbin = (channel->center_freq - 4900) * 10;
1591		freq_band = AR5K_EEPROM_BAND_5GHZ;
1592	}
1593
1594	/* Check if any spur_chan_fbin from EEPROM is
1595	 * within our current channel's spur detection range */
1596	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1597	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1598	/* XXX: Half/Quarter channels ?*/
1599	if (channel->hw_value & CHANNEL_TURBO)
1600		spur_detection_window *= 2;
1601
1602	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1603		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1604
1605		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1606		 * so it's zero if we got nothing from EEPROM */
1607		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1608			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1609			break;
1610		}
1611
1612		if ((chan_fbin - spur_detection_window <=
1613		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1614		(chan_fbin + spur_detection_window >=
1615		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1616			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1617			break;
1618		}
1619	}
1620
1621	/* We need to enable spur filter for this channel */
1622	if (spur_chan_fbin) {
1623		spur_offset = spur_chan_fbin - chan_fbin;
1624		/*
1625		 * Calculate deltas:
1626		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1627		 * spur_delta_phase -> spur_offset / chip_freq << 11
1628		 * Note: Both values have 100KHz resolution
1629		 */
1630		/* XXX: Half/Quarter rate channels ? */
1631		switch (channel->hw_value) {
1632		case CHANNEL_A:
1633			/* Both sample_freq and chip_freq are 40MHz */
1634			spur_delta_phase = (spur_offset << 17) / 25;
1635			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1636			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1637			break;
1638		case CHANNEL_G:
1639			/* sample_freq -> 40MHz chip_freq -> 44MHz
1640			 * (for b compatibility) */
1641			spur_freq_sigma_delta = (spur_offset << 8) / 55;
1642			spur_delta_phase = (spur_offset << 17) / 25;
1643			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1644			break;
1645		case CHANNEL_T:
1646		case CHANNEL_TG:
1647			/* Both sample_freq and chip_freq are 80MHz */
1648			spur_delta_phase = (spur_offset << 16) / 25;
1649			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1650			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1651			break;
1652		default:
1653			return;
1654		}
1655
1656		/* Calculate pilot and magnitude masks */
1657
1658		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1659		 * and divide by symbol_width to find how many symbols we have
1660		 * Note: number of symbols is scaled up by 16 */
1661		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1662
1663		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1664		if (!(num_symbols_x16 & 0xF))
1665			/* _X_ */
1666			num_symbol_offsets = 3;
1667		else
1668			/* _xx_ */
1669			num_symbol_offsets = 4;
1670
1671		for (i = 0; i < num_symbol_offsets; i++) {
1672
1673			/* Calculate pilot mask */
1674			s32 curr_sym_off =
1675				(num_symbols_x16 / 16) + i + 25;
1676
1677			/* Pilot magnitude mask seems to be a way to
1678			 * declare the boundaries for our detection
1679			 * window or something, it's 2 for the middle
1680			 * value(s) where the symbol is expected to be
1681			 * and 1 on the boundary values */
1682			u8 plt_mag_map =
1683				(i == 0 || i == (num_symbol_offsets - 1))
1684								? 1 : 2;
1685
1686			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1687				if (curr_sym_off <= 25)
1688					pilot_mask[0] |= 1 << curr_sym_off;
1689				else if (curr_sym_off >= 27)
1690					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1691			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1692				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1693
1694			/* Calculate magnitude mask (for viterbi decoder) */
1695			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1696				mag_mask[0] |=
1697					plt_mag_map << (curr_sym_off + 1) * 2;
1698			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1699				mag_mask[1] |=
1700					plt_mag_map << (curr_sym_off - 15) * 2;
1701			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1702				mag_mask[2] |=
1703					plt_mag_map << (curr_sym_off - 31) * 2;
1704			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1705				mag_mask[3] |=
1706					plt_mag_map << (curr_sym_off - 47) * 2;
1707
1708		}
1709
1710		/* Write settings on hw to enable spur filter */
1711		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1712					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1713		/* XXX: Self correlator also ? */
1714		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1715					AR5K_PHY_IQ_PILOT_MASK_EN |
1716					AR5K_PHY_IQ_CHAN_MASK_EN |
1717					AR5K_PHY_IQ_SPUR_FILT_EN);
1718
1719		/* Set delta phase and freq sigma delta */
1720		ath5k_hw_reg_write(ah,
1721				AR5K_REG_SM(spur_delta_phase,
1722					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1723				AR5K_REG_SM(spur_freq_sigma_delta,
1724				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1725				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1726				AR5K_PHY_TIMING_11);
1727
1728		/* Write pilot masks */
1729		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1730		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1731					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1732					pilot_mask[1]);
1733
1734		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1735		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1736					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1737					pilot_mask[1]);
1738
1739		/* Write magnitude masks */
1740		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1741		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1742		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1743		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1744					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1745					mag_mask[3]);
1746
1747		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1748		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1749		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1750		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1751					AR5K_PHY_BIN_MASK2_4_MASK_4,
1752					mag_mask[3]);
1753
1754	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1755	AR5K_PHY_IQ_SPUR_FILT_EN) {
1756		/* Clean up spur mitigation settings and disable fliter */
1757		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1758					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1759		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1760					AR5K_PHY_IQ_PILOT_MASK_EN |
1761					AR5K_PHY_IQ_CHAN_MASK_EN |
1762					AR5K_PHY_IQ_SPUR_FILT_EN);
1763		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1764
1765		/* Clear pilot masks */
1766		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1767		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1768					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1769					0);
1770
1771		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1772		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1773					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1774					0);
1775
1776		/* Clear magnitude masks */
1777		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1778		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1779		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1780		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1781					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1782					0);
1783
1784		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1785		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1786		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1787		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1788					AR5K_PHY_BIN_MASK2_4_MASK_4,
1789					0);
1790	}
1791}
1792
1793
1794/*****************\
1795* Antenna control *
1796\*****************/
1797
1798static void /*TODO:Boundary check*/
1799ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1800{
1801	if (ah->ah_version != AR5K_AR5210)
1802		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1803}
1804
1805/*
1806 * Enable/disable fast rx antenna diversity
1807 */
1808static void
1809ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1810{
1811	switch (ee_mode) {
1812	case AR5K_EEPROM_MODE_11G:
1813		/* XXX: This is set to
1814		 * disabled on initvals !!! */
1815	case AR5K_EEPROM_MODE_11A:
1816		if (enable)
1817			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1818					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1819		else
1820			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1821					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1822		break;
1823	case AR5K_EEPROM_MODE_11B:
1824		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1825					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1826		break;
1827	default:
1828		return;
1829	}
1830
1831	if (enable) {
1832		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1833				AR5K_PHY_RESTART_DIV_GC, 4);
1834
1835		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1836					AR5K_PHY_FAST_ANT_DIV_EN);
1837	} else {
1838		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1839				AR5K_PHY_RESTART_DIV_GC, 0);
1840
1841		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1842					AR5K_PHY_FAST_ANT_DIV_EN);
1843	}
1844}
1845
1846void
1847ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1848{
1849	u8 ant0, ant1;
1850
1851	/*
1852	 * In case a fixed antenna was set as default
1853	 * use the same switch table twice.
