[go: nahoru, domu]

phy.c revision c5e534e569fd07991d4d09921c73823cd5e4115e
1/*
2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 */
20
21/***********************\
22* PHY related functions *
23\***********************/
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <linux/delay.h>
28#include <linux/slab.h>
29#include <asm/unaligned.h>
30
31#include "ath5k.h"
32#include "reg.h"
33#include "rfbuffer.h"
34#include "rfgain.h"
35#include "../regd.h"
36
37
38/**
39 * DOC: PHY related functions
40 *
41 * Here we handle the low-level functions related to baseband
42 * and analog frontend (RF) parts. This is by far the most complex
43 * part of the hw code so make sure you know what you are doing.
44 *
45 * Here is a list of what this is all about:
46 *
47 * - Channel setting/switching
48 *
49 * - Automatic Gain Control (AGC) calibration
50 *
51 * - Noise Floor calibration
52 *
53 * - I/Q imbalance calibration (QAM correction)
54 *
55 * - Calibration due to thermal changes (gain_F)
56 *
57 * - Spur noise mitigation
58 *
59 * - RF/PHY initialization for the various operating modes and bwmodes
60 *
61 * - Antenna control
62 *
63 * - TX power control per channel/rate/packet type
64 *
65 * Also have in mind we never got documentation for most of these
66 * functions, what we have comes mostly from Atheros's code, reverse
67 * engineering and patent docs/presentations etc.
68 */
69
70
71/******************\
72* Helper functions *
73\******************/
74
75/**
76 * ath5k_hw_radio_revision() - Get the PHY Chip revision
77 * @ah: The &struct ath5k_hw
78 * @band: One of enum ieee80211_band
79 *
80 * Returns the revision number of a 2GHz, 5GHz or single chip
81 * radio.
82 */
83u16
84ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band)
85{
86	unsigned int i;
87	u32 srev;
88	u16 ret;
89
90	/*
91	 * Set the radio chip access register
92	 */
93	switch (band) {
94	case IEEE80211_BAND_2GHZ:
95		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
96		break;
97	case IEEE80211_BAND_5GHZ:
98		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
99		break;
100	default:
101		return 0;
102	}
103
104	usleep_range(2000, 2500);
105
106	/* ...wait until PHY is ready and read the selected radio revision */
107	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
108
109	for (i = 0; i < 8; i++)
110		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
111
112	if (ah->ah_version == AR5K_AR5210) {
113		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
114		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
115	} else {
116		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
117		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
118				((srev & 0x0f) << 4), 8);
119	}
120
121	/* Reset to the 5GHz mode */
122	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
123
124	return ret;
125}
126
127/**
128 * ath5k_channel_ok() - Check if a channel is supported by the hw
129 * @ah: The &struct ath5k_hw
130 * @channel: The &struct ieee80211_channel
131 *
132 * Note: We don't do any regulatory domain checks here, it's just
133 * a sanity check.
134 */
135bool
136ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
137{
138	u16 freq = channel->center_freq;
139
140	/* Check if the channel is in our supported range */
141	if (channel->band == IEEE80211_BAND_2GHZ) {
142		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
143		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
144			return true;
145	} else if (channel->band == IEEE80211_BAND_5GHZ)
146		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
147		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
148			return true;
149
150	return false;
151}
152
153/**
154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
155 * @ah: The &struct ath5k_hw
156 * @channel: The &struct ieee80211_channel
157 */
158bool
159ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
160				struct ieee80211_channel *channel)
161{
162	u8 refclk_freq;
163
164	if ((ah->ah_radio == AR5K_RF5112) ||
165	(ah->ah_radio == AR5K_RF5413) ||
166	(ah->ah_radio == AR5K_RF2413) ||
167	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
168		refclk_freq = 40;
169	else
170		refclk_freq = 32;
171
172	if ((channel->center_freq % refclk_freq != 0) &&
173	((channel->center_freq % refclk_freq < 10) ||
174	(channel->center_freq % refclk_freq > 22)))
175		return true;
176	else
177		return false;
178}
179
180/**
181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
182 * @ah: The &struct ath5k_hw
183 * @rf_regs: The struct ath5k_rf_reg
184 * @val: New value
185 * @reg_id: RF register ID
186 * @set: Indicate we need to swap data
187 *
188 * This is an internal function used to modify RF Banks before
189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
190 * infos.
191 */
192static unsigned int
193ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
194					u32 val, u8 reg_id, bool set)
195{
196	const struct ath5k_rf_reg *rfreg = NULL;
197	u8 offset, bank, num_bits, col, position;
198	u16 entry;
199	u32 mask, data, last_bit, bits_shifted, first_bit;
200	u32 *rfb;
201	s32 bits_left;
202	int i;
203
204	data = 0;
205	rfb = ah->ah_rf_banks;
206
207	for (i = 0; i < ah->ah_rf_regs_count; i++) {
208		if (rf_regs[i].index == reg_id) {
209			rfreg = &rf_regs[i];
210			break;
211		}
212	}
213
214	if (rfb == NULL || rfreg == NULL) {
215		ATH5K_PRINTF("Rf register not found!\n");
216		/* should not happen */
217		return 0;
218	}
219
220	bank = rfreg->bank;
221	num_bits = rfreg->field.len;
222	first_bit = rfreg->field.pos;
223	col = rfreg->field.col;
224
225	/* first_bit is an offset from bank's
226	 * start. Since we have all banks on
227	 * the same array, we use this offset
228	 * to mark each bank's start */
229	offset = ah->ah_offset[bank];
230
231	/* Boundary check */
232	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
233		ATH5K_PRINTF("invalid values at offset %u\n", offset);
234		return 0;
235	}
236
237	entry = ((first_bit - 1) / 8) + offset;
238	position = (first_bit - 1) % 8;
239
240	if (set)
241		data = ath5k_hw_bitswap(val, num_bits);
242
243	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
244	     position = 0, entry++) {
245
246		last_bit = (position + bits_left > 8) ? 8 :
247					position + bits_left;
248
249		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
250								(col * 8);
251
252		if (set) {
253			rfb[entry] &= ~mask;
254			rfb[entry] |= ((data << position) << (col * 8)) & mask;
255			data >>= (8 - position);
256		} else {
257			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
258				<< bits_shifted;
259			bits_shifted += last_bit - position;
260		}
261
262		bits_left -= 8 - position;
263	}
264
265	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
266
267	return data;
268}
269
270/**
271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
272 * @ah: the &struct ath5k_hw
273 * @channel: the currently set channel upon reset
274 *
275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
277 *
278 * Since delta slope is floating point we split it on its exponent and
279 * mantissa and provide these values on hw.
280 *
281 * For more infos i think this patent is related
282 * "http://www.freepatentsonline.com/7184495.html"
283 */
284static inline int
285ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
286				struct ieee80211_channel *channel)
287{
288	/* Get exponent and mantissa and set it */
289	u32 coef_scaled, coef_exp, coef_man,
290		ds_coef_exp, ds_coef_man, clock;
291
292	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
293		(channel->hw_value == AR5K_MODE_11B));
294
295	/* Get coefficient
296	 * ALGO: coef = (5 * clock / carrier_freq) / 2
297	 * we scale coef by shifting clock value by 24 for
298	 * better precision since we use integers */
299	switch (ah->ah_bwmode) {
300	case AR5K_BWMODE_40MHZ:
301		clock = 40 * 2;
302		break;
303	case AR5K_BWMODE_10MHZ:
304		clock = 40 / 2;
305		break;
306	case AR5K_BWMODE_5MHZ:
307		clock = 40 / 4;
308		break;
309	default:
310		clock = 40;
311		break;
312	}
313	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
314
315	/* Get exponent
316	 * ALGO: coef_exp = 14 - highest set bit position */
317	coef_exp = ilog2(coef_scaled);
318
319	/* Doesn't make sense if it's zero*/
320	if (!coef_scaled || !coef_exp)
321		return -EINVAL;
322
323	/* Note: we've shifted coef_scaled by 24 */
324	coef_exp = 14 - (coef_exp - 24);
325
326
327	/* Get mantissa (significant digits)
328	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
329	coef_man = coef_scaled +
330		(1 << (24 - coef_exp - 1));
331
332	/* Calculate delta slope coefficient exponent
333	 * and mantissa (remove scaling) and set them on hw */
334	ds_coef_man = coef_man >> (24 - coef_exp);
335	ds_coef_exp = coef_exp - 16;
336
337	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
338		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
339	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
340		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
341
342	return 0;
343}
344
345/**
346 * ath5k_hw_phy_disable() - Disable PHY
347 * @ah: The &struct ath5k_hw
348 */
349int ath5k_hw_phy_disable(struct ath5k_hw *ah)
350{
351	/*Just a try M.F.*/
352	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
353
354	return 0;
355}
356
357/**
358 * ath5k_hw_wait_for_synth() - Wait for synth to settle
359 * @ah: The &struct ath5k_hw
360 * @channel: The &struct ieee80211_channel
361 */
362static void
363ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
364			struct ieee80211_channel *channel)
365{
366	/*
367	 * On 5211+ read activation -> rx delay
368	 * and use it (100ns steps).
369	 */
370	if (ah->ah_version != AR5K_AR5210) {
371		u32 delay;
372		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
373			AR5K_PHY_RX_DELAY_M;
374		delay = (channel->hw_value == AR5K_MODE_11B) ?
375			((delay << 2) / 22) : (delay / 10);
376		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
377			delay = delay << 1;
378		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
379			delay = delay << 2;
380		/* XXX: /2 on turbo ? Let's be safe
381		 * for now */
382		usleep_range(100 + delay, 100 + (2 * delay));
383	} else {
384		usleep_range(1000, 1500);
385	}
386}
387
388
389/**********************\
390* RF Gain optimization *
391\**********************/
392
393/**
394 * DOC: RF Gain optimization
395 *
396 * This code is used to optimize RF gain on different environments
397 * (temperature mostly) based on feedback from a power detector.
398 *
399 * It's only used on RF5111 and RF5112, later RF chips seem to have
400 * auto adjustment on hw -notice they have a much smaller BANK 7 and
401 * no gain optimization ladder-.
402 *
403 * For more infos check out this patent doc
404 * "http://www.freepatentsonline.com/7400691.html"
405 *
406 * This paper describes power drops as seen on the receiver due to
407 * probe packets
408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
409 * %20of%20Power%20Control.pdf"
410 *
411 * And this is the MadWiFi bug entry related to the above
412 * "http://madwifi-project.org/ticket/1659"
413 * with various measurements and diagrams
414 */
415
416/**
417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
418 * @ah: The &struct ath5k_hw
419 */
420int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
421{
422	/* Initialize the gain optimization values */
423	switch (ah->ah_radio) {
424	case AR5K_RF5111:
425		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
426		ah->ah_gain.g_low = 20;
427		ah->ah_gain.g_high = 35;
428		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
429		break;
430	case AR5K_RF5112:
431		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
432		ah->ah_gain.g_low = 20;
433		ah->ah_gain.g_high = 85;
434		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
435		break;
436	default:
437		return -EINVAL;
438	}
439
440	return 0;
441}
442
443/**
444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
445 * @ah: The &struct ath5k_hw
446 *
447 * Schedules a gain probe check on the next transmitted packet.
448 * That means our next packet is going to be sent with lower
449 * tx power and a Peak to Average Power Detector (PAPD) will try
450 * to measure the gain.
451 *
452 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
453 * just after we enable the probe so that we don't mess with
454 * standard traffic.
455 */
456static void
457ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
458{
459
460	/* Skip if gain calibration is inactive or
461	 * we already handle a probe request */
462	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
463		return;
464
465	/* Send the packet with 2dB below max power as
466	 * patent doc suggest */
467	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
468			AR5K_PHY_PAPD_PROBE_TXPOWER) |
469			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
470
471	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
472
473}
474
475/**
476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
477 * @ah: The &struct ath5k_hw
478 *
479 * Calculate Gain_F measurement correction
480 * based on the current step for RF5112 rev. 2
481 */
482static u32
483ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
484{
485	u32 mix, step;
486	u32 *rf;
487	const struct ath5k_gain_opt *go;
488	const struct ath5k_gain_opt_step *g_step;
489	const struct ath5k_rf_reg *rf_regs;
490
491	/* Only RF5112 Rev. 2 supports it */
492	if ((ah->ah_radio != AR5K_RF5112) ||
493	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
494		return 0;
495
496	go = &rfgain_opt_5112;
497	rf_regs = rf_regs_5112a;
498	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
499
500	g_step = &go->go_step[ah->ah_gain.g_step_idx];
501
502	if (ah->ah_rf_banks == NULL)
503		return 0;
504
505	rf = ah->ah_rf_banks;
506	ah->ah_gain.g_f_corr = 0;
507
508	/* No VGA (Variable Gain Amplifier) override, skip */
509	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
510		return 0;
511
512	/* Mix gain stepping */
513	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
514
515	/* Mix gain override */
516	mix = g_step->gos_param[0];
517
518	switch (mix) {
519	case 3:
520		ah->ah_gain.g_f_corr = step * 2;
521		break;
522	case 2:
523		ah->ah_gain.g_f_corr = (step - 5) * 2;
524		break;
525	case 1:
526		ah->ah_gain.g_f_corr = step;
527		break;
528	default:
529		ah->ah_gain.g_f_corr = 0;
530		break;
531	}
532
533	return ah->ah_gain.g_f_corr;
534}
535
536/**
537 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
538 * @ah: The &struct ath5k_hw
539 *
540 * Check if current gain_F measurement is in the range of our
541 * power detector windows. If we get a measurement outside range
542 * we know it's not accurate (detectors can't measure anything outside
543 * their detection window) so we must ignore it.
