[go: nahoru, domu]

phy.c revision a4b770972b8f819e408d7cc3ae9637e15bff62f6
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
24#include <linux/slab.h>
25
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
29#include "rfbuffer.h"
30#include "rfgain.h"
31
32/*
33 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
34 */
35static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
36					const struct ath5k_rf_reg *rf_regs,
37					u32 val, u8 reg_id, bool set)
38{
39	const struct ath5k_rf_reg *rfreg = NULL;
40	u8 offset, bank, num_bits, col, position;
41	u16 entry;
42	u32 mask, data, last_bit, bits_shifted, first_bit;
43	u32 *rfb;
44	s32 bits_left;
45	int i;
46
47	data = 0;
48	rfb = ah->ah_rf_banks;
49
50	for (i = 0; i < ah->ah_rf_regs_count; i++) {
51		if (rf_regs[i].index == reg_id) {
52			rfreg = &rf_regs[i];
53			break;
54		}
55	}
56
57	if (rfb == NULL || rfreg == NULL) {
58		ATH5K_PRINTF("Rf register not found!\n");
59		/* should not happen */
60		return 0;
61	}
62
63	bank = rfreg->bank;
64	num_bits = rfreg->field.len;
65	first_bit = rfreg->field.pos;
66	col = rfreg->field.col;
67
68	/* first_bit is an offset from bank's
69	 * start. Since we have all banks on
70	 * the same array, we use this offset
71	 * to mark each bank's start */
72	offset = ah->ah_offset[bank];
73
74	/* Boundary check */
75	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
76		ATH5K_PRINTF("invalid values at offset %u\n", offset);
77		return 0;
78	}
79
80	entry = ((first_bit - 1) / 8) + offset;
81	position = (first_bit - 1) % 8;
82
83	if (set)
84		data = ath5k_hw_bitswap(val, num_bits);
85
86	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
87	position = 0, entry++) {
88
89		last_bit = (position + bits_left > 8) ? 8 :
90					position + bits_left;
91
92		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
93								(col * 8);
94
95		if (set) {
96			rfb[entry] &= ~mask;
97			rfb[entry] |= ((data << position) << (col * 8)) & mask;
98			data >>= (8 - position);
99		} else {
100			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
101				<< bits_shifted;
102			bits_shifted += last_bit - position;
103		}
104
105		bits_left -= 8 - position;
106	}
107
108	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
109
110	return data;
111}
112
113/**********************\
114* RF Gain optimization *
115\**********************/
116
117/*
118 * This code is used to optimize rf gain on different environments
119 * (temperature mostly) based on feedback from a power detector.
120 *
121 * It's only used on RF5111 and RF5112, later RF chips seem to have
122 * auto adjustment on hw -notice they have a much smaller BANK 7 and
123 * no gain optimization ladder-.
124 *
125 * For more infos check out this patent doc
126 * http://www.freepatentsonline.com/7400691.html
127 *
128 * This paper describes power drops as seen on the receiver due to
129 * probe packets
130 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
131 * %20of%20Power%20Control.pdf
132 *
133 * And this is the MadWiFi bug entry related to the above
134 * http://madwifi-project.org/ticket/1659
135 * with various measurements and diagrams
136 *
137 * TODO: Deal with power drops due to probes by setting an apropriate
138 * tx power on the probe packets ! Make this part of the calibration process.
139 */
140
141/* Initialize ah_gain durring attach */
142int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
143{
144	/* Initialize the gain optimization values */
145	switch (ah->ah_radio) {
146	case AR5K_RF5111:
147		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
148		ah->ah_gain.g_low = 20;
149		ah->ah_gain.g_high = 35;
150		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
151		break;
152	case AR5K_RF5112:
153		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
154		ah->ah_gain.g_low = 20;
155		ah->ah_gain.g_high = 85;
156		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
157		break;
158	default:
159		return -EINVAL;
160	}
161
162	return 0;
163}
164
165/* Schedule a gain probe check on the next transmited packet.
166 * That means our next packet is going to be sent with lower
167 * tx power and a Peak to Average Power Detector (PAPD) will try
168 * to measure the gain.
169 *
170 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
171 * just after we enable the probe so that we don't mess with
172 * standard traffic ? Maybe it's time to use sw interrupts and
173 * a probe tasklet !!!
174 */
175static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
176{
177
178	/* Skip if gain calibration is inactive or
179	 * we already handle a probe request */
180	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
181		return;
182
183	/* Send the packet with 2dB below max power as
184	 * patent doc suggest */
185	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
186			AR5K_PHY_PAPD_PROBE_TXPOWER) |
187			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
188
189	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
190
191}
192
193/* Calculate gain_F measurement correction
194 * based on the current step for RF5112 rev. 2 */
195static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
196{
197	u32 mix, step;
198	u32 *rf;
199	const struct ath5k_gain_opt *go;
200	const struct ath5k_gain_opt_step *g_step;
201	const struct ath5k_rf_reg *rf_regs;
202
203	/* Only RF5112 Rev. 2 supports it */
204	if ((ah->ah_radio != AR5K_RF5112) ||
205	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
206		return 0;
207
208	go = &rfgain_opt_5112;
209	rf_regs = rf_regs_5112a;
210	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
211
212	g_step = &go->go_step[ah->ah_gain.g_step_idx];
213
214	if (ah->ah_rf_banks == NULL)
215		return 0;
216
217	rf = ah->ah_rf_banks;
218	ah->ah_gain.g_f_corr = 0;
219
220	/* No VGA (Variable Gain Amplifier) override, skip */
221	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
222		return 0;
223
224	/* Mix gain stepping */
225	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
226
227	/* Mix gain override */
228	mix = g_step->gos_param[0];
229
230	switch (mix) {
231	case 3:
232		ah->ah_gain.g_f_corr = step * 2;
233		break;
234	case 2:
235		ah->ah_gain.g_f_corr = (step - 5) * 2;
236		break;
237	case 1:
238		ah->ah_gain.g_f_corr = step;
239		break;
240	default:
241		ah->ah_gain.g_f_corr = 0;
242		break;
243	}
244
245	return ah->ah_gain.g_f_corr;
246}
247
248/* Check if current gain_F measurement is in the range of our
249 * power detector windows. If we get a measurement outside range
250 * we know it's not accurate (detectors can't measure anything outside
251 * their detection window) so we must ignore it */
252static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
253{
254	const struct ath5k_rf_reg *rf_regs;
255	u32 step, mix_ovr, level[4];
256	u32 *rf;
257
258	if (ah->ah_rf_banks == NULL)
259		return false;
260
261	rf = ah->ah_rf_banks;
262
263	if (ah->ah_radio == AR5K_RF5111) {
264
265		rf_regs = rf_regs_5111;
266		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
267
268		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
269			false);
270
271		level[0] = 0;
272		level[1] = (step == 63) ? 50 : step + 4;
273		level[2] = (step != 63) ? 64 : level[0];
274		level[3] = level[2] + 50 ;
275
276		ah->ah_gain.g_high = level[3] -
277			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
278		ah->ah_gain.g_low = level[0] +
279			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
280	} else {
281
282		rf_regs = rf_regs_5112;
283		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
284
285		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
286			false);
287
288		level[0] = level[2] = 0;
289
290		if (mix_ovr == 1) {
291			level[1] = level[3] = 83;
292		} else {
293			level[1] = level[3] = 107;
294			ah->ah_gain.g_high = 55;
295		}
296	}
297
298	return (ah->ah_gain.g_current >= level[0] &&
299			ah->ah_gain.g_current <= level[1]) ||
300		(ah->ah_gain.g_current >= level[2] &&
301			ah->ah_gain.g_current <= level[3]);
302}
303
304/* Perform gain_F adjustment by choosing the right set
305 * of parameters from rf gain optimization ladder */
306static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
307{
308	const struct ath5k_gain_opt *go;
309	const struct ath5k_gain_opt_step *g_step;
310	int ret = 0;
311
312	switch (ah->ah_radio) {
313	case AR5K_RF5111:
314		go = &rfgain_opt_5111;
315		break;
316	case AR5K_RF5112:
317		go = &rfgain_opt_5112;
318		break;
319	default:
320		return 0;
321	}
322
323	g_step = &go->go_step[ah->ah_gain.g_step_idx];
324
325	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
326
327		/* Reached maximum */
328		if (ah->ah_gain.g_step_idx == 0)
329			return -1;
330
331		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
332				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
333				ah->ah_gain.g_step_idx > 0;
334				g_step = &go->go_step[ah->ah_gain.g_step_idx])
335			ah->ah_gain.g_target -= 2 *
336			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
337			    g_step->gos_gain);
338
339		ret = 1;
340		goto done;
341	}
342
343	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
344
345		/* Reached minimum */
346		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
347			return -2;
348
349		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
350				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
351				ah->ah_gain.g_step_idx < go->go_steps_count-1;
352				g_step = &go->go_step[ah->ah_gain.g_step_idx])
353			ah->ah_gain.g_target -= 2 *
354			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
355			    g_step->gos_gain);
356
357		ret = 2;
358		goto done;
359	}
360
361done:
362	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
363		"ret %d, gain step %u, current gain %u, target gain %u\n",
364		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
365		ah->ah_gain.g_target);
366
367	return ret;
368}
369
370/* Main callback for thermal rf gain calibration engine
371 * Check for a new gain reading and schedule an adjustment
372 * if needed.