1854	 */
1855	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1856		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1857	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1858		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1859	else {
1860		ant0 = AR5K_ANT_SWTABLE_A;
1861		ant1 = AR5K_ANT_SWTABLE_B;
1862	}
1863
1864	/* Set antenna idle switch table */
1865	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1866			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1867			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1868			AR5K_PHY_ANT_CTL_TXRX_EN));
1869
1870	/* Set antenna switch tables */
1871	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1872		AR5K_PHY_ANT_SWITCH_TABLE_0);
1873	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1874		AR5K_PHY_ANT_SWITCH_TABLE_1);
1875}
1876
1877/*
1878 * Set antenna operating mode
1879 */
1880void
1881ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1882{
1883	struct ieee80211_channel *channel = ah->ah_current_channel;
1884	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1885	bool use_def_for_sg;
1886	u8 def_ant, tx_ant, ee_mode;
1887	u32 sta_id1 = 0;
1888
1889	/* if channel is not initialized yet we can't set the antennas
1890	 * so just store the mode. it will be set on the next reset */
1891	if (channel == NULL) {
1892		ah->ah_ant_mode = ant_mode;
1893		return;
1894	}
1895
1896	def_ant = ah->ah_def_ant;
1897
1898	switch (channel->hw_value & CHANNEL_MODES) {
1899	case CHANNEL_A:
1900	case CHANNEL_T:
1901	case CHANNEL_XR:
1902		ee_mode = AR5K_EEPROM_MODE_11A;
1903		break;
1904	case CHANNEL_G:
1905	case CHANNEL_TG:
1906		ee_mode = AR5K_EEPROM_MODE_11G;
1907		break;
1908	case CHANNEL_B:
1909		ee_mode = AR5K_EEPROM_MODE_11B;
1910		break;
1911	default:
1912		ATH5K_ERR(ah->ah_sc,
1913			"invalid channel: %d\n", channel->center_freq);
1914		return;
1915	}
1916
1917	switch (ant_mode) {
1918	case AR5K_ANTMODE_DEFAULT:
1919		tx_ant = 0;
1920		use_def_for_tx = false;
1921		update_def_on_tx = false;
1922		use_def_for_rts = false;
1923		use_def_for_sg = false;
1924		fast_div = true;
1925		break;
1926	case AR5K_ANTMODE_FIXED_A:
1927		def_ant = 1;
1928		tx_ant = 1;
1929		use_def_for_tx = true;
1930		update_def_on_tx = false;
1931		use_def_for_rts = true;
1932		use_def_for_sg = true;
1933		fast_div = false;
1934		break;
1935	case AR5K_ANTMODE_FIXED_B:
1936		def_ant = 2;
1937		tx_ant = 2;
1938		use_def_for_tx = true;
1939		update_def_on_tx = false;
1940		use_def_for_rts = true;
1941		use_def_for_sg = true;
1942		fast_div = false;
1943		break;
1944	case AR5K_ANTMODE_SINGLE_AP:
1945		def_ant = 1;	/* updated on tx */
1946		tx_ant = 0;
1947		use_def_for_tx = true;
1948		update_def_on_tx = true;
1949		use_def_for_rts = true;
1950		use_def_for_sg = true;
1951		fast_div = true;
1952		break;
1953	case AR5K_ANTMODE_SECTOR_AP:
1954		tx_ant = 1;	/* variable */
1955		use_def_for_tx = false;
1956		update_def_on_tx = false;
1957		use_def_for_rts = true;
1958		use_def_for_sg = false;
1959		fast_div = false;
1960		break;
1961	case AR5K_ANTMODE_SECTOR_STA:
1962		tx_ant = 1;	/* variable */
1963		use_def_for_tx = true;
1964		update_def_on_tx = false;
1965		use_def_for_rts = true;
1966		use_def_for_sg = false;
1967		fast_div = true;
1968		break;
1969	case AR5K_ANTMODE_DEBUG:
1970		def_ant = 1;
1971		tx_ant = 2;
1972		use_def_for_tx = false;
1973		update_def_on_tx = false;
1974		use_def_for_rts = false;
1975		use_def_for_sg = false;
1976		fast_div = false;
1977		break;
1978	default:
1979		return;
1980	}
1981
1982	ah->ah_tx_ant = tx_ant;
1983	ah->ah_ant_mode = ant_mode;
1984	ah->ah_def_ant = def_ant;
1985
1986	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1987	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1988	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1989	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1990
1991	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1992
1993	if (sta_id1)
1994		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1995
1996	ath5k_hw_set_antenna_switch(ah, ee_mode);
1997	/* Note: set diversity before default antenna
1998	 * because it won't work correctly */
1999	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2000	ath5k_hw_set_def_antenna(ah, def_ant);
2001}
2002
2003
2004/****************\
2005* TX power setup *
2006\****************/
2007
2008/*
2009 * Helper functions
2010 */
2011
2012/*
2013 * Do linear interpolation between two given (x, y) points
2014 */
2015static s16
2016ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2017					s16 y_left, s16 y_right)
2018{
2019	s16 ratio, result;
2020
2021	/* Avoid divide by zero and skip interpolation
2022	 * if we have the same point */
2023	if ((x_left == x_right) || (y_left == y_right))
2024		return y_left;
2025
2026	/*
2027	 * Since we use ints and not fps, we need to scale up in
2028	 * order to get a sane ratio value (or else we 'll eg. get
2029	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2030	 * to have some accuracy both for 0.5 and 0.25 steps.
2031	 */
2032	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
2033
2034	/* Now scale down to be in range */
2035	result = y_left + (ratio * (target - x_left) / 100);
2036
2037	return result;
2038}
2039
2040/*
2041 * Find vertical boundary (min pwr) for the linear PCDAC curve.
2042 *
2043 * Since we have the top of the curve and we draw the line below
2044 * until we reach 1 (1 pcdac step) we need to know which point
2045 * (x value) that is so that we don't go below y axis and have negative
2046 * pcdac values when creating the curve, or fill the table with zeroes.