544 *
545 * Returns true if readback was O.K. or false on failure
546 */
547static bool
548ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
549{
550	const struct ath5k_rf_reg *rf_regs;
551	u32 step, mix_ovr, level[4];
552	u32 *rf;
553
554	if (ah->ah_rf_banks == NULL)
555		return false;
556
557	rf = ah->ah_rf_banks;
558
559	if (ah->ah_radio == AR5K_RF5111) {
560
561		rf_regs = rf_regs_5111;
562		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
563
564		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
565			false);
566
567		level[0] = 0;
568		level[1] = (step == 63) ? 50 : step + 4;
569		level[2] = (step != 63) ? 64 : level[0];
570		level[3] = level[2] + 50;
571
572		ah->ah_gain.g_high = level[3] -
573			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
574		ah->ah_gain.g_low = level[0] +
575			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
576	} else {
577
578		rf_regs = rf_regs_5112;
579		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
580
581		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
582			false);
583
584		level[0] = level[2] = 0;
585
586		if (mix_ovr == 1) {
587			level[1] = level[3] = 83;
588		} else {
589			level[1] = level[3] = 107;
590			ah->ah_gain.g_high = 55;
591		}
592	}
593
594	return (ah->ah_gain.g_current >= level[0] &&
595			ah->ah_gain.g_current <= level[1]) ||
596		(ah->ah_gain.g_current >= level[2] &&
597			ah->ah_gain.g_current <= level[3]);
598}
599
600/**
601 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
602 * @ah: The &struct ath5k_hw
603 *
604 * Choose the right target gain based on current gain
605 * and RF gain optimization ladder
606 */
607static s8
608ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
609{
610	const struct ath5k_gain_opt *go;
611	const struct ath5k_gain_opt_step *g_step;
612	int ret = 0;
613
614	switch (ah->ah_radio) {
615	case AR5K_RF5111:
616		go = &rfgain_opt_5111;
617		break;
618	case AR5K_RF5112:
619		go = &rfgain_opt_5112;
620		break;
621	default:
622		return 0;
623	}
624
625	g_step = &go->go_step[ah->ah_gain.g_step_idx];
626
627	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
628
629		/* Reached maximum */
630		if (ah->ah_gain.g_step_idx == 0)
631			return -1;
632
633		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
634				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
635				ah->ah_gain.g_step_idx > 0;
636				g_step = &go->go_step[ah->ah_gain.g_step_idx])
637			ah->ah_gain.g_target -= 2 *
638			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
639			    g_step->gos_gain);
640
641		ret = 1;
642		goto done;
643	}
644
645	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
646
647		/* Reached minimum */
648		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
649			return -2;
650
651		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
652				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
653				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
654				g_step = &go->go_step[ah->ah_gain.g_step_idx])
655			ah->ah_gain.g_target -= 2 *
656			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
657			    g_step->gos_gain);
658
659		ret = 2;
660		goto done;
661	}
662
663done:
664	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
665		"ret %d, gain step %u, current gain %u, target gain %u\n",
666		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
667		ah->ah_gain.g_target);
668
669	return ret;
670}
671
672/**
673 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
674 * @ah: The &struct ath5k_hw
675 *
676 * Main callback for thermal RF gain calibration engine
677 * Check for a new gain reading and schedule an adjustment
678 * if needed.
679 *
680 * Returns one of enum ath5k_rfgain codes
681 */
682enum ath5k_rfgain
683ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
684{
685	u32 data, type;
686	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
687
688	if (ah->ah_rf_banks == NULL ||
689	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
690		return AR5K_RFGAIN_INACTIVE;
691
692	/* No check requested, either engine is inactive
693	 * or an adjustment is already requested */
694	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
695		goto done;
696
697	/* Read the PAPD (Peak to Average Power Detector)
698	 * register */
699	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
700
701	/* No probe is scheduled, read gain_F measurement */
702	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
703		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
704		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
705
706		/* If tx packet is CCK correct the gain_F measurement
707		 * by cck ofdm gain delta */
708		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
709			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
710				ah->ah_gain.g_current +=
711					ee->ee_cck_ofdm_gain_delta;
712			else
713				ah->ah_gain.g_current +=
714					AR5K_GAIN_CCK_PROBE_CORR;
715		}
716
717		/* Further correct gain_F measurement for
718		 * RF5112A radios */
719		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
720			ath5k_hw_rf_gainf_corr(ah);
721			ah->ah_gain.g_current =
722				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
723				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
724				0;
725		}
726
727		/* Check if measurement is ok and if we need
728		 * to adjust gain, schedule a gain adjustment,
729		 * else switch back to the active state */
730		if (ath5k_hw_rf_check_gainf_readback(ah) &&
731		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
732		ath5k_hw_rf_gainf_adjust(ah)) {
733			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
734		} else {
735			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
736		}
737	}
738
739done:
740	return ah->ah_gain.g_state;
741}
742
743/**
744 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
745 * @ah: The &struct ath5k_hw
746 * @band: One of enum ieee80211_band
747 *
748 * Write initial RF gain table to set the RF sensitivity.
749 *
750 * NOTE: This one works on all RF chips and has nothing to do
751 * with Gain_F calibration
752 */
753static int
754ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
755{
756	const struct ath5k_ini_rfgain *ath5k_rfg;
757	unsigned int i, size, index;
758
759	switch (ah->ah_radio) {
760	case AR5K_RF5111:
761		ath5k_rfg = rfgain_5111;
762		size = ARRAY_SIZE(rfgain_5111);
763		break;
764	case AR5K_RF5112:
765		ath5k_rfg = rfgain_5112;
766		size = ARRAY_SIZE(rfgain_5112);
767		break;
768	case AR5K_RF2413:
769		ath5k_rfg = rfgain_2413;
770		size = ARRAY_SIZE(rfgain_2413);
771		break;
772	case AR5K_RF2316:
773		ath5k_rfg = rfgain_2316;
774		size = ARRAY_SIZE(rfgain_2316);
775		break;
776	case AR5K_RF5413:
777		ath5k_rfg = rfgain_5413;
778		size = ARRAY_SIZE(rfgain_5413);
779		break;
780	case AR5K_RF2317:
781	case AR5K_RF2425:
782		ath5k_rfg = rfgain_2425;
783		size = ARRAY_SIZE(rfgain_2425);
784		break;
785	default:
786		return -EINVAL;
787	}
788
789	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
790
791	for (i = 0; i < size; i++) {
792		AR5K_REG_WAIT(i);
793		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
794			(u32)ath5k_rfg[i].rfg_register);
795	}
796
797	return 0;
798}
799
800
801/********************\
802* RF Registers setup *
803\********************/
804
805/**
806 * ath5k_hw_rfregs_init() - Initialize RF register settings
807 * @ah: The &struct ath5k_hw
808 * @channel: The &struct ieee80211_channel
809 * @mode: One of enum ath5k_driver_mode
810 *
811 * Setup RF registers by writing RF buffer on hw. For
812 * more infos on this, check out rfbuffer.h
813 */
814static int
815ath5k_hw_rfregs_init(struct ath5k_hw *ah,
816			struct ieee80211_channel *channel,
817			unsigned int mode)
818{
819	const struct ath5k_rf_reg *rf_regs;
820	const struct ath5k_ini_rfbuffer *ini_rfb;
821	const struct ath5k_gain_opt *go = NULL;
822	const struct ath5k_gain_opt_step *g_step;
823	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
824	u8 ee_mode = 0;
825	u32 *rfb;
826	int i, obdb = -1, bank = -1;
827
828	switch (ah->ah_radio) {
829	case AR5K_RF5111:
830		rf_regs = rf_regs_5111;
831		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
832		ini_rfb = rfb_5111;
833		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
834		go = &rfgain_opt_5111;
835		break;
836	case AR5K_RF5112:
837		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
838			rf_regs = rf_regs_5112a;
839			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
840			ini_rfb = rfb_5112a;
841			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
842		} else {
843			rf_regs = rf_regs_5112;
844			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
845			ini_rfb = rfb_5112;
846			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
847		}
848		go = &rfgain_opt_5112;
849		break;
850	case AR5K_RF2413:
851		rf_regs = rf_regs_2413;
852		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
853		ini_rfb = rfb_2413;
854		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
855		break;
856	case AR5K_RF2316:
857		rf_regs = rf_regs_2316;
858		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
859		ini_rfb = rfb_2316;
860		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
861		break;
862	case AR5K_RF5413:
863		rf_regs = rf_regs_5413;
864		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
865		ini_rfb = rfb_5413;
866		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
867		break;
868	case AR5K_RF2317:
869		rf_regs = rf_regs_2425;
870		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
871		ini_rfb = rfb_2317;
872		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
873		break;
874	case AR5K_RF2425:
875		rf_regs = rf_regs_2425;
876		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
877		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
878			ini_rfb = rfb_2425;
879			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
880		} else {
881			ini_rfb = rfb_2417;
882			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
883		}
884		break;
885	default:
886		return -EINVAL;
887	}
888
889	/* If it's the first time we set RF buffer, allocate
890	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
891	 * we set above */
892	if (ah->ah_rf_banks == NULL) {
893		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
894								GFP_KERNEL);
895		if (ah->ah_rf_banks == NULL) {
896			ATH5K_ERR(ah, "out of memory\n");
897			return -ENOMEM;
898		}
899	}
900
901	/* Copy values to modify them */
902	rfb = ah->ah_rf_banks;
903
904	for (i = 0; i < ah->ah_rf_banks_size; i++) {
905		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
906			ATH5K_ERR(ah, "invalid bank\n");
907			return -EINVAL;
908		}
909
910		/* Bank changed, write down the offset */
911		if (bank != ini_rfb[i].rfb_bank) {
912			bank = ini_rfb[i].rfb_bank;
913			ah->ah_offset[bank] = i;
914		}
915
916		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
917	}
918
919	/* Set Output and Driver bias current (OB/DB) */
920	if (channel->band == IEEE80211_BAND_2GHZ) {
921
922		if (channel->hw_value == AR5K_MODE_11B)
923			ee_mode = AR5K_EEPROM_MODE_11B;
924		else
925			ee_mode = AR5K_EEPROM_MODE_11G;
926
927		/* For RF511X/RF211X combination we
928		 * use b_OB and b_DB parameters stored
929		 * in eeprom on ee->ee_ob[ee_mode][0]
930		 *
931		 * For all other chips we use OB/DB for 2GHz
932		 * stored in the b/g modal section just like
933		 * 802.11a on ee->ee_ob[ee_mode][1] */
934		if ((ah->ah_radio == AR5K_RF5111) ||
935		(ah->ah_radio == AR5K_RF5112))
936			obdb = 0;
937		else
938			obdb = 1;
939
940		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
941						AR5K_RF_OB_2GHZ, true);
942
943		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
944						AR5K_RF_DB_2GHZ, true);
945
946	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
947	} else if ((channel->band == IEEE80211_BAND_5GHZ) ||
948			(ah->ah_radio == AR5K_RF5111)) {
949
950		/* For 11a, Turbo and XR we need to choose
951		 * OB/DB based on frequency range */
952		ee_mode = AR5K_EEPROM_MODE_11A;
953		obdb =	 channel->center_freq >= 5725 ? 3 :
954			(channel->center_freq >= 5500 ? 2 :
955			(channel->center_freq >= 5260 ? 1 :
956			 (channel->center_freq > 4000 ? 0 : -1)));
957
958		if (obdb < 0)
959			return -EINVAL;
960
961		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
962						AR5K_RF_OB_5GHZ, true);
963
964		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
965						AR5K_RF_DB_5GHZ, true);
966	}
967
968	g_step = &go->go_step[ah->ah_gain.g_step_idx];
969
970	/* Set turbo mode (N/A on RF5413) */
971	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
972	(ah->ah_radio != AR5K_RF5413))
973		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
974
975	/* Bank Modifications (chip-specific) */
976	if (ah->ah_radio == AR5K_RF5111) {
977
978		/* Set gain_F settings according to current step */
979		if (channel->hw_value != AR5K_MODE_11B) {
980
981			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
982					AR5K_PHY_FRAME_CTL_TX_CLIP,
983					g_step->gos_param[0]);
984
985			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
986							AR5K_RF_PWD_90, true);
987
988			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
989							AR5K_RF_PWD_84, true);
990
991			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
992						AR5K_RF_RFGAIN_SEL, true);
993
994			/* We programmed gain_F parameters, switch back
995			 * to active state */
996			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
997
998		}
999
1000		/* Bank 6/7 setup */
1001
1002		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
1003						AR5K_RF_PWD_XPD, true);
1004
1005		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1006						AR5K_RF_XPD_GAIN, true);
1007
1008		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1009						AR5K_RF_GAIN_I, true);
1010
1011		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1012						AR5K_RF_PLO_SEL, true);
1013
1014		/* Tweak power detectors for half/quarter rate support */
1015		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1016		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1017			u8 wait_i;
1018
1019			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1020						AR5K_RF_WAIT_S, true);
1021
1022			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1023							0x1f : 0x10;
1024
1025			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1026						AR5K_RF_WAIT_I, true);
1027			ath5k_hw_rfb_op(ah, rf_regs, 3,
1028						AR5K_RF_MAX_TIME, true);
1029
1030		}
1031	}
1032
1033	if (ah->ah_radio == AR5K_RF5112) {
1034
1035		/* Set gain_F settings according to current step */
1036		if (channel->hw_value != AR5K_MODE_11B) {
1037
1038			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1039						AR5K_RF_MIXGAIN_OVR, true);
1040
1041			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1042						AR5K_RF_PWD_138, true);
1043
1044			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1045						AR5K_RF_PWD_137, true);
1046
1047			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1048						AR5K_RF_PWD_136, true);
1049
1050			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1051						AR5K_RF_PWD_132, true);
1052
1053			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1054						AR5K_RF_PWD_131, true);
1055
1056			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1057						AR5K_RF_PWD_130, true);
1058
1059			/* We programmed gain_F parameters, switch back
1060			 * to active state */
1061			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1062		}
1063
1064		/* Bank 6/7 setup */
1065
1066		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1067						AR5K_RF_XPD_SEL, true);
1068
1069		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1070			/* Rev. 1 supports only one xpd */
1071			ath5k_hw_rfb_op(ah, rf_regs,
1072						ee->ee_x_gain[ee_mode],
1073						AR5K_RF_XPD_GAIN, true);
1074
1075		} else {
1076			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1077			if (ee->ee_pd_gains[ee_mode] > 1) {
1078				ath5k_hw_rfb_op(ah, rf_regs,
1079						pdg_curve_to_idx[0],
1080						AR5K_RF_PD_GAIN_LO, true);
1081				ath5k_hw_rfb_op(ah, rf_regs,
1082						pdg_curve_to_idx[1],
1083						AR5K_RF_PD_GAIN_HI, true);
1084			} else {
1085				ath5k_hw_rfb_op(ah, rf_regs,
1086						pdg_curve_to_idx[0],
1087						AR5K_RF_PD_GAIN_LO, true);
1088				ath5k_hw_rfb_op(ah, rf_regs,
1089						pdg_curve_to_idx[0],
1090						AR5K_RF_PD_GAIN_HI, true);
1091			}
1092
1093			/* Lower synth voltage on Rev 2 */
1094			if (ah->ah_radio == AR5K_RF5112 &&
1095			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1096				ath5k_hw_rfb_op(ah, rf_regs, 2,
1097						AR5K_RF_HIGH_VC_CP, true);
1098
1099				ath5k_hw_rfb_op(ah, rf_regs, 2,
1100						AR5K_RF_MID_VC_CP, true);
1101
1102				ath5k_hw_rfb_op(ah, rf_regs, 2,
1103						AR5K_RF_LOW_VC_CP, true);
1104
1105				ath5k_hw_rfb_op(ah, rf_regs, 2,
1106						AR5K_RF_PUSH_UP, true);
1107			}
1108
1109			/* Decrease power consumption on 5213+ BaseBand */
1110			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1111				ath5k_hw_rfb_op(ah, rf_regs, 1,
1112						AR5K_RF_PAD2GND, true);
1113
1114				ath5k_hw_rfb_op(ah, rf_regs, 1,
1115						AR5K_RF_XB2_LVL, true);
1116
1117				ath5k_hw_rfb_op(ah, rf_regs, 1,
1118						AR5K_RF_XB5_LVL, true);
1119
1120				ath5k_hw_rfb_op(ah, rf_regs, 1,
1121						AR5K_RF_PWD_167, true);
1122
1123				ath5k_hw_rfb_op(ah, rf_regs, 1,
1124						AR5K_RF_PWD_166, true);
1125			}
1126		}
1127
1128		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1129						AR5K_RF_GAIN_I, true);
1130
1131		/* Tweak power detector for half/quarter rates */
1132		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1133		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1134			u8 pd_delay;
1135
1136			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1137							0xf : 0x8;
1138
1139			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1140						AR5K_RF_PD_PERIOD_A, true);
1141			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1142						AR5K_RF_PD_DELAY_A, true);
1143
1144		}
1145	}
1146
1147	if (ah->ah_radio == AR5K_RF5413 &&
1148	channel->band == IEEE80211_BAND_2GHZ) {
1149
1150		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1151									true);
1152
1153		/* Set optimum value for early revisions (on pci-e chips) */
1154		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1155		ah->ah_mac_srev < AR5K_SREV_AR5413)
1156			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1157						AR5K_RF_PWD_ICLOBUF_2G, true);
1158
1159	}
1160
1161	/* Write RF banks on hw */
1162	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1163		AR5K_REG_WAIT(i);
1164		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1165	}
1166
1167	return 0;
1168}
1169
1170
1171/**************************\
1172  PHY/RF channel functions
1173\**************************/
1174
1175/**
1176 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1177 * @channel: The &struct ieee80211_channel
1178 *
1179 * Map channel frequency to IEEE channel number and convert it
1180 * to an internal channel value used by the RF5110 chipset.