373 *
374 * TODO: Use sw interrupt to schedule reset if gain_F needs
375 * adjustment */
376enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
377{
378	u32 data, type;
379	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
380
381	ATH5K_TRACE(ah->ah_sc);
382
383	if (ah->ah_rf_banks == NULL ||
384	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
385		return AR5K_RFGAIN_INACTIVE;
386
387	/* No check requested, either engine is inactive
388	 * or an adjustment is already requested */
389	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
390		goto done;
391
392	/* Read the PAPD (Peak to Average Power Detector)
393	 * register */
394	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
395
396	/* No probe is scheduled, read gain_F measurement */
397	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
398		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
399		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
400
401		/* If tx packet is CCK correct the gain_F measurement
402		 * by cck ofdm gain delta */
403		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
404			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
405				ah->ah_gain.g_current +=
406					ee->ee_cck_ofdm_gain_delta;
407			else
408				ah->ah_gain.g_current +=
409					AR5K_GAIN_CCK_PROBE_CORR;
410		}
411
412		/* Further correct gain_F measurement for
413		 * RF5112A radios */
414		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
415			ath5k_hw_rf_gainf_corr(ah);
416			ah->ah_gain.g_current =
417				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
418				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
419				0;
420		}
421
422		/* Check if measurement is ok and if we need
423		 * to adjust gain, schedule a gain adjustment,
424		 * else switch back to the acive state */
425		if (ath5k_hw_rf_check_gainf_readback(ah) &&
426		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
427		ath5k_hw_rf_gainf_adjust(ah)) {
428			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
429		} else {
430			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
431		}
432	}
433
434done:
435	return ah->ah_gain.g_state;
436}
437
438/* Write initial rf gain table to set the RF sensitivity
439 * this one works on all RF chips and has nothing to do
440 * with gain_F calibration */
441int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
442{
443	const struct ath5k_ini_rfgain *ath5k_rfg;
444	unsigned int i, size;
445
446	switch (ah->ah_radio) {
447	case AR5K_RF5111:
448		ath5k_rfg = rfgain_5111;
449		size = ARRAY_SIZE(rfgain_5111);
450		break;
451	case AR5K_RF5112:
452		ath5k_rfg = rfgain_5112;
453		size = ARRAY_SIZE(rfgain_5112);
454		break;
455	case AR5K_RF2413:
456		ath5k_rfg = rfgain_2413;
457		size = ARRAY_SIZE(rfgain_2413);
458		break;
459	case AR5K_RF2316:
460		ath5k_rfg = rfgain_2316;
461		size = ARRAY_SIZE(rfgain_2316);
462		break;
463	case AR5K_RF5413:
464		ath5k_rfg = rfgain_5413;
465		size = ARRAY_SIZE(rfgain_5413);
466		break;
467	case AR5K_RF2317:
468	case AR5K_RF2425:
469		ath5k_rfg = rfgain_2425;
470		size = ARRAY_SIZE(rfgain_2425);
471		break;
472	default:
473		return -EINVAL;
474	}
475
476	switch (freq) {
477	case AR5K_INI_RFGAIN_2GHZ:
478	case AR5K_INI_RFGAIN_5GHZ:
479		break;
480	default:
481		return -EINVAL;
482	}
483
484	for (i = 0; i < size; i++) {
485		AR5K_REG_WAIT(i);
486		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
487			(u32)ath5k_rfg[i].rfg_register);
488	}
489
490	return 0;
491}
492
493
494
495/********************\
496* RF Registers setup *
497\********************/
498
499
500/*
501 * Setup RF registers by writing rf buffer on hw
502 */
503int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
504		unsigned int mode)
505{
506	const struct ath5k_rf_reg *rf_regs;
507	const struct ath5k_ini_rfbuffer *ini_rfb;
508	const struct ath5k_gain_opt *go = NULL;
509	const struct ath5k_gain_opt_step *g_step;
510	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
511	u8 ee_mode = 0;
512	u32 *rfb;
513	int i, obdb = -1, bank = -1;
514
515	switch (ah->ah_radio) {
516	case AR5K_RF5111:
517		rf_regs = rf_regs_5111;
518		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
519		ini_rfb = rfb_5111;
520		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
521		go = &rfgain_opt_5111;
522		break;
523	case AR5K_RF5112:
524		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
525			rf_regs = rf_regs_5112a;
526			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
527			ini_rfb = rfb_5112a;
528			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
529		} else {
530			rf_regs = rf_regs_5112;
531			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
532			ini_rfb = rfb_5112;
533			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
534		}
535		go = &rfgain_opt_5112;
536		break;
537	case AR5K_RF2413:
538		rf_regs = rf_regs_2413;
539		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
540		ini_rfb = rfb_2413;
541		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
542		break;
543	case AR5K_RF2316:
544		rf_regs = rf_regs_2316;
545		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
546		ini_rfb = rfb_2316;
547		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
548		break;
549	case AR5K_RF5413:
550		rf_regs = rf_regs_5413;
551		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
552		ini_rfb = rfb_5413;
553		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
554		break;
555	case AR5K_RF2317:
556		rf_regs = rf_regs_2425;
557		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
558		ini_rfb = rfb_2317;
559		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
560		break;
561	case AR5K_RF2425:
562		rf_regs = rf_regs_2425;
563		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
564		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
565			ini_rfb = rfb_2425;
566			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
567		} else {
568			ini_rfb = rfb_2417;
569			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
570		}
571		break;
572	default:
573		return -EINVAL;
574	}
575
576	/* If it's the first time we set rf buffer, allocate
577	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
578	 * we set above */
579	if (ah->ah_rf_banks == NULL) {
580		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
581								GFP_KERNEL);
582		if (ah->ah_rf_banks == NULL) {
583			ATH5K_ERR(ah->ah_sc, "out of memory\n");
584			return -ENOMEM;
585		}
586	}
587
588	/* Copy values to modify them */
589	rfb = ah->ah_rf_banks;
590
591	for (i = 0; i < ah->ah_rf_banks_size; i++) {
592		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
593			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
594			return -EINVAL;
595		}
596
597		/* Bank changed, write down the offset */
598		if (bank != ini_rfb[i].rfb_bank) {
599			bank = ini_rfb[i].rfb_bank;
600			ah->ah_offset[bank] = i;
601		}
602
603		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
604	}
605
606	/* Set Output and Driver bias current (OB/DB) */
607	if (channel->hw_value & CHANNEL_2GHZ) {
608
609		if (channel->hw_value & CHANNEL_CCK)
610			ee_mode = AR5K_EEPROM_MODE_11B;
611		else
612			ee_mode = AR5K_EEPROM_MODE_11G;
613
614		/* For RF511X/RF211X combination we
615		 * use b_OB and b_DB parameters stored
616		 * in eeprom on ee->ee_ob[ee_mode][0]
617		 *
618		 * For all other chips we use OB/DB for 2Ghz
619		 * stored in the b/g modal section just like
620		 * 802.11a on ee->ee_ob[ee_mode][1] */
621		if ((ah->ah_radio == AR5K_RF5111) ||
622		(ah->ah_radio == AR5K_RF5112))
623			obdb = 0;
624		else
625			obdb = 1;
626
627		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
628						AR5K_RF_OB_2GHZ, true);
629
630		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
631						AR5K_RF_DB_2GHZ, true);
632
633	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
634	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
635			(ah->ah_radio == AR5K_RF5111)) {
636
637		/* For 11a, Turbo and XR we need to choose
638		 * OB/DB based on frequency range */
639		ee_mode = AR5K_EEPROM_MODE_11A;
640		obdb =	 channel->center_freq >= 5725 ? 3 :
641			(channel->center_freq >= 5500 ? 2 :
642			(channel->center_freq >= 5260 ? 1 :
643			 (channel->center_freq > 4000 ? 0 : -1)));
644
645		if (obdb < 0)
646			return -EINVAL;
647
648		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
649						AR5K_RF_OB_5GHZ, true);
650
651		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
652						AR5K_RF_DB_5GHZ, true);
653	}
654
655	g_step = &go->go_step[ah->ah_gain.g_step_idx];
656
657	/* Bank Modifications (chip-specific) */
658	if (ah->ah_radio == AR5K_RF5111) {
659
660		/* Set gain_F settings according to current step */
661		if (channel->hw_value & CHANNEL_OFDM) {
662
663			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
664					AR5K_PHY_FRAME_CTL_TX_CLIP,
665					g_step->gos_param[0]);
666
667			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
668							AR5K_RF_PWD_90, true);
669
670			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
671							AR5K_RF_PWD_84, true);
672
673			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
674						AR5K_RF_RFGAIN_SEL, true);
675
676			/* We programmed gain_F parameters, switch back
677			 * to active state */
678			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
679
680		}
681
682		/* Bank 6/7 setup */
683
684		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
685						AR5K_RF_PWD_XPD, true);
686
687		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
688						AR5K_RF_XPD_GAIN, true);
689
690		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
691						AR5K_RF_GAIN_I, true);
692
693		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
694						AR5K_RF_PLO_SEL, true);
695
696		/* TODO: Half/quarter channel support */
697	}
698
699	if (ah->ah_radio == AR5K_RF5112) {
700
701		/* Set gain_F settings according to current step */
702		if (channel->hw_value & CHANNEL_OFDM) {
703
704			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
705						AR5K_RF_MIXGAIN_OVR, true);
706
707			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
708						AR5K_RF_PWD_138, true);
709
710			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
711						AR5K_RF_PWD_137, true);
712
713			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
714						AR5K_RF_PWD_136, true);
715
716			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
717						AR5K_RF_PWD_132, true);
718
719			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
720						AR5K_RF_PWD_131, true);
721
722			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
723						AR5K_RF_PWD_130, true);
724
725			/* We programmed gain_F parameters, switch back
726			 * to active state */
727			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
728		}
729
730		/* Bank 6/7 setup */
731
732		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
733						AR5K_RF_XPD_SEL, true);
734
735		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
736			/* Rev. 1 supports only one xpd */
737			ath5k_hw_rfb_op(ah, rf_regs,
738						ee->ee_x_gain[ee_mode],
739						AR5K_RF_XPD_GAIN, true);
740
741		} else {
742			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
743			if (ee->ee_pd_gains[ee_mode] > 1) {
744				ath5k_hw_rfb_op(ah, rf_regs,
745						pdg_curve_to_idx[0],
746						AR5K_RF_PD_GAIN_LO, true);
747				ath5k_hw_rfb_op(ah, rf_regs,
748						pdg_curve_to_idx[1],
749						AR5K_RF_PD_GAIN_HI, true);
750			} else {
751				ath5k_hw_rfb_op(ah, rf_regs,
752						pdg_curve_to_idx[0],
753						AR5K_RF_PD_GAIN_LO, true);
754				ath5k_hw_rfb_op(ah, rf_regs,
755						pdg_curve_to_idx[0],
756						AR5K_RF_PD_GAIN_HI, true);
757			}
758
759			/* Lower synth voltage on Rev 2 */
760			ath5k_hw_rfb_op(ah, rf_regs, 2,
761					AR5K_RF_HIGH_VC_CP, true);
762
763			ath5k_hw_rfb_op(ah, rf_regs, 2,
764					AR5K_RF_MID_VC_CP, true);
765
766			ath5k_hw_rfb_op(ah, rf_regs, 2,
767					AR5K_RF_LOW_VC_CP, true);
768
769			ath5k_hw_rfb_op(ah, rf_regs, 2,
770					AR5K_RF_PUSH_UP, true);
771
772			/* Decrease power consumption on 5213+ BaseBand */
773			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
774				ath5k_hw_rfb_op(ah, rf_regs, 1,
775						AR5K_RF_PAD2GND, true);
776
777				ath5k_hw_rfb_op(ah, rf_regs, 1,
778						AR5K_RF_XB2_LVL, true);
779
780				ath5k_hw_rfb_op(ah, rf_regs, 1,
781						AR5K_RF_XB5_LVL, true);
782
783				ath5k_hw_rfb_op(ah, rf_regs, 1,
784						AR5K_RF_PWD_167, true);
785
786				ath5k_hw_rfb_op(ah, rf_regs, 1,
787						AR5K_RF_PWD_166, true);
788			}
789		}
790
791		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
792						AR5K_RF_GAIN_I, true);
793
794		/* TODO: Half/quarter channel support */
795
796	}
797
798	if (ah->ah_radio == AR5K_RF5413 &&
799	channel->hw_value & CHANNEL_2GHZ) {
800
801		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
802									true);
803
804		/* Set optimum value for early revisions (on pci-e chips) */
805		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
806		ah->ah_mac_srev < AR5K_SREV_AR5413)
807			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
808						AR5K_RF_PWD_ICLOBUF_2G, true);
809
810	}
811
812	/* Write RF banks on hw */
813	for (i = 0; i < ah->ah_rf_banks_size; i++) {
814		AR5K_REG_WAIT(i);
815		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
816	}
817
818	return 0;
819}
820
821
822/**************************\
823  PHY/RF channel functions
824\**************************/
825
826/*
827 * Check if a channel is supported
828 */
829bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
830{
831	/* Check if the channel is in our supported range */
832	if (flags & CHANNEL_2GHZ) {
833		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
834		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
835			return true;
836	} else if (flags & CHANNEL_5GHZ)
837		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
838		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
839			return true;
840
841	return false;
842}
843
844/*
845 * Convertion needed for RF5110
846 */
847static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
848{
849	u32 athchan;
850
851	/*
852	 * Convert IEEE channel/MHz to an internal channel value used
853	 * by the AR5210 chipset. This has not been verified with
854	 * newer chipsets like the AR5212A who have a completely
855	 * different RF/PHY part.