2047 */
2048static s16
2049ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2050				const s16 *pwrL, const s16 *pwrR)
2051{
2052	s8 tmp;
2053	s16 min_pwrL, min_pwrR;
2054	s16 pwr_i;
2055
2056	/* Some vendors write the same pcdac value twice !!! */
2057	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2058		return max(pwrL[0], pwrR[0]);
2059
2060	if (pwrL[0] == pwrL[1])
2061		min_pwrL = pwrL[0];
2062	else {
2063		pwr_i = pwrL[0];
2064		do {
2065			pwr_i--;
2066			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2067							pwrL[0], pwrL[1],
2068							stepL[0], stepL[1]);
2069		} while (tmp > 1);
2070
2071		min_pwrL = pwr_i;
2072	}
2073
2074	if (pwrR[0] == pwrR[1])
2075		min_pwrR = pwrR[0];
2076	else {
2077		pwr_i = pwrR[0];
2078		do {
2079			pwr_i--;
2080			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2081							pwrR[0], pwrR[1],
2082							stepR[0], stepR[1]);
2083		} while (tmp > 1);
2084
2085		min_pwrR = pwr_i;
2086	}
2087
2088	/* Keep the right boundary so that it works for both curves */
2089	return max(min_pwrL, min_pwrR);
2090}
2091
2092/*
2093 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2094 * Power to PCDAC curve.
2095 *
2096 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2097 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2098 * PCDAC/PDADC step for each curve is 64 but we can write more than
2099 * one curves on hw so we can go up to 128 (which is the max step we
2100 * can write on the final table).
2101 *
2102 * We write y values (PCDAC/PDADC steps) on hw.
2103 */
2104static void
2105ath5k_create_power_curve(s16 pmin, s16 pmax,
2106			const s16 *pwr, const u8 *vpd,
2107			u8 num_points,
2108			u8 *vpd_table, u8 type)
2109{
2110	u8 idx[2] = { 0, 1 };
2111	s16 pwr_i = 2*pmin;
2112	int i;
2113
2114	if (num_points < 2)
2115		return;
2116
2117	/* We want the whole line, so adjust boundaries
2118	 * to cover the entire power range. Note that
2119	 * power values are already 0.25dB so no need
2120	 * to multiply pwr_i by 2 */
2121	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2122		pwr_i = pmin;
2123		pmin = 0;
2124		pmax = 63;
2125	}
2126
2127	/* Find surrounding turning points (TPs)
2128	 * and interpolate between them */
2129	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2130	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2131
2132		/* We passed the right TP, move to the next set of TPs
2133		 * if we pass the last TP, extrapolate above using the last
2134		 * two TPs for ratio */
2135		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2136			idx[0]++;
2137			idx[1]++;
2138		}
2139
2140		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2141						pwr[idx[0]], pwr[idx[1]],
2142						vpd[idx[0]], vpd[idx[1]]);
2143
2144		/* Increase by 0.5dB
2145		 * (0.25 dB units) */
2146		pwr_i += 2;
2147	}
2148}
2149
2150/*
2151 * Get the surrounding per-channel power calibration piers
2152 * for a given frequency so that we can interpolate between
2153 * them and come up with an apropriate dataset for our current
2154 * channel.
2155 */
2156static void
2157ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2158			struct ieee80211_channel *channel,
2159			struct ath5k_chan_pcal_info **pcinfo_l,
2160			struct ath5k_chan_pcal_info **pcinfo_r)
2161{
2162	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2163	struct ath5k_chan_pcal_info *pcinfo;
2164	u8 idx_l, idx_r;
2165	u8 mode, max, i;
2166	u32 target = channel->center_freq;
2167
2168	idx_l = 0;
2169	idx_r = 0;
2170
2171	if (!(channel->hw_value & CHANNEL_OFDM)) {
2172		pcinfo = ee->ee_pwr_cal_b;
2173		mode = AR5K_EEPROM_MODE_11B;
2174	} else if (channel->hw_value & CHANNEL_2GHZ) {
2175		pcinfo = ee->ee_pwr_cal_g;
2176		mode = AR5K_EEPROM_MODE_11G;
2177	} else {
2178		pcinfo = ee->ee_pwr_cal_a;
2179		mode = AR5K_EEPROM_MODE_11A;
2180	}
2181	max = ee->ee_n_piers[mode] - 1;
2182
2183	/* Frequency is below our calibrated
2184	 * range. Use the lowest power curve
2185	 * we have */
2186	if (target < pcinfo[0].freq) {
2187		idx_l = idx_r = 0;
2188		goto done;
2189	}
2190
2191	/* Frequency is above our calibrated
2192	 * range. Use the highest power curve
2193	 * we have */
2194	if (target > pcinfo[max].freq) {
2195		idx_l = idx_r = max;
2196		goto done;
2197	}
2198
2199	/* Frequency is inside our calibrated
2200	 * channel range. Pick the surrounding
2201	 * calibration piers so that we can
2202	 * interpolate */
2203	for (i = 0; i <= max; i++) {
2204
2205		/* Frequency matches one of our calibration
2206		 * piers, no need to interpolate, just use
2207		 * that calibration pier */
2208		if (pcinfo[i].freq == target) {
2209			idx_l = idx_r = i;
2210			goto done;
2211		}
2212
2213		/* We found a calibration pier that's above
2214		 * frequency, use this pier and the previous
2215		 * one to interpolate */
2216		if (target < pcinfo[i].freq) {
2217			idx_r = i;
2218			idx_l = idx_r - 1;
2219			goto done;
2220		}
2221	}
2222
2223done:
2224	*pcinfo_l = &pcinfo[idx_l];
2225	*pcinfo_r = &pcinfo[idx_r];
2226}
2227
2228/*
2229 * Get the surrounding per-rate power calibration data
2230 * for a given frequency and interpolate between power
2231 * values to set max target power supported by hw for
2232 * each rate.
