[go: nahoru, domu]

phy.c revision ca8bfd94bbe5bd89ff6a4bbf5a050251950cce25
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
24#include <linux/slab.h>
25
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
29#include "rfbuffer.h"
30#include "rfgain.h"
31
32
33/******************\
34* Helper functions *
35\******************/
36
37/*
38 * Get the PHY Chip revision
39 */
40u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
41{
42	unsigned int i;
43	u32 srev;
44	u16 ret;
45
46	/*
47	 * Set the radio chip access register
48	 */
49	switch (chan) {
50	case CHANNEL_2GHZ:
51		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
52		break;
53	case CHANNEL_5GHZ:
54		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
55		break;
56	default:
57		return 0;
58	}
59
60	mdelay(2);
61
62	/* ...wait until PHY is ready and read the selected radio revision */
63	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
64
65	for (i = 0; i < 8; i++)
66		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
67
68	if (ah->ah_version == AR5K_AR5210) {
69		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
70		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
71	} else {
72		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
73		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
74				((srev & 0x0f) << 4), 8);
75	}
76
77	/* Reset to the 5GHz mode */
78	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
79
80	return ret;
81}
82
83/*
84 * Check if a channel is supported
85 */
86bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
87{
88	/* Check if the channel is in our supported range */
89	if (flags & CHANNEL_2GHZ) {
90		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
91		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
92			return true;
93	} else if (flags & CHANNEL_5GHZ)
94		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
95		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
96			return true;
97
98	return false;
99}
100
101bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
102				struct ieee80211_channel *channel)
103{
104	u8 refclk_freq;
105
106	if ((ah->ah_radio == AR5K_RF5112) ||
107	(ah->ah_radio == AR5K_RF5413) ||
108	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
109		refclk_freq = 40;
110	else
111		refclk_freq = 32;
112
113	if ((channel->center_freq % refclk_freq != 0) &&
114	((channel->center_freq % refclk_freq < 10) ||
115	(channel->center_freq % refclk_freq > 22)))
116		return true;
117	else
118		return false;
119}
120
121/*
122 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
123 */
124static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
125					const struct ath5k_rf_reg *rf_regs,
126					u32 val, u8 reg_id, bool set)
127{
128	const struct ath5k_rf_reg *rfreg = NULL;
129	u8 offset, bank, num_bits, col, position;
130	u16 entry;
131	u32 mask, data, last_bit, bits_shifted, first_bit;
132	u32 *rfb;
133	s32 bits_left;
134	int i;
135
136	data = 0;
137	rfb = ah->ah_rf_banks;
138
139	for (i = 0; i < ah->ah_rf_regs_count; i++) {
140		if (rf_regs[i].index == reg_id) {
141			rfreg = &rf_regs[i];
142			break;
143		}
144	}
145
146	if (rfb == NULL || rfreg == NULL) {
147		ATH5K_PRINTF("Rf register not found!\n");
148		/* should not happen */
149		return 0;
150	}
151
152	bank = rfreg->bank;
153	num_bits = rfreg->field.len;
154	first_bit = rfreg->field.pos;
155	col = rfreg->field.col;
156
157	/* first_bit is an offset from bank's
158	 * start. Since we have all banks on
159	 * the same array, we use this offset
160	 * to mark each bank's start */
161	offset = ah->ah_offset[bank];
162
163	/* Boundary check */
164	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
165		ATH5K_PRINTF("invalid values at offset %u\n", offset);
166		return 0;
167	}
168
169	entry = ((first_bit - 1) / 8) + offset;
170	position = (first_bit - 1) % 8;
171
172	if (set)
173		data = ath5k_hw_bitswap(val, num_bits);
174
175	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
176	     position = 0, entry++) {
177
178		last_bit = (position + bits_left > 8) ? 8 :
179					position + bits_left;
180
181		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
182								(col * 8);
183
184		if (set) {
185			rfb[entry] &= ~mask;
186			rfb[entry] |= ((data << position) << (col * 8)) & mask;
187			data >>= (8 - position);
188		} else {
189			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
190				<< bits_shifted;
191			bits_shifted += last_bit - position;
192		}
193
194		bits_left -= 8 - position;
195	}
196
197	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
198
199	return data;
200}
201
202/**
203 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
204 *
205 * @ah: the &struct ath5k_hw
206 * @channel: the currently set channel upon reset
207 *
208 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
209 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
210 *
211 * Since delta slope is floating point we split it on its exponent and
212 * mantissa and provide these values on hw.