856	 */
857	athchan = (ath5k_hw_bitswap(
858			(ieee80211_frequency_to_channel(
859				channel->center_freq) - 24) / 2, 5)
860				<< 1) | (1 << 6) | 0x1;
861	return athchan;
862}
863
864/*
865 * Set channel on RF5110
866 */
867static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
868		struct ieee80211_channel *channel)
869{
870	u32 data;
871
872	/*
873	 * Set the channel and wait
874	 */
875	data = ath5k_hw_rf5110_chan2athchan(channel);
876	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
877	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
878	mdelay(1);
879
880	return 0;
881}
882
883/*
884 * Convertion needed for 5111
885 */
886static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
887		struct ath5k_athchan_2ghz *athchan)
888{
889	int channel;
890
891	/* Cast this value to catch negative channel numbers (>= -19) */
892	channel = (int)ieee;
893
894	/*
895	 * Map 2GHz IEEE channel to 5GHz Atheros channel
896	 */
897	if (channel <= 13) {
898		athchan->a2_athchan = 115 + channel;
899		athchan->a2_flags = 0x46;
900	} else if (channel == 14) {
901		athchan->a2_athchan = 124;
902		athchan->a2_flags = 0x44;
903	} else if (channel >= 15 && channel <= 26) {
904		athchan->a2_athchan = ((channel - 14) * 4) + 132;
905		athchan->a2_flags = 0x46;
906	} else
907		return -EINVAL;
908
909	return 0;
910}
911
912/*
913 * Set channel on 5111
914 */
915static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
916		struct ieee80211_channel *channel)
917{
918	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
919	unsigned int ath5k_channel =
920		ieee80211_frequency_to_channel(channel->center_freq);
921	u32 data0, data1, clock;
922	int ret;
923
924	/*
925	 * Set the channel on the RF5111 radio
926	 */
927	data0 = data1 = 0;
928
929	if (channel->hw_value & CHANNEL_2GHZ) {
930		/* Map 2GHz channel to 5GHz Atheros channel ID */
931		ret = ath5k_hw_rf5111_chan2athchan(
932			ieee80211_frequency_to_channel(channel->center_freq),
933			&ath5k_channel_2ghz);
934		if (ret)
935			return ret;
936
937		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
938		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
939		    << 5) | (1 << 4);
940	}
941
942	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
943		clock = 1;
944		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
945			(clock << 1) | (1 << 10) | 1;
946	} else {
947		clock = 0;
948		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
949			<< 2) | (clock << 1) | (1 << 10) | 1;
950	}
951
952	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
953			AR5K_RF_BUFFER);
954	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
955			AR5K_RF_BUFFER_CONTROL_3);
956
957	return 0;
958}
959
960/*
961 * Set channel on 5112 and newer
962 */
963static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
964		struct ieee80211_channel *channel)
965{
966	u32 data, data0, data1, data2;
967	u16 c;
968
969	data = data0 = data1 = data2 = 0;
970	c = channel->center_freq;
971
972	if (c < 4800) {
973		if (!((c - 2224) % 5)) {
974			data0 = ((2 * (c - 704)) - 3040) / 10;
975			data1 = 1;
976		} else if (!((c - 2192) % 5)) {
977			data0 = ((2 * (c - 672)) - 3040) / 10;
978			data1 = 0;
979		} else
980			return -EINVAL;
981
982		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
983	} else if ((c % 5) != 2 || c > 5435) {
984		if (!(c % 20) && c >= 5120) {
985			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
986			data2 = ath5k_hw_bitswap(3, 2);
987		} else if (!(c % 10)) {
988			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
989			data2 = ath5k_hw_bitswap(2, 2);
990		} else if (!(c % 5)) {
991			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
992			data2 = ath5k_hw_bitswap(1, 2);
993		} else
994			return -EINVAL;
995	} else {
996		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
997		data2 = ath5k_hw_bitswap(0, 2);
998	}
999
1000	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1001
1002	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1003	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1004
1005	return 0;
1006}
1007
1008/*
1009 * Set the channel on the RF2425
1010 */
1011static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1012		struct ieee80211_channel *channel)
1013{
1014	u32 data, data0, data2;
1015	u16 c;
1016
1017	data = data0 = data2 = 0;
1018	c = channel->center_freq;
1019
1020	if (c < 4800) {
1021		data0 = ath5k_hw_bitswap((c - 2272), 8);
1022		data2 = 0;
1023	/* ? 5GHz ? */
1024	} else if ((c % 5) != 2 || c > 5435) {
1025		if (!(c % 20) && c < 5120)
1026			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1027		else if (!(c % 10))
1028			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1029		else if (!(c % 5))
1030			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1031		else
1032			return -EINVAL;
1033		data2 = ath5k_hw_bitswap(1, 2);
1034	} else {
1035		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1036		data2 = ath5k_hw_bitswap(0, 2);
1037	}
1038
1039	data = (data0 << 4) | data2 << 2 | 0x1001;
1040
1041	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1042	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1043
1044	return 0;
1045}
1046
1047/*
1048 * Set a channel on the radio chip
1049 */
1050int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1051{
1052	int ret;
1053	/*
1054	 * Check bounds supported by the PHY (we don't care about regultory
1055	 * restrictions at this point). Note: hw_value already has the band
1056	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1057	 * of the band by that */
1058	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1059		ATH5K_ERR(ah->ah_sc,
1060			"channel frequency (%u MHz) out of supported "
1061			"band range\n",
1062			channel->center_freq);
1063			return -EINVAL;
1064	}
1065
1066	/*
1067	 * Set the channel and wait
1068	 */
1069	switch (ah->ah_radio) {
1070	case AR5K_RF5110:
1071		ret = ath5k_hw_rf5110_channel(ah, channel);
1072		break;
1073	case AR5K_RF5111:
1074		ret = ath5k_hw_rf5111_channel(ah, channel);
1075		break;
1076	case AR5K_RF2425:
1077		ret = ath5k_hw_rf2425_channel(ah, channel);
1078		break;
1079	default:
1080		ret = ath5k_hw_rf5112_channel(ah, channel);
1081		break;
1082	}
1083
1084	if (ret)
1085		return ret;
1086
1087	/* Set JAPAN setting for channel 14 */
1088	if (channel->center_freq == 2484) {
1089		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1090				AR5K_PHY_CCKTXCTL_JAPAN);
1091	} else {
1092		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1093				AR5K_PHY_CCKTXCTL_WORLD);
1094	}
1095
1096	ah->ah_current_channel = channel;
1097	ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1098
1099	return 0;
1100}
1101
1102/*****************\
1103  PHY calibration
1104\*****************/
1105
1106static int sign_extend(int val, const int nbits)
1107{
1108	int order = BIT(nbits-1);
1109	return (val ^ order) - order;
1110}
1111
1112static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1113{
1114	s32 val;
1115
1116	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1117	return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1118}
1119
1120void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1121{
1122	int i;
1123
1124	ah->ah_nfcal_hist.index = 0;
1125	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1126		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1127}
1128
1129static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1130{
1131	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1132	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1133	hist->nfval[hist->index] = noise_floor;
1134}
1135
1136static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1137{
1138	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1139	s16 tmp;
1140	int i, j;
1141
1142	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1143	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1144		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1145			if (sort[j] > sort[j-1]) {
1146				tmp = sort[j];
1147				sort[j] = sort[j-1];
1148				sort[j-1] = tmp;
1149			}
1150		}
1151	}
1152	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1153		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1154			"cal %d:%d\n", i, sort[i]);
1155	}
1156	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1157}
1158
1159/*
1160 * When we tell the hardware to perform a noise floor calibration
1161 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1162 * sample-and-hold the minimum noise level seen at the antennas.
1163 * This value is then stored in a ring buffer of recently measured
1164 * noise floor values so we have a moving window of the last few
1165 * samples.
1166 *
1167 * The median of the values in the history is then loaded into the
1168 * hardware for its own use for RSSI and CCA measurements.
1169 */
1170static void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1171{
1172	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1173	u32 val;
1174	s16 nf, threshold;
1175	u8 ee_mode;
1176
1177	/* keep last value if calibration hasn't completed */
1178	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1179		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1180			"NF did not complete in calibration window\n");
1181
1182		return;
1183	}
1184
1185	switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1186	case CHANNEL_A:
1187	case CHANNEL_T:
1188	case CHANNEL_XR:
1189		ee_mode = AR5K_EEPROM_MODE_11A;
1190		break;
1191	case CHANNEL_G:
1192	case CHANNEL_TG:
1193		ee_mode = AR5K_EEPROM_MODE_11G;
1194		break;
1195	default:
1196	case CHANNEL_B:
1197		ee_mode = AR5K_EEPROM_MODE_11B;
1198		break;
1199	}
1200
1201
1202	/* completed NF calibration, test threshold */
1203	nf = ath5k_hw_read_measured_noise_floor(ah);
1204	threshold = ee->ee_noise_floor_thr[ee_mode];
1205
1206	if (nf > threshold) {
1207		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1208			"noise floor failure detected; "
1209			"read %d, threshold %d\n",
1210			nf, threshold);
1211
1212		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1213	}
1214
1215	ath5k_hw_update_nfcal_hist(ah, nf);
1216	nf = ath5k_hw_get_median_noise_floor(ah);
1217
1218	/* load noise floor (in .5 dBm) so the hardware will use it */
1219	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1220	val |= (nf * 2) & AR5K_PHY_NF_M;
1221	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1222
1223	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1224		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1225
1226	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1227		0, false);
1228
1229	/*
1230	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1231	 * so that we're not capped by the median we just loaded.