2233 */
2234static void
2235ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2236			struct ieee80211_channel *channel,
2237			struct ath5k_rate_pcal_info *rates)
2238{
2239	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2240	struct ath5k_rate_pcal_info *rpinfo;
2241	u8 idx_l, idx_r;
2242	u8 mode, max, i;
2243	u32 target = channel->center_freq;
2244
2245	idx_l = 0;
2246	idx_r = 0;
2247
2248	if (!(channel->hw_value & CHANNEL_OFDM)) {
2249		rpinfo = ee->ee_rate_tpwr_b;
2250		mode = AR5K_EEPROM_MODE_11B;
2251	} else if (channel->hw_value & CHANNEL_2GHZ) {
2252		rpinfo = ee->ee_rate_tpwr_g;
2253		mode = AR5K_EEPROM_MODE_11G;
2254	} else {
2255		rpinfo = ee->ee_rate_tpwr_a;
2256		mode = AR5K_EEPROM_MODE_11A;
2257	}
2258	max = ee->ee_rate_target_pwr_num[mode] - 1;
2259
2260	/* Get the surrounding calibration
2261	 * piers - same as above */
2262	if (target < rpinfo[0].freq) {
2263		idx_l = idx_r = 0;
2264		goto done;
2265	}
2266
2267	if (target > rpinfo[max].freq) {
2268		idx_l = idx_r = max;
2269		goto done;
2270	}
2271
2272	for (i = 0; i <= max; i++) {
2273
2274		if (rpinfo[i].freq == target) {
2275			idx_l = idx_r = i;
2276			goto done;
2277		}
2278
2279		if (target < rpinfo[i].freq) {
2280			idx_r = i;
2281			idx_l = idx_r - 1;
2282			goto done;
2283		}
2284	}
2285
2286done:
2287	/* Now interpolate power value, based on the frequency */
2288	rates->freq = target;
2289
2290	rates->target_power_6to24 =
2291		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2292					rpinfo[idx_r].freq,
2293					rpinfo[idx_l].target_power_6to24,
2294					rpinfo[idx_r].target_power_6to24);
2295
2296	rates->target_power_36 =
2297		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2298					rpinfo[idx_r].freq,
2299					rpinfo[idx_l].target_power_36,
2300					rpinfo[idx_r].target_power_36);
2301
2302	rates->target_power_48 =
2303		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2304					rpinfo[idx_r].freq,
2305					rpinfo[idx_l].target_power_48,
2306					rpinfo[idx_r].target_power_48);
2307
2308	rates->target_power_54 =
2309		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2310					rpinfo[idx_r].freq,
2311					rpinfo[idx_l].target_power_54,
2312					rpinfo[idx_r].target_power_54);
2313}
2314
2315/*
2316 * Get the max edge power for this channel if
2317 * we have such data from EEPROM's Conformance Test
2318 * Limits (CTL), and limit max power if needed.
2319 */
2320static void
2321ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2322			struct ieee80211_channel *channel)
2323{
2324	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2325	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2326	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2327	u8 *ctl_val = ee->ee_ctl;
2328	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2329	s16 edge_pwr = 0;
2330	u8 rep_idx;
2331	u8 i, ctl_mode;
2332	u8 ctl_idx = 0xFF;
2333	u32 target = channel->center_freq;
2334
2335	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2336
2337	switch (channel->hw_value & CHANNEL_MODES) {
2338	case CHANNEL_A:
2339		ctl_mode |= AR5K_CTL_11A;
2340		break;
2341	case CHANNEL_G:
2342		ctl_mode |= AR5K_CTL_11G;
2343		break;
2344	case CHANNEL_B:
2345		ctl_mode |= AR5K_CTL_11B;
2346		break;
2347	case CHANNEL_T:
2348		ctl_mode |= AR5K_CTL_TURBO;
2349		break;
2350	case CHANNEL_TG:
2351		ctl_mode |= AR5K_CTL_TURBOG;
2352		break;
2353	case CHANNEL_XR:
2354		/* Fall through */
2355	default:
2356		return;
2357	}
2358
2359	for (i = 0; i < ee->ee_ctls; i++) {
2360		if (ctl_val[i] == ctl_mode) {
2361			ctl_idx = i;
2362			break;
2363		}
2364	}
2365
2366	/* If we have a CTL dataset available grab it and find the
2367	 * edge power for our frequency */
2368	if (ctl_idx == 0xFF)
2369		return;
2370
2371	/* Edge powers are sorted by frequency from lower
2372	 * to higher. Each CTL corresponds to 8 edge power
2373	 * measurements. */
2374	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2375
2376	/* Don't do boundaries check because we
2377	 * might have more that one bands defined
2378	 * for this mode */
2379
2380	/* Get the edge power that's closer to our
2381	 * frequency */
2382	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2383		rep_idx += i;
2384		if (target <= rep[rep_idx].freq)
2385			edge_pwr = (s16) rep[rep_idx].edge;
2386	}
2387
2388	if (edge_pwr)
2389		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2390}
2391
2392
2393/*
2394 * Power to PCDAC table functions
2395 */
2396
2397/*
2398 * Fill Power to PCDAC table on RF5111
2399 *
2400 * No further processing is needed for RF5111, the only thing we have to
2401 * do is fill the values below and above calibration range since eeprom data
2402 * may not cover the entire PCDAC table.
2403 */
2404static void
2405ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2406							s16 *table_max)
2407{
2408	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2409	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2410	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2411	s16	min_pwr, max_pwr;
2412
2413	/* Get table boundaries */
2414	min_pwr = table_min[0];
2415	pcdac_0 = pcdac_tmp[0];
2416
2417	max_pwr = table_max[0];
2418	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2419
2420	/* Extrapolate below minimum using pcdac_0 */
2421	pcdac_i = 0;
2422	for (i = 0; i < min_pwr; i++)
2423		pcdac_out[pcdac_i++] = pcdac_0;
2424
2425	/* Copy values from pcdac_tmp */
2426	pwr_idx = min_pwr;
2427	for (i = 0 ; pwr_idx <= max_pwr &&
2428	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2429		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2430		pwr_idx++;
2431	}
2432
2433	/* Extrapolate above maximum */
2434	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2435		pcdac_out[pcdac_i++] = pcdac_n;
2436
2437}
2438
2439/*
2440 * Combine available XPD Curves and fill Linear Power to PCDAC table
2441 * on RF5112
2442 *
2443 * RFX112 can have up to 2 curves (one for low txpower range and one for
2444 * higher txpower range). We need to put them both on pcdac_out and place
2445 * them in the correct location. In case we only have one curve available
2446 * just fit it on pcdac_out (it's supposed to cover the entire range of
2447 * available pwr levels since it's always the higher power curve). Extrapolate
2448 * below and above final table if needed.
