[go: nahoru, domu]

phy.c revision b2b4c69f682a2868411899a77842061dd745884f
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
24#include <linux/slab.h>
25
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
29#include "rfbuffer.h"
30#include "rfgain.h"
31
32
33/******************\
34* Helper functions *
35\******************/
36
37/*
38 * Get the PHY Chip revision
39 */
40u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
41{
42	unsigned int i;
43	u32 srev;
44	u16 ret;
45
46	/*
47	 * Set the radio chip access register
48	 */
49	switch (chan) {
50	case CHANNEL_2GHZ:
51		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
52		break;
53	case CHANNEL_5GHZ:
54		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
55		break;
56	default:
57		return 0;
58	}
59
60	mdelay(2);
61
62	/* ...wait until PHY is ready and read the selected radio revision */
63	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
64
65	for (i = 0; i < 8; i++)
66		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
67
68	if (ah->ah_version == AR5K_AR5210) {
69		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
70		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
71	} else {
72		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
73		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
74				((srev & 0x0f) << 4), 8);
75	}
76
77	/* Reset to the 5GHz mode */
78	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
79
80	return ret;
81}
82
83/*
84 * Check if a channel is supported
85 */
86bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
87{
88	/* Check if the channel is in our supported range */
89	if (flags & CHANNEL_2GHZ) {
90		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
91		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
92			return true;
93	} else if (flags & CHANNEL_5GHZ)
94		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
95		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
96			return true;
97
98	return false;
99}
100
101bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
102				struct ieee80211_channel *channel)
103{
104	u8 refclk_freq;
105
106	if ((ah->ah_radio == AR5K_RF5112) ||
107	(ah->ah_radio == AR5K_RF5413) ||
108	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
109		refclk_freq = 40;
110	else
111		refclk_freq = 32;
112
113	if ((channel->center_freq % refclk_freq != 0) &&
114	((channel->center_freq % refclk_freq < 10) ||
115	(channel->center_freq % refclk_freq > 22)))
116		return true;
117	else
118		return false;
119}
120
121/*
122 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
123 */
124static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
125					const struct ath5k_rf_reg *rf_regs,
126					u32 val, u8 reg_id, bool set)
127{
128	const struct ath5k_rf_reg *rfreg = NULL;
129	u8 offset, bank, num_bits, col, position;
130	u16 entry;
131	u32 mask, data, last_bit, bits_shifted, first_bit;
132	u32 *rfb;
133	s32 bits_left;
134	int i;
135
136	data = 0;
137	rfb = ah->ah_rf_banks;
138
139	for (i = 0; i < ah->ah_rf_regs_count; i++) {
140		if (rf_regs[i].index == reg_id) {
141			rfreg = &rf_regs[i];
142			break;
143		}
144	}
145
146	if (rfb == NULL || rfreg == NULL) {
147		ATH5K_PRINTF("Rf register not found!\n");
148		/* should not happen */
149		return 0;
150	}
151
152	bank = rfreg->bank;
153	num_bits = rfreg->field.len;
154	first_bit = rfreg->field.pos;
155	col = rfreg->field.col;
156
157	/* first_bit is an offset from bank's
158	 * start. Since we have all banks on
159	 * the same array, we use this offset
160	 * to mark each bank's start */
161	offset = ah->ah_offset[bank];
162
163	/* Boundary check */
164	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
165		ATH5K_PRINTF("invalid values at offset %u\n", offset);
166		return 0;
167	}
168
169	entry = ((first_bit - 1) / 8) + offset;
170	position = (first_bit - 1) % 8;
171
172	if (set)
173		data = ath5k_hw_bitswap(val, num_bits);
174
175	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
176	position = 0, entry++) {
177
178		last_bit = (position + bits_left > 8) ? 8 :
179					position + bits_left;
180
181		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
182								(col * 8);
183
184		if (set) {
185			rfb[entry] &= ~mask;
186			rfb[entry] |= ((data << position) << (col * 8)) & mask;
187			data >>= (8 - position);
188		} else {
189			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
190				<< bits_shifted;
191			bits_shifted += last_bit - position;
192		}
193
194		bits_left -= 8 - position;
195	}
196
197	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
198
199	return data;
200}
201
202/**
203 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
204 *
205 * @ah: the &struct ath5k_hw
206 * @channel: the currently set channel upon reset
207 *
208 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
209 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
210 *
211 * Since delta slope is floating point we split it on its exponent and
212 * mantissa and provide these values on hw.
213 *
214 * For more infos i think this patent is related
215 * http://www.freepatentsonline.com/7184495.html
216 */
217static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
218	struct ieee80211_channel *channel)
219{
220	/* Get exponent and mantissa and set it */
221	u32 coef_scaled, coef_exp, coef_man,
222		ds_coef_exp, ds_coef_man, clock;
223
224	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
225		!(channel->hw_value & CHANNEL_OFDM));
226
227	/* Get coefficient
228	 * ALGO: coef = (5 * clock / carrier_freq) / 2
229	 * we scale coef by shifting clock value by 24 for
230	 * better precision since we use integers */
231	/* TODO: Half/quarter rate */
232	clock =  (channel->hw_value & CHANNEL_TURBO) ? 80 : 40;
233	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
234
235	/* Get exponent
236	 * ALGO: coef_exp = 14 - highest set bit position */
237	coef_exp = ilog2(coef_scaled);
238
239	/* Doesn't make sense if it's zero*/
240	if (!coef_scaled || !coef_exp)
241		return -EINVAL;
242
243	/* Note: we've shifted coef_scaled by 24 */
244	coef_exp = 14 - (coef_exp - 24);
245
246
247	/* Get mantissa (significant digits)
248	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
249	coef_man = coef_scaled +
250		(1 << (24 - coef_exp - 1));
251
252	/* Calculate delta slope coefficient exponent
253	 * and mantissa (remove scaling) and set them on hw */
254	ds_coef_man = coef_man >> (24 - coef_exp);
255	ds_coef_exp = coef_exp - 16;
256
257	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
258		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
259	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
260		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
261
262	return 0;
263}
264
265int ath5k_hw_phy_disable(struct ath5k_hw *ah)
266{
267	/*Just a try M.F.*/
268	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
269
270	return 0;
271}
272
273
274/**********************\
275* RF Gain optimization *
276\**********************/
277
278/*
279 * This code is used to optimize RF gain on different environments
280 * (temperature mostly) based on feedback from a power detector.
281 *
282 * It's only used on RF5111 and RF5112, later RF chips seem to have
283 * auto adjustment on hw -notice they have a much smaller BANK 7 and
284 * no gain optimization ladder-.
285 *
286 * For more infos check out this patent doc
287 * http://www.freepatentsonline.com/7400691.html
288 *
289 * This paper describes power drops as seen on the receiver due to
290 * probe packets
291 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
292 * %20of%20Power%20Control.pdf
293 *
294 * And this is the MadWiFi bug entry related to the above
295 * http://madwifi-project.org/ticket/1659
296 * with various measurements and diagrams
297 *
298 * TODO: Deal with power drops due to probes by setting an apropriate
299 * tx power on the probe packets ! Make this part of the calibration process.
300 */
301
302/* Initialize ah_gain durring attach */
303int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
304{
305	/* Initialize the gain optimization values */
306	switch (ah->ah_radio) {
307	case AR5K_RF5111:
308		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
309		ah->ah_gain.g_low = 20;
310		ah->ah_gain.g_high = 35;
311		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
312		break;
313	case AR5K_RF5112:
314		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
315		ah->ah_gain.g_low = 20;
316		ah->ah_gain.g_high = 85;
317		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
318		break;
319	default:
320		return -EINVAL;
321	}
322
323	return 0;
324}
325
326/* Schedule a gain probe check on the next transmited packet.
327 * That means our next packet is going to be sent with lower
328 * tx power and a Peak to Average Power Detector (PAPD) will try
329 * to measure the gain.
330 *
331 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
332 * just after we enable the probe so that we don't mess with
333 * standard traffic ? Maybe it's time to use sw interrupts and
334 * a probe tasklet !!!
335 */
336static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
337{
338
339	/* Skip if gain calibration is inactive or
340	 * we already handle a probe request */
341	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
342		return;
343
344	/* Send the packet with 2dB below max power as
345	 * patent doc suggest */
346	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
347			AR5K_PHY_PAPD_PROBE_TXPOWER) |
348			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
349
350	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
351
352}
353
354/* Calculate gain_F measurement correction
355 * based on the current step for RF5112 rev. 2 */
356static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
357{
358	u32 mix, step;
359	u32 *rf;
360	const struct ath5k_gain_opt *go;
361	const struct ath5k_gain_opt_step *g_step;
362	const struct ath5k_rf_reg *rf_regs;
363
364	/* Only RF5112 Rev. 2 supports it */
365	if ((ah->ah_radio != AR5K_RF5112) ||
366	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
367		return 0;
368
369	go = &rfgain_opt_5112;
370	rf_regs = rf_regs_5112a;
371	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
372
373	g_step = &go->go_step[ah->ah_gain.g_step_idx];
374
375	if (ah->ah_rf_banks == NULL)
376		return 0;
377
378	rf = ah->ah_rf_banks;
379	ah->ah_gain.g_f_corr = 0;
380
381	/* No VGA (Variable Gain Amplifier) override, skip */
382	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
383		return 0;
384
385	/* Mix gain stepping */
386	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
387
388	/* Mix gain override */
389	mix = g_step->gos_param[0];
390
391	switch (mix) {
392	case 3:
393		ah->ah_gain.g_f_corr = step * 2;
394		break;
395	case 2:
396		ah->ah_gain.g_f_corr = (step - 5) * 2;
397		break;
398	case 1:
399		ah->ah_gain.g_f_corr = step;
400		break;
401	default:
402		ah->ah_gain.g_f_corr = 0;
403		break;
404	}
405
406	return ah->ah_gain.g_f_corr;
407}
408
409/* Check if current gain_F measurement is in the range of our
410 * power detector windows. If we get a measurement outside range
411 * we know it's not accurate (detectors can't measure anything outside
412 * their detection window) so we must ignore it */
413static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
414{
415	const struct ath5k_rf_reg *rf_regs;
416	u32 step, mix_ovr, level[4];
417	u32 *rf;
418
419	if (ah->ah_rf_banks == NULL)
420		return false;
421
422	rf = ah->ah_rf_banks;
423
424	if (ah->ah_radio == AR5K_RF5111) {
425
426		rf_regs = rf_regs_5111;
427		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
428
429		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
430			false);
431
432		level[0] = 0;
433		level[1] = (step == 63) ? 50 : step + 4;
434		level[2] = (step != 63) ? 64 : level[0];
435		level[3] = level[2] + 50 ;
436
437		ah->ah_gain.g_high = level[3] -
438			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
439		ah->ah_gain.g_low = level[0] +
440			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
441	} else {
442
443		rf_regs = rf_regs_5112;
444		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
445
446		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
447			false);
448
449		level[0] = level[2] = 0;
450
451		if (mix_ovr == 1) {
452			level[1] = level[3] = 83;
453		} else {
454			level[1] = level[3] = 107;
455			ah->ah_gain.g_high = 55;
456		}
457	}
458
459	return (ah->ah_gain.g_current >= level[0] &&
460			ah->ah_gain.g_current <= level[1]) ||
461		(ah->ah_gain.g_current >= level[2] &&
462			ah->ah_gain.g_current <= level[3]);
463}
464
465/* Perform gain_F adjustment by choosing the right set
466 * of parameters from RF gain optimization ladder */
467static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
468{
469	const struct ath5k_gain_opt *go;
470	const struct ath5k_gain_opt_step *g_step;
471	int ret = 0;
472
473	switch (ah->ah_radio) {
474	case AR5K_RF5111:
475		go = &rfgain_opt_5111;
476		break;
477	case AR5K_RF5112:
478		go = &rfgain_opt_5112;
479		break;
480	default:
481		return 0;
482	}
483
484	g_step = &go->go_step[ah->ah_gain.g_step_idx];
485
486	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
487
488		/* Reached maximum */
489		if (ah->ah_gain.g_step_idx == 0)
490			return -1;
491
492		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
493				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
494				ah->ah_gain.g_step_idx > 0;
495				g_step = &go->go_step[ah->ah_gain.g_step_idx])
496			ah->ah_gain.g_target -= 2 *
497			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
498			    g_step->gos_gain);
499
500		ret = 1;
501		goto done;
502	}
503
504	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
505
506		/* Reached minimum */
507		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
508			return -2;
509
510		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
511				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
512				ah->ah_gain.g_step_idx < go->go_steps_count-1;
513				g_step = &go->go_step[ah->ah_gain.g_step_idx])
514			ah->ah_gain.g_target -= 2 *
515			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
516			    g_step->gos_gain);
517
518		ret = 2;
519		goto done;
520	}
521
522done:
523	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
524		"ret %d, gain step %u, current gain %u, target gain %u\n",
525		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
526		ah->ah_gain.g_target);
527
528	return ret;
529}
530
531/* Main callback for thermal RF gain calibration engine
532 * Check for a new gain reading and schedule an adjustment
533 * if needed.