1232	 * This will be used as the initial value for the next noise
1233	 * floor calibration.
1234	 */
1235	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1236	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1237	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1238		AR5K_PHY_AGCCTL_NF_EN |
1239		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1240		AR5K_PHY_AGCCTL_NF);
1241
1242	ah->ah_noise_floor = nf;
1243
1244	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1245		"noise floor calibrated: %d\n", nf);
1246}
1247
1248/*
1249 * Perform a PHY calibration on RF5110
1250 * -Fix BPSK/QAM Constellation (I/Q correction)
1251 * -Calculate Noise Floor
1252 */
1253static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1254		struct ieee80211_channel *channel)
1255{
1256	u32 phy_sig, phy_agc, phy_sat, beacon;
1257	int ret;
1258
1259	/*
1260	 * Disable beacons and RX/TX queues, wait
1261	 */
1262	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1263		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1264	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1265	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1266
1267	mdelay(2);
1268
1269	/*
1270	 * Set the channel (with AGC turned off)
1271	 */
1272	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1273	udelay(10);
1274	ret = ath5k_hw_channel(ah, channel);
1275
1276	/*
1277	 * Activate PHY and wait
1278	 */
1279	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1280	mdelay(1);
1281
1282	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1283
1284	if (ret)
1285		return ret;
1286
1287	/*
1288	 * Calibrate the radio chip
1289	 */
1290
1291	/* Remember normal state */
1292	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1293	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1294	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1295
1296	/* Update radio registers */
1297	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1298		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1299
1300	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1301			AR5K_PHY_AGCCOARSE_LO)) |
1302		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1303		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1304
1305	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1306			AR5K_PHY_ADCSAT_THR)) |
1307		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1308		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1309
1310	udelay(20);
1311
1312	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1313	udelay(10);
1314	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1315	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1316
1317	mdelay(1);
1318
1319	/*
1320	 * Enable calibration and wait until completion
1321	 */
1322	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1323
1324	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1325			AR5K_PHY_AGCCTL_CAL, 0, false);
1326
1327	/* Reset to normal state */
1328	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1329	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1330	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1331
1332	if (ret) {
1333		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1334				channel->center_freq);
1335		return ret;
1336	}
1337
1338	ath5k_hw_update_noise_floor(ah);
1339
1340	/*
1341	 * Re-enable RX/TX and beacons
1342	 */
1343	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1344		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1345	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1346
1347	return 0;
1348}
1349
1350/*
1351 * Perform a PHY calibration on RF5111/5112 and newer chips
1352 */
1353static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1354		struct ieee80211_channel *channel)
1355{
1356	u32 i_pwr, q_pwr;
1357	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1358	int i;
1359	ATH5K_TRACE(ah->ah_sc);
1360
1361	if (!ah->ah_calibration ||
1362		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1363		goto done;
1364
1365	/* Calibration has finished, get the results and re-run */
1366
1367	/* work around empty results which can apparently happen on 5212 */
1368	for (i = 0; i <= 10; i++) {
1369		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1370		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1371		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1372		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1373			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1374		if (i_pwr && q_pwr)
1375			break;
1376	}
1377
1378	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1379
1380	if (ah->ah_version == AR5K_AR5211)
1381		q_coffd = q_pwr >> 6;
1382	else
1383		q_coffd = q_pwr >> 7;
1384
1385	/* protect against divide by 0 and loss of sign bits */
1386	if (i_coffd == 0 || q_coffd < 2)
1387		goto done;
1388
1389	i_coff = (-iq_corr) / i_coffd;
1390	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1391
1392	if (ah->ah_version == AR5K_AR5211)
1393		q_coff = (i_pwr / q_coffd) - 64;
1394	else
1395		q_coff = (i_pwr / q_coffd) - 128;
1396	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1397
1398	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1399			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1400			i_coff, q_coff, i_coffd, q_coffd);
1401
1402	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1403	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1404	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1405	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1406
1407	/* Re-enable calibration -if we don't we'll commit
1408	 * the same values again and again */
1409	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1410			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1411	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1412
1413done:
1414
1415	/* TODO: Separate noise floor calibration from I/Q calibration
1416	 * since noise floor calibration interrupts rx path while I/Q
1417	 * calibration doesn't. We don't need to run noise floor calibration
1418	 * as often as I/Q calibration.*/
1419	ath5k_hw_update_noise_floor(ah);
1420
1421	/* Initiate a gain_F calibration */
1422	ath5k_hw_request_rfgain_probe(ah);
1423
1424	return 0;
1425}
1426
1427/*
1428 * Perform a PHY calibration
1429 */
1430int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1431		struct ieee80211_channel *channel)
1432{
1433	int ret;
1434
1435	if (ah->ah_radio == AR5K_RF5110)
1436		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1437	else
1438		ret = ath5k_hw_rf511x_calibrate(ah, channel);
1439
1440	return ret;
1441}
1442
1443/***************************\
1444* Spur mitigation functions *
1445\***************************/
1446
1447bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1448				struct ieee80211_channel *channel)
1449{
1450	u8 refclk_freq;
1451
1452	if ((ah->ah_radio == AR5K_RF5112) ||
1453	(ah->ah_radio == AR5K_RF5413) ||
1454	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1455		refclk_freq = 40;
1456	else
1457		refclk_freq = 32;
1458
1459	if ((channel->center_freq % refclk_freq != 0) &&
1460	((channel->center_freq % refclk_freq < 10) ||
1461	(channel->center_freq % refclk_freq > 22)))
1462		return true;
1463	else
1464		return false;
1465}
1466
1467void
1468ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1469				struct ieee80211_channel *channel)
1470{
1471	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1472	u32 mag_mask[4] = {0, 0, 0, 0};
1473	u32 pilot_mask[2] = {0, 0};
1474	/* Note: fbin values are scaled up by 2 */
1475	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1476	s32 spur_delta_phase, spur_freq_sigma_delta;
1477	s32 spur_offset, num_symbols_x16;
1478	u8 num_symbol_offsets, i, freq_band;
1479
1480	/* Convert current frequency to fbin value (the same way channels
1481	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1482	 * up by 2 so we can compare it later */
1483	if (channel->hw_value & CHANNEL_2GHZ) {
1484		chan_fbin = (channel->center_freq - 2300) * 10;
1485		freq_band = AR5K_EEPROM_BAND_2GHZ;
1486	} else {
1487		chan_fbin = (channel->center_freq - 4900) * 10;
1488		freq_band = AR5K_EEPROM_BAND_5GHZ;
1489	}
1490
1491	/* Check if any spur_chan_fbin from EEPROM is
1492	 * within our current channel's spur detection range */
1493	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1494	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1495	/* XXX: Half/Quarter channels ?*/
1496	if (channel->hw_value & CHANNEL_TURBO)
1497		spur_detection_window *= 2;
1498
1499	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1500		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1501
1502		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1503		 * so it's zero if we got nothing from EEPROM */
1504		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1505			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1506			break;
1507		}
1508
1509		if ((chan_fbin - spur_detection_window <=
1510		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1511		(chan_fbin + spur_detection_window >=
1512		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1513			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1514			break;
1515		}
1516	}
1517
1518	/* We need to enable spur filter for this channel */
1519	if (spur_chan_fbin) {
1520		spur_offset = spur_chan_fbin - chan_fbin;
1521		/*
1522		 * Calculate deltas:
1523		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1524		 * spur_delta_phase -> spur_offset / chip_freq << 11
1525		 * Note: Both values have 100KHz resolution
1526		 */
1527		/* XXX: Half/Quarter rate channels ? */
1528		switch (channel->hw_value) {
1529		case CHANNEL_A:
1530			/* Both sample_freq and chip_freq are 40MHz */
1531			spur_delta_phase = (spur_offset << 17) / 25;
1532			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1533			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1534			break;
1535		case CHANNEL_G:
1536			/* sample_freq -> 40MHz chip_freq -> 44MHz
1537			 * (for b compatibility) */
1538			spur_freq_sigma_delta = (spur_offset << 8) / 55;
1539			spur_delta_phase = (spur_offset << 17) / 25;
1540			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1541			break;
1542		case CHANNEL_T:
1543		case CHANNEL_TG:
1544			/* Both sample_freq and chip_freq are 80MHz */
1545			spur_delta_phase = (spur_offset << 16) / 25;
1546			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1547			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1548			break;
1549		default:
1550			return;
1551		}
1552
1553		/* Calculate pilot and magnitude masks */
1554
1555		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1556		 * and divide by symbol_width to find how many symbols we have
1557		 * Note: number of symbols is scaled up by 16 */
1558		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1559
1560		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1561		if (!(num_symbols_x16 & 0xF))
1562			/* _X_ */
1563			num_symbol_offsets = 3;
1564		else
1565			/* _xx_ */
1566			num_symbol_offsets = 4;
1567
1568		for (i = 0; i < num_symbol_offsets; i++) {
1569
1570			/* Calculate pilot mask */
1571			s32 curr_sym_off =
1572				(num_symbols_x16 / 16) + i + 25;
1573
1574			/* Pilot magnitude mask seems to be a way to
1575			 * declare the boundaries for our detection
1576			 * window or something, it's 2 for the middle
1577			 * value(s) where the symbol is expected to be
1578			 * and 1 on the boundary values */
1579			u8 plt_mag_map =
1580				(i == 0 || i == (num_symbol_offsets - 1))
1581								? 1 : 2;
1582
1583			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1584				if (curr_sym_off <= 25)
1585					pilot_mask[0] |= 1 << curr_sym_off;
1586				else if (curr_sym_off >= 27)
1587					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1588			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1589				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1590
1591			/* Calculate magnitude mask (for viterbi decoder) */
1592			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1593				mag_mask[0] |=
1594					plt_mag_map << (curr_sym_off + 1) * 2;
1595			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1596				mag_mask[1] |=
1597					plt_mag_map << (curr_sym_off - 15) * 2;
1598			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1599				mag_mask[2] |=
1600					plt_mag_map << (curr_sym_off - 31) * 2;
1601			else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1602				mag_mask[3] |=
1603					plt_mag_map << (curr_sym_off - 47) * 2;
1604
1605		}
1606
1607		/* Write settings on hw to enable spur filter */