2449 */
2450static void
2451ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2452						s16 *table_max, u8 pdcurves)
2453{
2454	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2455	u8	*pcdac_low_pwr;
2456	u8	*pcdac_high_pwr;
2457	u8	*pcdac_tmp;
2458	u8	pwr;
2459	s16	max_pwr_idx;
2460	s16	min_pwr_idx;
2461	s16	mid_pwr_idx = 0;
2462	/* Edge flag turs on the 7nth bit on the PCDAC
2463	 * to delcare the higher power curve (force values
2464	 * to be greater than 64). If we only have one curve
2465	 * we don't need to set this, if we have 2 curves and
2466	 * fill the table backwards this can also be used to
2467	 * switch from higher power curve to lower power curve */
2468	u8	edge_flag;
2469	int	i;
2470
2471	/* When we have only one curve available
2472	 * that's the higher power curve. If we have
2473	 * two curves the first is the high power curve
2474	 * and the next is the low power curve. */
2475	if (pdcurves > 1) {
2476		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2477		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2478		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2479		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2480
2481		/* If table size goes beyond 31.5dB, keep the
2482		 * upper 31.5dB range when setting tx power.
2483		 * Note: 126 = 31.5 dB in quarter dB steps */
2484		if (table_max[0] - table_min[1] > 126)
2485			min_pwr_idx = table_max[0] - 126;
2486		else
2487			min_pwr_idx = table_min[1];
2488
2489		/* Since we fill table backwards
2490		 * start from high power curve */
2491		pcdac_tmp = pcdac_high_pwr;
2492
2493		edge_flag = 0x40;
2494	} else {
2495		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2496		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2497		min_pwr_idx = table_min[0];
2498		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2499		pcdac_tmp = pcdac_high_pwr;
2500		edge_flag = 0;
2501	}
2502
2503	/* This is used when setting tx power*/
2504	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2505
2506	/* Fill Power to PCDAC table backwards */
2507	pwr = max_pwr_idx;
2508	for (i = 63; i >= 0; i--) {
2509		/* Entering lower power range, reset
2510		 * edge flag and set pcdac_tmp to lower
2511		 * power curve.*/
2512		if (edge_flag == 0x40 &&
2513		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2514			edge_flag = 0x00;
2515			pcdac_tmp = pcdac_low_pwr;
2516			pwr = mid_pwr_idx/2;
2517		}
2518
2519		/* Don't go below 1, extrapolate below if we have
2520		 * already swithced to the lower power curve -or
2521		 * we only have one curve and edge_flag is zero
2522		 * anyway */
2523		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2524			while (i >= 0) {
2525				pcdac_out[i] = pcdac_out[i + 1];
2526				i--;
2527			}
2528			break;
2529		}
2530
2531		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2532
2533		/* Extrapolate above if pcdac is greater than
2534		 * 126 -this can happen because we OR pcdac_out
2535		 * value with edge_flag on high power curve */
2536		if (pcdac_out[i] > 126)
2537			pcdac_out[i] = 126;
2538
2539		/* Decrease by a 0.5dB step */
2540		pwr--;
2541	}
2542}
2543
2544/* Write PCDAC values on hw */
2545static void
2546ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2547{
2548	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2549	int	i;
2550
2551	/*
2552	 * Write TX power values
2553	 */
2554	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2555		ath5k_hw_reg_write(ah,
2556			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2557			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2558			AR5K_PHY_PCDAC_TXPOWER(i));
2559	}
2560}
2561
2562
2563/*
2564 * Power to PDADC table functions
2565 */
2566
2567/*
2568 * Set the gain boundaries and create final Power to PDADC table
2569 *
2570 * We can have up to 4 pd curves, we need to do a simmilar process
2571 * as we do for RF5112. This time we don't have an edge_flag but we
2572 * set the gain boundaries on a separate register.
2573 */
2574static void
2575ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2576			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2577{
2578	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2579	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2580	u8 *pdadc_tmp;
2581	s16 pdadc_0;
2582	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2583	u8 pd_gain_overlap;
2584
2585	/* Note: Register value is initialized on initvals
2586	 * there is no feedback from hw.
2587	 * XXX: What about pd_gain_overlap from EEPROM ? */
2588	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2589		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2590
2591	/* Create final PDADC table */
2592	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2593		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2594
2595		if (pdg == pdcurves - 1)
2596			/* 2 dB boundary stretch for last
2597			 * (higher power) curve */
2598			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2599		else
2600			/* Set gain boundary in the middle
2601			 * between this curve and the next one */
2602			gain_boundaries[pdg] =
2603				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2604
2605		/* Sanity check in case our 2 db stretch got out of
2606		 * range. */
2607		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2608			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2609
2610		/* For the first curve (lower power)
2611		 * start from 0 dB */
2612		if (pdg == 0)
2613			pdadc_0 = 0;
2614		else
2615			/* For the other curves use the gain overlap */
2616			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2617							pd_gain_overlap;
2618
2619		/* Force each power step to be at least 0.5 dB */
2620		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2621			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2622		else
2623			pwr_step = 1;
2624
2625		/* If pdadc_0 is negative, we need to extrapolate
2626		 * below this pdgain by a number of pwr_steps */
2627		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2628			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2629			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2630			pdadc_0++;
2631		}
2632
2633		/* Set last pwr level, using gain boundaries */
2634		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2635		/* Limit it to be inside pwr range */
2636		table_size = pwr_max[pdg] - pwr_min[pdg];
2637		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2638
2639		/* Fill pdadc_out table */
2640		while (pdadc_0 < max_idx && pdadc_i < 128)
2641			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2642
2643		/* Need to extrapolate above this pdgain? */
2644		if (pdadc_n <= max_idx)
2645			continue;
2646
2647		/* Force each power step to be at least 0.5 dB */
2648		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2649			pwr_step = pdadc_tmp[table_size - 1] -
2650						pdadc_tmp[table_size - 2];
2651		else
2652			pwr_step = 1;
2653
2654		/* Extrapolate above */
2655		while ((pdadc_0 < (s16) pdadc_n) &&
2656		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2657			s16 tmp = pdadc_tmp[table_size - 1] +
2658					(pdadc_0 - max_idx) * pwr_step;
2659			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2660			pdadc_0++;
2661		}
2662	}
2663
2664	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2665		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2666		pdg++;
2667	}
2668
2669	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2670		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2671		pdadc_i++;
2672	}
2673
2674	/* Set gain boundaries */
2675	ath5k_hw_reg_write(ah,
2676		AR5K_REG_SM(pd_gain_overlap,
2677			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2678		AR5K_REG_SM(gain_boundaries[0],
2679			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2680		AR5K_REG_SM(gain_boundaries[1],
2681			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2682		AR5K_REG_SM(gain_boundaries[2],
2683			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2684		AR5K_REG_SM(gain_boundaries[3],
2685			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2686		AR5K_PHY_TPC_RG5);
2687
2688	/* Used for setting rate power table */
2689	ah->ah_txpower.txp_min_idx = pwr_min[0];
2690
2691}
2692
2693/* Write PDADC values on hw */
2694static void
2695ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2696			u8 pdcurves, u8 *pdg_to_idx)
2697{
2698	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2699	u32 reg;
2700	u8 i;
2701
2702	/* Select the right pdgain curves */
2703
2704	/* Clear current settings */
2705	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2706	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2707		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2708		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2709		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2710
2711	/*
2712	 * Use pd_gains curve from eeprom
2713	 *
2714	 * This overrides the default setting from initvals
2715	 * in case some vendors (e.g. Zcomax) don't use the default
2716	 * curves. If we don't honor their settings we 'll get a
2717	 * 5dB (1 * gain overlap ?) drop.