1181 */
1182static u32
1183ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1184{
1185	u32 athchan;
1186
1187	athchan = (ath5k_hw_bitswap(
1188			(ieee80211_frequency_to_channel(
1189				channel->center_freq) - 24) / 2, 5)
1190				<< 1) | (1 << 6) | 0x1;
1191	return athchan;
1192}
1193
1194/**
1195 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1196 * @ah: The &struct ath5k_hw
1197 * @channel: The &struct ieee80211_channel
1198 */
1199static int
1200ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1201		struct ieee80211_channel *channel)
1202{
1203	u32 data;
1204
1205	/*
1206	 * Set the channel and wait
1207	 */
1208	data = ath5k_hw_rf5110_chan2athchan(channel);
1209	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1210	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1211	usleep_range(1000, 1500);
1212
1213	return 0;
1214}
1215
1216/**
1217 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1218 * @ieee: IEEE channel number
1219 * @athchan: The &struct ath5k_athchan_2ghz
1220 *
1221 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1222 * we need to add some offsets and extra flags to the data values we pass
1223 * on to the PHY. So for every 2GHz channel this function gets called
1224 * to do the conversion.
1225 */
1226static int
1227ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1228		struct ath5k_athchan_2ghz *athchan)
1229{
1230	int channel;
1231
1232	/* Cast this value to catch negative channel numbers (>= -19) */
1233	channel = (int)ieee;
1234
1235	/*
1236	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1237	 */
1238	if (channel <= 13) {
1239		athchan->a2_athchan = 115 + channel;
1240		athchan->a2_flags = 0x46;
1241	} else if (channel == 14) {
1242		athchan->a2_athchan = 124;
1243		athchan->a2_flags = 0x44;
1244	} else if (channel >= 15 && channel <= 26) {
1245		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1246		athchan->a2_flags = 0x46;
1247	} else
1248		return -EINVAL;
1249
1250	return 0;
1251}
1252
1253/**
1254 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1255 * @ah: The &struct ath5k_hw
1256 * @channel: The &struct ieee80211_channel
1257 */
1258static int
1259ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1260		struct ieee80211_channel *channel)
1261{
1262	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1263	unsigned int ath5k_channel =
1264		ieee80211_frequency_to_channel(channel->center_freq);
1265	u32 data0, data1, clock;
1266	int ret;
1267
1268	/*
1269	 * Set the channel on the RF5111 radio
1270	 */
1271	data0 = data1 = 0;
1272
1273	if (channel->band == IEEE80211_BAND_2GHZ) {
1274		/* Map 2GHz channel to 5GHz Atheros channel ID */
1275		ret = ath5k_hw_rf5111_chan2athchan(
1276			ieee80211_frequency_to_channel(channel->center_freq),
1277			&ath5k_channel_2ghz);
1278		if (ret)
1279			return ret;
1280
1281		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1282		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1283		    << 5) | (1 << 4);
1284	}
1285
1286	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1287		clock = 1;
1288		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1289			(clock << 1) | (1 << 10) | 1;
1290	} else {
1291		clock = 0;
1292		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1293			<< 2) | (clock << 1) | (1 << 10) | 1;
1294	}
1295
1296	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1297			AR5K_RF_BUFFER);
1298	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1299			AR5K_RF_BUFFER_CONTROL_3);
1300
1301	return 0;
1302}
1303
1304/**
1305 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1306 * @ah: The &struct ath5k_hw
1307 * @channel: The &struct ieee80211_channel
1308 *
1309 * On RF5112/2112 and newer we don't need to do any conversion.
1310 * We pass the frequency value after a few modifications to the
1311 * chip directly.
1312 *
1313 * NOTE: Make sure channel frequency given is within our range or else
1314 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1315 */
1316static int
1317ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1318		struct ieee80211_channel *channel)
1319{
1320	u32 data, data0, data1, data2;
1321	u16 c;
1322
1323	data = data0 = data1 = data2 = 0;
1324	c = channel->center_freq;
1325
1326	/* My guess based on code:
1327	 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1328	 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1329	 * (3040/2). data0 is used to set the PLL divider and data1
1330	 * selects synth mode. */
1331	if (c < 4800) {
1332		/* Channel 14 and all frequencies with 2Hz spacing
1333		 * below/above (non-standard channels) */
1334		if (!((c - 2224) % 5)) {
1335			/* Same as (c - 2224) / 5 */
1336			data0 = ((2 * (c - 704)) - 3040) / 10;
1337			data1 = 1;
1338		/* Channel 1 and all frequencies with 5Hz spacing
1339		 * below/above (standard channels without channel 14) */
1340		} else if (!((c - 2192) % 5)) {
1341			/* Same as (c - 2192) / 5 */
1342			data0 = ((2 * (c - 672)) - 3040) / 10;
1343			data1 = 0;
1344		} else
1345			return -EINVAL;
1346
1347		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1348	/* This is more complex, we have a single synthesizer with
1349	 * 4 reference clock settings (?) based on frequency spacing
1350	 * and set using data2. LO is at 4800Hz and data0 is again used
1351	 * to set some divider.
1352	 *
1353	 * NOTE: There is an old atheros presentation at Stanford
1354	 * that mentions a method called dual direct conversion
1355	 * with 1GHz sliding IF for RF5110. Maybe that's what we
1356	 * have here, or an updated version. */
1357	} else if ((c % 5) != 2 || c > 5435) {
1358		if (!(c % 20) && c >= 5120) {
1359			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1360			data2 = ath5k_hw_bitswap(3, 2);
1361		} else if (!(c % 10)) {
1362			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1363			data2 = ath5k_hw_bitswap(2, 2);
1364		} else if (!(c % 5)) {
1365			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1366			data2 = ath5k_hw_bitswap(1, 2);
1367		} else
1368			return -EINVAL;
1369	} else {
1370		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1371		data2 = ath5k_hw_bitswap(0, 2);
1372	}
1373
1374	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1375
1376	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1377	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1378
1379	return 0;
1380}
1381
1382/**
1383 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1384 * @ah: The &struct ath5k_hw
1385 * @channel: The &struct ieee80211_channel
1386 *
1387 * AR2425/2417 have a different 2GHz RF so code changes
1388 * a little bit from RF5112.
1389 */
1390static int
1391ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1392		struct ieee80211_channel *channel)
1393{
1394	u32 data, data0, data2;
1395	u16 c;
1396
1397	data = data0 = data2 = 0;
1398	c = channel->center_freq;
1399
1400	if (c < 4800) {
1401		data0 = ath5k_hw_bitswap((c - 2272), 8);
1402		data2 = 0;
1403	/* ? 5GHz ? */
1404	} else if ((c % 5) != 2 || c > 5435) {
1405		if (!(c % 20) && c < 5120)
1406			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1407		else if (!(c % 10))
1408			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1409		else if (!(c % 5))
1410			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1411		else
1412			return -EINVAL;
1413		data2 = ath5k_hw_bitswap(1, 2);
1414	} else {
1415		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1416		data2 = ath5k_hw_bitswap(0, 2);
1417	}
1418
1419	data = (data0 << 4) | data2 << 2 | 0x1001;
1420
1421	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1422	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1423
1424	return 0;
1425}
1426
1427/**
1428 * ath5k_hw_channel() - Set a channel on the radio chip
1429 * @ah: The &struct ath5k_hw
1430 * @channel: The &struct ieee80211_channel
1431 *
1432 * This is the main function called to set a channel on the
1433 * radio chip based on the radio chip version.
1434 */
1435static int
1436ath5k_hw_channel(struct ath5k_hw *ah,
1437		struct ieee80211_channel *channel)
1438{
1439	int ret;
1440	/*
1441	 * Check bounds supported by the PHY (we don't care about regulatory
1442	 * restrictions at this point).
1443	 */
1444	if (!ath5k_channel_ok(ah, channel)) {
1445		ATH5K_ERR(ah,
1446			"channel frequency (%u MHz) out of supported "
1447			"band range\n",
1448			channel->center_freq);
1449			return -EINVAL;
1450	}
1451
1452	/*
1453	 * Set the channel and wait
1454	 */
1455	switch (ah->ah_radio) {
1456	case AR5K_RF5110:
1457		ret = ath5k_hw_rf5110_channel(ah, channel);
1458		break;
1459	case AR5K_RF5111:
1460		ret = ath5k_hw_rf5111_channel(ah, channel);
1461		break;
1462	case AR5K_RF2317:
1463	case AR5K_RF2425:
1464		ret = ath5k_hw_rf2425_channel(ah, channel);
1465		break;
1466	default:
1467		ret = ath5k_hw_rf5112_channel(ah, channel);
1468		break;
1469	}
1470
1471	if (ret)
1472		return ret;
1473
1474	/* Set JAPAN setting for channel 14 */
1475	if (channel->center_freq == 2484) {
1476		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1477				AR5K_PHY_CCKTXCTL_JAPAN);
1478	} else {
1479		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1480				AR5K_PHY_CCKTXCTL_WORLD);
1481	}
1482
1483	ah->ah_current_channel = channel;
1484
1485	return 0;
1486}
1487
1488
1489/*****************\
1490  PHY calibration
1491\*****************/
1492
1493/**
1494 * DOC: PHY Calibration routines
1495 *
1496 * Noise floor calibration: When we tell the hardware to
1497 * perform a noise floor calibration by setting the
1498 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1499 * sample-and-hold the minimum noise level seen at the antennas.
1500 * This value is then stored in a ring buffer of recently measured
1501 * noise floor values so we have a moving window of the last few
1502 * samples. The median of the values in the history is then loaded
1503 * into the hardware for its own use for RSSI and CCA measurements.
1504 * This type of calibration doesn't interfere with traffic.
1505 *
1506 * AGC calibration: When we tell the hardware to perform
1507 * an AGC (Automatic Gain Control) calibration by setting the
1508 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1509 * a calibration on the DC offsets of ADCs. During this period
1510 * rx/tx gets disabled so we have to deal with it on the driver
1511 * part.
1512 *
1513 * I/Q calibration: When we tell the hardware to perform
1514 * an I/Q calibration, it tries to correct I/Q imbalance and
1515 * fix QAM constellation by sampling data from rxed frames.
1516 * It doesn't interfere with traffic.
1517 *
1518 * For more infos on AGC and I/Q calibration check out patent doc
1519 * #03/094463.