1608		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1609					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1610		/* XXX: Self correlator also ? */
1611		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1612					AR5K_PHY_IQ_PILOT_MASK_EN |
1613					AR5K_PHY_IQ_CHAN_MASK_EN |
1614					AR5K_PHY_IQ_SPUR_FILT_EN);
1615
1616		/* Set delta phase and freq sigma delta */
1617		ath5k_hw_reg_write(ah,
1618				AR5K_REG_SM(spur_delta_phase,
1619					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1620				AR5K_REG_SM(spur_freq_sigma_delta,
1621				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1622				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1623				AR5K_PHY_TIMING_11);
1624
1625		/* Write pilot masks */
1626		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1627		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1628					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1629					pilot_mask[1]);
1630
1631		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1632		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1633					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1634					pilot_mask[1]);
1635
1636		/* Write magnitude masks */
1637		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1638		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1639		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1640		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1641					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1642					mag_mask[3]);
1643
1644		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1645		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1646		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1647		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1648					AR5K_PHY_BIN_MASK2_4_MASK_4,
1649					mag_mask[3]);
1650
1651	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1652	AR5K_PHY_IQ_SPUR_FILT_EN) {
1653		/* Clean up spur mitigation settings and disable fliter */
1654		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1655					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1656		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1657					AR5K_PHY_IQ_PILOT_MASK_EN |
1658					AR5K_PHY_IQ_CHAN_MASK_EN |
1659					AR5K_PHY_IQ_SPUR_FILT_EN);
1660		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1661
1662		/* Clear pilot masks */
1663		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1664		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1665					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1666					0);
1667
1668		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1669		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1670					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1671					0);
1672
1673		/* Clear magnitude masks */
1674		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1675		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1676		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1677		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1678					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1679					0);
1680
1681		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1682		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1683		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1684		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1685					AR5K_PHY_BIN_MASK2_4_MASK_4,
1686					0);
1687	}
1688}
1689
1690/********************\
1691  Misc PHY functions
1692\********************/
1693
1694int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1695{
1696	ATH5K_TRACE(ah->ah_sc);
1697	/*Just a try M.F.*/
1698	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1699
1700	return 0;
1701}
1702
1703/*
1704 * Get the PHY Chip revision
1705 */
1706u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1707{
1708	unsigned int i;
1709	u32 srev;
1710	u16 ret;
1711
1712	ATH5K_TRACE(ah->ah_sc);
1713
1714	/*
1715	 * Set the radio chip access register
1716	 */
1717	switch (chan) {
1718	case CHANNEL_2GHZ:
1719		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1720		break;
1721	case CHANNEL_5GHZ:
1722		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1723		break;
1724	default:
1725		return 0;
1726	}
1727
1728	mdelay(2);
1729
1730	/* ...wait until PHY is ready and read the selected radio revision */
1731	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1732
1733	for (i = 0; i < 8; i++)
1734		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1735
1736	if (ah->ah_version == AR5K_AR5210) {
1737		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1738		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1739	} else {
1740		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1741		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1742				((srev & 0x0f) << 4), 8);
1743	}
1744
1745	/* Reset to the 5GHz mode */
1746	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1747
1748	return ret;
1749}
1750
1751/*****************\
1752* Antenna control *
1753\*****************/
1754
1755static void /*TODO:Boundary check*/
1756ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1757{
1758	ATH5K_TRACE(ah->ah_sc);
1759
1760	if (ah->ah_version != AR5K_AR5210)
1761		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1762}
1763
1764/*
1765 * Enable/disable fast rx antenna diversity
1766 */
1767static void
1768ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1769{
1770	switch (ee_mode) {
1771	case AR5K_EEPROM_MODE_11G:
1772		/* XXX: This is set to
1773		 * disabled on initvals !!! */
1774	case AR5K_EEPROM_MODE_11A:
1775		if (enable)
1776			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1777					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1778		else
1779			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1780					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1781		break;
1782	case AR5K_EEPROM_MODE_11B:
1783		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1784					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1785		break;
1786	default:
1787		return;
1788	}
1789
1790	if (enable) {
1791		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1792				AR5K_PHY_RESTART_DIV_GC, 0xc);
1793
1794		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1795					AR5K_PHY_FAST_ANT_DIV_EN);
1796	} else {
1797		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1798				AR5K_PHY_RESTART_DIV_GC, 0x8);
1799
1800		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1801					AR5K_PHY_FAST_ANT_DIV_EN);
1802	}
1803}
1804
1805/*
1806 * Set antenna operating mode
1807 */
1808void
1809ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1810{
1811	struct ieee80211_channel *channel = ah->ah_current_channel;
1812	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1813	bool use_def_for_sg;
1814	u8 def_ant, tx_ant, ee_mode;
1815	u32 sta_id1 = 0;
1816
1817	def_ant = ah->ah_def_ant;
1818
1819	ATH5K_TRACE(ah->ah_sc);
1820
1821	switch (channel->hw_value & CHANNEL_MODES) {
1822	case CHANNEL_A:
1823	case CHANNEL_T:
1824	case CHANNEL_XR:
1825		ee_mode = AR5K_EEPROM_MODE_11A;
1826		break;
1827	case CHANNEL_G:
1828	case CHANNEL_TG:
1829		ee_mode = AR5K_EEPROM_MODE_11G;
1830		break;
1831	case CHANNEL_B:
1832		ee_mode = AR5K_EEPROM_MODE_11B;
1833		break;
1834	default:
1835		ATH5K_ERR(ah->ah_sc,
1836			"invalid channel: %d\n", channel->center_freq);
1837		return;
1838	}
1839
1840	switch (ant_mode) {
1841	case AR5K_ANTMODE_DEFAULT:
1842		tx_ant = 0;
1843		use_def_for_tx = false;
1844		update_def_on_tx = false;
1845		use_def_for_rts = false;
1846		use_def_for_sg = false;
1847		fast_div = true;
1848		break;
1849	case AR5K_ANTMODE_FIXED_A:
1850		def_ant = 1;
1851		tx_ant = 1;
1852		use_def_for_tx = true;
1853		update_def_on_tx = false;
1854		use_def_for_rts = true;
1855		use_def_for_sg = true;
1856		fast_div = false;
1857		break;
1858	case AR5K_ANTMODE_FIXED_B:
1859		def_ant = 2;
1860		tx_ant = 2;
1861		use_def_for_tx = true;
1862		update_def_on_tx = false;
1863		use_def_for_rts = true;
1864		use_def_for_sg = true;
1865		fast_div = false;
1866		break;
1867	case AR5K_ANTMODE_SINGLE_AP:
1868		def_ant = 1;	/* updated on tx */
1869		tx_ant = 0;
1870		use_def_for_tx = true;
1871		update_def_on_tx = true;
1872		use_def_for_rts = true;
1873		use_def_for_sg = true;
1874		fast_div = true;
1875		break;
1876	case AR5K_ANTMODE_SECTOR_AP:
1877		tx_ant = 1;	/* variable */
1878		use_def_for_tx = false;
1879		update_def_on_tx = false;
1880		use_def_for_rts = true;
1881		use_def_for_sg = false;
1882		fast_div = false;
1883		break;
1884	case AR5K_ANTMODE_SECTOR_STA:
1885		tx_ant = 1;	/* variable */
1886		use_def_for_tx = true;
1887		update_def_on_tx = false;
1888		use_def_for_rts = true;
1889		use_def_for_sg = false;
1890		fast_div = true;
1891		break;
1892	case AR5K_ANTMODE_DEBUG:
1893		def_ant = 1;
1894		tx_ant = 2;
1895		use_def_for_tx = false;
1896		update_def_on_tx = false;
1897		use_def_for_rts = false;
1898		use_def_for_sg = false;
1899		fast_div = false;
1900		break;
1901	default:
1902		return;
1903	}
1904
1905	ah->ah_tx_ant = tx_ant;
1906	ah->ah_ant_mode = ant_mode;
1907	ah->ah_def_ant = def_ant;
1908
1909	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1910	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1911	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1912	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1913
1914	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1915
1916	if (sta_id1)
1917		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1918
1919	/* Note: set diversity before default antenna
1920	 * because it won't work correctly */
1921	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1922	ath5k_hw_set_def_antenna(ah, def_ant);
1923}
1924
1925
1926/****************\
1927* TX power setup *
1928\****************/
1929
1930/*
1931 * Helper functions
1932 */
1933
1934/*
1935 * Do linear interpolation between two given (x, y) points
1936 */
1937static s16
1938ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1939					s16 y_left, s16 y_right)
1940{
1941	s16 ratio, result;
1942
1943	/* Avoid divide by zero and skip interpolation
1944	 * if we have the same point */
1945	if ((x_left == x_right) || (y_left == y_right))
1946		return y_left;
1947
1948	/*
1949	 * Since we use ints and not fps, we need to scale up in
1950	 * order to get a sane ratio value (or else we 'll eg. get
1951	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1952	 * to have some accuracy both for 0.5 and 0.25 steps.
1953	 */
1954	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1955
1956	/* Now scale down to be in range */
1957	result = y_left + (ratio * (target - x_left) / 100);
1958
1959	return result;
1960}
1961
1962/*
1963 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1964 *
1965 * Since we have the top of the curve and we draw the line below
1966 * until we reach 1 (1 pcdac step) we need to know which point
1967 * (x value) that is so that we don't go below y axis and have negative
1968 * pcdac values when creating the curve, or fill the table with zeroes.
1969 */
1970static s16
1971ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1972				const s16 *pwrL, const s16 *pwrR)
1973{
1974	s8 tmp;
1975	s16 min_pwrL, min_pwrR;
1976	s16 pwr_i;
1977
1978	/* Some vendors write the same pcdac value twice !!! */
1979	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1980		return max(pwrL[0], pwrR[0]);
1981
1982	if (pwrL[0] == pwrL[1])
1983		min_pwrL = pwrL[0];
1984	else {
1985		pwr_i = pwrL[0];
1986		do {
1987			pwr_i--;
1988			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1989							pwrL[0], pwrL[1],
1990							stepL[0], stepL[1]);
1991		} while (tmp > 1);
1992
1993		min_pwrL = pwr_i;
1994	}
1995
1996	if (pwrR[0] == pwrR[1])
1997		min_pwrR = pwrR[0];
1998	else {
1999		pwr_i = pwrR[0];
2000		do {
2001			pwr_i--;
2002			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2003							pwrR[0], pwrR[1],
2004							stepR[0], stepR[1]);
2005		} while (tmp > 1);
2006
2007		min_pwrR = pwr_i;
2008	}
2009
2010	/* Keep the right boundary so that it works for both curves */
2011	return max(min_pwrL, min_pwrR);
2012}
2013
2014/*
2015 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2016 * Power to PCDAC curve.
2017 *
2018 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2019 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2020 * PCDAC/PDADC step for each curve is 64 but we can write more than
2021 * one curves on hw so we can go up to 128 (which is the max step we
2022 * can write on the final table).
2023 *
2024 * We write y values (PCDAC/PDADC steps) on hw.