2718	 */
2719	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2720
2721	switch (pdcurves) {
2722	case 3:
2723		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2724		/* Fall through */
2725	case 2:
2726		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2727		/* Fall through */
2728	case 1:
2729		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2730		break;
2731	}
2732	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2733
2734	/*
2735	 * Write TX power values
2736	 */
2737	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2738		ath5k_hw_reg_write(ah,
2739			((pdadc_out[4*i + 0] & 0xff) << 0) |
2740			((pdadc_out[4*i + 1] & 0xff) << 8) |
2741			((pdadc_out[4*i + 2] & 0xff) << 16) |
2742			((pdadc_out[4*i + 3] & 0xff) << 24),
2743			AR5K_PHY_PDADC_TXPOWER(i));
2744	}
2745}
2746
2747
2748/*
2749 * Common code for PCDAC/PDADC tables
2750 */
2751
2752/*
2753 * This is the main function that uses all of the above
2754 * to set PCDAC/PDADC table on hw for the current channel.
2755 * This table is used for tx power calibration on the basband,
2756 * without it we get weird tx power levels and in some cases
2757 * distorted spectral mask
2758 */
2759static int
2760ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2761			struct ieee80211_channel *channel,
2762			u8 ee_mode, u8 type)
2763{
2764	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2765	struct ath5k_chan_pcal_info *pcinfo_L;
2766	struct ath5k_chan_pcal_info *pcinfo_R;
2767	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2768	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2769	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2770	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2771	u8 *tmpL;
2772	u8 *tmpR;
2773	u32 target = channel->center_freq;
2774	int pdg, i;
2775
2776	/* Get surounding freq piers for this channel */
2777	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2778						&pcinfo_L,
2779						&pcinfo_R);
2780
2781	/* Loop over pd gain curves on
2782	 * surounding freq piers by index */
2783	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2784
2785		/* Fill curves in reverse order
2786		 * from lower power (max gain)
2787		 * to higher power. Use curve -> idx
2788		 * backmapping we did on eeprom init */
2789		u8 idx = pdg_curve_to_idx[pdg];
2790
2791		/* Grab the needed curves by index */
2792		pdg_L = &pcinfo_L->pd_curves[idx];
2793		pdg_R = &pcinfo_R->pd_curves[idx];
2794
2795		/* Initialize the temp tables */
2796		tmpL = ah->ah_txpower.tmpL[pdg];
2797		tmpR = ah->ah_txpower.tmpR[pdg];
2798
2799		/* Set curve's x boundaries and create
2800		 * curves so that they cover the same
2801		 * range (if we don't do that one table
2802		 * will have values on some range and the
2803		 * other one won't have any so interpolation
2804		 * will fail) */
2805		table_min[pdg] = min(pdg_L->pd_pwr[0],
2806					pdg_R->pd_pwr[0]) / 2;
2807
2808		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2809				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2810
2811		/* Now create the curves on surrounding channels
2812		 * and interpolate if needed to get the final
2813		 * curve for this gain on this channel */
2814		switch (type) {
2815		case AR5K_PWRTABLE_LINEAR_PCDAC:
2816			/* Override min/max so that we don't loose
2817			 * accuracy (don't divide by 2) */
2818			table_min[pdg] = min(pdg_L->pd_pwr[0],
2819						pdg_R->pd_pwr[0]);
2820
2821			table_max[pdg] =
2822				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2823					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2824
2825			/* Override minimum so that we don't get
2826			 * out of bounds while extrapolating
2827			 * below. Don't do this when we have 2
2828			 * curves and we are on the high power curve
2829			 * because table_min is ok in this case */
2830			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2831
2832				table_min[pdg] =
2833					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2834								pdg_R->pd_step,
2835								pdg_L->pd_pwr,
2836								pdg_R->pd_pwr);
2837
2838				/* Don't go too low because we will
2839				 * miss the upper part of the curve.
2840				 * Note: 126 = 31.5dB (max power supported)
2841				 * in 0.25dB units */
2842				if (table_max[pdg] - table_min[pdg] > 126)
2843					table_min[pdg] = table_max[pdg] - 126;
2844			}
2845
2846			/* Fall through */
2847		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2848		case AR5K_PWRTABLE_PWR_TO_PDADC:
2849
2850			ath5k_create_power_curve(table_min[pdg],
2851						table_max[pdg],
2852						pdg_L->pd_pwr,
2853						pdg_L->pd_step,
2854						pdg_L->pd_points, tmpL, type);
2855
2856			/* We are in a calibration
2857			 * pier, no need to interpolate
2858			 * between freq piers */
2859			if (pcinfo_L == pcinfo_R)
2860				continue;
2861
2862			ath5k_create_power_curve(table_min[pdg],
2863						table_max[pdg],
2864						pdg_R->pd_pwr,
2865						pdg_R->pd_step,
2866						pdg_R->pd_points, tmpR, type);
2867			break;
2868		default:
2869			return -EINVAL;
2870		}
2871
2872		/* Interpolate between curves
2873		 * of surounding freq piers to
2874		 * get the final curve for this
2875		 * pd gain. Re-use tmpL for interpolation
2876		 * output */
2877		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2878		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2879			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2880							(s16) pcinfo_L->freq,
2881							(s16) pcinfo_R->freq,
2882							(s16) tmpL[i],
2883							(s16) tmpR[i]);
2884		}
2885	}
2886
2887	/* Now we have a set of curves for this
2888	 * channel on tmpL (x range is table_max - table_min
2889	 * and y values are tmpL[pdg][]) sorted in the same
2890	 * order as EEPROM (because we've used the backmapping).
2891	 * So for RF5112 it's from higher power to lower power
2892	 * and for RF2413 it's from lower power to higher power.