1520 */
1521
1522/**
1523 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1524 * @ah: The &struct ath5k_hw
1525 */
1526static s32
1527ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1528{
1529	s32 val;
1530
1531	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1532	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1533}
1534
1535/**
1536 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1537 * @ah: The &struct ath5k_hw
1538 */
1539void
1540ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1541{
1542	int i;
1543
1544	ah->ah_nfcal_hist.index = 0;
1545	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1546		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1547}
1548
1549/**
1550 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1551 * @ah: The &struct ath5k_hw
1552 * @noise_floor: The NF we got from hw
1553 */
1554static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1555{
1556	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1557	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1558	hist->nfval[hist->index] = noise_floor;
1559}
1560
1561/**
1562 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1563 * @ah: The &struct ath5k_hw
1564 */
1565static s16
1566ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1567{
1568	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1569	s16 tmp;
1570	int i, j;
1571
1572	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1573	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1574		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1575			if (sort[j] > sort[j - 1]) {
1576				tmp = sort[j];
1577				sort[j] = sort[j - 1];
1578				sort[j - 1] = tmp;
1579			}
1580		}
1581	}
1582	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1583		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1584			"cal %d:%d\n", i, sort[i]);
1585	}
1586	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1587}
1588
1589/**
1590 * ath5k_hw_update_noise_floor() - Update NF on hardware
1591 * @ah: The &struct ath5k_hw
1592 *
1593 * This is the main function we call to perform a NF calibration,
1594 * it reads NF from hardware, calculates the median and updates
1595 * NF on hw.
1596 */
1597void
1598ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1599{
1600	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1601	u32 val;
1602	s16 nf, threshold;
1603	u8 ee_mode;
1604
1605	/* keep last value if calibration hasn't completed */
1606	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1607		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1608			"NF did not complete in calibration window\n");
1609
1610		return;
1611	}
1612
1613	ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1614
1615	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1616	if (WARN_ON(ee_mode < 0)) {
1617		ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1618		return;
1619	}
1620
1621	/* completed NF calibration, test threshold */
1622	nf = ath5k_hw_read_measured_noise_floor(ah);
1623	threshold = ee->ee_noise_floor_thr[ee_mode];
1624
1625	if (nf > threshold) {
1626		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1627			"noise floor failure detected; "
1628			"read %d, threshold %d\n",
1629			nf, threshold);
1630
1631		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1632	}
1633
1634	ath5k_hw_update_nfcal_hist(ah, nf);
1635	nf = ath5k_hw_get_median_noise_floor(ah);
1636
1637	/* load noise floor (in .5 dBm) so the hardware will use it */
1638	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1639	val |= (nf * 2) & AR5K_PHY_NF_M;
1640	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1641
1642	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1643		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1644
1645	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1646		0, false);
1647
1648	/*
1649	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1650	 * so that we're not capped by the median we just loaded.
1651	 * This will be used as the initial value for the next noise
1652	 * floor calibration.
1653	 */
1654	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1655	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1656	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1657		AR5K_PHY_AGCCTL_NF_EN |
1658		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1659		AR5K_PHY_AGCCTL_NF);
1660
1661	ah->ah_noise_floor = nf;
1662
1663	ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1664
1665	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1666		"noise floor calibrated: %d\n", nf);
1667}
1668
1669/**
1670 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1671 * @ah: The &struct ath5k_hw
1672 * @channel: The &struct ieee80211_channel
1673 *
1674 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1675 */
1676static int
1677ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1678		struct ieee80211_channel *channel)
1679{
1680	u32 phy_sig, phy_agc, phy_sat, beacon;
1681	int ret;
1682
1683	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1684		return 0;
1685
1686	/*
1687	 * Disable beacons and RX/TX queues, wait
1688	 */
1689	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1690		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1691	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1692	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1693
1694	usleep_range(2000, 2500);
1695
1696	/*
1697	 * Set the channel (with AGC turned off)
1698	 */
1699	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1700	udelay(10);
1701	ret = ath5k_hw_channel(ah, channel);
1702
1703	/*
1704	 * Activate PHY and wait
1705	 */
1706	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1707	usleep_range(1000, 1500);
1708
1709	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1710
1711	if (ret)
1712		return ret;
1713
1714	/*
1715	 * Calibrate the radio chip
1716	 */
1717
1718	/* Remember normal state */
1719	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1720	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1721	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1722
1723	/* Update radio registers */
1724	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1725		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1726
1727	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1728			AR5K_PHY_AGCCOARSE_LO)) |
1729		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1730		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1731
1732	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1733			AR5K_PHY_ADCSAT_THR)) |
1734		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1735		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1736
1737	udelay(20);
1738
1739	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1740	udelay(10);
1741	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1742	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1743
1744	usleep_range(1000, 1500);
1745
1746	/*
1747	 * Enable calibration and wait until completion
1748	 */
1749	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1750
1751	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1752			AR5K_PHY_AGCCTL_CAL, 0, false);
1753
1754	/* Reset to normal state */
1755	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1756	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1757	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1758
1759	if (ret) {
1760		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1761				channel->center_freq);
1762		return ret;
1763	}
1764
1765	/*
1766	 * Re-enable RX/TX and beacons
1767	 */
1768	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1769		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1770	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1771
1772	return 0;
1773}
1774
1775/**
1776 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1777 * @ah: The &struct ath5k_hw
1778 */
1779static int
1780ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1781{
1782	u32 i_pwr, q_pwr;
1783	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1784	int i;
1785
1786	/* Skip if I/Q calibration is not needed or if it's still running */
1787	if (!ah->ah_iq_cal_needed)
1788		return -EINVAL;
1789	else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1790		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1791				"I/Q calibration still running");
1792		return -EBUSY;
1793	}
1794
1795	/* Calibration has finished, get the results and re-run */
1796
1797	/* Work around for empty results which can apparently happen on 5212:
1798	 * Read registers up to 10 times until we get both i_pr and q_pwr */
1799	for (i = 0; i <= 10; i++) {
1800		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1801		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1802		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1803		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1804			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1805		if (i_pwr && q_pwr)
1806			break;
1807	}
1808
1809	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1810
1811	if (ah->ah_version == AR5K_AR5211)
1812		q_coffd = q_pwr >> 6;
1813	else
1814		q_coffd = q_pwr >> 7;
1815
1816	/* In case i_coffd became zero, cancel calibration
1817	 * not only it's too small, it'll also result a divide
1818	 * by zero later on. */
1819	if (i_coffd == 0 || q_coffd < 2)
1820		return -ECANCELED;
1821
1822	/* Protect against loss of sign bits */
1823
1824	i_coff = (-iq_corr) / i_coffd;
1825	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1826
1827	if (ah->ah_version == AR5K_AR5211)
1828		q_coff = (i_pwr / q_coffd) - 64;
1829	else
1830		q_coff = (i_pwr / q_coffd) - 128;
1831	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1832
1833	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1834			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1835			i_coff, q_coff, i_coffd, q_coffd);
1836
1837	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1838	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1839	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1840	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1841
1842	/* Re-enable calibration -if we don't we'll commit
1843	 * the same values again and again */
1844	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1845			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1846	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1847
1848	return 0;
1849}
1850
1851/**
1852 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1853 * @ah: The &struct ath5k_hw
1854 * @channel: The &struct ieee80211_channel
1855 *
1856 * The main function we call from above to perform
1857 * a short or full PHY calibration based on RF chip
1858 * and current channel
1859 */
1860int
1861ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1862		struct ieee80211_channel *channel)
1863{
1864	int ret;
1865
1866	if (ah->ah_radio == AR5K_RF5110)
1867		return ath5k_hw_rf5110_calibrate(ah, channel);
1868
1869	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1870	if (ret) {
1871		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1872			"No I/Q correction performed (%uMHz)\n",
1873			channel->center_freq);
1874
1875		/* Happens all the time if there is not much
1876		 * traffic, consider it normal behaviour. */
1877		ret = 0;
1878	}
1879
1880	/* On full calibration request a PAPD probe for
1881	 * gainf calibration if needed */
1882	if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1883	    (ah->ah_radio == AR5K_RF5111 ||
1884	     ah->ah_radio == AR5K_RF5112) &&
1885	    channel->hw_value != AR5K_MODE_11B)
1886		ath5k_hw_request_rfgain_probe(ah);
1887
1888	/* Update noise floor */
1889	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1890		ath5k_hw_update_noise_floor(ah);
1891
1892	return ret;
1893}
1894
1895
1896/***************************\
1897* Spur mitigation functions *
1898\***************************/
1899
1900/**
1901 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1902 * @ah: The &struct ath5k_hw
1903 * @channel: The &struct ieee80211_channel
1904 *
1905 * This function gets called during PHY initialization to
1906 * configure the spur filter for the given channel. Spur is noise
1907 * generated due to "reflection" effects, for more information on this
1908 * method check out patent US7643810
1909 */
1910static void
1911ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1912				struct ieee80211_channel *channel)
1913{
1914	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1915	u32 mag_mask[4] = {0, 0, 0, 0};
1916	u32 pilot_mask[2] = {0, 0};
1917	/* Note: fbin values are scaled up by 2 */
1918	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1919	s32 spur_delta_phase, spur_freq_sigma_delta;
1920	s32 spur_offset, num_symbols_x16;
1921	u8 num_symbol_offsets, i, freq_band;
1922
1923	/* Convert current frequency to fbin value (the same way channels
1924	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1925	 * up by 2 so we can compare it later */
1926	if (channel->band == IEEE80211_BAND_2GHZ) {
1927		chan_fbin = (channel->center_freq - 2300) * 10;
1928		freq_band = AR5K_EEPROM_BAND_2GHZ;
1929	} else {
1930		chan_fbin = (channel->center_freq - 4900) * 10;
1931		freq_band = AR5K_EEPROM_BAND_5GHZ;
1932	}
1933
1934	/* Check if any spur_chan_fbin from EEPROM is
1935	 * within our current channel's spur detection range */
1936	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1937	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1938	/* XXX: Half/Quarter channels ?*/
1939	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1940		spur_detection_window *= 2;
1941
1942	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1943		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1944
1945		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1946		 * so it's zero if we got nothing from EEPROM */
1947		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1948			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1949			break;
1950		}
1951
1952		if ((chan_fbin - spur_detection_window <=
1953		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1954		(chan_fbin + spur_detection_window >=
1955		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1956			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1957			break;
1958		}
1959	}
1960
1961	/* We need to enable spur filter for this channel */
1962	if (spur_chan_fbin) {
1963		spur_offset = spur_chan_fbin - chan_fbin;
1964		/*
1965		 * Calculate deltas:
1966		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1967		 * spur_delta_phase -> spur_offset / chip_freq << 11
1968		 * Note: Both values have 100Hz resolution
1969		 */
1970		switch (ah->ah_bwmode) {
1971		case AR5K_BWMODE_40MHZ:
1972			/* Both sample_freq and chip_freq are 80MHz */
1973			spur_delta_phase = (spur_offset << 16) / 25;
1974			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1975			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1976			break;
1977		case AR5K_BWMODE_10MHZ:
1978			/* Both sample_freq and chip_freq are 20MHz (?) */
1979			spur_delta_phase = (spur_offset << 18) / 25;
1980			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1981			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1982			break;
1983		case AR5K_BWMODE_5MHZ:
1984			/* Both sample_freq and chip_freq are 10MHz (?) */
1985			spur_delta_phase = (spur_offset << 19) / 25;
1986			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1987			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1988			break;
1989		default:
1990			if (channel->band == IEEE80211_BAND_5GHZ) {
1991				/* Both sample_freq and chip_freq are 40MHz */
1992				spur_delta_phase = (spur_offset << 17) / 25;
1993				spur_freq_sigma_delta =
1994						(spur_delta_phase >> 10);
1995				symbol_width =
1996					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1997			} else {
1998				/* sample_freq -> 40MHz chip_freq -> 44MHz
1999				 * (for b compatibility) */
2000				spur_delta_phase = (spur_offset << 17) / 25;
2001				spur_freq_sigma_delta =
2002						(spur_offset << 8) / 55;
2003				symbol_width =
2004					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
2005			}
2006			break;
2007		}
2008
2009		/* Calculate pilot and magnitude masks */
2010
2011		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
2012		 * and divide by symbol_width to find how many symbols we have
2013		 * Note: number of symbols is scaled up by 16 */
2014		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2015
2016		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2017		if (!(num_symbols_x16 & 0xF))
2018			/* _X_ */
2019			num_symbol_offsets = 3;
2020		else
2021			/* _xx_ */
2022			num_symbol_offsets = 4;
2023
2024		for (i = 0; i < num_symbol_offsets; i++) {
2025
2026			/* Calculate pilot mask */
2027			s32 curr_sym_off =
2028				(num_symbols_x16 / 16) + i + 25;
2029
2030			/* Pilot magnitude mask seems to be a way to
2031			 * declare the boundaries for our detection
2032			 * window or something, it's 2 for the middle
2033			 * value(s) where the symbol is expected to be
2034			 * and 1 on the boundary values */
2035			u8 plt_mag_map =
2036				(i == 0 || i == (num_symbol_offsets - 1))
2037								? 1 : 2;
2038
2039			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2040				if (curr_sym_off <= 25)
2041					pilot_mask[0] |= 1 << curr_sym_off;
2042				else if (curr_sym_off >= 27)
2043					pilot_mask[0] |= 1 << (curr_sym_off - 1);
2044			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2045				pilot_mask[1] |= 1 << (curr_sym_off - 33);
2046
2047			/* Calculate magnitude mask (for viterbi decoder) */
2048			if (curr_sym_off >= -1 && curr_sym_off <= 14)
2049				mag_mask[0] |=
2050					plt_mag_map << (curr_sym_off + 1) * 2;
2051			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2052				mag_mask[1] |=
2053					plt_mag_map << (curr_sym_off - 15) * 2;
2054			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2055				mag_mask[2] |=
2056					plt_mag_map << (curr_sym_off - 31) * 2;
2057			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2058				mag_mask[3] |=
2059					plt_mag_map << (curr_sym_off - 47) * 2;
2060
2061		}
2062
2063		/* Write settings on hw to enable spur filter */
2064		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2065					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2066		/* XXX: Self correlator also ? */
2067		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2068					AR5K_PHY_IQ_PILOT_MASK_EN |
2069					AR5K_PHY_IQ_CHAN_MASK_EN |
2070					AR5K_PHY_IQ_SPUR_FILT_EN);
2071
2072		/* Set delta phase and freq sigma delta */
2073		ath5k_hw_reg_write(ah,
2074				AR5K_REG_SM(spur_delta_phase,
2075					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2076				AR5K_REG_SM(spur_freq_sigma_delta,
2077				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2078				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2079				AR5K_PHY_TIMING_11);
2080
2081		/* Write pilot masks */
2082		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2083		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2084					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2085					pilot_mask[1]);
2086
2087		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2088		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2089					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2090					pilot_mask[1]);
2091
2092		/* Write magnitude masks */
2093		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2094		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2095		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2096		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2097					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2098					mag_mask[3]);
2099
2100		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2101		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2102		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2103		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2104					AR5K_PHY_BIN_MASK2_4_MASK_4,
2105					mag_mask[3]);
2106
2107	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2108	AR5K_PHY_IQ_SPUR_FILT_EN) {
2109		/* Clean up spur mitigation settings and disable filter */
2110		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2111					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2112		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2113					AR5K_PHY_IQ_PILOT_MASK_EN |
2114					AR5K_PHY_IQ_CHAN_MASK_EN |
2115					AR5K_PHY_IQ_SPUR_FILT_EN);
2116		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2117
2118		/* Clear pilot masks */
2119		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2120		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2121					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2122					0);
2123
2124		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2125		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2126					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2127					0);
2128
2129		/* Clear magnitude masks */
2130		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2131		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2132		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2133		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2134					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2135					0);
2136
2137		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2138		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2139		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2140		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2141					AR5K_PHY_BIN_MASK2_4_MASK_4,
2142					0);
2143	}
2144}
2145
2146
2147/*****************\
2148* Antenna control *
2149\*****************/
2150
2151/**
2152 * DOC: Antenna control
2153 *
2154 * Hw supports up to 14 antennas ! I haven't found any card that implements
2155 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2156 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2157 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2158 *
2159 * We can have a single antenna for RX and multiple antennas for TX.