534 *
535 * TODO: Use sw interrupt to schedule reset if gain_F needs
536 * adjustment */
537enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
538{
539	u32 data, type;
540	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
541
542	if (ah->ah_rf_banks == NULL ||
543	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
544		return AR5K_RFGAIN_INACTIVE;
545
546	/* No check requested, either engine is inactive
547	 * or an adjustment is already requested */
548	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
549		goto done;
550
551	/* Read the PAPD (Peak to Average Power Detector)
552	 * register */
553	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
554
555	/* No probe is scheduled, read gain_F measurement */
556	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
557		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
558		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
559
560		/* If tx packet is CCK correct the gain_F measurement
561		 * by cck ofdm gain delta */
562		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
563			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
564				ah->ah_gain.g_current +=
565					ee->ee_cck_ofdm_gain_delta;
566			else
567				ah->ah_gain.g_current +=
568					AR5K_GAIN_CCK_PROBE_CORR;
569		}
570
571		/* Further correct gain_F measurement for
572		 * RF5112A radios */
573		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
574			ath5k_hw_rf_gainf_corr(ah);
575			ah->ah_gain.g_current =
576				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
577				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
578				0;
579		}
580
581		/* Check if measurement is ok and if we need
582		 * to adjust gain, schedule a gain adjustment,
583		 * else switch back to the acive state */
584		if (ath5k_hw_rf_check_gainf_readback(ah) &&
585		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
586		ath5k_hw_rf_gainf_adjust(ah)) {
587			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
588		} else {
589			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
590		}
591	}
592
593done:
594	return ah->ah_gain.g_state;
595}
596
597/* Write initial RF gain table to set the RF sensitivity
598 * this one works on all RF chips and has nothing to do
599 * with gain_F calibration */
600static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
601{
602	const struct ath5k_ini_rfgain *ath5k_rfg;
603	unsigned int i, size;
604
605	switch (ah->ah_radio) {
606	case AR5K_RF5111:
607		ath5k_rfg = rfgain_5111;
608		size = ARRAY_SIZE(rfgain_5111);
609		break;
610	case AR5K_RF5112:
611		ath5k_rfg = rfgain_5112;
612		size = ARRAY_SIZE(rfgain_5112);
613		break;
614	case AR5K_RF2413:
615		ath5k_rfg = rfgain_2413;
616		size = ARRAY_SIZE(rfgain_2413);
617		break;
618	case AR5K_RF2316:
619		ath5k_rfg = rfgain_2316;
620		size = ARRAY_SIZE(rfgain_2316);
621		break;
622	case AR5K_RF5413:
623		ath5k_rfg = rfgain_5413;
624		size = ARRAY_SIZE(rfgain_5413);
625		break;
626	case AR5K_RF2317:
627	case AR5K_RF2425:
628		ath5k_rfg = rfgain_2425;
629		size = ARRAY_SIZE(rfgain_2425);
630		break;
631	default:
632		return -EINVAL;
633	}
634
635	switch (freq) {
636	case AR5K_INI_RFGAIN_2GHZ:
637	case AR5K_INI_RFGAIN_5GHZ:
638		break;
639	default:
640		return -EINVAL;
641	}
642
643	for (i = 0; i < size; i++) {
644		AR5K_REG_WAIT(i);
645		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
646			(u32)ath5k_rfg[i].rfg_register);
647	}
648
649	return 0;
650}
651
652
653
654/********************\
655* RF Registers setup *
656\********************/
657
658/*
659 * Setup RF registers by writing RF buffer on hw
660 */
661static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
662	struct ieee80211_channel *channel, unsigned int mode)
663{
664	const struct ath5k_rf_reg *rf_regs;
665	const struct ath5k_ini_rfbuffer *ini_rfb;
666	const struct ath5k_gain_opt *go = NULL;
667	const struct ath5k_gain_opt_step *g_step;
668	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
669	u8 ee_mode = 0;
670	u32 *rfb;
671	int i, obdb = -1, bank = -1;
672
673	switch (ah->ah_radio) {
674	case AR5K_RF5111:
675		rf_regs = rf_regs_5111;
676		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
677		ini_rfb = rfb_5111;
678		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
679		go = &rfgain_opt_5111;
680		break;
681	case AR5K_RF5112:
682		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
683			rf_regs = rf_regs_5112a;
684			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
685			ini_rfb = rfb_5112a;
686			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
687		} else {
688			rf_regs = rf_regs_5112;
689			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
690			ini_rfb = rfb_5112;
691			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
692		}
693		go = &rfgain_opt_5112;
694		break;
695	case AR5K_RF2413:
696		rf_regs = rf_regs_2413;
697		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
698		ini_rfb = rfb_2413;
699		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
700		break;
701	case AR5K_RF2316:
702		rf_regs = rf_regs_2316;
703		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
704		ini_rfb = rfb_2316;
705		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
706		break;
707	case AR5K_RF5413:
708		rf_regs = rf_regs_5413;
709		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
710		ini_rfb = rfb_5413;
711		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
712		break;
713	case AR5K_RF2317:
714		rf_regs = rf_regs_2425;
715		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
716		ini_rfb = rfb_2317;
717		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
718		break;
719	case AR5K_RF2425:
720		rf_regs = rf_regs_2425;
721		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
722		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
723			ini_rfb = rfb_2425;
724			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
725		} else {
726			ini_rfb = rfb_2417;
727			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
728		}
729		break;
730	default:
731		return -EINVAL;
732	}
733
734	/* If it's the first time we set RF buffer, allocate
735	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
736	 * we set above */
737	if (ah->ah_rf_banks == NULL) {
738		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
739								GFP_KERNEL);
740		if (ah->ah_rf_banks == NULL) {
741			ATH5K_ERR(ah->ah_sc, "out of memory\n");
742			return -ENOMEM;
743		}
744	}
745
746	/* Copy values to modify them */
747	rfb = ah->ah_rf_banks;
748
749	for (i = 0; i < ah->ah_rf_banks_size; i++) {
750		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
751			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
752			return -EINVAL;
753		}
754
755		/* Bank changed, write down the offset */
756		if (bank != ini_rfb[i].rfb_bank) {
757			bank = ini_rfb[i].rfb_bank;
758			ah->ah_offset[bank] = i;
759		}
760
761		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
762	}
763
764	/* Set Output and Driver bias current (OB/DB) */
765	if (channel->hw_value & CHANNEL_2GHZ) {
766
767		if (channel->hw_value & CHANNEL_CCK)
768			ee_mode = AR5K_EEPROM_MODE_11B;
769		else
770			ee_mode = AR5K_EEPROM_MODE_11G;
771
772		/* For RF511X/RF211X combination we
773		 * use b_OB and b_DB parameters stored
774		 * in eeprom on ee->ee_ob[ee_mode][0]
775		 *
776		 * For all other chips we use OB/DB for 2Ghz
777		 * stored in the b/g modal section just like
778		 * 802.11a on ee->ee_ob[ee_mode][1] */
779		if ((ah->ah_radio == AR5K_RF5111) ||
780		(ah->ah_radio == AR5K_RF5112))
781			obdb = 0;
782		else
783			obdb = 1;
784
785		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
786						AR5K_RF_OB_2GHZ, true);
787
788		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
789						AR5K_RF_DB_2GHZ, true);
790
791	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
792	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
793			(ah->ah_radio == AR5K_RF5111)) {
794
795		/* For 11a, Turbo and XR we need to choose
796		 * OB/DB based on frequency range */
797		ee_mode = AR5K_EEPROM_MODE_11A;
798		obdb =	 channel->center_freq >= 5725 ? 3 :
799			(channel->center_freq >= 5500 ? 2 :
800			(channel->center_freq >= 5260 ? 1 :
801			 (channel->center_freq > 4000 ? 0 : -1)));
802
803		if (obdb < 0)
804			return -EINVAL;
805
806		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
807						AR5K_RF_OB_5GHZ, true);
808
809		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
810						AR5K_RF_DB_5GHZ, true);
811	}
812
813	g_step = &go->go_step[ah->ah_gain.g_step_idx];
814
815	/* Bank Modifications (chip-specific) */
816	if (ah->ah_radio == AR5K_RF5111) {
817
818		/* Set gain_F settings according to current step */
819		if (channel->hw_value & CHANNEL_OFDM) {
820
821			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
822					AR5K_PHY_FRAME_CTL_TX_CLIP,
823					g_step->gos_param[0]);
824
825			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
826							AR5K_RF_PWD_90, true);
827
828			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
829							AR5K_RF_PWD_84, true);
830
831			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
832						AR5K_RF_RFGAIN_SEL, true);
833
834			/* We programmed gain_F parameters, switch back
835			 * to active state */
836			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
837
838		}
839
840		/* Bank 6/7 setup */
841
842		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
843						AR5K_RF_PWD_XPD, true);
844
845		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
846						AR5K_RF_XPD_GAIN, true);
847
848		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
849						AR5K_RF_GAIN_I, true);
850
851		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
852						AR5K_RF_PLO_SEL, true);
853
854		/* Tweak power detectors for half/quarter rate support */
855		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
856		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
857			u8 wait_i;
858
859			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
860						AR5K_RF_WAIT_S, true);
861
862			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
863							0x1f : 0x10;
864
865			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
866						AR5K_RF_WAIT_I, true);
867			ath5k_hw_rfb_op(ah, rf_regs, 3,
868						AR5K_RF_MAX_TIME, true);
869
870		}
871	}
872
873	if (ah->ah_radio == AR5K_RF5112) {
874
875		/* Set gain_F settings according to current step */
876		if (channel->hw_value & CHANNEL_OFDM) {
877
878			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
879						AR5K_RF_MIXGAIN_OVR, true);
880
881			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
882						AR5K_RF_PWD_138, true);
883
884			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
885						AR5K_RF_PWD_137, true);
886
887			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
888						AR5K_RF_PWD_136, true);
889
890			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
891						AR5K_RF_PWD_132, true);
892
893			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
894						AR5K_RF_PWD_131, true);
895
896			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
897						AR5K_RF_PWD_130, true);
898
899			/* We programmed gain_F parameters, switch back
900			 * to active state */
901			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
902		}
903
904		/* Bank 6/7 setup */
905
906		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
907						AR5K_RF_XPD_SEL, true);
908
909		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
910			/* Rev. 1 supports only one xpd */
911			ath5k_hw_rfb_op(ah, rf_regs,
912						ee->ee_x_gain[ee_mode],
913						AR5K_RF_XPD_GAIN, true);
914
915		} else {
916			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
917			if (ee->ee_pd_gains[ee_mode] > 1) {
918				ath5k_hw_rfb_op(ah, rf_regs,