2893	 * For RF5111 we only have one curve. */
2894
2895	/* Fill min and max power levels for this
2896	 * channel by interpolating the values on
2897	 * surounding channels to complete the dataset */
2898	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2899					(s16) pcinfo_L->freq,
2900					(s16) pcinfo_R->freq,
2901					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2902
2903	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2904					(s16) pcinfo_L->freq,
2905					(s16) pcinfo_R->freq,
2906					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2907
2908	/* We are ready to go, fill PCDAC/PDADC
2909	 * table and write settings on hardware */
2910	switch (type) {
2911	case AR5K_PWRTABLE_LINEAR_PCDAC:
2912		/* For RF5112 we can have one or two curves
2913		 * and each curve covers a certain power lvl
2914		 * range so we need to do some more processing */
2915		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2916						ee->ee_pd_gains[ee_mode]);
2917
2918		/* Set txp.offset so that we can
2919		 * match max power value with max
2920		 * table index */
2921		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2922
2923		/* Write settings on hw */
2924		ath5k_setup_pcdac_table(ah);
2925		break;
2926	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2927		/* We are done for RF5111 since it has only
2928		 * one curve, just fit the curve on the table */
2929		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2930
2931		/* No rate powertable adjustment for RF5111 */
2932		ah->ah_txpower.txp_min_idx = 0;
2933		ah->ah_txpower.txp_offset = 0;
2934
2935		/* Write settings on hw */
2936		ath5k_setup_pcdac_table(ah);
2937		break;
2938	case AR5K_PWRTABLE_PWR_TO_PDADC:
2939		/* Set PDADC boundaries and fill
2940		 * final PDADC table */
2941		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2942						ee->ee_pd_gains[ee_mode]);
2943
2944		/* Write settings on hw */
2945		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2946
2947		/* Set txp.offset, note that table_min
2948		 * can be negative */
2949		ah->ah_txpower.txp_offset = table_min[0];
2950		break;
2951	default:
2952		return -EINVAL;
2953	}
2954
2955	return 0;
2956}
2957
2958
2959/*
2960 * Per-rate tx power setting
2961 *
2962 * This is the code that sets the desired tx power (below
2963 * maximum) on hw for each rate (we also have TPC that sets
2964 * power per packet). We do that by providing an index on the
2965 * PCDAC/PDADC table we set up.
2966 */
2967
2968/*
2969 * Set rate power table
2970 *
2971 * For now we only limit txpower based on maximum tx power
2972 * supported by hw (what's inside rate_info). We need to limit
2973 * this even more, based on regulatory domain etc.
2974 *
2975 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2976 * and is indexed as follows:
2977 * rates[0] - rates[7] -> OFDM rates
2978 * rates[8] - rates[14] -> CCK rates
2979 * rates[15] -> XR rates (they all have the same power)
2980 */
2981static void
2982ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2983			struct ath5k_rate_pcal_info *rate_info,
2984			u8 ee_mode)
2985{
2986	unsigned int i;
2987	u16 *rates;
2988
2989	/* max_pwr is power level we got from driver/user in 0.5dB
2990	 * units, switch to 0.25dB units so we can compare */
2991	max_pwr *= 2;
2992	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2993
2994	/* apply rate limits */
2995	rates = ah->ah_txpower.txp_rates_power_table;
2996
2997	/* OFDM rates 6 to 24Mb/s */
2998	for (i = 0; i < 5; i++)
2999		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3000
3001	/* Rest OFDM rates */
3002	rates[5] = min(rates[0], rate_info->target_power_36);
3003	rates[6] = min(rates[0], rate_info->target_power_48);
3004	rates[7] = min(rates[0], rate_info->target_power_54);
3005
3006	/* CCK rates */
3007	/* 1L */
3008	rates[8] = min(rates[0], rate_info->target_power_6to24);
3009	/* 2L */
3010	rates[9] = min(rates[0], rate_info->target_power_36);
3011	/* 2S */
3012	rates[10] = min(rates[0], rate_info->target_power_36);
3013	/* 5L */
3014	rates[11] = min(rates[0], rate_info->target_power_48);
3015	/* 5S */
3016	rates[12] = min(rates[0], rate_info->target_power_48);
3017	/* 11L */
3018	rates[13] = min(rates[0], rate_info->target_power_54);
3019	/* 11S */
3020	rates[14] = min(rates[0], rate_info->target_power_54);
3021
3022	/* XR rates */
3023	rates[15] = min(rates[0], rate_info->target_power_6to24);
3024
3025	/* CCK rates have different peak to average ratio
3026	 * so we have to tweak their power so that gainf
3027	 * correction works ok. For this we use OFDM to
3028	 * CCK delta from eeprom */
3029	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3030	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3031		for (i = 8; i <= 15; i++)
3032			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3033
3034	/* Now that we have all rates setup use table offset to
3035	 * match the power range set by user with the power indices
3036	 * on PCDAC/PDADC table */
3037	for (i = 0; i < 16; i++) {
3038		rates[i] += ah->ah_txpower.txp_offset;
3039		/* Don't get out of bounds */
3040		if (rates[i] > 63)
3041			rates[i] = 63;
3042	}
3043
3044	/* Min/max in 0.25dB units */
3045	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3046	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
3047	ah->ah_txpower.txp_ofdm = rates[7];
3048}
3049
3050
3051/*
3052 * Set transmission power
3053 */
3054static int
3055ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3056		u8 ee_mode, u8 txpower)
3057{
3058	struct ath5k_rate_pcal_info rate_info;
3059	u8 type;
3060	int ret;
3061
3062	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3063		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3064		return -EINVAL;
3065	}
3066
3067	/* Reset TX power values */
3068	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3069	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3070	ah->ah_txpower.txp_min_pwr = 0;
3071	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3072
3073	/* Initialize TX power table */
3074	switch (ah->ah_radio) {
3075	case AR5K_RF5111:
3076		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3077		break;
3078	case AR5K_RF5112:
3079		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3080		break;
3081	case AR5K_RF2413:
3082	case AR5K_RF5413:
3083	case AR5K_RF2316:
3084	case AR5K_RF2317:
3085	case AR5K_RF2425:
3086		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3087		break;
3088	default:
3089		return -EINVAL;
3090	}
3091
3092	/* FIXME: Only on channel/mode change */
3093	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3094	if (ret)
3095		return ret;
3096
3097	/* Limit max power if we have a CTL available */
3098	ath5k_get_max_ctl_power(ah, channel);
3099
3100	/* FIXME: Antenna reduction stuff */
3101
3102	/* FIXME: Limit power on turbo modes */
3103
3104	/* FIXME: TPC scale reduction */
3105
3106	/* Get surounding channels for per-rate power table
3107	 * calibration */
3108	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3109
3110	/* Setup rate power table */
3111	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3112
3113	/* Write rate power table on hw */