2025 */
2026static void
2027ath5k_create_power_curve(s16 pmin, s16 pmax,
2028			const s16 *pwr, const u8 *vpd,
2029			u8 num_points,
2030			u8 *vpd_table, u8 type)
2031{
2032	u8 idx[2] = { 0, 1 };
2033	s16 pwr_i = 2*pmin;
2034	int i;
2035
2036	if (num_points < 2)
2037		return;
2038
2039	/* We want the whole line, so adjust boundaries
2040	 * to cover the entire power range. Note that
2041	 * power values are already 0.25dB so no need
2042	 * to multiply pwr_i by 2 */
2043	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2044		pwr_i = pmin;
2045		pmin = 0;
2046		pmax = 63;
2047	}
2048
2049	/* Find surrounding turning points (TPs)
2050	 * and interpolate between them */
2051	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2052	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2053
2054		/* We passed the right TP, move to the next set of TPs
2055		 * if we pass the last TP, extrapolate above using the last
2056		 * two TPs for ratio */
2057		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2058			idx[0]++;
2059			idx[1]++;
2060		}
2061
2062		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2063						pwr[idx[0]], pwr[idx[1]],
2064						vpd[idx[0]], vpd[idx[1]]);
2065
2066		/* Increase by 0.5dB
2067		 * (0.25 dB units) */
2068		pwr_i += 2;
2069	}
2070}
2071
2072/*
2073 * Get the surrounding per-channel power calibration piers
2074 * for a given frequency so that we can interpolate between
2075 * them and come up with an apropriate dataset for our current
2076 * channel.
2077 */
2078static void
2079ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2080			struct ieee80211_channel *channel,
2081			struct ath5k_chan_pcal_info **pcinfo_l,
2082			struct ath5k_chan_pcal_info **pcinfo_r)
2083{
2084	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2085	struct ath5k_chan_pcal_info *pcinfo;
2086	u8 idx_l, idx_r;
2087	u8 mode, max, i;
2088	u32 target = channel->center_freq;
2089
2090	idx_l = 0;
2091	idx_r = 0;
2092
2093	if (!(channel->hw_value & CHANNEL_OFDM)) {
2094		pcinfo = ee->ee_pwr_cal_b;
2095		mode = AR5K_EEPROM_MODE_11B;
2096	} else if (channel->hw_value & CHANNEL_2GHZ) {
2097		pcinfo = ee->ee_pwr_cal_g;
2098		mode = AR5K_EEPROM_MODE_11G;
2099	} else {
2100		pcinfo = ee->ee_pwr_cal_a;
2101		mode = AR5K_EEPROM_MODE_11A;
2102	}
2103	max = ee->ee_n_piers[mode] - 1;
2104
2105	/* Frequency is below our calibrated
2106	 * range. Use the lowest power curve
2107	 * we have */
2108	if (target < pcinfo[0].freq) {
2109		idx_l = idx_r = 0;
2110		goto done;
2111	}
2112
2113	/* Frequency is above our calibrated
2114	 * range. Use the highest power curve
2115	 * we have */
2116	if (target > pcinfo[max].freq) {
2117		idx_l = idx_r = max;
2118		goto done;
2119	}
2120
2121	/* Frequency is inside our calibrated
2122	 * channel range. Pick the surrounding
2123	 * calibration piers so that we can
2124	 * interpolate */
2125	for (i = 0; i <= max; i++) {
2126
2127		/* Frequency matches one of our calibration
2128		 * piers, no need to interpolate, just use
2129		 * that calibration pier */
2130		if (pcinfo[i].freq == target) {
2131			idx_l = idx_r = i;
2132			goto done;
2133		}
2134
2135		/* We found a calibration pier that's above
2136		 * frequency, use this pier and the previous
2137		 * one to interpolate */
2138		if (target < pcinfo[i].freq) {
2139			idx_r = i;
2140			idx_l = idx_r - 1;
2141			goto done;
2142		}
2143	}
2144
2145done:
2146	*pcinfo_l = &pcinfo[idx_l];
2147	*pcinfo_r = &pcinfo[idx_r];
2148}
2149
2150/*
2151 * Get the surrounding per-rate power calibration data
2152 * for a given frequency and interpolate between power
2153 * values to set max target power supported by hw for
2154 * each rate.
2155 */
2156static void
2157ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2158			struct ieee80211_channel *channel,
2159			struct ath5k_rate_pcal_info *rates)
2160{
2161	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2162	struct ath5k_rate_pcal_info *rpinfo;
2163	u8 idx_l, idx_r;
2164	u8 mode, max, i;
2165	u32 target = channel->center_freq;
2166
2167	idx_l = 0;
2168	idx_r = 0;
2169
2170	if (!(channel->hw_value & CHANNEL_OFDM)) {
2171		rpinfo = ee->ee_rate_tpwr_b;
2172		mode = AR5K_EEPROM_MODE_11B;
2173	} else if (channel->hw_value & CHANNEL_2GHZ) {
2174		rpinfo = ee->ee_rate_tpwr_g;
2175		mode = AR5K_EEPROM_MODE_11G;
2176	} else {
2177		rpinfo = ee->ee_rate_tpwr_a;
2178		mode = AR5K_EEPROM_MODE_11A;
2179	}
2180	max = ee->ee_rate_target_pwr_num[mode] - 1;
2181
2182	/* Get the surrounding calibration
2183	 * piers - same as above */
2184	if (target < rpinfo[0].freq) {
2185		idx_l = idx_r = 0;
2186		goto done;
2187	}
2188
2189	if (target > rpinfo[max].freq) {
2190		idx_l = idx_r = max;
2191		goto done;
2192	}
2193
2194	for (i = 0; i <= max; i++) {
2195
2196		if (rpinfo[i].freq == target) {
2197			idx_l = idx_r = i;
2198			goto done;
2199		}
2200
2201		if (target < rpinfo[i].freq) {
2202			idx_r = i;
2203			idx_l = idx_r - 1;
2204			goto done;
2205		}
2206	}
2207
2208done:
2209	/* Now interpolate power value, based on the frequency */
2210	rates->freq = target;
2211
2212	rates->target_power_6to24 =
2213		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2214					rpinfo[idx_r].freq,
2215					rpinfo[idx_l].target_power_6to24,
2216					rpinfo[idx_r].target_power_6to24);
2217
2218	rates->target_power_36 =
2219		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2220					rpinfo[idx_r].freq,
2221					rpinfo[idx_l].target_power_36,
2222					rpinfo[idx_r].target_power_36);
2223
2224	rates->target_power_48 =
2225		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2226					rpinfo[idx_r].freq,
2227					rpinfo[idx_l].target_power_48,
2228					rpinfo[idx_r].target_power_48);
2229
2230	rates->target_power_54 =
2231		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2232					rpinfo[idx_r].freq,
2233					rpinfo[idx_l].target_power_54,
2234					rpinfo[idx_r].target_power_54);
2235}
2236
2237/*
2238 * Get the max edge power for this channel if
2239 * we have such data from EEPROM's Conformance Test
2240 * Limits (CTL), and limit max power if needed.
2241 */
2242static void
2243ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2244			struct ieee80211_channel *channel)
2245{
2246	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2247	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2248	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2249	u8 *ctl_val = ee->ee_ctl;
2250	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2251	s16 edge_pwr = 0;
2252	u8 rep_idx;
2253	u8 i, ctl_mode;
2254	u8 ctl_idx = 0xFF;
2255	u32 target = channel->center_freq;
2256
2257	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2258
2259	switch (channel->hw_value & CHANNEL_MODES) {
2260	case CHANNEL_A:
2261		ctl_mode |= AR5K_CTL_11A;
2262		break;
2263	case CHANNEL_G:
2264		ctl_mode |= AR5K_CTL_11G;
2265		break;
2266	case CHANNEL_B:
2267		ctl_mode |= AR5K_CTL_11B;
2268		break;
2269	case CHANNEL_T:
2270		ctl_mode |= AR5K_CTL_TURBO;
2271		break;
2272	case CHANNEL_TG:
2273		ctl_mode |= AR5K_CTL_TURBOG;
2274		break;
2275	case CHANNEL_XR:
2276		/* Fall through */
2277	default:
2278		return;
2279	}
2280
2281	for (i = 0; i < ee->ee_ctls; i++) {
2282		if (ctl_val[i] == ctl_mode) {
2283			ctl_idx = i;
2284			break;
2285		}
2286	}
2287
2288	/* If we have a CTL dataset available grab it and find the
2289	 * edge power for our frequency */
2290	if (ctl_idx == 0xFF)
2291		return;
2292
2293	/* Edge powers are sorted by frequency from lower
2294	 * to higher. Each CTL corresponds to 8 edge power
2295	 * measurements. */
2296	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2297
2298	/* Don't do boundaries check because we
2299	 * might have more that one bands defined
2300	 * for this mode */
2301
2302	/* Get the edge power that's closer to our
2303	 * frequency */
2304	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2305		rep_idx += i;
2306		if (target <= rep[rep_idx].freq)
2307			edge_pwr = (s16) rep[rep_idx].edge;
2308	}
2309
2310	if (edge_pwr)
2311		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2312}
2313
2314
2315/*
2316 * Power to PCDAC table functions
2317 */
2318
2319/*
2320 * Fill Power to PCDAC table on RF5111
2321 *
2322 * No further processing is needed for RF5111, the only thing we have to
2323 * do is fill the values below and above calibration range since eeprom data
2324 * may not cover the entire PCDAC table.
2325 */
2326static void
2327ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2328							s16 *table_max)
2329{
2330	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2331	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2332	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2333	s16	min_pwr, max_pwr;
2334
2335	/* Get table boundaries */
2336	min_pwr = table_min[0];
2337	pcdac_0 = pcdac_tmp[0];
2338
2339	max_pwr = table_max[0];
2340	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2341
2342	/* Extrapolate below minimum using pcdac_0 */
2343	pcdac_i = 0;
2344	for (i = 0; i < min_pwr; i++)
2345		pcdac_out[pcdac_i++] = pcdac_0;
2346
2347	/* Copy values from pcdac_tmp */
2348	pwr_idx = min_pwr;
2349	for (i = 0 ; pwr_idx <= max_pwr &&
2350	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2351		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2352		pwr_idx++;
2353	}
2354
2355	/* Extrapolate above maximum */
2356	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2357		pcdac_out[pcdac_i++] = pcdac_n;
2358
2359}
2360
2361/*
2362 * Combine available XPD Curves and fill Linear Power to PCDAC table
2363 * on RF5112
2364 *
2365 * RFX112 can have up to 2 curves (one for low txpower range and one for
2366 * higher txpower range). We need to put them both on pcdac_out and place
2367 * them in the correct location. In case we only have one curve available
2368 * just fit it on pcdac_out (it's supposed to cover the entire range of
2369 * available pwr levels since it's always the higher power curve). Extrapolate
2370 * below and above final table if needed.