919						pdg_curve_to_idx[0],
920						AR5K_RF_PD_GAIN_LO, true);
921				ath5k_hw_rfb_op(ah, rf_regs,
922						pdg_curve_to_idx[1],
923						AR5K_RF_PD_GAIN_HI, true);
924			} else {
925				ath5k_hw_rfb_op(ah, rf_regs,
926						pdg_curve_to_idx[0],
927						AR5K_RF_PD_GAIN_LO, true);
928				ath5k_hw_rfb_op(ah, rf_regs,
929						pdg_curve_to_idx[0],
930						AR5K_RF_PD_GAIN_HI, true);
931			}
932
933			/* Lower synth voltage on Rev 2 */
934			ath5k_hw_rfb_op(ah, rf_regs, 2,
935					AR5K_RF_HIGH_VC_CP, true);
936
937			ath5k_hw_rfb_op(ah, rf_regs, 2,
938					AR5K_RF_MID_VC_CP, true);
939
940			ath5k_hw_rfb_op(ah, rf_regs, 2,
941					AR5K_RF_LOW_VC_CP, true);
942
943			ath5k_hw_rfb_op(ah, rf_regs, 2,
944					AR5K_RF_PUSH_UP, true);
945
946			/* Decrease power consumption on 5213+ BaseBand */
947			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
948				ath5k_hw_rfb_op(ah, rf_regs, 1,
949						AR5K_RF_PAD2GND, true);
950
951				ath5k_hw_rfb_op(ah, rf_regs, 1,
952						AR5K_RF_XB2_LVL, true);
953
954				ath5k_hw_rfb_op(ah, rf_regs, 1,
955						AR5K_RF_XB5_LVL, true);
956
957				ath5k_hw_rfb_op(ah, rf_regs, 1,
958						AR5K_RF_PWD_167, true);
959
960				ath5k_hw_rfb_op(ah, rf_regs, 1,
961						AR5K_RF_PWD_166, true);
962			}
963		}
964
965		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
966						AR5K_RF_GAIN_I, true);
967
968		/* Tweak power detector for half/quarter rates */
969		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
970		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
971			u8 pd_delay;
972
973			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
974							0xf : 0x8;
975
976			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
977						AR5K_RF_PD_PERIOD_A, true);
978			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
979						AR5K_RF_PD_DELAY_A, true);
980
981		}
982	}
983
984	if (ah->ah_radio == AR5K_RF5413 &&
985	channel->hw_value & CHANNEL_2GHZ) {
986
987		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
988									true);
989
990		/* Set optimum value for early revisions (on pci-e chips) */
991		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
992		ah->ah_mac_srev < AR5K_SREV_AR5413)
993			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
994						AR5K_RF_PWD_ICLOBUF_2G, true);
995
996	}
997
998	/* Write RF banks on hw */
999	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1000		AR5K_REG_WAIT(i);
1001		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1002	}
1003
1004	return 0;
1005}
1006
1007
1008/**************************\
1009  PHY/RF channel functions
1010\**************************/
1011
1012/*
1013 * Convertion needed for RF5110
1014 */
1015static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1016{
1017	u32 athchan;
1018
1019	/*
1020	 * Convert IEEE channel/MHz to an internal channel value used
1021	 * by the AR5210 chipset. This has not been verified with
1022	 * newer chipsets like the AR5212A who have a completely
1023	 * different RF/PHY part.
1024	 */
1025	athchan = (ath5k_hw_bitswap(
1026			(ieee80211_frequency_to_channel(
1027				channel->center_freq) - 24) / 2, 5)
1028				<< 1) | (1 << 6) | 0x1;
1029	return athchan;
1030}
1031
1032/*
1033 * Set channel on RF5110
1034 */
1035static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1036		struct ieee80211_channel *channel)
1037{
1038	u32 data;
1039
1040	/*
1041	 * Set the channel and wait
1042	 */
1043	data = ath5k_hw_rf5110_chan2athchan(channel);
1044	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1045	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1046	mdelay(1);
1047
1048	return 0;
1049}
1050
1051/*
1052 * Convertion needed for 5111
1053 */
1054static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1055		struct ath5k_athchan_2ghz *athchan)
1056{
1057	int channel;
1058
1059	/* Cast this value to catch negative channel numbers (>= -19) */
1060	channel = (int)ieee;
1061
1062	/*
1063	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1064	 */
1065	if (channel <= 13) {
1066		athchan->a2_athchan = 115 + channel;
1067		athchan->a2_flags = 0x46;
1068	} else if (channel == 14) {
1069		athchan->a2_athchan = 124;
1070		athchan->a2_flags = 0x44;
1071	} else if (channel >= 15 && channel <= 26) {
1072		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1073		athchan->a2_flags = 0x46;
1074	} else
1075		return -EINVAL;
1076
1077	return 0;
1078}
1079
1080/*
1081 * Set channel on 5111
1082 */
1083static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1084		struct ieee80211_channel *channel)
1085{
1086	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1087	unsigned int ath5k_channel =
1088		ieee80211_frequency_to_channel(channel->center_freq);
1089	u32 data0, data1, clock;
1090	int ret;
1091
1092	/*
1093	 * Set the channel on the RF5111 radio
1094	 */
1095	data0 = data1 = 0;
1096
1097	if (channel->hw_value & CHANNEL_2GHZ) {
1098		/* Map 2GHz channel to 5GHz Atheros channel ID */
1099		ret = ath5k_hw_rf5111_chan2athchan(
1100			ieee80211_frequency_to_channel(channel->center_freq),
1101			&ath5k_channel_2ghz);
1102		if (ret)
1103			return ret;
1104
1105		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1106		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1107		    << 5) | (1 << 4);
1108	}
1109
1110	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1111		clock = 1;
1112		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1113			(clock << 1) | (1 << 10) | 1;
1114	} else {
1115		clock = 0;
1116		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1117			<< 2) | (clock << 1) | (1 << 10) | 1;
1118	}
1119
1120	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1121			AR5K_RF_BUFFER);
1122	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1123			AR5K_RF_BUFFER_CONTROL_3);
1124
1125	return 0;
1126}
1127
1128/*
1129 * Set channel on 5112 and newer
1130 */
1131static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1132		struct ieee80211_channel *channel)
1133{
1134	u32 data, data0, data1, data2;
1135	u16 c;
1136
1137	data = data0 = data1 = data2 = 0;
1138	c = channel->center_freq;
1139
1140	if (c < 4800) {
1141		if (!((c - 2224) % 5)) {
1142			data0 = ((2 * (c - 704)) - 3040) / 10;
1143			data1 = 1;
1144		} else if (!((c - 2192) % 5)) {
1145			data0 = ((2 * (c - 672)) - 3040) / 10;
1146			data1 = 0;
1147		} else
1148			return -EINVAL;
1149
1150		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1151	} else if ((c % 5) != 2 || c > 5435) {
1152		if (!(c % 20) && c >= 5120) {
1153			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1154			data2 = ath5k_hw_bitswap(3, 2);
1155		} else if (!(c % 10)) {
1156			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1157			data2 = ath5k_hw_bitswap(2, 2);
1158		} else if (!(c % 5)) {
1159			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1160			data2 = ath5k_hw_bitswap(1, 2);
1161		} else
1162			return -EINVAL;
1163	} else {
1164		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1165		data2 = ath5k_hw_bitswap(0, 2);
1166	}
1167
1168	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1169
1170	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1171	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1172
1173	return 0;
1174}
1175
1176/*
1177 * Set the channel on the RF2425
1178 */
1179static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1180		struct ieee80211_channel *channel)
1181{
1182	u32 data, data0, data2;
1183	u16 c;
1184
1185	data = data0 = data2 = 0;
1186	c = channel->center_freq;
1187
1188	if (c < 4800) {
1189		data0 = ath5k_hw_bitswap((c - 2272), 8);
1190		data2 = 0;
1191	/* ? 5GHz ? */
1192	} else if ((c % 5) != 2 || c > 5435) {
1193		if (!(c % 20) && c < 5120)
1194			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1195		else if (!(c % 10))
1196			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1197		else if (!(c % 5))
1198			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1199		else
1200			return -EINVAL;
1201		data2 = ath5k_hw_bitswap(1, 2);
1202	} else {
1203		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1204		data2 = ath5k_hw_bitswap(0, 2);
1205	}
1206
1207	data = (data0 << 4) | data2 << 2 | 0x1001;
1208
1209	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1210	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1211
1212	return 0;
1213}
1214
1215/*
1216 * Set a channel on the radio chip
1217 */
1218static int ath5k_hw_channel(struct ath5k_hw *ah,
1219		struct ieee80211_channel *channel)
1220{
1221	int ret;
1222	/*
1223	 * Check bounds supported by the PHY (we don't care about regultory
1224	 * restrictions at this point). Note: hw_value already has the band
1225	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1226	 * of the band by that */
1227	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1228		ATH5K_ERR(ah->ah_sc,
1229			"channel frequency (%u MHz) out of supported "
1230			"band range\n",
1231			channel->center_freq);
1232			return -EINVAL;
1233	}
1234
1235	/*
1236	 * Set the channel and wait
1237	 */
1238	switch (ah->ah_radio) {
1239	case AR5K_RF5110:
1240		ret = ath5k_hw_rf5110_channel(ah, channel);
1241		break;
1242	case AR5K_RF5111:
1243		ret = ath5k_hw_rf5111_channel(ah, channel);
1244		break;
1245	case AR5K_RF2425:
1246		ret = ath5k_hw_rf2425_channel(ah, channel);
1247		break;
1248	default:
1249		ret = ath5k_hw_rf5112_channel(ah, channel);
1250		break;
1251	}
1252
1253	if (ret)
1254		return ret;
1255
1256	/* Set JAPAN setting for channel 14 */
1257	if (channel->center_freq == 2484) {
1258		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1259				AR5K_PHY_CCKTXCTL_JAPAN);
1260	} else {
1261		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1262				AR5K_PHY_CCKTXCTL_WORLD);
1263	}
1264
1265	ah->ah_current_channel = channel;
1266
1267	return 0;
1268}
1269
1270/*****************\
1271  PHY calibration
1272\*****************/
1273
1274static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1275{
1276	s32 val;
1277
1278	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1279	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1280}
1281
1282void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1283{
1284	int i;
1285
1286	ah->ah_nfcal_hist.index = 0;
1287	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1288		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1289}
1290
1291static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1292{
1293	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1294	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1295	hist->nfval[hist->index] = noise_floor;
1296}
1297
1298static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1299{
1300	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1301	s16 tmp;
1302	int i, j;
1303
1304	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1305	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1306		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1307			if (sort[j] > sort[j-1]) {
1308				tmp = sort[j];
1309				sort[j] = sort[j-1];
1310				sort[j-1] = tmp;
1311			}
1312		}
1313	}
1314	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1315		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1316			"cal %d:%d\n", i, sort[i]);
1317	}
1318	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1319}
1320
1321/*
1322 * When we tell the hardware to perform a noise floor calibration
1323 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1324 * sample-and-hold the minimum noise level seen at the antennas.
1325 * This value is then stored in a ring buffer of recently measured
1326 * noise floor values so we have a moving window of the last few
1327 * samples.
1328 *
1329 * The median of the values in the history is then loaded into the
1330 * hardware for its own use for RSSI and CCA measurements.