2160 * RX antenna is our "default" antenna (usually antenna 1) set on
2161 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2162 * (0 for automatic selection, 1 - 14 antenna number).
2163 *
2164 * We can let hw do all the work doing fast antenna diversity for both
2165 * tx and rx or we can do things manually. Here are the options we have
2166 * (all are bits of STA_ID1 register):
2167 *
2168 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2169 * control descriptor, use the default antenna to transmit or else use the last
2170 * antenna on which we received an ACK.
2171 *
2172 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2173 * the antenna on which we got the ACK for that frame.
2174 *
2175 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2176 * one on the TX descriptor.
2177 *
2178 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2179 * (ACKs etc), or else use current antenna (the one we just used for TX).
2180 *
2181 * Using the above we support the following scenarios:
2182 *
2183 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2184 *
2185 * AR5K_ANTMODE_FIXED_A	-> Only antenna A (MAIN) is present
2186 *
2187 * AR5K_ANTMODE_FIXED_B	-> Only antenna B (AUX) is present
2188 *
2189 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2190 *
2191 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2192 *
2193 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2194 *
2195 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2196 *
2197 * Also note that when setting antenna to F on tx descriptor card inverts
2198 * current tx antenna.
2199 */
2200
2201/**
2202 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2203 * @ah: The &struct ath5k_hw
2204 * @ant: Antenna number
2205 */
2206static void
2207ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2208{
2209	if (ah->ah_version != AR5K_AR5210)
2210		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2211}
2212
2213/**
2214 * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2215 * @ah: The &struct ath5k_hw
2216 * @ee_mode: One of enum ath5k_driver_mode
2217 * @enable: True to enable, false to disable
2218 */
2219static void
2220ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2221{
2222	switch (ee_mode) {
2223	case AR5K_EEPROM_MODE_11G:
2224		/* XXX: This is set to
2225		 * disabled on initvals !!! */
2226	case AR5K_EEPROM_MODE_11A:
2227		if (enable)
2228			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2229					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2230		else
2231			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2232					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2233		break;
2234	case AR5K_EEPROM_MODE_11B:
2235		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2236					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2237		break;
2238	default:
2239		return;
2240	}
2241
2242	if (enable) {
2243		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2244				AR5K_PHY_RESTART_DIV_GC, 4);
2245
2246		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2247					AR5K_PHY_FAST_ANT_DIV_EN);
2248	} else {
2249		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2250				AR5K_PHY_RESTART_DIV_GC, 0);
2251
2252		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2253					AR5K_PHY_FAST_ANT_DIV_EN);
2254	}
2255}
2256
2257/**
2258 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2259 * @ah: The &struct ath5k_hw
2260 * @ee_mode: One of enum ath5k_driver_mode
2261 *
2262 * Switch table comes from EEPROM and includes information on controlling
2263 * the 2 antenna RX attenuators
2264 */
2265void
2266ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2267{
2268	u8 ant0, ant1;
2269
2270	/*
2271	 * In case a fixed antenna was set as default
2272	 * use the same switch table twice.
2273	 */
2274	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2275		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2276	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2277		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2278	else {
2279		ant0 = AR5K_ANT_SWTABLE_A;
2280		ant1 = AR5K_ANT_SWTABLE_B;
2281	}
2282
2283	/* Set antenna idle switch table */
2284	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2285			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2286			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2287			AR5K_PHY_ANT_CTL_TXRX_EN));
2288
2289	/* Set antenna switch tables */
2290	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2291		AR5K_PHY_ANT_SWITCH_TABLE_0);
2292	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2293		AR5K_PHY_ANT_SWITCH_TABLE_1);
2294}
2295
2296/**
2297 * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2298 * @ah: The &struct ath5k_hw
2299 * @ant_mode: One of enum ath5k_ant_mode
2300 */
2301void
2302ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2303{
2304	struct ieee80211_channel *channel = ah->ah_current_channel;
2305	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2306	bool use_def_for_sg;
2307	int ee_mode;
2308	u8 def_ant, tx_ant;
2309	u32 sta_id1 = 0;
2310
2311	/* if channel is not initialized yet we can't set the antennas
2312	 * so just store the mode. it will be set on the next reset */
2313	if (channel == NULL) {
2314		ah->ah_ant_mode = ant_mode;
2315		return;
2316	}
2317
2318	def_ant = ah->ah_def_ant;
2319
2320	ee_mode = ath5k_eeprom_mode_from_channel(channel);
2321	if (ee_mode < 0) {
2322		ATH5K_ERR(ah,
2323			"invalid channel: %d\n", channel->center_freq);
2324		return;
2325	}
2326
2327	switch (ant_mode) {
2328	case AR5K_ANTMODE_DEFAULT:
2329		tx_ant = 0;
2330		use_def_for_tx = false;
2331		update_def_on_tx = false;
2332		use_def_for_rts = false;
2333		use_def_for_sg = false;
2334		fast_div = true;
2335		break;
2336	case AR5K_ANTMODE_FIXED_A:
2337		def_ant = 1;
2338		tx_ant = 1;
2339		use_def_for_tx = true;
2340		update_def_on_tx = false;
2341		use_def_for_rts = true;
2342		use_def_for_sg = true;
2343		fast_div = false;
2344		break;
2345	case AR5K_ANTMODE_FIXED_B:
2346		def_ant = 2;
2347		tx_ant = 2;
2348		use_def_for_tx = true;
2349		update_def_on_tx = false;
2350		use_def_for_rts = true;
2351		use_def_for_sg = true;
2352		fast_div = false;
2353		break;
2354	case AR5K_ANTMODE_SINGLE_AP:
2355		def_ant = 1;	/* updated on tx */
2356		tx_ant = 0;
2357		use_def_for_tx = true;
2358		update_def_on_tx = true;
2359		use_def_for_rts = true;
2360		use_def_for_sg = true;
2361		fast_div = true;
2362		break;
2363	case AR5K_ANTMODE_SECTOR_AP:
2364		tx_ant = 1;	/* variable */
2365		use_def_for_tx = false;
2366		update_def_on_tx = false;
2367		use_def_for_rts = true;
2368		use_def_for_sg = false;
2369		fast_div = false;
2370		break;
2371	case AR5K_ANTMODE_SECTOR_STA:
2372		tx_ant = 1;	/* variable */
2373		use_def_for_tx = true;
2374		update_def_on_tx = false;
2375		use_def_for_rts = true;
2376		use_def_for_sg = false;
2377		fast_div = true;
2378		break;
2379	case AR5K_ANTMODE_DEBUG:
2380		def_ant = 1;
2381		tx_ant = 2;
2382		use_def_for_tx = false;
2383		update_def_on_tx = false;
2384		use_def_for_rts = false;
2385		use_def_for_sg = false;
2386		fast_div = false;
2387		break;
2388	default:
2389		return;
2390	}
2391
2392	ah->ah_tx_ant = tx_ant;
2393	ah->ah_ant_mode = ant_mode;
2394	ah->ah_def_ant = def_ant;
2395
2396	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2397	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2398	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2399	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2400
2401	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2402
2403	if (sta_id1)
2404		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2405
2406	ath5k_hw_set_antenna_switch(ah, ee_mode);
2407	/* Note: set diversity before default antenna
2408	 * because it won't work correctly */
2409	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2410	ath5k_hw_set_def_antenna(ah, def_ant);
2411}
2412
2413
2414/****************\
2415* TX power setup *
2416\****************/
2417
2418/*
2419 * Helper functions
2420 */
2421
2422/**
2423 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2424 * @target: X value of the middle point
2425 * @x_left: X value of the left point
2426 * @x_right: X value of the right point
2427 * @y_left: Y value of the left point
2428 * @y_right: Y value of the right point
2429 */
2430static s16
2431ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2432					s16 y_left, s16 y_right)
2433{
2434	s16 ratio, result;
2435
2436	/* Avoid divide by zero and skip interpolation
2437	 * if we have the same point */
2438	if ((x_left == x_right) || (y_left == y_right))
2439		return y_left;
2440
2441	/*
2442	 * Since we use ints and not fps, we need to scale up in
2443	 * order to get a sane ratio value (or else we 'll eg. get
2444	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2445	 * to have some accuracy both for 0.5 and 0.25 steps.
2446	 */
2447	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2448
2449	/* Now scale down to be in range */
2450	result = y_left + (ratio * (target - x_left) / 100);
2451
2452	return result;
2453}
2454
2455/**
2456 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2457 * linear PCDAC curve
2458 * @stepL: Left array with y values (pcdac steps)
2459 * @stepR: Right array with y values (pcdac steps)
2460 * @pwrL: Left array with x values (power steps)
2461 * @pwrR: Right array with x values (power steps)
2462 *
2463 * Since we have the top of the curve and we draw the line below
2464 * until we reach 1 (1 pcdac step) we need to know which point
2465 * (x value) that is so that we don't go below x axis and have negative
2466 * pcdac values when creating the curve, or fill the table with zeros.
2467 */
2468static s16
2469ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2470				const s16 *pwrL, const s16 *pwrR)
2471{
2472	s8 tmp;
2473	s16 min_pwrL, min_pwrR;
2474	s16 pwr_i;
2475
2476	/* Some vendors write the same pcdac value twice !!! */
2477	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2478		return max(pwrL[0], pwrR[0]);
2479
2480	if (pwrL[0] == pwrL[1])
2481		min_pwrL = pwrL[0];
2482	else {
2483		pwr_i = pwrL[0];
2484		do {
2485			pwr_i--;
2486			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2487							pwrL[0], pwrL[1],
2488							stepL[0], stepL[1]);
2489		} while (tmp > 1);
2490
2491		min_pwrL = pwr_i;
2492	}
2493
2494	if (pwrR[0] == pwrR[1])
2495		min_pwrR = pwrR[0];
2496	else {
2497		pwr_i = pwrR[0];
2498		do {
2499			pwr_i--;
2500			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2501							pwrR[0], pwrR[1],
2502							stepR[0], stepR[1]);
2503		} while (tmp > 1);
2504
2505		min_pwrR = pwr_i;
2506	}
2507
2508	/* Keep the right boundary so that it works for both curves */
2509	return max(min_pwrL, min_pwrR);
2510}
2511
2512/**
2513 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2514 * @pmin: Minimum power value (xmin)
2515 * @pmax: Maximum power value (xmax)
2516 * @pwr: Array of power steps (x values)
2517 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2518 * @num_points: Number of provided points
2519 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2520 * @type: One of enum ath5k_powertable_type (eeprom.h)
2521 *
2522 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2523 * Power to PCDAC curve.
2524 *
2525 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2526 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2527 * PCDAC/PDADC step for each curve is 64 but we can write more than
2528 * one curves on hw so we can go up to 128 (which is the max step we
2529 * can write on the final table).
2530 *
2531 * We write y values (PCDAC/PDADC steps) on hw.
2532 */
2533static void
2534ath5k_create_power_curve(s16 pmin, s16 pmax,
2535			const s16 *pwr, const u8 *vpd,
2536			u8 num_points,
2537			u8 *vpd_table, u8 type)
2538{
2539	u8 idx[2] = { 0, 1 };
2540	s16 pwr_i = 2 * pmin;
2541	int i;
2542
2543	if (num_points < 2)
2544		return;
2545
2546	/* We want the whole line, so adjust boundaries
2547	 * to cover the entire power range. Note that
2548	 * power values are already 0.25dB so no need
2549	 * to multiply pwr_i by 2 */
2550	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2551		pwr_i = pmin;
2552		pmin = 0;
2553		pmax = 63;
2554	}
2555
2556	/* Find surrounding turning points (TPs)
2557	 * and interpolate between them */
2558	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2559	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2560
2561		/* We passed the right TP, move to the next set of TPs
2562		 * if we pass the last TP, extrapolate above using the last
2563		 * two TPs for ratio */
2564		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2565			idx[0]++;
2566			idx[1]++;
2567		}
2568
2569		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2570						pwr[idx[0]], pwr[idx[1]],
2571						vpd[idx[0]], vpd[idx[1]]);
2572
2573		/* Increase by 0.5dB
2574		 * (0.25 dB units) */
2575		pwr_i += 2;
2576	}
2577}
2578
2579/**
2580 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2581 * for a given channel.