2371 */
2372static void
2373ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2374						s16 *table_max, u8 pdcurves)
2375{
2376	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2377	u8	*pcdac_low_pwr;
2378	u8	*pcdac_high_pwr;
2379	u8	*pcdac_tmp;
2380	u8	pwr;
2381	s16	max_pwr_idx;
2382	s16	min_pwr_idx;
2383	s16	mid_pwr_idx = 0;
2384	/* Edge flag turs on the 7nth bit on the PCDAC
2385	 * to delcare the higher power curve (force values
2386	 * to be greater than 64). If we only have one curve
2387	 * we don't need to set this, if we have 2 curves and
2388	 * fill the table backwards this can also be used to
2389	 * switch from higher power curve to lower power curve */
2390	u8	edge_flag;
2391	int	i;
2392
2393	/* When we have only one curve available
2394	 * that's the higher power curve. If we have
2395	 * two curves the first is the high power curve
2396	 * and the next is the low power curve. */
2397	if (pdcurves > 1) {
2398		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2399		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2400		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2401		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2402
2403		/* If table size goes beyond 31.5dB, keep the
2404		 * upper 31.5dB range when setting tx power.
2405		 * Note: 126 = 31.5 dB in quarter dB steps */
2406		if (table_max[0] - table_min[1] > 126)
2407			min_pwr_idx = table_max[0] - 126;
2408		else
2409			min_pwr_idx = table_min[1];
2410
2411		/* Since we fill table backwards
2412		 * start from high power curve */
2413		pcdac_tmp = pcdac_high_pwr;
2414
2415		edge_flag = 0x40;
2416	} else {
2417		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2418		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2419		min_pwr_idx = table_min[0];
2420		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2421		pcdac_tmp = pcdac_high_pwr;
2422		edge_flag = 0;
2423	}
2424
2425	/* This is used when setting tx power*/
2426	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2427
2428	/* Fill Power to PCDAC table backwards */
2429	pwr = max_pwr_idx;
2430	for (i = 63; i >= 0; i--) {
2431		/* Entering lower power range, reset
2432		 * edge flag and set pcdac_tmp to lower
2433		 * power curve.*/
2434		if (edge_flag == 0x40 &&
2435		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2436			edge_flag = 0x00;
2437			pcdac_tmp = pcdac_low_pwr;
2438			pwr = mid_pwr_idx/2;
2439		}
2440
2441		/* Don't go below 1, extrapolate below if we have
2442		 * already swithced to the lower power curve -or
2443		 * we only have one curve and edge_flag is zero
2444		 * anyway */
2445		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2446			while (i >= 0) {
2447				pcdac_out[i] = pcdac_out[i + 1];
2448				i--;
2449			}
2450			break;
2451		}
2452
2453		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2454
2455		/* Extrapolate above if pcdac is greater than
2456		 * 126 -this can happen because we OR pcdac_out
2457		 * value with edge_flag on high power curve */
2458		if (pcdac_out[i] > 126)
2459			pcdac_out[i] = 126;
2460
2461		/* Decrease by a 0.5dB step */
2462		pwr--;
2463	}
2464}
2465
2466/* Write PCDAC values on hw */
2467static void
2468ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2469{
2470	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2471	int	i;
2472
2473	/*
2474	 * Write TX power values
2475	 */
2476	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2477		ath5k_hw_reg_write(ah,
2478			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2479			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2480			AR5K_PHY_PCDAC_TXPOWER(i));
2481	}
2482}
2483
2484
2485/*
2486 * Power to PDADC table functions
2487 */
2488
2489/*
2490 * Set the gain boundaries and create final Power to PDADC table
2491 *
2492 * We can have up to 4 pd curves, we need to do a simmilar process
2493 * as we do for RF5112. This time we don't have an edge_flag but we
2494 * set the gain boundaries on a separate register.
2495 */
2496static void
2497ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2498			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2499{
2500	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2501	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2502	u8 *pdadc_tmp;
2503	s16 pdadc_0;
2504	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2505	u8 pd_gain_overlap;
2506
2507	/* Note: Register value is initialized on initvals
2508	 * there is no feedback from hw.
2509	 * XXX: What about pd_gain_overlap from EEPROM ? */
2510	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2511		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2512
2513	/* Create final PDADC table */
2514	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2515		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2516
2517		if (pdg == pdcurves - 1)
2518			/* 2 dB boundary stretch for last
2519			 * (higher power) curve */
2520			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2521		else
2522			/* Set gain boundary in the middle
2523			 * between this curve and the next one */
2524			gain_boundaries[pdg] =
2525				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2526
2527		/* Sanity check in case our 2 db stretch got out of
2528		 * range. */
2529		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2530			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2531
2532		/* For the first curve (lower power)
2533		 * start from 0 dB */
2534		if (pdg == 0)
2535			pdadc_0 = 0;
2536		else
2537			/* For the other curves use the gain overlap */
2538			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2539							pd_gain_overlap;
2540
2541		/* Force each power step to be at least 0.5 dB */
2542		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2543			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2544		else
2545			pwr_step = 1;
2546
2547		/* If pdadc_0 is negative, we need to extrapolate
2548		 * below this pdgain by a number of pwr_steps */
2549		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2550			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2551			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2552			pdadc_0++;
2553		}
2554
2555		/* Set last pwr level, using gain boundaries */
2556		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2557		/* Limit it to be inside pwr range */
2558		table_size = pwr_max[pdg] - pwr_min[pdg];
2559		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2560
2561		/* Fill pdadc_out table */
2562		while (pdadc_0 < max_idx && pdadc_i < 128)
2563			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2564
2565		/* Need to extrapolate above this pdgain? */
2566		if (pdadc_n <= max_idx)
2567			continue;
2568
2569		/* Force each power step to be at least 0.5 dB */
2570		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2571			pwr_step = pdadc_tmp[table_size - 1] -
2572						pdadc_tmp[table_size - 2];
2573		else
2574			pwr_step = 1;
2575
2576		/* Extrapolate above */
2577		while ((pdadc_0 < (s16) pdadc_n) &&
2578		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2579			s16 tmp = pdadc_tmp[table_size - 1] +
2580					(pdadc_0 - max_idx) * pwr_step;
2581			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2582			pdadc_0++;
2583		}
2584	}
2585
2586	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2587		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2588		pdg++;
2589	}
2590
2591	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2592		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2593		pdadc_i++;
2594	}
2595
2596	/* Set gain boundaries */
2597	ath5k_hw_reg_write(ah,
2598		AR5K_REG_SM(pd_gain_overlap,
2599			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2600		AR5K_REG_SM(gain_boundaries[0],
2601			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2602		AR5K_REG_SM(gain_boundaries[1],
2603			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2604		AR5K_REG_SM(gain_boundaries[2],
2605			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2606		AR5K_REG_SM(gain_boundaries[3],
2607			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2608		AR5K_PHY_TPC_RG5);
2609
2610	/* Used for setting rate power table */
2611	ah->ah_txpower.txp_min_idx = pwr_min[0];
2612
2613}
2614
2615/* Write PDADC values on hw */
2616static void
2617ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2618			u8 pdcurves, u8 *pdg_to_idx)
2619{
2620	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2621	u32 reg;
2622	u8 i;
2623
2624	/* Select the right pdgain curves */
2625
2626	/* Clear current settings */
2627	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2628	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2629		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2630		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2631		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2632
2633	/*
2634	 * Use pd_gains curve from eeprom
2635	 *
2636	 * This overrides the default setting from initvals
2637	 * in case some vendors (e.g. Zcomax) don't use the default
2638	 * curves. If we don't honor their settings we 'll get a
2639	 * 5dB (1 * gain overlap ?) drop.
2640	 */
2641	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2642
2643	switch (pdcurves) {
2644	case 3:
2645		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2646		/* Fall through */
2647	case 2:
2648		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2649		/* Fall through */
2650	case 1:
2651		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2652		break;
2653	}
2654	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2655
2656	/*
2657	 * Write TX power values
2658	 */
2659	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2660		ath5k_hw_reg_write(ah,
2661			((pdadc_out[4*i + 0] & 0xff) << 0) |
2662			((pdadc_out[4*i + 1] & 0xff) << 8) |
2663			((pdadc_out[4*i + 2] & 0xff) << 16) |
2664			((pdadc_out[4*i + 3] & 0xff) << 24),
2665			AR5K_PHY_PDADC_TXPOWER(i));
2666	}
2667}
2668
2669
2670/*
2671 * Common code for PCDAC/PDADC tables
2672 */
2673
2674/*
2675 * This is the main function that uses all of the above
2676 * to set PCDAC/PDADC table on hw for the current channel.
2677 * This table is used for tx power calibration on the basband,
2678 * without it we get weird tx power levels and in some cases
2679 * distorted spectral mask
2680 */
2681static int
2682ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2683			struct ieee80211_channel *channel,
2684			u8 ee_mode, u8 type)
2685{
2686	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2687	struct ath5k_chan_pcal_info *pcinfo_L;
2688	struct ath5k_chan_pcal_info *pcinfo_R;
2689	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2690	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2691	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2692	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2693	u8 *tmpL;
2694	u8 *tmpR;
2695	u32 target = channel->center_freq;
2696	int pdg, i;
2697
2698	/* Get surounding freq piers for this channel */
2699	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2700						&pcinfo_L,
2701						&pcinfo_R);
2702
2703	/* Loop over pd gain curves on
2704	 * surounding freq piers by index */
2705	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2706
2707		/* Fill curves in reverse order
2708		 * from lower power (max gain)
2709		 * to higher power. Use curve -> idx
2710		 * backmapping we did on eeprom init */
2711		u8 idx = pdg_curve_to_idx[pdg];
2712
2713		/* Grab the needed curves by index */
2714		pdg_L = &pcinfo_L->pd_curves[idx];
2715		pdg_R = &pcinfo_R->pd_curves[idx];
2716
2717		/* Initialize the temp tables */
2718		tmpL = ah->ah_txpower.tmpL[pdg];
2719		tmpR = ah->ah_txpower.tmpR[pdg];
2720
2721		/* Set curve's x boundaries and create
2722		 * curves so that they cover the same
2723		 * range (if we don't do that one table
2724		 * will have values on some range and the
2725		 * other one won't have any so interpolation
2726		 * will fail) */
2727		table_min[pdg] = min(pdg_L->pd_pwr[0],
2728					pdg_R->pd_pwr[0]) / 2;
2729
2730		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2731				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2732
2733		/* Now create the curves on surrounding channels
2734		 * and interpolate if needed to get the final
2735		 * curve for this gain on this channel */
2736		switch (type) {
2737		case AR5K_PWRTABLE_LINEAR_PCDAC:
2738			/* Override min/max so that we don't loose
2739			 * accuracy (don't divide by 2) */
2740			table_min[pdg] = min(pdg_L->pd_pwr[0],
2741						pdg_R->pd_pwr[0]);
2742
2743			table_max[pdg] =
2744				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2745					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2746
2747			/* Override minimum so that we don't get
2748			 * out of bounds while extrapolating
2749			 * below. Don't do this when we have 2
2750			 * curves and we are on the high power curve
2751			 * because table_min is ok in this case */
2752			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2753
2754				table_min[pdg] =
2755					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2756								pdg_R->pd_step,
2757								pdg_L->pd_pwr,
2758								pdg_R->pd_pwr);
2759
2760				/* Don't go too low because we will
2761				 * miss the upper part of the curve.