1331 */
1332void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1333{
1334	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1335	u32 val;
1336	s16 nf, threshold;
1337	u8 ee_mode;
1338
1339	/* keep last value if calibration hasn't completed */
1340	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1341		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1342			"NF did not complete in calibration window\n");
1343
1344		return;
1345	}
1346
1347	switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1348	case CHANNEL_A:
1349	case CHANNEL_T:
1350	case CHANNEL_XR:
1351		ee_mode = AR5K_EEPROM_MODE_11A;
1352		break;
1353	case CHANNEL_G:
1354	case CHANNEL_TG:
1355		ee_mode = AR5K_EEPROM_MODE_11G;
1356		break;
1357	default:
1358	case CHANNEL_B:
1359		ee_mode = AR5K_EEPROM_MODE_11B;
1360		break;
1361	}
1362
1363
1364	/* completed NF calibration, test threshold */
1365	nf = ath5k_hw_read_measured_noise_floor(ah);
1366	threshold = ee->ee_noise_floor_thr[ee_mode];
1367
1368	if (nf > threshold) {
1369		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1370			"noise floor failure detected; "
1371			"read %d, threshold %d\n",
1372			nf, threshold);
1373
1374		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1375	}
1376
1377	ath5k_hw_update_nfcal_hist(ah, nf);
1378	nf = ath5k_hw_get_median_noise_floor(ah);
1379
1380	/* load noise floor (in .5 dBm) so the hardware will use it */
1381	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1382	val |= (nf * 2) & AR5K_PHY_NF_M;
1383	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1384
1385	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1386		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1387
1388	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1389		0, false);
1390
1391	/*
1392	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1393	 * so that we're not capped by the median we just loaded.
1394	 * This will be used as the initial value for the next noise
1395	 * floor calibration.
1396	 */
1397	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1398	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1399	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1400		AR5K_PHY_AGCCTL_NF_EN |
1401		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1402		AR5K_PHY_AGCCTL_NF);
1403
1404	ah->ah_noise_floor = nf;
1405
1406	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1407		"noise floor calibrated: %d\n", nf);
1408}
1409
1410/*
1411 * Perform a PHY calibration on RF5110
1412 * -Fix BPSK/QAM Constellation (I/Q correction)
1413 */
1414static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1415		struct ieee80211_channel *channel)
1416{
1417	u32 phy_sig, phy_agc, phy_sat, beacon;
1418	int ret;
1419
1420	/*
1421	 * Disable beacons and RX/TX queues, wait
1422	 */
1423	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1424		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1425	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1426	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1427
1428	mdelay(2);
1429
1430	/*
1431	 * Set the channel (with AGC turned off)
1432	 */
1433	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1434	udelay(10);
1435	ret = ath5k_hw_channel(ah, channel);
1436
1437	/*
1438	 * Activate PHY and wait
1439	 */
1440	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1441	mdelay(1);
1442
1443	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1444
1445	if (ret)
1446		return ret;
1447
1448	/*
1449	 * Calibrate the radio chip
1450	 */
1451
1452	/* Remember normal state */
1453	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1454	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1455	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1456
1457	/* Update radio registers */
1458	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1459		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1460
1461	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1462			AR5K_PHY_AGCCOARSE_LO)) |
1463		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1464		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1465
1466	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1467			AR5K_PHY_ADCSAT_THR)) |
1468		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1469		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1470
1471	udelay(20);
1472
1473	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1474	udelay(10);
1475	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1476	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1477
1478	mdelay(1);
1479
1480	/*
1481	 * Enable calibration and wait until completion
1482	 */
1483	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1484
1485	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1486			AR5K_PHY_AGCCTL_CAL, 0, false);
1487
1488	/* Reset to normal state */
1489	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1490	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1491	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1492
1493	if (ret) {
1494		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1495				channel->center_freq);
1496		return ret;
1497	}
1498
1499	/*
1500	 * Re-enable RX/TX and beacons
1501	 */
1502	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1503		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1504	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1505
1506	return 0;
1507}
1508
1509/*
1510 * Perform I/Q calibration on RF5111/5112 and newer chips
1511 */
1512static int
1513ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1514{
1515	u32 i_pwr, q_pwr;
1516	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1517	int i;
1518
1519	if (!ah->ah_calibration ||
1520		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1521		return 0;
1522
1523	/* Calibration has finished, get the results and re-run */
1524	/* work around empty results which can apparently happen on 5212 */
1525	for (i = 0; i <= 10; i++) {
1526		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1527		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1528		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1529		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1530			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1531		if (i_pwr && q_pwr)
1532			break;
1533	}
1534
1535	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1536
1537	if (ah->ah_version == AR5K_AR5211)
1538		q_coffd = q_pwr >> 6;
1539	else
1540		q_coffd = q_pwr >> 7;
1541
1542	/* protect against divide by 0 and loss of sign bits */
1543	if (i_coffd == 0 || q_coffd < 2)
1544		return 0;
1545
1546	i_coff = (-iq_corr) / i_coffd;
1547	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1548
1549	if (ah->ah_version == AR5K_AR5211)
1550		q_coff = (i_pwr / q_coffd) - 64;
1551	else
1552		q_coff = (i_pwr / q_coffd) - 128;
1553	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1554
1555	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1556			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1557			i_coff, q_coff, i_coffd, q_coffd);
1558
1559	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1560	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1561	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1562	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1563
1564	/* Re-enable calibration -if we don't we'll commit
1565	 * the same values again and again */
1566	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1567			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1568	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1569
1570	return 0;
1571}
1572
1573/*
1574 * Perform a PHY calibration
1575 */
1576int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1577		struct ieee80211_channel *channel)
1578{
1579	int ret;
1580
1581	if (ah->ah_radio == AR5K_RF5110)
1582		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1583	else {
1584		ret = ath5k_hw_rf511x_iq_calibrate(ah);
1585		ath5k_hw_request_rfgain_probe(ah);
1586	}
1587
1588	return ret;
1589}
1590
1591
1592/***************************\
1593* Spur mitigation functions *
1594\***************************/
1595
1596static void
1597ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1598				struct ieee80211_channel *channel)
1599{
1600	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1601	u32 mag_mask[4] = {0, 0, 0, 0};
1602	u32 pilot_mask[2] = {0, 0};
1603	/* Note: fbin values are scaled up by 2 */
1604	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1605	s32 spur_delta_phase, spur_freq_sigma_delta;
1606	s32 spur_offset, num_symbols_x16;
1607	u8 num_symbol_offsets, i, freq_band;
1608
1609	/* Convert current frequency to fbin value (the same way channels
1610	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1611	 * up by 2 so we can compare it later */
1612	if (channel->hw_value & CHANNEL_2GHZ) {
1613		chan_fbin = (channel->center_freq - 2300) * 10;
1614		freq_band = AR5K_EEPROM_BAND_2GHZ;
1615	} else {
1616		chan_fbin = (channel->center_freq - 4900) * 10;
1617		freq_band = AR5K_EEPROM_BAND_5GHZ;
1618	}
1619
1620	/* Check if any spur_chan_fbin from EEPROM is
1621	 * within our current channel's spur detection range */
1622	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1623	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1624	/* XXX: Half/Quarter channels ?*/
1625	if (channel->hw_value & CHANNEL_TURBO)
1626		spur_detection_window *= 2;
1627
1628	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1629		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1630
1631		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1632		 * so it's zero if we got nothing from EEPROM */
1633		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1634			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1635			break;
1636		}
1637
1638		if ((chan_fbin - spur_detection_window <=
1639		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1640		(chan_fbin + spur_detection_window >=
1641		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1642			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1643			break;
1644		}
1645	}
1646
1647	/* We need to enable spur filter for this channel */
1648	if (spur_chan_fbin) {
1649		spur_offset = spur_chan_fbin - chan_fbin;
1650		/*
1651		 * Calculate deltas:
1652		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1653		 * spur_delta_phase -> spur_offset / chip_freq << 11
1654		 * Note: Both values have 100KHz resolution
1655		 */
1656		/* XXX: Half/Quarter rate channels ? */
1657		switch (channel->hw_value) {
1658		case CHANNEL_A:
1659			/* Both sample_freq and chip_freq are 40MHz */
1660			spur_delta_phase = (spur_offset << 17) / 25;
1661			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1662			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1663			break;
1664		case CHANNEL_G:
1665			/* sample_freq -> 40MHz chip_freq -> 44MHz
1666			 * (for b compatibility) */
1667			spur_freq_sigma_delta = (spur_offset << 8) / 55;
1668			spur_delta_phase = (spur_offset << 17) / 25;
1669			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1670			break;
1671		case CHANNEL_T:
1672		case CHANNEL_TG:
1673			/* Both sample_freq and chip_freq are 80MHz */
1674			spur_delta_phase = (spur_offset << 16) / 25;
1675			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1676			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1677			break;
1678		default:
1679			return;
1680		}
1681
1682		/* Calculate pilot and magnitude masks */
1683
1684		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1685		 * and divide by symbol_width to find how many symbols we have
1686		 * Note: number of symbols is scaled up by 16 */
1687		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1688
1689		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1690		if (!(num_symbols_x16 & 0xF))
1691			/* _X_ */
1692			num_symbol_offsets = 3;
1693		else
1694			/* _xx_ */
1695			num_symbol_offsets = 4;
1696
1697		for (i = 0; i < num_symbol_offsets; i++) {
1698
1699			/* Calculate pilot mask */
1700			s32 curr_sym_off =
1701				(num_symbols_x16 / 16) + i + 25;
1702
1703			/* Pilot magnitude mask seems to be a way to
1704			 * declare the boundaries for our detection
1705			 * window or something, it's 2 for the middle
1706			 * value(s) where the symbol is expected to be
1707			 * and 1 on the boundary values */
1708			u8 plt_mag_map =
1709				(i == 0 || i == (num_symbol_offsets - 1))
1710								? 1 : 2;
1711
1712			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1713				if (curr_sym_off <= 25)
1714					pilot_mask[0] |= 1 << curr_sym_off;
1715				else if (curr_sym_off >= 27)
1716					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1717			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1718				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1719
1720			/* Calculate magnitude mask (for viterbi decoder) */
1721			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1722				mag_mask[0] |=
1723					plt_mag_map << (curr_sym_off + 1) * 2;
1724			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1725				mag_mask[1] |=
1726					plt_mag_map << (curr_sym_off - 15) * 2;
1727			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1728				mag_mask[2] |=
1729					plt_mag_map << (curr_sym_off - 31) * 2;
1730			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1731				mag_mask[3] |=
1732					plt_mag_map << (curr_sym_off - 47) * 2;
1733
1734		}
1735
1736		/* Write settings on hw to enable spur filter */
1737		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1738					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1739		/* XXX: Self correlator also ? */
1740		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1741					AR5K_PHY_IQ_PILOT_MASK_EN |
1742					AR5K_PHY_IQ_CHAN_MASK_EN |
1743					AR5K_PHY_IQ_SPUR_FILT_EN);
1744
1745		/* Set delta phase and freq sigma delta */
1746		ath5k_hw_reg_write(ah,
1747				AR5K_REG_SM(spur_delta_phase,
1748					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1749				AR5K_REG_SM(spur_freq_sigma_delta,
1750				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1751				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1752				AR5K_PHY_TIMING_11);
1753
1754		/* Write pilot masks */
1755		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1756		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1757					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1758					pilot_mask[1]);
1759
1760		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1761		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1762					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1763					pilot_mask[1]);
1764
1765		/* Write magnitude masks */
1766		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1767		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1768		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1769		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1770					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1771					mag_mask[3]);
1772
1773		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1774		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1775		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1776		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1777					AR5K_PHY_BIN_MASK2_4_MASK_4,
1778					mag_mask[3]);
1779
1780	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1781	AR5K_PHY_IQ_SPUR_FILT_EN) {
1782		/* Clean up spur mitigation settings and disable fliter */
1783		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1784					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1785		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1786					AR5K_PHY_IQ_PILOT_MASK_EN |
1787					AR5K_PHY_IQ_CHAN_MASK_EN |
1788					AR5K_PHY_IQ_SPUR_FILT_EN);
1789		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1790
1791		/* Clear pilot masks */
1792		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1793		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1794					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1795					0);
1796
1797		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1798		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1799					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1800					0);
1801
1802		/* Clear magnitude masks */
1803		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1804		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1805		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1806		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1807					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1808					0);
1809
1810		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1811		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1812		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1813		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1814					AR5K_PHY_BIN_MASK2_4_MASK_4,
1815					0);
1816	}
1817}
1818
1819
1820/*****************\
1821* Antenna control *
1822\*****************/
1823
1824static void /*TODO:Boundary check*/
1825ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1826{
1827	if (ah->ah_version != AR5K_AR5210)
1828		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1829}
1830
1831/*
1832 * Enable/disable fast rx antenna diversity
1833 */
1834static void
1835ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1836{
1837	switch (ee_mode) {
1838	case AR5K_EEPROM_MODE_11G:
1839		/* XXX: This is set to
1840		 * disabled on initvals !!! */
1841	case AR5K_EEPROM_MODE_11A:
1842		if (enable)
1843			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1844					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1845		else
1846			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1847					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1848		break;
1849	case AR5K_EEPROM_MODE_11B:
1850		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1851					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1852		break;
1853	default:
1854		return;
1855	}
1856
1857	if (enable) {
1858		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1859				AR5K_PHY_RESTART_DIV_GC, 4);
1860
1861		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1862					AR5K_PHY_FAST_ANT_DIV_EN);
1863	} else {
1864		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1865				AR5K_PHY_RESTART_DIV_GC, 0);
1866
1867		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1868					AR5K_PHY_FAST_ANT_DIV_EN);
1869	}
1870}
1871
1872void
1873ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1874{
1875	u8 ant0, ant1;
1876
1877	/*
1878	 * In case a fixed antenna was set as default
1879	 * use the same switch table twice.