213 *
214 * For more infos i think this patent is related
215 * http://www.freepatentsonline.com/7184495.html
216 */
217static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
218	struct ieee80211_channel *channel)
219{
220	/* Get exponent and mantissa and set it */
221	u32 coef_scaled, coef_exp, coef_man,
222		ds_coef_exp, ds_coef_man, clock;
223
224	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
225		!(channel->hw_value & CHANNEL_OFDM));
226
227	/* Get coefficient
228	 * ALGO: coef = (5 * clock / carrier_freq) / 2
229	 * we scale coef by shifting clock value by 24 for
230	 * better precision since we use integers */
231	switch (ah->ah_bwmode) {
232	case AR5K_BWMODE_40MHZ:
233		clock = 40 * 2;
234		break;
235	case AR5K_BWMODE_10MHZ:
236		clock = 40 / 2;
237		break;
238	case AR5K_BWMODE_5MHZ:
239		clock = 40 / 4;
240		break;
241	default:
242		clock = 40;
243		break;
244	}
245	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
246
247	/* Get exponent
248	 * ALGO: coef_exp = 14 - highest set bit position */
249	coef_exp = ilog2(coef_scaled);
250
251	/* Doesn't make sense if it's zero*/
252	if (!coef_scaled || !coef_exp)
253		return -EINVAL;
254
255	/* Note: we've shifted coef_scaled by 24 */
256	coef_exp = 14 - (coef_exp - 24);
257
258
259	/* Get mantissa (significant digits)
260	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
261	coef_man = coef_scaled +
262		(1 << (24 - coef_exp - 1));
263
264	/* Calculate delta slope coefficient exponent
265	 * and mantissa (remove scaling) and set them on hw */
266	ds_coef_man = coef_man >> (24 - coef_exp);
267	ds_coef_exp = coef_exp - 16;
268
269	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
270		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
271	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
272		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
273
274	return 0;
275}
276
277int ath5k_hw_phy_disable(struct ath5k_hw *ah)
278{
279	/*Just a try M.F.*/
280	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
281
282	return 0;
283}
284
285/*
286 * Wait for synth to settle
287 */
288static void ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
289			struct ieee80211_channel *channel)
290{
291	/*
292	 * On 5211+ read activation -> rx delay
293	 * and use it (100ns steps).
294	 */
295	if (ah->ah_version != AR5K_AR5210) {
296		u32 delay;
297		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
298			AR5K_PHY_RX_DELAY_M;
299		delay = (channel->hw_value & CHANNEL_CCK) ?
300			((delay << 2) / 22) : (delay / 10);
301		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
302			delay = delay << 1;
303		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
304			delay = delay << 2;
305		/* XXX: /2 on turbo ? Let's be safe
306		 * for now */
307		udelay(100 + delay);
308	} else {
309		mdelay(1);
310	}
311}
312
313
314/**********************\
315* RF Gain optimization *
316\**********************/
317
318/*
319 * This code is used to optimize RF gain on different environments
320 * (temperature mostly) based on feedback from a power detector.
321 *
322 * It's only used on RF5111 and RF5112, later RF chips seem to have
323 * auto adjustment on hw -notice they have a much smaller BANK 7 and
324 * no gain optimization ladder-.
325 *
326 * For more infos check out this patent doc
327 * http://www.freepatentsonline.com/7400691.html
328 *
329 * This paper describes power drops as seen on the receiver due to
330 * probe packets
331 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
332 * %20of%20Power%20Control.pdf
333 *
334 * And this is the MadWiFi bug entry related to the above
335 * http://madwifi-project.org/ticket/1659
336 * with various measurements and diagrams
337 *
338 * TODO: Deal with power drops due to probes by setting an appropriate
339 * tx power on the probe packets ! Make this part of the calibration process.
340 */
341
342/* Initialize ah_gain during attach */
343int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
344{
345	/* Initialize the gain optimization values */
346	switch (ah->ah_radio) {
347	case AR5K_RF5111:
348		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
349		ah->ah_gain.g_low = 20;
350		ah->ah_gain.g_high = 35;
351		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
352		break;
353	case AR5K_RF5112:
354		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
355		ah->ah_gain.g_low = 20;
356		ah->ah_gain.g_high = 85;
357		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
358		break;
359	default:
360		return -EINVAL;
361	}
362
363	return 0;
364}
365
366/* Schedule a gain probe check on the next transmitted packet.
367 * That means our next packet is going to be sent with lower
368 * tx power and a Peak to Average Power Detector (PAPD) will try
369 * to measure the gain.
370 *
371 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
372 * just after we enable the probe so that we don't mess with
373 * standard traffic ? Maybe it's time to use sw interrupts and
374 * a probe tasklet !!!