2582 * @ah: The &struct ath5k_hw
2583 * @channel: The &struct ieee80211_channel
2584 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2585 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2586 *
2587 * Get the surrounding per-channel power calibration piers
2588 * for a given frequency so that we can interpolate between
2589 * them and come up with an appropriate dataset for our current
2590 * channel.
2591 */
2592static void
2593ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2594			struct ieee80211_channel *channel,
2595			struct ath5k_chan_pcal_info **pcinfo_l,
2596			struct ath5k_chan_pcal_info **pcinfo_r)
2597{
2598	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2599	struct ath5k_chan_pcal_info *pcinfo;
2600	u8 idx_l, idx_r;
2601	u8 mode, max, i;
2602	u32 target = channel->center_freq;
2603
2604	idx_l = 0;
2605	idx_r = 0;
2606
2607	switch (channel->hw_value) {
2608	case AR5K_EEPROM_MODE_11A:
2609		pcinfo = ee->ee_pwr_cal_a;
2610		mode = AR5K_EEPROM_MODE_11A;
2611		break;
2612	case AR5K_EEPROM_MODE_11B:
2613		pcinfo = ee->ee_pwr_cal_b;
2614		mode = AR5K_EEPROM_MODE_11B;
2615		break;
2616	case AR5K_EEPROM_MODE_11G:
2617	default:
2618		pcinfo = ee->ee_pwr_cal_g;
2619		mode = AR5K_EEPROM_MODE_11G;
2620		break;
2621	}
2622	max = ee->ee_n_piers[mode] - 1;
2623
2624	/* Frequency is below our calibrated
2625	 * range. Use the lowest power curve
2626	 * we have */
2627	if (target < pcinfo[0].freq) {
2628		idx_l = idx_r = 0;
2629		goto done;
2630	}
2631
2632	/* Frequency is above our calibrated
2633	 * range. Use the highest power curve
2634	 * we have */
2635	if (target > pcinfo[max].freq) {
2636		idx_l = idx_r = max;
2637		goto done;
2638	}
2639
2640	/* Frequency is inside our calibrated
2641	 * channel range. Pick the surrounding
2642	 * calibration piers so that we can
2643	 * interpolate */
2644	for (i = 0; i <= max; i++) {
2645
2646		/* Frequency matches one of our calibration
2647		 * piers, no need to interpolate, just use
2648		 * that calibration pier */
2649		if (pcinfo[i].freq == target) {
2650			idx_l = idx_r = i;
2651			goto done;
2652		}
2653
2654		/* We found a calibration pier that's above
2655		 * frequency, use this pier and the previous
2656		 * one to interpolate */
2657		if (target < pcinfo[i].freq) {
2658			idx_r = i;
2659			idx_l = idx_r - 1;
2660			goto done;
2661		}
2662	}
2663
2664done:
2665	*pcinfo_l = &pcinfo[idx_l];
2666	*pcinfo_r = &pcinfo[idx_r];
2667}
2668
2669/**
2670 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2671 * calibration data
2672 * @ah: The &struct ath5k_hw *ah,
2673 * @channel: The &struct ieee80211_channel
2674 * @rates: The &struct ath5k_rate_pcal_info to fill
2675 *
2676 * Get the surrounding per-rate power calibration data
2677 * for a given frequency and interpolate between power
2678 * values to set max target power supported by hw for
2679 * each rate on this frequency.
2680 */
2681static void
2682ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2683			struct ieee80211_channel *channel,
2684			struct ath5k_rate_pcal_info *rates)
2685{
2686	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2687	struct ath5k_rate_pcal_info *rpinfo;
2688	u8 idx_l, idx_r;
2689	u8 mode, max, i;
2690	u32 target = channel->center_freq;
2691
2692	idx_l = 0;
2693	idx_r = 0;
2694
2695	switch (channel->hw_value) {
2696	case AR5K_MODE_11A:
2697		rpinfo = ee->ee_rate_tpwr_a;
2698		mode = AR5K_EEPROM_MODE_11A;
2699		break;
2700	case AR5K_MODE_11B:
2701		rpinfo = ee->ee_rate_tpwr_b;
2702		mode = AR5K_EEPROM_MODE_11B;
2703		break;
2704	case AR5K_MODE_11G:
2705	default:
2706		rpinfo = ee->ee_rate_tpwr_g;
2707		mode = AR5K_EEPROM_MODE_11G;
2708		break;
2709	}
2710	max = ee->ee_rate_target_pwr_num[mode] - 1;
2711
2712	/* Get the surrounding calibration
2713	 * piers - same as above */
2714	if (target < rpinfo[0].freq) {
2715		idx_l = idx_r = 0;
2716		goto done;
2717	}
2718
2719	if (target > rpinfo[max].freq) {
2720		idx_l = idx_r = max;
2721		goto done;
2722	}
2723
2724	for (i = 0; i <= max; i++) {
2725
2726		if (rpinfo[i].freq == target) {
2727			idx_l = idx_r = i;
2728			goto done;
2729		}
2730
2731		if (target < rpinfo[i].freq) {
2732			idx_r = i;
2733			idx_l = idx_r - 1;
2734			goto done;
2735		}
2736	}
2737
2738done:
2739	/* Now interpolate power value, based on the frequency */
2740	rates->freq = target;
2741
2742	rates->target_power_6to24 =
2743		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2744					rpinfo[idx_r].freq,
2745					rpinfo[idx_l].target_power_6to24,
2746					rpinfo[idx_r].target_power_6to24);
2747
2748	rates->target_power_36 =
2749		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2750					rpinfo[idx_r].freq,
2751					rpinfo[idx_l].target_power_36,
2752					rpinfo[idx_r].target_power_36);
2753
2754	rates->target_power_48 =
2755		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2756					rpinfo[idx_r].freq,
2757					rpinfo[idx_l].target_power_48,
2758					rpinfo[idx_r].target_power_48);
2759
2760	rates->target_power_54 =
2761		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2762					rpinfo[idx_r].freq,
2763					rpinfo[idx_l].target_power_54,
2764					rpinfo[idx_r].target_power_54);
2765}
2766
2767/**
2768 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2769 * @ah: the &struct ath5k_hw
2770 * @channel: The &struct ieee80211_channel
2771 *
2772 * Get the max edge power for this channel if
2773 * we have such data from EEPROM's Conformance Test
2774 * Limits (CTL), and limit max power if needed.
2775 */
2776static void
2777ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2778			struct ieee80211_channel *channel)
2779{
2780	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2781	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2782	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2783	u8 *ctl_val = ee->ee_ctl;
2784	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2785	s16 edge_pwr = 0;
2786	u8 rep_idx;
2787	u8 i, ctl_mode;
2788	u8 ctl_idx = 0xFF;
2789	u32 target = channel->center_freq;
2790
2791	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2792
2793	switch (channel->hw_value) {
2794	case AR5K_MODE_11A:
2795		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2796			ctl_mode |= AR5K_CTL_TURBO;
2797		else
2798			ctl_mode |= AR5K_CTL_11A;
2799		break;
2800	case AR5K_MODE_11G:
2801		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2802			ctl_mode |= AR5K_CTL_TURBOG;
2803		else
2804			ctl_mode |= AR5K_CTL_11G;
2805		break;
2806	case AR5K_MODE_11B:
2807		ctl_mode |= AR5K_CTL_11B;
2808		break;
2809	default:
2810		return;
2811	}
2812
2813	for (i = 0; i < ee->ee_ctls; i++) {
2814		if (ctl_val[i] == ctl_mode) {
2815			ctl_idx = i;
2816			break;
2817		}
2818	}
2819
2820	/* If we have a CTL dataset available grab it and find the
2821	 * edge power for our frequency */
2822	if (ctl_idx == 0xFF)
2823		return;
2824
2825	/* Edge powers are sorted by frequency from lower
2826	 * to higher. Each CTL corresponds to 8 edge power
2827	 * measurements. */
2828	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2829
2830	/* Don't do boundaries check because we
2831	 * might have more that one bands defined
2832	 * for this mode */
2833
2834	/* Get the edge power that's closer to our
2835	 * frequency */
2836	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2837		rep_idx += i;
2838		if (target <= rep[rep_idx].freq)
2839			edge_pwr = (s16) rep[rep_idx].edge;
2840	}
2841
2842	if (edge_pwr)
2843		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2844}
2845
2846
2847/*
2848 * Power to PCDAC table functions
2849 */
2850
2851/**
2852 * DOC: Power to PCDAC table functions
2853 *
2854 * For RF5111 we have an XPD -eXternal Power Detector- curve
2855 * for each calibrated channel. Each curve has 0,5dB Power steps
2856 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2857 * exponential function. To recreate the curve we read 11 points
2858 * from eeprom (eeprom.c) and interpolate here.
2859 *
2860 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2861 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2862 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2863 * power steps on x axis and PCDAC steps on y axis and looks like a
2864 * linear function. To recreate the curve and pass the power values
2865 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2866 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2867 * and interpolate here.
2868 *
2869 * For a given channel we get the calibrated points (piers) for it or
2870 * -if we don't have calibration data for this specific channel- from the
2871 * available surrounding channels we have calibration data for, after we do a
2872 * linear interpolation between them. Then since we have our calibrated points
2873 * for this channel, we do again a linear interpolation between them to get the
2874 * whole curve.
2875 *
2876 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2877 */
2878
2879/**
2880 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2881 * @ah: The &struct ath5k_hw
2882 * @table_min: Minimum power (x min)
2883 * @table_max: Maximum power (x max)
2884 *
2885 * No further processing is needed for RF5111, the only thing we have to
2886 * do is fill the values below and above calibration range since eeprom data
2887 * may not cover the entire PCDAC table.
2888 */
2889static void
2890ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2891							s16 *table_max)
2892{
2893	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2894	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2895	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2896	s16	min_pwr, max_pwr;
2897
2898	/* Get table boundaries */
2899	min_pwr = table_min[0];
2900	pcdac_0 = pcdac_tmp[0];
2901
2902	max_pwr = table_max[0];
2903	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2904
2905	/* Extrapolate below minimum using pcdac_0 */
2906	pcdac_i = 0;
2907	for (i = 0; i < min_pwr; i++)
2908		pcdac_out[pcdac_i++] = pcdac_0;
2909
2910	/* Copy values from pcdac_tmp */
2911	pwr_idx = min_pwr;
2912	for (i = 0; pwr_idx <= max_pwr &&
2913		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2914		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2915		pwr_idx++;
2916	}
2917
2918	/* Extrapolate above maximum */
2919	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2920		pcdac_out[pcdac_i++] = pcdac_n;
2921
2922}
2923
2924/**
2925 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2926 * @ah: The &struct ath5k_hw
2927 * @table_min: Minimum power (x min)
2928 * @table_max: Maximum power (x max)
2929 * @pdcurves: Number of pd curves
2930 *
2931 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2932 * RFX112 can have up to 2 curves (one for low txpower range and one for
2933 * higher txpower range). We need to put them both on pcdac_out and place
2934 * them in the correct location. In case we only have one curve available
2935 * just fit it on pcdac_out (it's supposed to cover the entire range of
2936 * available pwr levels since it's always the higher power curve). Extrapolate
2937 * below and above final table if needed.
2938 */
2939static void
2940ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2941						s16 *table_max, u8 pdcurves)
2942{
2943	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2944	u8	*pcdac_low_pwr;
2945	u8	*pcdac_high_pwr;
2946	u8	*pcdac_tmp;
2947	u8	pwr;
2948	s16	max_pwr_idx;
2949	s16	min_pwr_idx;
2950	s16	mid_pwr_idx = 0;
2951	/* Edge flag turns on the 7nth bit on the PCDAC
2952	 * to declare the higher power curve (force values
2953	 * to be greater than 64). If we only have one curve
2954	 * we don't need to set this, if we have 2 curves and
2955	 * fill the table backwards this can also be used to
2956	 * switch from higher power curve to lower power curve */
2957	u8	edge_flag;
2958	int	i;
2959
2960	/* When we have only one curve available
2961	 * that's the higher power curve. If we have
2962	 * two curves the first is the high power curve
2963	 * and the next is the low power curve. */
2964	if (pdcurves > 1) {
2965		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2966		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2967		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2968		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2969
2970		/* If table size goes beyond 31.5dB, keep the
2971		 * upper 31.5dB range when setting tx power.
2972		 * Note: 126 = 31.5 dB in quarter dB steps */
2973		if (table_max[0] - table_min[1] > 126)
2974			min_pwr_idx = table_max[0] - 126;
2975		else
2976			min_pwr_idx = table_min[1];
2977
2978		/* Since we fill table backwards
2979		 * start from high power curve */
2980		pcdac_tmp = pcdac_high_pwr;
2981
2982		edge_flag = 0x40;
2983	} else {
2984		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2985		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2986		min_pwr_idx = table_min[0];
2987		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2988		pcdac_tmp = pcdac_high_pwr;
2989		edge_flag = 0;
2990	}
2991
2992	/* This is used when setting tx power*/
2993	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2994
2995	/* Fill Power to PCDAC table backwards */
2996	pwr = max_pwr_idx;
2997	for (i = 63; i >= 0; i--) {
2998		/* Entering lower power range, reset
2999		 * edge flag and set pcdac_tmp to lower
3000		 * power curve.*/
3001		if (edge_flag == 0x40 &&
3002		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
3003			edge_flag = 0x00;
3004			pcdac_tmp = pcdac_low_pwr;
3005			pwr = mid_pwr_idx / 2;
3006		}
3007
3008		/* Don't go below 1, extrapolate below if we have
3009		 * already switched to the lower power curve -or
3010		 * we only have one curve and edge_flag is zero
3011		 * anyway */
3012		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3013			while (i >= 0) {
3014				pcdac_out[i] = pcdac_out[i + 1];
3015				i--;
3016			}
3017			break;
3018		}
3019
3020		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3021
3022		/* Extrapolate above if pcdac is greater than
3023		 * 126 -this can happen because we OR pcdac_out
3024		 * value with edge_flag on high power curve */
3025		if (pcdac_out[i] > 126)
3026			pcdac_out[i] = 126;
3027
3028		/* Decrease by a 0.5dB step */
3029		pwr--;
3030	}
3031}
3032
3033/**
3034 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3035 * @ah: The &struct ath5k_hw
3036 */
3037static void
3038ath5k_write_pcdac_table(struct ath5k_hw *ah)
3039{
3040	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
3041	int	i;
3042
3043	/*
3044	 * Write TX power values
3045	 */
3046	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3047		ath5k_hw_reg_write(ah,
3048			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3049			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3050			AR5K_PHY_PCDAC_TXPOWER(i));
3051	}
3052}
3053
3054
3055/*
3056 * Power to PDADC table functions
3057 */
3058
3059/**
3060 * DOC: Power to PDADC table functions
3061 *
3062 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3063 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3064 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3065 * PDADC steps on y axis and looks like an exponential function like the
3066 * RF5111 curve.