1880	 */
1881	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1882		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1883	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1884		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1885	else {
1886		ant0 = AR5K_ANT_SWTABLE_A;
1887		ant1 = AR5K_ANT_SWTABLE_B;
1888	}
1889
1890	/* Set antenna idle switch table */
1891	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1892			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1893			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1894			AR5K_PHY_ANT_CTL_TXRX_EN));
1895
1896	/* Set antenna switch tables */
1897	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1898		AR5K_PHY_ANT_SWITCH_TABLE_0);
1899	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1900		AR5K_PHY_ANT_SWITCH_TABLE_1);
1901}
1902
1903/*
1904 * Set antenna operating mode
1905 */
1906void
1907ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1908{
1909	struct ieee80211_channel *channel = ah->ah_current_channel;
1910	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1911	bool use_def_for_sg;
1912	u8 def_ant, tx_ant, ee_mode;
1913	u32 sta_id1 = 0;
1914
1915	/* if channel is not initialized yet we can't set the antennas
1916	 * so just store the mode. it will be set on the next reset */
1917	if (channel == NULL) {
1918		ah->ah_ant_mode = ant_mode;
1919		return;
1920	}
1921
1922	def_ant = ah->ah_def_ant;
1923
1924	switch (channel->hw_value & CHANNEL_MODES) {
1925	case CHANNEL_A:
1926	case CHANNEL_T:
1927	case CHANNEL_XR:
1928		ee_mode = AR5K_EEPROM_MODE_11A;
1929		break;
1930	case CHANNEL_G:
1931	case CHANNEL_TG:
1932		ee_mode = AR5K_EEPROM_MODE_11G;
1933		break;
1934	case CHANNEL_B:
1935		ee_mode = AR5K_EEPROM_MODE_11B;
1936		break;
1937	default:
1938		ATH5K_ERR(ah->ah_sc,
1939			"invalid channel: %d\n", channel->center_freq);
1940		return;
1941	}
1942
1943	switch (ant_mode) {
1944	case AR5K_ANTMODE_DEFAULT:
1945		tx_ant = 0;
1946		use_def_for_tx = false;
1947		update_def_on_tx = false;
1948		use_def_for_rts = false;
1949		use_def_for_sg = false;
1950		fast_div = true;
1951		break;
1952	case AR5K_ANTMODE_FIXED_A:
1953		def_ant = 1;
1954		tx_ant = 1;
1955		use_def_for_tx = true;
1956		update_def_on_tx = false;
1957		use_def_for_rts = true;
1958		use_def_for_sg = true;
1959		fast_div = false;
1960		break;
1961	case AR5K_ANTMODE_FIXED_B:
1962		def_ant = 2;
1963		tx_ant = 2;
1964		use_def_for_tx = true;
1965		update_def_on_tx = false;
1966		use_def_for_rts = true;
1967		use_def_for_sg = true;
1968		fast_div = false;
1969		break;
1970	case AR5K_ANTMODE_SINGLE_AP:
1971		def_ant = 1;	/* updated on tx */
1972		tx_ant = 0;
1973		use_def_for_tx = true;
1974		update_def_on_tx = true;
1975		use_def_for_rts = true;
1976		use_def_for_sg = true;
1977		fast_div = true;
1978		break;
1979	case AR5K_ANTMODE_SECTOR_AP:
1980		tx_ant = 1;	/* variable */
1981		use_def_for_tx = false;
1982		update_def_on_tx = false;
1983		use_def_for_rts = true;
1984		use_def_for_sg = false;
1985		fast_div = false;
1986		break;
1987	case AR5K_ANTMODE_SECTOR_STA:
1988		tx_ant = 1;	/* variable */
1989		use_def_for_tx = true;
1990		update_def_on_tx = false;
1991		use_def_for_rts = true;
1992		use_def_for_sg = false;
1993		fast_div = true;
1994		break;
1995	case AR5K_ANTMODE_DEBUG:
1996		def_ant = 1;
1997		tx_ant = 2;
1998		use_def_for_tx = false;
1999		update_def_on_tx = false;
2000		use_def_for_rts = false;
2001		use_def_for_sg = false;
2002		fast_div = false;
2003		break;
2004	default:
2005		return;
2006	}
2007
2008	ah->ah_tx_ant = tx_ant;
2009	ah->ah_ant_mode = ant_mode;
2010	ah->ah_def_ant = def_ant;
2011
2012	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2013	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2014	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2015	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2016
2017	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2018
2019	if (sta_id1)
2020		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2021
2022	ath5k_hw_set_antenna_switch(ah, ee_mode);
2023	/* Note: set diversity before default antenna
2024	 * because it won't work correctly */
2025	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2026	ath5k_hw_set_def_antenna(ah, def_ant);
2027}
2028
2029
2030/****************\
2031* TX power setup *
2032\****************/
2033
2034/*
2035 * Helper functions
2036 */
2037
2038/*
2039 * Do linear interpolation between two given (x, y) points
2040 */
2041static s16
2042ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2043					s16 y_left, s16 y_right)
2044{
2045	s16 ratio, result;
2046
2047	/* Avoid divide by zero and skip interpolation
2048	 * if we have the same point */
2049	if ((x_left == x_right) || (y_left == y_right))
2050		return y_left;
2051
2052	/*
2053	 * Since we use ints and not fps, we need to scale up in
2054	 * order to get a sane ratio value (or else we 'll eg. get
2055	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2056	 * to have some accuracy both for 0.5 and 0.25 steps.
2057	 */
2058	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
2059
2060	/* Now scale down to be in range */
2061	result = y_left + (ratio * (target - x_left) / 100);
2062
2063	return result;
2064}
2065
2066/*
2067 * Find vertical boundary (min pwr) for the linear PCDAC curve.
2068 *
2069 * Since we have the top of the curve and we draw the line below
2070 * until we reach 1 (1 pcdac step) we need to know which point
2071 * (x value) that is so that we don't go below y axis and have negative
2072 * pcdac values when creating the curve, or fill the table with zeroes.
2073 */
2074static s16
2075ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2076				const s16 *pwrL, const s16 *pwrR)
2077{
2078	s8 tmp;
2079	s16 min_pwrL, min_pwrR;
2080	s16 pwr_i;
2081
2082	/* Some vendors write the same pcdac value twice !!! */
2083	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2084		return max(pwrL[0], pwrR[0]);
2085
2086	if (pwrL[0] == pwrL[1])
2087		min_pwrL = pwrL[0];
2088	else {
2089		pwr_i = pwrL[0];
2090		do {
2091			pwr_i--;
2092			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2093							pwrL[0], pwrL[1],
2094							stepL[0], stepL[1]);
2095		} while (tmp > 1);
2096
2097		min_pwrL = pwr_i;
2098	}
2099
2100	if (pwrR[0] == pwrR[1])
2101		min_pwrR = pwrR[0];
2102	else {
2103		pwr_i = pwrR[0];
2104		do {
2105			pwr_i--;
2106			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2107							pwrR[0], pwrR[1],
2108							stepR[0], stepR[1]);
2109		} while (tmp > 1);
2110
2111		min_pwrR = pwr_i;
2112	}
2113
2114	/* Keep the right boundary so that it works for both curves */
2115	return max(min_pwrL, min_pwrR);
2116}
2117
2118/*
2119 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2120 * Power to PCDAC curve.
2121 *
2122 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2123 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2124 * PCDAC/PDADC step for each curve is 64 but we can write more than
2125 * one curves on hw so we can go up to 128 (which is the max step we
2126 * can write on the final table).
2127 *
2128 * We write y values (PCDAC/PDADC steps) on hw.
2129 */
2130static void
2131ath5k_create_power_curve(s16 pmin, s16 pmax,
2132			const s16 *pwr, const u8 *vpd,
2133			u8 num_points,
2134			u8 *vpd_table, u8 type)
2135{
2136	u8 idx[2] = { 0, 1 };
2137	s16 pwr_i = 2*pmin;
2138	int i;
2139
2140	if (num_points < 2)
2141		return;
2142
2143	/* We want the whole line, so adjust boundaries
2144	 * to cover the entire power range. Note that
2145	 * power values are already 0.25dB so no need
2146	 * to multiply pwr_i by 2 */
2147	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2148		pwr_i = pmin;
2149		pmin = 0;
2150		pmax = 63;
2151	}
2152
2153	/* Find surrounding turning points (TPs)
2154	 * and interpolate between them */
2155	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2156	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2157
2158		/* We passed the right TP, move to the next set of TPs
2159		 * if we pass the last TP, extrapolate above using the last
2160		 * two TPs for ratio */
2161		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2162			idx[0]++;
2163			idx[1]++;
2164		}
2165
2166		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2167						pwr[idx[0]], pwr[idx[1]],
2168						vpd[idx[0]], vpd[idx[1]]);
2169
2170		/* Increase by 0.5dB
2171		 * (0.25 dB units) */
2172		pwr_i += 2;
2173	}
2174}
2175
2176/*
2177 * Get the surrounding per-channel power calibration piers
2178 * for a given frequency so that we can interpolate between
2179 * them and come up with an apropriate dataset for our current
2180 * channel.