375 */
376static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
377{
378
379	/* Skip if gain calibration is inactive or
380	 * we already handle a probe request */
381	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
382		return;
383
384	/* Send the packet with 2dB below max power as
385	 * patent doc suggest */
386	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
387			AR5K_PHY_PAPD_PROBE_TXPOWER) |
388			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
389
390	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
391
392}
393
394/* Calculate gain_F measurement correction
395 * based on the current step for RF5112 rev. 2 */
396static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
397{
398	u32 mix, step;
399	u32 *rf;
400	const struct ath5k_gain_opt *go;
401	const struct ath5k_gain_opt_step *g_step;
402	const struct ath5k_rf_reg *rf_regs;
403
404	/* Only RF5112 Rev. 2 supports it */
405	if ((ah->ah_radio != AR5K_RF5112) ||
406	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
407		return 0;
408
409	go = &rfgain_opt_5112;
410	rf_regs = rf_regs_5112a;
411	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
412
413	g_step = &go->go_step[ah->ah_gain.g_step_idx];
414
415	if (ah->ah_rf_banks == NULL)
416		return 0;
417
418	rf = ah->ah_rf_banks;
419	ah->ah_gain.g_f_corr = 0;
420
421	/* No VGA (Variable Gain Amplifier) override, skip */
422	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
423		return 0;
424
425	/* Mix gain stepping */
426	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
427
428	/* Mix gain override */
429	mix = g_step->gos_param[0];
430
431	switch (mix) {
432	case 3:
433		ah->ah_gain.g_f_corr = step * 2;
434		break;
435	case 2:
436		ah->ah_gain.g_f_corr = (step - 5) * 2;
437		break;
438	case 1:
439		ah->ah_gain.g_f_corr = step;
440		break;
441	default:
442		ah->ah_gain.g_f_corr = 0;
443		break;
444	}
445
446	return ah->ah_gain.g_f_corr;
447}
448
449/* Check if current gain_F measurement is in the range of our
450 * power detector windows. If we get a measurement outside range
451 * we know it's not accurate (detectors can't measure anything outside
452 * their detection window) so we must ignore it */
453static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
454{
455	const struct ath5k_rf_reg *rf_regs;
456	u32 step, mix_ovr, level[4];
457	u32 *rf;
458
459	if (ah->ah_rf_banks == NULL)
460		return false;
461
462	rf = ah->ah_rf_banks;
463
464	if (ah->ah_radio == AR5K_RF5111) {
465
466		rf_regs = rf_regs_5111;
467		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
468
469		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
470			false);
471
472		level[0] = 0;
473		level[1] = (step == 63) ? 50 : step + 4;
474		level[2] = (step != 63) ? 64 : level[0];
475		level[3] = level[2] + 50;
476
477		ah->ah_gain.g_high = level[3] -
478			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
479		ah->ah_gain.g_low = level[0] +
480			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
481	} else {
482
483		rf_regs = rf_regs_5112;
484		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
485
486		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
487			false);
488
489		level[0] = level[2] = 0;
490
491		if (mix_ovr == 1) {
492			level[1] = level[3] = 83;
493		} else {
494			level[1] = level[3] = 107;
495			ah->ah_gain.g_high = 55;
496		}
497	}
498
499	return (ah->ah_gain.g_current >= level[0] &&
500			ah->ah_gain.g_current <= level[1]) ||
501		(ah->ah_gain.g_current >= level[2] &&
502			ah->ah_gain.g_current <= level[3]);
503}
504
505/* Perform gain_F adjustment by choosing the right set
506 * of parameters from RF gain optimization ladder */
507static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
508{
509	const struct ath5k_gain_opt *go;
510	const struct ath5k_gain_opt_step *g_step;
511	int ret = 0;
512
513	switch (ah->ah_radio) {
514	case AR5K_RF5111:
515		go = &rfgain_opt_5111;
516		break;
517	case AR5K_RF5112:
518		go = &rfgain_opt_5112;
519		break;
520	default:
521		return 0;
522	}
523
524	g_step = &go->go_step[ah->ah_gain.g_step_idx];
525
526	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
527
528		/* Reached maximum */
529		if (ah->ah_gain.g_step_idx == 0)
530			return -1;
531
532		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
533				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
534				ah->ah_gain.g_step_idx > 0;
535				g_step = &go->go_step[ah->ah_gain.g_step_idx])
536			ah->ah_gain.g_target -= 2 *
537			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
538			    g_step->gos_gain);
539
540		ret = 1;
541		goto done;
542	}
543
544	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
545
546		/* Reached minimum */
547		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
548			return -2;
549
550		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
551				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
552				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
553				g_step = &go->go_step[ah->ah_gain.g_step_idx])
554			ah->ah_gain.g_target -= 2 *
555			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
556			    g_step->gos_gain);
557
558		ret = 2;
559		goto done;
560	}
561
562done:
563	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
564		"ret %d, gain step %u, current gain %u, target gain %u\n",
565		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
566		ah->ah_gain.g_target);
567
568	return ret;
569}
570
571/* Main callback for thermal RF gain calibration engine
572 * Check for a new gain reading and schedule an adjustment
573 * if needed.