3114	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3115		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3116		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3117
3118	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3119		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3120		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3121
3122	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3123		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3124		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3125
3126	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3127		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3128		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3129
3130	/* FIXME: TPC support */
3131	if (ah->ah_txpower.txp_tpc) {
3132		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3133			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3134
3135		ath5k_hw_reg_write(ah,
3136			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3137			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3138			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3139			AR5K_TPC);
3140	} else {
3141		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3142			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3143	}
3144
3145	return 0;
3146}
3147
3148int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3149{
3150	/*Just a try M.F.*/
3151	struct ieee80211_channel *channel = ah->ah_current_channel;
3152	u8 ee_mode;
3153
3154	switch (channel->hw_value & CHANNEL_MODES) {
3155	case CHANNEL_A:
3156	case CHANNEL_T:
3157	case CHANNEL_XR:
3158		ee_mode = AR5K_EEPROM_MODE_11A;
3159		break;
3160	case CHANNEL_G:
3161	case CHANNEL_TG:
3162		ee_mode = AR5K_EEPROM_MODE_11G;
3163		break;
3164	case CHANNEL_B:
3165		ee_mode = AR5K_EEPROM_MODE_11B;
3166		break;
3167	default:
3168		ATH5K_ERR(ah->ah_sc,
3169			"invalid channel: %d\n", channel->center_freq);
3170		return -EINVAL;
3171	}
3172
3173	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3174		"changing txpower to %d\n", txpower);
3175
3176	return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3177}
3178
3179/*************\
3180 Init function
3181\*************/
3182
3183int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3184						u8 mode, u8 ee_mode, u8 freq)
3185{
3186	int ret, i;
3187	u32 phy_tst1;
3188
3189	ret = 0;
3190
3191	/*
3192	 * 5211/5212 Specific
3193	 */
3194	if (ah->ah_version != AR5K_AR5210) {
3195
3196		/*
3197		 * Write initial RF gain settings
3198		 * This should work for both 5111/5112
3199		 */
3200		ret = ath5k_hw_rfgain_init(ah, freq);
3201		if (ret)
3202			return ret;
3203
3204		mdelay(1);
3205
3206		/*
3207		 * Set TX power
3208		 */
3209		ret = ath5k_hw_txpower(ah, channel, ee_mode,
3210					ah->ah_txpower.txp_max_pwr / 2);
3211		if (ret)
3212			return ret;
3213
3214		/*
3215		 * Write RF buffer
3216		 */
3217		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3218		if (ret)
3219			return ret;
3220
3221
3222		/* Write OFDM timings on 5212*/
3223		if (ah->ah_version == AR5K_AR5212 &&
3224			channel->hw_value & CHANNEL_OFDM) {
3225
3226			ret = ath5k_hw_write_ofdm_timings(ah, channel);
3227			if (ret)
3228				return ret;
3229
3230			/* Spur info is available only from EEPROM versions
3231			 * greater than 5.3, but the EEPROM routines will use
3232			 * static values for older versions */
3233			if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3234				ath5k_hw_set_spur_mitigation_filter(ah,
3235								    channel);
3236		}
3237
3238		/*Enable/disable 802.11b mode on 5111
3239		(enable 2111 frequency converter + CCK)*/
3240		if (ah->ah_radio == AR5K_RF5111) {
3241			if (mode == AR5K_MODE_11B)
3242				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3243				    AR5K_TXCFG_B_MODE);
3244			else
3245				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3246				    AR5K_TXCFG_B_MODE);
3247		}
3248
3249	} else {
3250		/*
3251		 * For 5210 we do all initialization using
3252		 * initvals, so we don't have to modify
3253		 * any settings (5210 also only supports
3254		 * a/aturbo modes)
3255		 */
3256		mdelay(1);
3257		/* Disable phy and wait */
3258		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3259		mdelay(1);
3260	}
3261
3262	/* Set channel on PHY */
3263	ret = ath5k_hw_channel(ah, channel);
3264	if (ret)
3265		return ret;
3266
3267	/*
3268	 * Enable the PHY and wait until completion
3269	 * This includes BaseBand and Synthesizer
3270	 * activation.
3271	 */
3272	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3273
3274	/*
3275	 * On 5211+ read activation -> rx delay
3276	 * and use it.
3277	 *
3278	 * TODO: Half/quarter rate support
3279	 */
3280	if (ah->ah_version != AR5K_AR5210) {
3281		u32 delay;
3282		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
3283			AR5K_PHY_RX_DELAY_M;
3284		delay = (channel->hw_value & CHANNEL_CCK) ?
3285			((delay << 2) / 22) : (delay / 10);
3286
3287		udelay(100 + (2 * delay));
3288	} else {
3289		mdelay(1);
3290	}
3291
3292	/*
3293	 * Perform ADC test to see if baseband is ready
3294	 * Set TX hold and check ADC test register
3295	 */
3296	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3297	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3298	for (i = 0; i <= 20; i++) {
3299		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3300			break;
3301		udelay(200);
3302	}
3303	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3304
3305	/*
3306	 * Start automatic gain control calibration
3307	 *
3308	 * During AGC calibration RX path is re-routed to
3309	 * a power detector so we don't receive anything.
3310	 *
3311	 * This method is used to calibrate some static offsets
3312	 * used together with on-the fly I/Q calibration (the
3313	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3314	 * interrupt rx path.
3315	 *
3316	 * While rx path is re-routed to the power detector we also
3317	 * start a noise floor calibration to measure the
3318	 * card's noise floor (the noise we measure when we are not
3319	 * transmitting or receiving anything).
3320	 *
3321	 * If we are in a noisy environment, AGC calibration may time
3322	 * out and/or noise floor calibration might timeout.
3323	 */
3324	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3325				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3326
3327	/* At the same time start I/Q calibration for QAM constellation
3328	 * -no need for CCK- */
3329	ah->ah_calibration = false;
3330	if (!(mode == AR5K_MODE_11B)) {
3331		ah->ah_calibration = true;
3332		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3333				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3334		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3335				AR5K_PHY_IQ_RUN);
3336	}
3337
3338	/* Wait for gain calibration to finish (we check for I/Q calibration
3339	 * during ath5k_phy_calibrate) */
3340	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3341			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3342		ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
3343			channel->center_freq);
3344	}
3345
3346	/* Restore antenna mode */
3347	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3348
3349	return ret;
3350}
3351