2181 */
2182static void
2183ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2184			struct ieee80211_channel *channel,
2185			struct ath5k_chan_pcal_info **pcinfo_l,
2186			struct ath5k_chan_pcal_info **pcinfo_r)
2187{
2188	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2189	struct ath5k_chan_pcal_info *pcinfo;
2190	u8 idx_l, idx_r;
2191	u8 mode, max, i;
2192	u32 target = channel->center_freq;
2193
2194	idx_l = 0;
2195	idx_r = 0;
2196
2197	if (!(channel->hw_value & CHANNEL_OFDM)) {
2198		pcinfo = ee->ee_pwr_cal_b;
2199		mode = AR5K_EEPROM_MODE_11B;
2200	} else if (channel->hw_value & CHANNEL_2GHZ) {
2201		pcinfo = ee->ee_pwr_cal_g;
2202		mode = AR5K_EEPROM_MODE_11G;
2203	} else {
2204		pcinfo = ee->ee_pwr_cal_a;
2205		mode = AR5K_EEPROM_MODE_11A;
2206	}
2207	max = ee->ee_n_piers[mode] - 1;
2208
2209	/* Frequency is below our calibrated
2210	 * range. Use the lowest power curve
2211	 * we have */
2212	if (target < pcinfo[0].freq) {
2213		idx_l = idx_r = 0;
2214		goto done;
2215	}
2216
2217	/* Frequency is above our calibrated
2218	 * range. Use the highest power curve
2219	 * we have */
2220	if (target > pcinfo[max].freq) {
2221		idx_l = idx_r = max;
2222		goto done;
2223	}
2224
2225	/* Frequency is inside our calibrated
2226	 * channel range. Pick the surrounding
2227	 * calibration piers so that we can
2228	 * interpolate */
2229	for (i = 0; i <= max; i++) {
2230
2231		/* Frequency matches one of our calibration
2232		 * piers, no need to interpolate, just use
2233		 * that calibration pier */
2234		if (pcinfo[i].freq == target) {
2235			idx_l = idx_r = i;
2236			goto done;
2237		}
2238
2239		/* We found a calibration pier that's above
2240		 * frequency, use this pier and the previous
2241		 * one to interpolate */
2242		if (target < pcinfo[i].freq) {
2243			idx_r = i;
2244			idx_l = idx_r - 1;
2245			goto done;
2246		}
2247	}
2248
2249done:
2250	*pcinfo_l = &pcinfo[idx_l];
2251	*pcinfo_r = &pcinfo[idx_r];
2252}
2253
2254/*
2255 * Get the surrounding per-rate power calibration data
2256 * for a given frequency and interpolate between power
2257 * values to set max target power supported by hw for
2258 * each rate.
2259 */
2260static void
2261ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2262			struct ieee80211_channel *channel,
2263			struct ath5k_rate_pcal_info *rates)
2264{
2265	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2266	struct ath5k_rate_pcal_info *rpinfo;
2267	u8 idx_l, idx_r;
2268	u8 mode, max, i;
2269	u32 target = channel->center_freq;
2270
2271	idx_l = 0;
2272	idx_r = 0;
2273
2274	if (!(channel->hw_value & CHANNEL_OFDM)) {
2275		rpinfo = ee->ee_rate_tpwr_b;
2276		mode = AR5K_EEPROM_MODE_11B;
2277	} else if (channel->hw_value & CHANNEL_2GHZ) {
2278		rpinfo = ee->ee_rate_tpwr_g;
2279		mode = AR5K_EEPROM_MODE_11G;
2280	} else {
2281		rpinfo = ee->ee_rate_tpwr_a;
2282		mode = AR5K_EEPROM_MODE_11A;
2283	}
2284	max = ee->ee_rate_target_pwr_num[mode] - 1;
2285
2286	/* Get the surrounding calibration
2287	 * piers - same as above */
2288	if (target < rpinfo[0].freq) {
2289		idx_l = idx_r = 0;
2290		goto done;
2291	}
2292
2293	if (target > rpinfo[max].freq) {
2294		idx_l = idx_r = max;
2295		goto done;
2296	}
2297
2298	for (i = 0; i <= max; i++) {
2299
2300		if (rpinfo[i].freq == target) {
2301			idx_l = idx_r = i;
2302			goto done;
2303		}
2304
2305		if (target < rpinfo[i].freq) {
2306			idx_r = i;
2307			idx_l = idx_r - 1;
2308			goto done;
2309		}
2310	}
2311
2312done:
2313	/* Now interpolate power value, based on the frequency */
2314	rates->freq = target;
2315
2316	rates->target_power_6to24 =
2317		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2318					rpinfo[idx_r].freq,
2319					rpinfo[idx_l].target_power_6to24,
2320					rpinfo[idx_r].target_power_6to24);
2321
2322	rates->target_power_36 =
2323		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2324					rpinfo[idx_r].freq,
2325					rpinfo[idx_l].target_power_36,
2326					rpinfo[idx_r].target_power_36);
2327
2328	rates->target_power_48 =
2329		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2330					rpinfo[idx_r].freq,
2331					rpinfo[idx_l].target_power_48,
2332					rpinfo[idx_r].target_power_48);
2333
2334	rates->target_power_54 =
2335		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2336					rpinfo[idx_r].freq,
2337					rpinfo[idx_l].target_power_54,
2338					rpinfo[idx_r].target_power_54);
2339}
2340
2341/*
2342 * Get the max edge power for this channel if
2343 * we have such data from EEPROM's Conformance Test
2344 * Limits (CTL), and limit max power if needed.
2345 */
2346static void
2347ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2348			struct ieee80211_channel *channel)
2349{
2350	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2351	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2352	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2353	u8 *ctl_val = ee->ee_ctl;
2354	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2355	s16 edge_pwr = 0;
2356	u8 rep_idx;
2357	u8 i, ctl_mode;
2358	u8 ctl_idx = 0xFF;
2359	u32 target = channel->center_freq;
2360
2361	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2362
2363	switch (channel->hw_value & CHANNEL_MODES) {
2364	case CHANNEL_A:
2365		ctl_mode |= AR5K_CTL_11A;
2366		break;
2367	case CHANNEL_G:
2368		ctl_mode |= AR5K_CTL_11G;
2369		break;
2370	case CHANNEL_B:
2371		ctl_mode |= AR5K_CTL_11B;
2372		break;
2373	case CHANNEL_T:
2374		ctl_mode |= AR5K_CTL_TURBO;
2375		break;
2376	case CHANNEL_TG:
2377		ctl_mode |= AR5K_CTL_TURBOG;
2378		break;
2379	case CHANNEL_XR:
2380		/* Fall through */
2381	default:
2382		return;
2383	}
2384
2385	for (i = 0; i < ee->ee_ctls; i++) {
2386		if (ctl_val[i] == ctl_mode) {
2387			ctl_idx = i;
2388			break;
2389		}
2390	}
2391
2392	/* If we have a CTL dataset available grab it and find the
2393	 * edge power for our frequency */
2394	if (ctl_idx == 0xFF)
2395		return;
2396
2397	/* Edge powers are sorted by frequency from lower
2398	 * to higher. Each CTL corresponds to 8 edge power
2399	 * measurements. */
2400	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2401
2402	/* Don't do boundaries check because we
2403	 * might have more that one bands defined
2404	 * for this mode */
2405
2406	/* Get the edge power that's closer to our
2407	 * frequency */
2408	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2409		rep_idx += i;
2410		if (target <= rep[rep_idx].freq)
2411			edge_pwr = (s16) rep[rep_idx].edge;
2412	}
2413
2414	if (edge_pwr)
2415		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2416}
2417
2418
2419/*
2420 * Power to PCDAC table functions
2421 */
2422
2423/*
2424 * Fill Power to PCDAC table on RF5111
2425 *
2426 * No further processing is needed for RF5111, the only thing we have to
2427 * do is fill the values below and above calibration range since eeprom data
2428 * may not cover the entire PCDAC table.
2429 */
2430static void
2431ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2432							s16 *table_max)
2433{
2434	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2435	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2436	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2437	s16	min_pwr, max_pwr;
2438
2439	/* Get table boundaries */
2440	min_pwr = table_min[0];
2441	pcdac_0 = pcdac_tmp[0];
2442
2443	max_pwr = table_max[0];
2444	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2445
2446	/* Extrapolate below minimum using pcdac_0 */
2447	pcdac_i = 0;
2448	for (i = 0; i < min_pwr; i++)
2449		pcdac_out[pcdac_i++] = pcdac_0;
2450
2451	/* Copy values from pcdac_tmp */
2452	pwr_idx = min_pwr;
2453	for (i = 0 ; pwr_idx <= max_pwr &&
2454	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2455		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2456		pwr_idx++;
2457	}
2458
2459	/* Extrapolate above maximum */
2460	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2461		pcdac_out[pcdac_i++] = pcdac_n;
2462
2463}
2464
2465/*
2466 * Combine available XPD Curves and fill Linear Power to PCDAC table
2467 * on RF5112
2468 *
2469 * RFX112 can have up to 2 curves (one for low txpower range and one for
2470 * higher txpower range). We need to put them both on pcdac_out and place
2471 * them in the correct location. In case we only have one curve available
2472 * just fit it on pcdac_out (it's supposed to cover the entire range of
2473 * available pwr levels since it's always the higher power curve). Extrapolate
2474 * below and above final table if needed.
2475 */
2476static void
2477ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2478						s16 *table_max, u8 pdcurves)
2479{
2480	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2481	u8	*pcdac_low_pwr;
2482	u8	*pcdac_high_pwr;
2483	u8	*pcdac_tmp;
2484	u8	pwr;
2485	s16	max_pwr_idx;
2486	s16	min_pwr_idx;
2487	s16	mid_pwr_idx = 0;
2488	/* Edge flag turs on the 7nth bit on the PCDAC
2489	 * to delcare the higher power curve (force values
2490	 * to be greater than 64). If we only have one curve
2491	 * we don't need to set this, if we have 2 curves and
2492	 * fill the table backwards this can also be used to
2493	 * switch from higher power curve to lower power curve */
2494	u8	edge_flag;
2495	int	i;
2496
2497	/* When we have only one curve available
2498	 * that's the higher power curve. If we have
2499	 * two curves the first is the high power curve
2500	 * and the next is the low power curve. */
2501	if (pdcurves > 1) {
2502		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2503		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2504		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2505		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2506
2507		/* If table size goes beyond 31.5dB, keep the
2508		 * upper 31.5dB range when setting tx power.
2509		 * Note: 126 = 31.5 dB in quarter dB steps */
2510		if (table_max[0] - table_min[1] > 126)
2511			min_pwr_idx = table_max[0] - 126;
2512		else
2513			min_pwr_idx = table_min[1];
2514
2515		/* Since we fill table backwards
2516		 * start from high power curve */
2517		pcdac_tmp = pcdac_high_pwr;
2518
2519		edge_flag = 0x40;
2520	} else {
2521		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2522		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2523		min_pwr_idx = table_min[0];
2524		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2525		pcdac_tmp = pcdac_high_pwr;
2526		edge_flag = 0;
2527	}
2528
2529	/* This is used when setting tx power*/
2530	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2531
2532	/* Fill Power to PCDAC table backwards */
2533	pwr = max_pwr_idx;
2534	for (i = 63; i >= 0; i--) {
2535		/* Entering lower power range, reset
2536		 * edge flag and set pcdac_tmp to lower
2537		 * power curve.*/
2538		if (edge_flag == 0x40 &&
2539		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2540			edge_flag = 0x00;
2541			pcdac_tmp = pcdac_low_pwr;
2542			pwr = mid_pwr_idx/2;
2543		}
2544
2545		/* Don't go below 1, extrapolate below if we have
2546		 * already swithced to the lower power curve -or
2547		 * we only have one curve and edge_flag is zero
2548		 * anyway */
2549		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2550			while (i >= 0) {
2551				pcdac_out[i] = pcdac_out[i + 1];
2552				i--;
2553			}
2554			break;
2555		}
2556
2557		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2558
2559		/* Extrapolate above if pcdac is greater than
2560		 * 126 -this can happen because we OR pcdac_out
2561		 * value with edge_flag on high power curve */
2562		if (pcdac_out[i] > 126)
2563			pcdac_out[i] = 126;
2564
2565		/* Decrease by a 0.5dB step */
2566		pwr--;
2567	}
2568}
2569
2570/* Write PCDAC values on hw */
2571static void
2572ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2573{
2574	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2575	int	i;
2576
2577	/*
2578	 * Write TX power values
2579	 */
2580	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2581		ath5k_hw_reg_write(ah,
2582			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2583			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2584			AR5K_PHY_PCDAC_TXPOWER(i));
2585	}
2586}
2587
2588
2589/*
2590 * Power to PDADC table functions
2591 */
2592
2593/*
2594 * Set the gain boundaries and create final Power to PDADC table
2595 *
2596 * We can have up to 4 pd curves, we need to do a simmilar process
2597 * as we do for RF5112. This time we don't have an edge_flag but we
2598 * set the gain boundaries on a separate register.