3067 *
3068 * To recreate the curves we read the points from eeprom (eeprom.c)
3069 * and interpolate here. Note that in most cases only 2 (higher and lower)
3070 * curves are used (like RF5112) but vendors have the opportunity to include
3071 * all 4 curves on eeprom. The final curve (higher power) has an extra
3072 * point for better accuracy like RF5112.
3073 *
3074 * The process is similar to what we do above for RF5111/5112
3075 */
3076
3077/**
3078 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3079 * @ah: The &struct ath5k_hw
3080 * @pwr_min: Minimum power (x min)
3081 * @pwr_max: Maximum power (x max)
3082 * @pdcurves: Number of available curves
3083 *
3084 * Combine the various pd curves and create the final Power to PDADC table
3085 * We can have up to 4 pd curves, we need to do a similar process
3086 * as we do for RF5112. This time we don't have an edge_flag but we
3087 * set the gain boundaries on a separate register.
3088 */
3089static void
3090ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3091			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3092{
3093	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3094	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3095	u8 *pdadc_tmp;
3096	s16 pdadc_0;
3097	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3098	u8 pd_gain_overlap;
3099
3100	/* Note: Register value is initialized on initvals
3101	 * there is no feedback from hw.
3102	 * XXX: What about pd_gain_overlap from EEPROM ? */
3103	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3104		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3105
3106	/* Create final PDADC table */
3107	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3108		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3109
3110		if (pdg == pdcurves - 1)
3111			/* 2 dB boundary stretch for last
3112			 * (higher power) curve */
3113			gain_boundaries[pdg] = pwr_max[pdg] + 4;
3114		else
3115			/* Set gain boundary in the middle
3116			 * between this curve and the next one */
3117			gain_boundaries[pdg] =
3118				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3119
3120		/* Sanity check in case our 2 db stretch got out of
3121		 * range. */
3122		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3123			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3124
3125		/* For the first curve (lower power)
3126		 * start from 0 dB */
3127		if (pdg == 0)
3128			pdadc_0 = 0;
3129		else
3130			/* For the other curves use the gain overlap */
3131			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3132							pd_gain_overlap;
3133
3134		/* Force each power step to be at least 0.5 dB */
3135		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3136			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3137		else
3138			pwr_step = 1;
3139
3140		/* If pdadc_0 is negative, we need to extrapolate
3141		 * below this pdgain by a number of pwr_steps */
3142		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3143			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3144			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3145			pdadc_0++;
3146		}
3147
3148		/* Set last pwr level, using gain boundaries */
3149		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3150		/* Limit it to be inside pwr range */
3151		table_size = pwr_max[pdg] - pwr_min[pdg];
3152		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
3153
3154		/* Fill pdadc_out table */
3155		while (pdadc_0 < max_idx && pdadc_i < 128)
3156			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3157
3158		/* Need to extrapolate above this pdgain? */
3159		if (pdadc_n <= max_idx)
3160			continue;
3161
3162		/* Force each power step to be at least 0.5 dB */
3163		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3164			pwr_step = pdadc_tmp[table_size - 1] -
3165						pdadc_tmp[table_size - 2];
3166		else
3167			pwr_step = 1;
3168
3169		/* Extrapolate above */
3170		while ((pdadc_0 < (s16) pdadc_n) &&
3171		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3172			s16 tmp = pdadc_tmp[table_size - 1] +
3173					(pdadc_0 - max_idx) * pwr_step;
3174			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3175			pdadc_0++;
3176		}
3177	}
3178
3179	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3180		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3181		pdg++;
3182	}
3183
3184	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3185		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3186		pdadc_i++;
3187	}
3188
3189	/* Set gain boundaries */
3190	ath5k_hw_reg_write(ah,
3191		AR5K_REG_SM(pd_gain_overlap,
3192			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3193		AR5K_REG_SM(gain_boundaries[0],
3194			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3195		AR5K_REG_SM(gain_boundaries[1],
3196			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3197		AR5K_REG_SM(gain_boundaries[2],
3198			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3199		AR5K_REG_SM(gain_boundaries[3],
3200			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3201		AR5K_PHY_TPC_RG5);
3202
3203	/* Used for setting rate power table */
3204	ah->ah_txpower.txp_min_idx = pwr_min[0];
3205
3206}
3207
3208/**
3209 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3210 * @ah: The &struct ath5k_hw
3211 * @ee_mode: One of enum ath5k_driver_mode
3212 */
3213static void
3214ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3215{
3216	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3217	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3218	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3219	u8 pdcurves = ee->ee_pd_gains[ee_mode];
3220	u32 reg;
3221	u8 i;
3222
3223	/* Select the right pdgain curves */
3224
3225	/* Clear current settings */
3226	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3227	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3228		AR5K_PHY_TPC_RG1_PDGAIN_2 |
3229		AR5K_PHY_TPC_RG1_PDGAIN_3 |
3230		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3231
3232	/*
3233	 * Use pd_gains curve from eeprom
3234	 *
3235	 * This overrides the default setting from initvals
3236	 * in case some vendors (e.g. Zcomax) don't use the default
3237	 * curves. If we don't honor their settings we 'll get a
3238	 * 5dB (1 * gain overlap ?) drop.
3239	 */
3240	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3241
3242	switch (pdcurves) {
3243	case 3:
3244		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3245		/* Fall through */
3246	case 2:
3247		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3248		/* Fall through */
3249	case 1:
3250		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3251		break;
3252	}
3253	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3254
3255	/*
3256	 * Write TX power values
3257	 */
3258	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3259		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3260		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3261	}
3262}
3263
3264
3265/*
3266 * Common code for PCDAC/PDADC tables
3267 */
3268
3269/**
3270 * ath5k_setup_channel_powertable() - Set up power table for this channel
3271 * @ah: The &struct ath5k_hw
3272 * @channel: The &struct ieee80211_channel
3273 * @ee_mode: One of enum ath5k_driver_mode
3274 * @type: One of enum ath5k_powertable_type (eeprom.h)
3275 *
3276 * This is the main function that uses all of the above
3277 * to set PCDAC/PDADC table on hw for the current channel.
3278 * This table is used for tx power calibration on the baseband,
3279 * without it we get weird tx power levels and in some cases
3280 * distorted spectral mask
3281 */
3282static int
3283ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3284			struct ieee80211_channel *channel,
3285			u8 ee_mode, u8 type)
3286{
3287	struct ath5k_pdgain_info *pdg_L, *pdg_R;
3288	struct ath5k_chan_pcal_info *pcinfo_L;
3289	struct ath5k_chan_pcal_info *pcinfo_R;
3290	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3291	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3292	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3293	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3294	u8 *tmpL;
3295	u8 *tmpR;
3296	u32 target = channel->center_freq;
3297	int pdg, i;
3298
3299	/* Get surrounding freq piers for this channel */
3300	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3301						&pcinfo_L,
3302						&pcinfo_R);
3303
3304	/* Loop over pd gain curves on
3305	 * surrounding freq piers by index */
3306	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3307
3308		/* Fill curves in reverse order
3309		 * from lower power (max gain)
3310		 * to higher power. Use curve -> idx
3311		 * backmapping we did on eeprom init */
3312		u8 idx = pdg_curve_to_idx[pdg];
3313
3314		/* Grab the needed curves by index */
3315		pdg_L = &pcinfo_L->pd_curves[idx];
3316		pdg_R = &pcinfo_R->pd_curves[idx];
3317
3318		/* Initialize the temp tables */
3319		tmpL = ah->ah_txpower.tmpL[pdg];
3320		tmpR = ah->ah_txpower.tmpR[pdg];
3321
3322		/* Set curve's x boundaries and create
3323		 * curves so that they cover the same
3324		 * range (if we don't do that one table
3325		 * will have values on some range and the
3326		 * other one won't have any so interpolation
3327		 * will fail) */
3328		table_min[pdg] = min(pdg_L->pd_pwr[0],
3329					pdg_R->pd_pwr[0]) / 2;
3330
3331		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3332				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3333
3334		/* Now create the curves on surrounding channels
3335		 * and interpolate if needed to get the final
3336		 * curve for this gain on this channel */
3337		switch (type) {
3338		case AR5K_PWRTABLE_LINEAR_PCDAC:
3339			/* Override min/max so that we don't loose
3340			 * accuracy (don't divide by 2) */
3341			table_min[pdg] = min(pdg_L->pd_pwr[0],
3342						pdg_R->pd_pwr[0]);
3343
3344			table_max[pdg] =
3345				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3346					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3347
3348			/* Override minimum so that we don't get
3349			 * out of bounds while extrapolating
3350			 * below. Don't do this when we have 2
3351			 * curves and we are on the high power curve
3352			 * because table_min is ok in this case */
3353			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3354
3355				table_min[pdg] =
3356					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3357								pdg_R->pd_step,
3358								pdg_L->pd_pwr,
3359								pdg_R->pd_pwr);
3360
3361				/* Don't go too low because we will
3362				 * miss the upper part of the curve.
3363				 * Note: 126 = 31.5dB (max power supported)
3364				 * in 0.25dB units */
3365				if (table_max[pdg] - table_min[pdg] > 126)
3366					table_min[pdg] = table_max[pdg] - 126;
3367			}
3368
3369			/* Fall through */
3370		case AR5K_PWRTABLE_PWR_TO_PCDAC:
3371		case AR5K_PWRTABLE_PWR_TO_PDADC:
3372
3373			ath5k_create_power_curve(table_min[pdg],
3374						table_max[pdg],
3375						pdg_L->pd_pwr,
3376						pdg_L->pd_step,
3377						pdg_L->pd_points, tmpL, type);
3378
3379			/* We are in a calibration
3380			 * pier, no need to interpolate
3381			 * between freq piers */
3382			if (pcinfo_L == pcinfo_R)
3383				continue;
3384
3385			ath5k_create_power_curve(table_min[pdg],
3386						table_max[pdg],
3387						pdg_R->pd_pwr,
3388						pdg_R->pd_step,
3389						pdg_R->pd_points, tmpR, type);
3390			break;
3391		default:
3392			return -EINVAL;
3393		}
3394
3395		/* Interpolate between curves
3396		 * of surrounding freq piers to
3397		 * get the final curve for this
3398		 * pd gain. Re-use tmpL for interpolation
3399		 * output */
3400		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3401		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3402			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3403							(s16) pcinfo_L->freq,
3404							(s16) pcinfo_R->freq,
3405							(s16) tmpL[i],
3406							(s16) tmpR[i]);
3407		}
3408	}
3409
3410	/* Now we have a set of curves for this
3411	 * channel on tmpL (x range is table_max - table_min
3412	 * and y values are tmpL[pdg][]) sorted in the same
3413	 * order as EEPROM (because we've used the backmapping).
3414	 * So for RF5112 it's from higher power to lower power
3415	 * and for RF2413 it's from lower power to higher power.
3416	 * For RF5111 we only have one curve. */
3417
3418	/* Fill min and max power levels for this
3419	 * channel by interpolating the values on
3420	 * surrounding channels to complete the dataset */
3421	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3422					(s16) pcinfo_L->freq,
3423					(s16) pcinfo_R->freq,
3424					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3425
3426	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3427					(s16) pcinfo_L->freq,
3428					(s16) pcinfo_R->freq,
3429					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3430
3431	/* Fill PCDAC/PDADC table */
3432	switch (type) {
3433	case AR5K_PWRTABLE_LINEAR_PCDAC:
3434		/* For RF5112 we can have one or two curves
3435		 * and each curve covers a certain power lvl
3436		 * range so we need to do some more processing */
3437		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3438						ee->ee_pd_gains[ee_mode]);
3439
3440		/* Set txp.offset so that we can
3441		 * match max power value with max
3442		 * table index */
3443		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3444		break;
3445	case AR5K_PWRTABLE_PWR_TO_PCDAC:
3446		/* We are done for RF5111 since it has only
3447		 * one curve, just fit the curve on the table */
3448		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3449
3450		/* No rate powertable adjustment for RF5111 */
3451		ah->ah_txpower.txp_min_idx = 0;
3452		ah->ah_txpower.txp_offset = 0;
3453		break;
3454	case AR5K_PWRTABLE_PWR_TO_PDADC:
3455		/* Set PDADC boundaries and fill
3456		 * final PDADC table */
3457		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3458						ee->ee_pd_gains[ee_mode]);
3459
3460		/* Set txp.offset, note that table_min
3461		 * can be negative */
3462		ah->ah_txpower.txp_offset = table_min[0];
3463		break;
3464	default:
3465		return -EINVAL;
3466	}
3467
3468	ah->ah_txpower.txp_setup = true;
3469
3470	return 0;
3471}
3472
3473/**
3474 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3475 * @ah: The &struct ath5k_hw
3476 * @ee_mode: One of enum ath5k_driver_mode
3477 * @type: One of enum ath5k_powertable_type (eeprom.h)
3478 */
3479static void
3480ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3481{
3482	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3483		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3484	else
3485		ath5k_write_pcdac_table(ah);
3486}
3487
3488
3489/**
3490 * DOC: Per-rate tx power setting
3491 *
3492 * This is the code that sets the desired tx power limit (below
3493 * maximum) on hw for each rate (we also have TPC that sets
3494 * power per packet type). We do that by providing an index on the
3495 * PCDAC/PDADC table we set up above, for each rate.