2762				 * Note: 126 = 31.5dB (max power supported)
2763				 * in 0.25dB units */
2764				if (table_max[pdg] - table_min[pdg] > 126)
2765					table_min[pdg] = table_max[pdg] - 126;
2766			}
2767
2768			/* Fall through */
2769		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2770		case AR5K_PWRTABLE_PWR_TO_PDADC:
2771
2772			ath5k_create_power_curve(table_min[pdg],
2773						table_max[pdg],
2774						pdg_L->pd_pwr,
2775						pdg_L->pd_step,
2776						pdg_L->pd_points, tmpL, type);
2777
2778			/* We are in a calibration
2779			 * pier, no need to interpolate
2780			 * between freq piers */
2781			if (pcinfo_L == pcinfo_R)
2782				continue;
2783
2784			ath5k_create_power_curve(table_min[pdg],
2785						table_max[pdg],
2786						pdg_R->pd_pwr,
2787						pdg_R->pd_step,
2788						pdg_R->pd_points, tmpR, type);
2789			break;
2790		default:
2791			return -EINVAL;
2792		}
2793
2794		/* Interpolate between curves
2795		 * of surounding freq piers to
2796		 * get the final curve for this
2797		 * pd gain. Re-use tmpL for interpolation
2798		 * output */
2799		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2800		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2801			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2802							(s16) pcinfo_L->freq,
2803							(s16) pcinfo_R->freq,
2804							(s16) tmpL[i],
2805							(s16) tmpR[i]);
2806		}
2807	}
2808
2809	/* Now we have a set of curves for this
2810	 * channel on tmpL (x range is table_max - table_min
2811	 * and y values are tmpL[pdg][]) sorted in the same
2812	 * order as EEPROM (because we've used the backmapping).
2813	 * So for RF5112 it's from higher power to lower power
2814	 * and for RF2413 it's from lower power to higher power.
2815	 * For RF5111 we only have one curve. */
2816
2817	/* Fill min and max power levels for this
2818	 * channel by interpolating the values on
2819	 * surounding channels to complete the dataset */
2820	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2821					(s16) pcinfo_L->freq,
2822					(s16) pcinfo_R->freq,
2823					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2824
2825	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2826					(s16) pcinfo_L->freq,
2827					(s16) pcinfo_R->freq,
2828					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2829
2830	/* We are ready to go, fill PCDAC/PDADC
2831	 * table and write settings on hardware */
2832	switch (type) {
2833	case AR5K_PWRTABLE_LINEAR_PCDAC:
2834		/* For RF5112 we can have one or two curves
2835		 * and each curve covers a certain power lvl
2836		 * range so we need to do some more processing */
2837		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2838						ee->ee_pd_gains[ee_mode]);
2839
2840		/* Set txp.offset so that we can
2841		 * match max power value with max
2842		 * table index */
2843		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2844
2845		/* Write settings on hw */
2846		ath5k_setup_pcdac_table(ah);
2847		break;
2848	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2849		/* We are done for RF5111 since it has only
2850		 * one curve, just fit the curve on the table */
2851		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2852
2853		/* No rate powertable adjustment for RF5111 */
2854		ah->ah_txpower.txp_min_idx = 0;
2855		ah->ah_txpower.txp_offset = 0;
2856
2857		/* Write settings on hw */
2858		ath5k_setup_pcdac_table(ah);
2859		break;
2860	case AR5K_PWRTABLE_PWR_TO_PDADC:
2861		/* Set PDADC boundaries and fill
2862		 * final PDADC table */
2863		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2864						ee->ee_pd_gains[ee_mode]);
2865
2866		/* Write settings on hw */
2867		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2868
2869		/* Set txp.offset, note that table_min
2870		 * can be negative */
2871		ah->ah_txpower.txp_offset = table_min[0];
2872		break;
2873	default:
2874		return -EINVAL;
2875	}
2876
2877	return 0;
2878}
2879
2880
2881/*
2882 * Per-rate tx power setting
2883 *
2884 * This is the code that sets the desired tx power (below
2885 * maximum) on hw for each rate (we also have TPC that sets
2886 * power per packet). We do that by providing an index on the
2887 * PCDAC/PDADC table we set up.
2888 */
2889
2890/*
2891 * Set rate power table
2892 *
2893 * For now we only limit txpower based on maximum tx power
2894 * supported by hw (what's inside rate_info). We need to limit
2895 * this even more, based on regulatory domain etc.
2896 *
2897 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2898 * and is indexed as follows:
2899 * rates[0] - rates[7] -> OFDM rates
2900 * rates[8] - rates[14] -> CCK rates
2901 * rates[15] -> XR rates (they all have the same power)
2902 */
2903static void
2904ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2905			struct ath5k_rate_pcal_info *rate_info,
2906			u8 ee_mode)
2907{
2908	unsigned int i;
2909	u16 *rates;
2910
2911	/* max_pwr is power level we got from driver/user in 0.5dB
2912	 * units, switch to 0.25dB units so we can compare */
2913	max_pwr *= 2;
2914	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2915
2916	/* apply rate limits */
2917	rates = ah->ah_txpower.txp_rates_power_table;
2918
2919	/* OFDM rates 6 to 24Mb/s */
2920	for (i = 0; i < 5; i++)
2921		rates[i] = min(max_pwr, rate_info->target_power_6to24);
2922
2923	/* Rest OFDM rates */
2924	rates[5] = min(rates[0], rate_info->target_power_36);
2925	rates[6] = min(rates[0], rate_info->target_power_48);
2926	rates[7] = min(rates[0], rate_info->target_power_54);
2927
2928	/* CCK rates */
2929	/* 1L */
2930	rates[8] = min(rates[0], rate_info->target_power_6to24);
2931	/* 2L */
2932	rates[9] = min(rates[0], rate_info->target_power_36);
2933	/* 2S */
2934	rates[10] = min(rates[0], rate_info->target_power_36);
2935	/* 5L */
2936	rates[11] = min(rates[0], rate_info->target_power_48);
2937	/* 5S */
2938	rates[12] = min(rates[0], rate_info->target_power_48);
2939	/* 11L */
2940	rates[13] = min(rates[0], rate_info->target_power_54);
2941	/* 11S */
2942	rates[14] = min(rates[0], rate_info->target_power_54);
2943
2944	/* XR rates */
2945	rates[15] = min(rates[0], rate_info->target_power_6to24);
2946
2947	/* CCK rates have different peak to average ratio
2948	 * so we have to tweak their power so that gainf
2949	 * correction works ok. For this we use OFDM to
2950	 * CCK delta from eeprom */
2951	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2952	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2953		for (i = 8; i <= 15; i++)
2954			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2955
2956	/* Now that we have all rates setup use table offset to
2957	 * match the power range set by user with the power indices
2958	 * on PCDAC/PDADC table */
2959	for (i = 0; i < 16; i++) {
2960		rates[i] += ah->ah_txpower.txp_offset;
2961		/* Don't get out of bounds */
2962		if (rates[i] > 63)
2963			rates[i] = 63;
2964	}
2965
2966	/* Min/max in 0.25dB units */
2967	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2968	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2969	ah->ah_txpower.txp_ofdm = rates[7];
2970}
2971
2972
2973/*
2974 * Set transmition power
2975 */
2976int
2977ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2978		u8 ee_mode, u8 txpower)
2979{
2980	struct ath5k_rate_pcal_info rate_info;
2981	u8 type;
2982	int ret;
2983
2984	ATH5K_TRACE(ah->ah_sc);
2985	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2986		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2987		return -EINVAL;
2988	}
2989
2990	/* Reset TX power values */
2991	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2992	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2993	ah->ah_txpower.txp_min_pwr = 0;
2994	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2995
2996	/* Initialize TX power table */
2997	switch (ah->ah_radio) {
2998	case AR5K_RF5111:
2999		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3000		break;
3001	case AR5K_RF5112:
3002		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3003		break;
3004	case AR5K_RF2413:
3005	case AR5K_RF5413:
3006	case AR5K_RF2316:
3007	case AR5K_RF2317:
3008	case AR5K_RF2425:
3009		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3010		break;
3011	default:
3012		return -EINVAL;
3013	}
3014
3015	/* FIXME: Only on channel/mode change */
3016	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3017	if (ret)
3018		return ret;
3019
3020	/* Limit max power if we have a CTL available */
3021	ath5k_get_max_ctl_power(ah, channel);
3022
3023	/* FIXME: Tx power limit for this regdomain
3024	 * XXX: Mac80211/CRDA will do that anyway ? */
3025
3026	/* FIXME: Antenna reduction stuff */
3027
3028	/* FIXME: Limit power on turbo modes */
3029
3030	/* FIXME: TPC scale reduction */
3031
3032	/* Get surounding channels for per-rate power table
3033	 * calibration */
3034	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3035
3036	/* Setup rate power table */
3037	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3038
3039	/* Write rate power table on hw */
3040	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3041		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3042		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3043
3044	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3045		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3046		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3047
3048	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3049		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3050		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3051
3052	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3053		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3054		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3055
3056	/* FIXME: TPC support */
3057	if (ah->ah_txpower.txp_tpc) {
3058		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3059			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3060
3061		ath5k_hw_reg_write(ah,
3062			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3063			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3064			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3065			AR5K_TPC);
3066	} else {
3067		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3068			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3069	}
3070
3071	return 0;
3072}
3073
3074int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3075{
3076	/*Just a try M.F.*/
3077	struct ieee80211_channel *channel = ah->ah_current_channel;
3078	u8 ee_mode;
3079
3080	ATH5K_TRACE(ah->ah_sc);
3081
3082	switch (channel->hw_value & CHANNEL_MODES) {
3083	case CHANNEL_A:
3084	case CHANNEL_T:
3085	case CHANNEL_XR:
3086		ee_mode = AR5K_EEPROM_MODE_11A;
3087		break;
3088	case CHANNEL_G:
3089	case CHANNEL_TG:
3090		ee_mode = AR5K_EEPROM_MODE_11G;
3091		break;
3092	case CHANNEL_B:
3093		ee_mode = AR5K_EEPROM_MODE_11B;
3094		break;
3095	default:
3096		ATH5K_ERR(ah->ah_sc,
3097			"invalid channel: %d\n", channel->center_freq);
3098		return -EINVAL;
3099	}
3100
3101	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3102		"changing txpower to %d\n", txpower);
3103
3104	return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3105}
3106