2599 */
2600static void
2601ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2602			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2603{
2604	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2605	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2606	u8 *pdadc_tmp;
2607	s16 pdadc_0;
2608	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2609	u8 pd_gain_overlap;
2610
2611	/* Note: Register value is initialized on initvals
2612	 * there is no feedback from hw.
2613	 * XXX: What about pd_gain_overlap from EEPROM ? */
2614	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2615		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2616
2617	/* Create final PDADC table */
2618	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2619		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2620
2621		if (pdg == pdcurves - 1)
2622			/* 2 dB boundary stretch for last
2623			 * (higher power) curve */
2624			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2625		else
2626			/* Set gain boundary in the middle
2627			 * between this curve and the next one */
2628			gain_boundaries[pdg] =
2629				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2630
2631		/* Sanity check in case our 2 db stretch got out of
2632		 * range. */
2633		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2634			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2635
2636		/* For the first curve (lower power)
2637		 * start from 0 dB */
2638		if (pdg == 0)
2639			pdadc_0 = 0;
2640		else
2641			/* For the other curves use the gain overlap */
2642			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2643							pd_gain_overlap;
2644
2645		/* Force each power step to be at least 0.5 dB */
2646		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2647			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2648		else
2649			pwr_step = 1;
2650
2651		/* If pdadc_0 is negative, we need to extrapolate
2652		 * below this pdgain by a number of pwr_steps */
2653		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2654			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2655			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2656			pdadc_0++;
2657		}
2658
2659		/* Set last pwr level, using gain boundaries */
2660		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2661		/* Limit it to be inside pwr range */
2662		table_size = pwr_max[pdg] - pwr_min[pdg];
2663		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2664
2665		/* Fill pdadc_out table */
2666		while (pdadc_0 < max_idx && pdadc_i < 128)
2667			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2668
2669		/* Need to extrapolate above this pdgain? */
2670		if (pdadc_n <= max_idx)
2671			continue;
2672
2673		/* Force each power step to be at least 0.5 dB */
2674		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2675			pwr_step = pdadc_tmp[table_size - 1] -
2676						pdadc_tmp[table_size - 2];
2677		else
2678			pwr_step = 1;
2679
2680		/* Extrapolate above */
2681		while ((pdadc_0 < (s16) pdadc_n) &&
2682		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2683			s16 tmp = pdadc_tmp[table_size - 1] +
2684					(pdadc_0 - max_idx) * pwr_step;
2685			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2686			pdadc_0++;
2687		}
2688	}
2689
2690	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2691		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2692		pdg++;
2693	}
2694
2695	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2696		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2697		pdadc_i++;
2698	}
2699
2700	/* Set gain boundaries */
2701	ath5k_hw_reg_write(ah,
2702		AR5K_REG_SM(pd_gain_overlap,
2703			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2704		AR5K_REG_SM(gain_boundaries[0],
2705			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2706		AR5K_REG_SM(gain_boundaries[1],
2707			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2708		AR5K_REG_SM(gain_boundaries[2],
2709			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2710		AR5K_REG_SM(gain_boundaries[3],
2711			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2712		AR5K_PHY_TPC_RG5);
2713
2714	/* Used for setting rate power table */
2715	ah->ah_txpower.txp_min_idx = pwr_min[0];
2716
2717}
2718
2719/* Write PDADC values on hw */
2720static void
2721ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2722			u8 pdcurves, u8 *pdg_to_idx)
2723{
2724	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2725	u32 reg;
2726	u8 i;
2727
2728	/* Select the right pdgain curves */
2729
2730	/* Clear current settings */
2731	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2732	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2733		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2734		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2735		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2736
2737	/*
2738	 * Use pd_gains curve from eeprom
2739	 *
2740	 * This overrides the default setting from initvals
2741	 * in case some vendors (e.g. Zcomax) don't use the default
2742	 * curves. If we don't honor their settings we 'll get a
2743	 * 5dB (1 * gain overlap ?) drop.
2744	 */
2745	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2746
2747	switch (pdcurves) {
2748	case 3:
2749		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2750		/* Fall through */
2751	case 2:
2752		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2753		/* Fall through */
2754	case 1:
2755		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2756		break;
2757	}
2758	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2759
2760	/*
2761	 * Write TX power values
2762	 */
2763	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2764		ath5k_hw_reg_write(ah,
2765			((pdadc_out[4*i + 0] & 0xff) << 0) |
2766			((pdadc_out[4*i + 1] & 0xff) << 8) |
2767			((pdadc_out[4*i + 2] & 0xff) << 16) |
2768			((pdadc_out[4*i + 3] & 0xff) << 24),
2769			AR5K_PHY_PDADC_TXPOWER(i));
2770	}
2771}
2772
2773
2774/*
2775 * Common code for PCDAC/PDADC tables
2776 */
2777
2778/*
2779 * This is the main function that uses all of the above
2780 * to set PCDAC/PDADC table on hw for the current channel.
2781 * This table is used for tx power calibration on the basband,
2782 * without it we get weird tx power levels and in some cases
2783 * distorted spectral mask
2784 */
2785static int
2786ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2787			struct ieee80211_channel *channel,
2788			u8 ee_mode, u8 type)
2789{
2790	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2791	struct ath5k_chan_pcal_info *pcinfo_L;
2792	struct ath5k_chan_pcal_info *pcinfo_R;
2793	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2794	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2795	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2796	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2797	u8 *tmpL;
2798	u8 *tmpR;
2799	u32 target = channel->center_freq;
2800	int pdg, i;
2801
2802	/* Get surounding freq piers for this channel */
2803	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2804						&pcinfo_L,
2805						&pcinfo_R);
2806
2807	/* Loop over pd gain curves on
2808	 * surounding freq piers by index */
2809	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2810
2811		/* Fill curves in reverse order
2812		 * from lower power (max gain)
2813		 * to higher power. Use curve -> idx
2814		 * backmapping we did on eeprom init */
2815		u8 idx = pdg_curve_to_idx[pdg];
2816
2817		/* Grab the needed curves by index */
2818		pdg_L = &pcinfo_L->pd_curves[idx];
2819		pdg_R = &pcinfo_R->pd_curves[idx];
2820
2821		/* Initialize the temp tables */
2822		tmpL = ah->ah_txpower.tmpL[pdg];
2823		tmpR = ah->ah_txpower.tmpR[pdg];
2824
2825		/* Set curve's x boundaries and create
2826		 * curves so that they cover the same
2827		 * range (if we don't do that one table
2828		 * will have values on some range and the
2829		 * other one won't have any so interpolation
2830		 * will fail) */
2831		table_min[pdg] = min(pdg_L->pd_pwr[0],
2832					pdg_R->pd_pwr[0]) / 2;
2833
2834		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2835				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2836
2837		/* Now create the curves on surrounding channels
2838		 * and interpolate if needed to get the final
2839		 * curve for this gain on this channel */
2840		switch (type) {
2841		case AR5K_PWRTABLE_LINEAR_PCDAC:
2842			/* Override min/max so that we don't loose
2843			 * accuracy (don't divide by 2) */
2844			table_min[pdg] = min(pdg_L->pd_pwr[0],
2845						pdg_R->pd_pwr[0]);
2846
2847			table_max[pdg] =
2848				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2849					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2850
2851			/* Override minimum so that we don't get
2852			 * out of bounds while extrapolating
2853			 * below. Don't do this when we have 2
2854			 * curves and we are on the high power curve
2855			 * because table_min is ok in this case */
2856			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2857
2858				table_min[pdg] =
2859					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2860								pdg_R->pd_step,
2861								pdg_L->pd_pwr,
2862								pdg_R->pd_pwr);
2863
2864				/* Don't go too low because we will
2865				 * miss the upper part of the curve.
2866				 * Note: 126 = 31.5dB (max power supported)
2867				 * in 0.25dB units */
2868				if (table_max[pdg] - table_min[pdg] > 126)
2869					table_min[pdg] = table_max[pdg] - 126;
2870			}
2871
2872			/* Fall through */
2873		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2874		case AR5K_PWRTABLE_PWR_TO_PDADC:
2875
2876			ath5k_create_power_curve(table_min[pdg],
2877						table_max[pdg],
2878						pdg_L->pd_pwr,
2879						pdg_L->pd_step,
2880						pdg_L->pd_points, tmpL, type);
2881
2882			/* We are in a calibration
2883			 * pier, no need to interpolate
2884			 * between freq piers */
2885			if (pcinfo_L == pcinfo_R)
2886				continue;
2887
2888			ath5k_create_power_curve(table_min[pdg],
2889						table_max[pdg],
2890						pdg_R->pd_pwr,
2891						pdg_R->pd_step,
2892						pdg_R->pd_points, tmpR, type);
2893			break;
2894		default:
2895			return -EINVAL;
2896		}
2897
2898		/* Interpolate between curves
2899		 * of surounding freq piers to
2900		 * get the final curve for this
2901		 * pd gain. Re-use tmpL for interpolation
2902		 * output */
2903		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2904		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2905			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2906							(s16) pcinfo_L->freq,
2907							(s16) pcinfo_R->freq,
2908							(s16) tmpL[i],
2909							(s16) tmpR[i]);
2910		}
2911	}
2912
2913	/* Now we have a set of curves for this
2914	 * channel on tmpL (x range is table_max - table_min
2915	 * and y values are tmpL[pdg][]) sorted in the same
2916	 * order as EEPROM (because we've used the backmapping).
2917	 * So for RF5112 it's from higher power to lower power
2918	 * and for RF2413 it's from lower power to higher power.
2919	 * For RF5111 we only have one curve. */
2920
2921	/* Fill min and max power levels for this
2922	 * channel by interpolating the values on
2923	 * surounding channels to complete the dataset */
2924	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2925					(s16) pcinfo_L->freq,
2926					(s16) pcinfo_R->freq,
2927					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2928
2929	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2930					(s16) pcinfo_L->freq,
2931					(s16) pcinfo_R->freq,
2932					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2933
2934	/* We are ready to go, fill PCDAC/PDADC
2935	 * table and write settings on hardware */
2936	switch (type) {
2937	case AR5K_PWRTABLE_LINEAR_PCDAC:
2938		/* For RF5112 we can have one or two curves
2939		 * and each curve covers a certain power lvl
2940		 * range so we need to do some more processing */
2941		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2942						ee->ee_pd_gains[ee_mode]);
2943
2944		/* Set txp.offset so that we can
2945		 * match max power value with max
2946		 * table index */
2947		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2948
2949		/* Write settings on hw */
2950		ath5k_setup_pcdac_table(ah);
2951		break;
2952	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2953		/* We are done for RF5111 since it has only
2954		 * one curve, just fit the curve on the table */
2955		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2956
2957		/* No rate powertable adjustment for RF5111 */
2958		ah->ah_txpower.txp_min_idx = 0;
2959		ah->ah_txpower.txp_offset = 0;
2960
2961		/* Write settings on hw */
2962		ath5k_setup_pcdac_table(ah);
2963		break;
2964	case AR5K_PWRTABLE_PWR_TO_PDADC:
2965		/* Set PDADC boundaries and fill
2966		 * final PDADC table */
2967		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2968						ee->ee_pd_gains[ee_mode]);
2969
2970		/* Write settings on hw */
2971		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2972
2973		/* Set txp.offset, note that table_min
2974		 * can be negative */
2975		ah->ah_txpower.txp_offset = table_min[0];
2976		break;
2977	default:
2978		return -EINVAL;
2979	}
2980
2981	return 0;
2982}
2983
2984
2985/*
2986 * Per-rate tx power setting
2987 *
2988 * This is the code that sets the desired tx power (below
2989 * maximum) on hw for each rate (we also have TPC that sets
2990 * power per packet). We do that by providing an index on the
2991 * PCDAC/PDADC table we set up.