3496 *
3497 * For now we only limit txpower based on maximum tx power
3498 * supported by hw (what's inside rate_info) + conformance test
3499 * limits. We need to limit this even more, based on regulatory domain
3500 * etc to be safe. Normally this is done from above so we don't care
3501 * here, all we care is that the tx power we set will be O.K.
3502 * for the hw (e.g. won't create noise on PA etc).
3503 *
3504 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3505 * x values) and is indexed as follows:
3506 * rates[0] - rates[7] -> OFDM rates
3507 * rates[8] - rates[14] -> CCK rates
3508 * rates[15] -> XR rates (they all have the same power)
3509 */
3510
3511/**
3512 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3513 * @ah: The &struct ath5k_hw
3514 * @max_pwr: The maximum tx power requested in 0.5dB steps
3515 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3516 * @ee_mode: One of enum ath5k_driver_mode
3517 */
3518static void
3519ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3520			struct ath5k_rate_pcal_info *rate_info,
3521			u8 ee_mode)
3522{
3523	unsigned int i;
3524	u16 *rates;
3525	s16 rate_idx_scaled = 0;
3526
3527	/* max_pwr is power level we got from driver/user in 0.5dB
3528	 * units, switch to 0.25dB units so we can compare */
3529	max_pwr *= 2;
3530	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3531
3532	/* apply rate limits */
3533	rates = ah->ah_txpower.txp_rates_power_table;
3534
3535	/* OFDM rates 6 to 24Mb/s */
3536	for (i = 0; i < 5; i++)
3537		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3538
3539	/* Rest OFDM rates */
3540	rates[5] = min(rates[0], rate_info->target_power_36);
3541	rates[6] = min(rates[0], rate_info->target_power_48);
3542	rates[7] = min(rates[0], rate_info->target_power_54);
3543
3544	/* CCK rates */
3545	/* 1L */
3546	rates[8] = min(rates[0], rate_info->target_power_6to24);
3547	/* 2L */
3548	rates[9] = min(rates[0], rate_info->target_power_36);
3549	/* 2S */
3550	rates[10] = min(rates[0], rate_info->target_power_36);
3551	/* 5L */
3552	rates[11] = min(rates[0], rate_info->target_power_48);
3553	/* 5S */
3554	rates[12] = min(rates[0], rate_info->target_power_48);
3555	/* 11L */
3556	rates[13] = min(rates[0], rate_info->target_power_54);
3557	/* 11S */
3558	rates[14] = min(rates[0], rate_info->target_power_54);
3559
3560	/* XR rates */
3561	rates[15] = min(rates[0], rate_info->target_power_6to24);
3562
3563	/* CCK rates have different peak to average ratio
3564	 * so we have to tweak their power so that gainf
3565	 * correction works ok. For this we use OFDM to
3566	 * CCK delta from eeprom */
3567	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3568	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3569		for (i = 8; i <= 15; i++)
3570			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3571
3572	/* Save min/max and current tx power for this channel
3573	 * in 0.25dB units.
3574	 *
3575	 * Note: We use rates[0] for current tx power because
3576	 * it covers most of the rates, in most cases. It's our
3577	 * tx power limit and what the user expects to see. */
3578	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3579	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3580
3581	/* Set max txpower for correct OFDM operation on all rates
3582	 * -that is the txpower for 54Mbit-, it's used for the PAPD
3583	 * gain probe and it's in 0.5dB units */
3584	ah->ah_txpower.txp_ofdm = rates[7];
3585
3586	/* Now that we have all rates setup use table offset to
3587	 * match the power range set by user with the power indices
3588	 * on PCDAC/PDADC table */
3589	for (i = 0; i < 16; i++) {
3590		rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3591		/* Don't get out of bounds */
3592		if (rate_idx_scaled > 63)
3593			rate_idx_scaled = 63;
3594		if (rate_idx_scaled < 0)
3595			rate_idx_scaled = 0;
3596		rates[i] = rate_idx_scaled;
3597	}
3598}
3599
3600
3601/**
3602 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3603 * @ah: The &struct ath5k_hw
3604 * @channel: The &struct ieee80211_channel
3605 * @txpower: Requested tx power in 0.5dB steps
3606 *
3607 * Combines all of the above to set the requested tx power limit
3608 * on hw.
3609 */
3610static int
3611ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3612		 u8 txpower)
3613{
3614	struct ath5k_rate_pcal_info rate_info;
3615	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3616	int ee_mode;
3617	u8 type;
3618	int ret;
3619
3620	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3621		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3622		return -EINVAL;
3623	}
3624
3625	ee_mode = ath5k_eeprom_mode_from_channel(channel);
3626	if (ee_mode < 0) {
3627		ATH5K_ERR(ah,
3628			"invalid channel: %d\n", channel->center_freq);
3629		return -EINVAL;
3630	}
3631
3632	/* Initialize TX power table */
3633	switch (ah->ah_radio) {
3634	case AR5K_RF5110:
3635		/* TODO */
3636		return 0;
3637	case AR5K_RF5111:
3638		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3639		break;
3640	case AR5K_RF5112:
3641		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3642		break;
3643	case AR5K_RF2413:
3644	case AR5K_RF5413:
3645	case AR5K_RF2316:
3646	case AR5K_RF2317:
3647	case AR5K_RF2425:
3648		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3649		break;
3650	default:
3651		return -EINVAL;
3652	}
3653
3654	/*
3655	 * If we don't change channel/mode skip tx powertable calculation
3656	 * and use the cached one.
3657	 */
3658	if (!ah->ah_txpower.txp_setup ||
3659	    (channel->hw_value != curr_channel->hw_value) ||
3660	    (channel->center_freq != curr_channel->center_freq)) {
3661		/* Reset TX power values but preserve requested
3662		 * tx power from above */
3663		int requested_txpower = ah->ah_txpower.txp_requested;
3664
3665		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3666
3667		/* Restore TPC setting and requested tx power */
3668		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3669
3670		ah->ah_txpower.txp_requested = requested_txpower;
3671
3672		/* Calculate the powertable */
3673		ret = ath5k_setup_channel_powertable(ah, channel,
3674							ee_mode, type);
3675		if (ret)
3676			return ret;
3677	}
3678
3679	/* Write table on hw */
3680	ath5k_write_channel_powertable(ah, ee_mode, type);
3681
3682	/* Limit max power if we have a CTL available */
3683	ath5k_get_max_ctl_power(ah, channel);
3684
3685	/* FIXME: Antenna reduction stuff */
3686
3687	/* FIXME: Limit power on turbo modes */
3688
3689	/* FIXME: TPC scale reduction */
3690
3691	/* Get surrounding channels for per-rate power table
3692	 * calibration */
3693	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3694
3695	/* Setup rate power table */
3696	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3697
3698	/* Write rate power table on hw */
3699	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3700		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3701		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3702
3703	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3704		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3705		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3706
3707	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3708		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3709		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3710
3711	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3712		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3713		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3714
3715	/* FIXME: TPC support */
3716	if (ah->ah_txpower.txp_tpc) {
3717		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3718			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3719
3720		ath5k_hw_reg_write(ah,
3721			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3722			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3723			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3724			AR5K_TPC);
3725	} else {
3726		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3727			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3728	}
3729
3730	return 0;
3731}
3732
3733/**
3734 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3735 * @ah: The &struct ath5k_hw
3736 * @txpower: The requested tx power limit in 0.5dB steps
3737 *
3738 * This function provides access to ath5k_hw_txpower to the driver in
3739 * case user or an application changes it while PHY is running.
3740 */
3741int
3742ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3743{
3744	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3745		"changing txpower to %d\n", txpower);
3746
3747	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3748}
3749
3750
3751/*************\
3752 Init function
3753\*************/
3754
3755/**
3756 * ath5k_hw_phy_init() - Initialize PHY
3757 * @ah: The &struct ath5k_hw
3758 * @channel: The @struct ieee80211_channel
3759 * @mode: One of enum ath5k_driver_mode
3760 * @fast: Try a fast channel switch instead
3761 *
3762 * This is the main function used during reset to initialize PHY
3763 * or do a fast channel change if possible.
3764 *
3765 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3766 * warm reset state !
3767 */
3768int
3769ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3770		      u8 mode, bool fast)
3771{
3772	struct ieee80211_channel *curr_channel;
3773	int ret, i;
3774	u32 phy_tst1;
3775	ret = 0;
3776
3777	/*
3778	 * Sanity check for fast flag
3779	 * Don't try fast channel change when changing modulation
3780	 * mode/band. We check for chip compatibility on
3781	 * ath5k_hw_reset.
3782	 */
3783	curr_channel = ah->ah_current_channel;
3784	if (fast && (channel->hw_value != curr_channel->hw_value))
3785		return -EINVAL;
3786
3787	/*
3788	 * On fast channel change we only set the synth parameters
3789	 * while PHY is running, enable calibration and skip the rest.
3790	 */
3791	if (fast) {
3792		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3793				    AR5K_PHY_RFBUS_REQ_REQUEST);
3794		for (i = 0; i < 100; i++) {
3795			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3796				break;
3797			udelay(5);
3798		}
3799		/* Failed */
3800		if (i >= 100)
3801			return -EIO;
3802
3803		/* Set channel and wait for synth */
3804		ret = ath5k_hw_channel(ah, channel);
3805		if (ret)
3806			return ret;
3807
3808		ath5k_hw_wait_for_synth(ah, channel);
3809	}
3810
3811	/*
3812	 * Set TX power
3813	 *
3814	 * Note: We need to do that before we set
3815	 * RF buffer settings on 5211/5212+ so that we
3816	 * properly set curve indices.
3817	 */
3818	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3819					ah->ah_txpower.txp_requested * 2 :
3820					AR5K_TUNE_MAX_TXPOWER);
3821	if (ret)
3822		return ret;
3823
3824	/* Write OFDM timings on 5212*/
3825	if (ah->ah_version == AR5K_AR5212 &&
3826		channel->hw_value != AR5K_MODE_11B) {
3827
3828		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3829		if (ret)
3830			return ret;
3831
3832		/* Spur info is available only from EEPROM versions
3833		 * greater than 5.3, but the EEPROM routines will use
3834		 * static values for older versions */
3835		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3836			ath5k_hw_set_spur_mitigation_filter(ah,
3837							    channel);
3838	}
3839
3840	/* If we used fast channel switching
3841	 * we are done, release RF bus and
3842	 * fire up NF calibration.
3843	 *
3844	 * Note: Only NF calibration due to
3845	 * channel change, not AGC calibration
3846	 * since AGC is still running !
3847	 */
3848	if (fast) {
3849		/*
3850		 * Release RF Bus grant
3851		 */
3852		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3853				    AR5K_PHY_RFBUS_REQ_REQUEST);
3854
3855		/*
3856		 * Start NF calibration
3857		 */
3858		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3859					AR5K_PHY_AGCCTL_NF);
3860
3861		return ret;
3862	}
3863
3864	/*
3865	 * For 5210 we do all initialization using
3866	 * initvals, so we don't have to modify
3867	 * any settings (5210 also only supports
3868	 * a/aturbo modes)
3869	 */
3870	if (ah->ah_version != AR5K_AR5210) {
3871
3872		/*
3873		 * Write initial RF gain settings
3874		 * This should work for both 5111/5112
3875		 */
3876		ret = ath5k_hw_rfgain_init(ah, channel->band);
3877		if (ret)
3878			return ret;
3879
3880		usleep_range(1000, 1500);
3881
3882		/*
3883		 * Write RF buffer
3884		 */
3885		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3886		if (ret)
3887			return ret;
3888
3889		/*Enable/disable 802.11b mode on 5111
3890		(enable 2111 frequency converter + CCK)*/
3891		if (ah->ah_radio == AR5K_RF5111) {
3892			if (mode == AR5K_MODE_11B)
3893				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3894				    AR5K_TXCFG_B_MODE);
3895			else
3896				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3897				    AR5K_TXCFG_B_MODE);
3898		}
3899
3900	} else if (ah->ah_version == AR5K_AR5210) {
3901		usleep_range(1000, 1500);
3902		/* Disable phy and wait */
3903		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3904		usleep_range(1000, 1500);
3905	}
3906
3907	/* Set channel on PHY */
3908	ret = ath5k_hw_channel(ah, channel);
3909	if (ret)
3910		return ret;
3911
3912	/*
3913	 * Enable the PHY and wait until completion
3914	 * This includes BaseBand and Synthesizer
3915	 * activation.
3916	 */
3917	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3918
3919	ath5k_hw_wait_for_synth(ah, channel);
3920
3921	/*
3922	 * Perform ADC test to see if baseband is ready
3923	 * Set tx hold and check adc test register
3924	 */
3925	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3926	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3927	for (i = 0; i <= 20; i++) {
3928		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3929			break;
3930		usleep_range(200, 250);
3931	}
3932	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3933
3934	/*
3935	 * Start automatic gain control calibration
3936	 *
3937	 * During AGC calibration RX path is re-routed to
3938	 * a power detector so we don't receive anything.
3939	 *
3940	 * This method is used to calibrate some static offsets
3941	 * used together with on-the fly I/Q calibration (the
3942	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3943	 * interrupt rx path.
3944	 *
3945	 * While rx path is re-routed to the power detector we also
3946	 * start a noise floor calibration to measure the
3947	 * card's noise floor (the noise we measure when we are not
3948	 * transmitting or receiving anything).
3949	 *
3950	 * If we are in a noisy environment, AGC calibration may time
3951	 * out and/or noise floor calibration might timeout.
3952	 */
3953	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3954				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3955
3956	/* At the same time start I/Q calibration for QAM constellation
3957	 * -no need for CCK- */
3958	ah->ah_iq_cal_needed = false;
3959	if (!(mode == AR5K_MODE_11B)) {
3960		ah->ah_iq_cal_needed = true;
3961		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3962				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3963		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3964				AR5K_PHY_IQ_RUN);
3965	}
3966
3967	/* Wait for gain calibration to finish (we check for I/Q calibration
3968	 * during ath5k_phy_calibrate) */
3969	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3970			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3971		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3972			channel->center_freq);
3973	}
3974
3975	/* Restore antenna mode */
3976	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3977
3978	return ret;
3979}
3980