2992 */
2993
2994/*
2995 * Set rate power table
2996 *
2997 * For now we only limit txpower based on maximum tx power
2998 * supported by hw (what's inside rate_info). We need to limit
2999 * this even more, based on regulatory domain etc.
3000 *
3001 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3002 * and is indexed as follows:
3003 * rates[0] - rates[7] -> OFDM rates
3004 * rates[8] - rates[14] -> CCK rates
3005 * rates[15] -> XR rates (they all have the same power)
3006 */
3007static void
3008ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3009			struct ath5k_rate_pcal_info *rate_info,
3010			u8 ee_mode)
3011{
3012	unsigned int i;
3013	u16 *rates;
3014
3015	/* max_pwr is power level we got from driver/user in 0.5dB
3016	 * units, switch to 0.25dB units so we can compare */
3017	max_pwr *= 2;
3018	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3019
3020	/* apply rate limits */
3021	rates = ah->ah_txpower.txp_rates_power_table;
3022
3023	/* OFDM rates 6 to 24Mb/s */
3024	for (i = 0; i < 5; i++)
3025		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3026
3027	/* Rest OFDM rates */
3028	rates[5] = min(rates[0], rate_info->target_power_36);
3029	rates[6] = min(rates[0], rate_info->target_power_48);
3030	rates[7] = min(rates[0], rate_info->target_power_54);
3031
3032	/* CCK rates */
3033	/* 1L */
3034	rates[8] = min(rates[0], rate_info->target_power_6to24);
3035	/* 2L */
3036	rates[9] = min(rates[0], rate_info->target_power_36);
3037	/* 2S */
3038	rates[10] = min(rates[0], rate_info->target_power_36);
3039	/* 5L */
3040	rates[11] = min(rates[0], rate_info->target_power_48);
3041	/* 5S */
3042	rates[12] = min(rates[0], rate_info->target_power_48);
3043	/* 11L */
3044	rates[13] = min(rates[0], rate_info->target_power_54);
3045	/* 11S */
3046	rates[14] = min(rates[0], rate_info->target_power_54);
3047
3048	/* XR rates */
3049	rates[15] = min(rates[0], rate_info->target_power_6to24);
3050
3051	/* CCK rates have different peak to average ratio
3052	 * so we have to tweak their power so that gainf
3053	 * correction works ok. For this we use OFDM to
3054	 * CCK delta from eeprom */
3055	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3056	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3057		for (i = 8; i <= 15; i++)
3058			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3059
3060	/* Now that we have all rates setup use table offset to
3061	 * match the power range set by user with the power indices
3062	 * on PCDAC/PDADC table */
3063	for (i = 0; i < 16; i++) {
3064		rates[i] += ah->ah_txpower.txp_offset;
3065		/* Don't get out of bounds */
3066		if (rates[i] > 63)
3067			rates[i] = 63;
3068	}
3069
3070	/* Min/max in 0.25dB units */
3071	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3072	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
3073	ah->ah_txpower.txp_ofdm = rates[7];
3074}
3075
3076
3077/*
3078 * Set transmission power
3079 */
3080static int
3081ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3082		u8 ee_mode, u8 txpower)
3083{
3084	struct ath5k_rate_pcal_info rate_info;
3085	u8 type;
3086	int ret;
3087
3088	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3089		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3090		return -EINVAL;
3091	}
3092
3093	/* Reset TX power values */
3094	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3095	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3096	ah->ah_txpower.txp_min_pwr = 0;
3097	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3098
3099	/* Initialize TX power table */
3100	switch (ah->ah_radio) {
3101	case AR5K_RF5111:
3102		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3103		break;
3104	case AR5K_RF5112:
3105		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3106		break;
3107	case AR5K_RF2413:
3108	case AR5K_RF5413:
3109	case AR5K_RF2316:
3110	case AR5K_RF2317:
3111	case AR5K_RF2425:
3112		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3113		break;
3114	default:
3115		return -EINVAL;
3116	}
3117
3118	/* FIXME: Only on channel/mode change */
3119	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3120	if (ret)
3121		return ret;
3122
3123	/* Limit max power if we have a CTL available */
3124	ath5k_get_max_ctl_power(ah, channel);
3125
3126	/* FIXME: Antenna reduction stuff */
3127
3128	/* FIXME: Limit power on turbo modes */
3129
3130	/* FIXME: TPC scale reduction */
3131
3132	/* Get surounding channels for per-rate power table
3133	 * calibration */
3134	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3135
3136	/* Setup rate power table */
3137	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3138
3139	/* Write rate power table on hw */
3140	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3141		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3142		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3143
3144	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3145		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3146		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3147
3148	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3149		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3150		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3151
3152	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3153		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3154		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3155
3156	/* FIXME: TPC support */
3157	if (ah->ah_txpower.txp_tpc) {
3158		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3159			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3160
3161		ath5k_hw_reg_write(ah,
3162			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3163			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3164			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3165			AR5K_TPC);
3166	} else {
3167		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3168			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3169	}
3170
3171	return 0;
3172}
3173
3174int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3175{
3176	/*Just a try M.F.*/
3177	struct ieee80211_channel *channel = ah->ah_current_channel;
3178	u8 ee_mode;
3179
3180	switch (channel->hw_value & CHANNEL_MODES) {
3181	case CHANNEL_A:
3182	case CHANNEL_T:
3183	case CHANNEL_XR:
3184		ee_mode = AR5K_EEPROM_MODE_11A;
3185		break;
3186	case CHANNEL_G:
3187	case CHANNEL_TG:
3188		ee_mode = AR5K_EEPROM_MODE_11G;
3189		break;
3190	case CHANNEL_B:
3191		ee_mode = AR5K_EEPROM_MODE_11B;
3192		break;
3193	default:
3194		ATH5K_ERR(ah->ah_sc,
3195			"invalid channel: %d\n", channel->center_freq);
3196		return -EINVAL;
3197	}
3198
3199	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3200		"changing txpower to %d\n", txpower);
3201
3202	return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3203}
3204
3205/*************\
3206 Init function
3207\*************/
3208
3209int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3210						u8 mode, u8 ee_mode, u8 freq)
3211{
3212	int ret, i;
3213	u32 phy_tst1;
3214
3215	ret = 0;
3216
3217	/*
3218	 * 5211/5212 Specific
3219	 */
3220	if (ah->ah_version != AR5K_AR5210) {
3221
3222		/*
3223		 * Write initial RF gain settings
3224		 * This should work for both 5111/5112
3225		 */
3226		ret = ath5k_hw_rfgain_init(ah, freq);
3227		if (ret)
3228			return ret;
3229
3230		mdelay(1);
3231
3232		/*
3233		 * Set TX power
3234		 */
3235		ret = ath5k_hw_txpower(ah, channel, ee_mode,
3236					ah->ah_txpower.txp_max_pwr / 2);
3237		if (ret)
3238			return ret;
3239
3240		/*
3241		 * Write RF buffer
3242		 */
3243		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3244		if (ret)
3245			return ret;
3246
3247
3248		/* Write OFDM timings on 5212*/
3249		if (ah->ah_version == AR5K_AR5212 &&
3250			channel->hw_value & CHANNEL_OFDM) {
3251
3252			ret = ath5k_hw_write_ofdm_timings(ah, channel);
3253			if (ret)
3254				return ret;
3255
3256			/* Spur info is available only from EEPROM versions
3257			 * greater than 5.3, but the EEPROM routines will use
3258			 * static values for older versions */
3259			if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3260				ath5k_hw_set_spur_mitigation_filter(ah,
3261								    channel);
3262		}
3263
3264		/*Enable/disable 802.11b mode on 5111
3265		(enable 2111 frequency converter + CCK)*/
3266		if (ah->ah_radio == AR5K_RF5111) {
3267			if (mode == AR5K_MODE_11B)
3268				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3269				    AR5K_TXCFG_B_MODE);
3270			else
3271				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3272				    AR5K_TXCFG_B_MODE);
3273		}
3274
3275	} else {
3276		/*
3277		 * For 5210 we do all initialization using
3278		 * initvals, so we don't have to modify
3279		 * any settings (5210 also only supports
3280		 * a/aturbo modes)
3281		 */
3282		mdelay(1);
3283		/* Disable phy and wait */
3284		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3285		mdelay(1);
3286	}
3287
3288	/* Set channel on PHY */
3289	ret = ath5k_hw_channel(ah, channel);
3290	if (ret)
3291		return ret;
3292
3293	/*
3294	 * Enable the PHY and wait until completion
3295	 * This includes BaseBand and Synthesizer
3296	 * activation.
3297	 */
3298	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3299
3300	/*
3301	 * On 5211+ read activation -> rx delay
3302	 * and use it.
3303	 *
3304	 * TODO: Half/quarter rate support
3305	 */
3306	if (ah->ah_version != AR5K_AR5210) {
3307		u32 delay;
3308		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
3309			AR5K_PHY_RX_DELAY_M;
3310		delay = (channel->hw_value & CHANNEL_CCK) ?
3311			((delay << 2) / 22) : (delay / 10);
3312
3313		udelay(100 + (2 * delay));
3314	} else {
3315		mdelay(1);
3316	}
3317
3318	/*
3319	 * Perform ADC test to see if baseband is ready
3320	 * Set TX hold and check ADC test register
3321	 */
3322	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3323	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3324	for (i = 0; i <= 20; i++) {
3325		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3326			break;
3327		udelay(200);
3328	}
3329	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3330
3331	/*
3332	 * Start automatic gain control calibration
3333	 *
3334	 * During AGC calibration RX path is re-routed to
3335	 * a power detector so we don't receive anything.
3336	 *
3337	 * This method is used to calibrate some static offsets
3338	 * used together with on-the fly I/Q calibration (the
3339	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3340	 * interrupt rx path.
3341	 *
3342	 * While rx path is re-routed to the power detector we also
3343	 * start a noise floor calibration to measure the
3344	 * card's noise floor (the noise we measure when we are not
3345	 * transmitting or receiving anything).
3346	 *
3347	 * If we are in a noisy environment, AGC calibration may time
3348	 * out and/or noise floor calibration might timeout.
3349	 */
3350	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3351				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3352
3353	/* At the same time start I/Q calibration for QAM constellation
3354	 * -no need for CCK- */
3355	ah->ah_calibration = false;
3356	if (!(mode == AR5K_MODE_11B)) {
3357		ah->ah_calibration = true;
3358		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3359				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3360		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3361				AR5K_PHY_IQ_RUN);
3362	}
3363
3364	/* Wait for gain calibration to finish (we check for I/Q calibration
3365	 * during ath5k_phy_calibrate) */
3366	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3367			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3368		ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
3369			channel->center_freq);
3370	}
3371
3372	/* Restore antenna mode */
3373	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3374
3375	return ret;
3376}
3377