574 *
575 * TODO: Use sw interrupt to schedule reset if gain_F needs
576 * adjustment */
577enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
578{
579	u32 data, type;
580	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
581
582	if (ah->ah_rf_banks == NULL ||
583	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
584		return AR5K_RFGAIN_INACTIVE;
585
586	/* No check requested, either engine is inactive
587	 * or an adjustment is already requested */
588	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
589		goto done;
590
591	/* Read the PAPD (Peak to Average Power Detector)
592	 * register */
593	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
594
595	/* No probe is scheduled, read gain_F measurement */
596	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
597		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
598		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
599
600		/* If tx packet is CCK correct the gain_F measurement
601		 * by cck ofdm gain delta */
602		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
603			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
604				ah->ah_gain.g_current +=
605					ee->ee_cck_ofdm_gain_delta;
606			else
607				ah->ah_gain.g_current +=
608					AR5K_GAIN_CCK_PROBE_CORR;
609		}
610
611		/* Further correct gain_F measurement for
612		 * RF5112A radios */
613		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
614			ath5k_hw_rf_gainf_corr(ah);
615			ah->ah_gain.g_current =
616				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
617				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
618				0;
619		}
620
621		/* Check if measurement is ok and if we need
622		 * to adjust gain, schedule a gain adjustment,
623		 * else switch back to the active state */
624		if (ath5k_hw_rf_check_gainf_readback(ah) &&
625		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
626		ath5k_hw_rf_gainf_adjust(ah)) {
627			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
628		} else {
629			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
630		}
631	}
632
633done:
634	return ah->ah_gain.g_state;
635}
636
637/* Write initial RF gain table to set the RF sensitivity
638 * this one works on all RF chips and has nothing to do
639 * with gain_F calibration */
640static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
641{
642	const struct ath5k_ini_rfgain *ath5k_rfg;
643	unsigned int i, size, index;
644
645	switch (ah->ah_radio) {
646	case AR5K_RF5111:
647		ath5k_rfg = rfgain_5111;
648		size = ARRAY_SIZE(rfgain_5111);
649		break;
650	case AR5K_RF5112:
651		ath5k_rfg = rfgain_5112;
652		size = ARRAY_SIZE(rfgain_5112);
653		break;
654	case AR5K_RF2413:
655		ath5k_rfg = rfgain_2413;
656		size = ARRAY_SIZE(rfgain_2413);
657		break;
658	case AR5K_RF2316:
659		ath5k_rfg = rfgain_2316;
660		size = ARRAY_SIZE(rfgain_2316);
661		break;
662	case AR5K_RF5413:
663		ath5k_rfg = rfgain_5413;
664		size = ARRAY_SIZE(rfgain_5413);
665		break;
666	case AR5K_RF2317:
667	case AR5K_RF2425:
668		ath5k_rfg = rfgain_2425;
669		size = ARRAY_SIZE(rfgain_2425);
670		break;
671	default:
672		return -EINVAL;
673	}
674
675	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
676
677	for (i = 0; i < size; i++) {
678		AR5K_REG_WAIT(i);
679		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
680			(u32)ath5k_rfg[i].rfg_register);
681	}
682
683	return 0;
684}
685
686
687
688/********************\
689* RF Registers setup *
690\********************/
691
692/*
693 * Setup RF registers by writing RF buffer on hw
694 */
695static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
696	struct ieee80211_channel *channel, unsigned int mode)
697{
698	const struct ath5k_rf_reg *rf_regs;
699	const struct ath5k_ini_rfbuffer *ini_rfb;
700	const struct ath5k_gain_opt *go = NULL;
701	const struct ath5k_gain_opt_step *g_step;
702	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
703	u8 ee_mode = 0;
704	u32 *rfb;
705	int i, obdb = -1, bank = -1;
706
707	switch (ah->ah_radio) {
708	case AR5K_RF5111:
709		rf_regs = rf_regs_5111;
710		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
711		ini_rfb = rfb_5111;
712		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
713		go = &rfgain_opt_5111;
714		break;
715	case AR5K_RF5112:
716		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
717			rf_regs = rf_regs_5112a;
718			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
719			ini_rfb = rfb_5112a;
720			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
721		} else {
722			rf_regs = rf_regs_5112;
723			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
724			ini_rfb = rfb_5112;
725			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
726		}
727		go = &rfgain_opt_5112;
728		break;
729	case AR5K_RF2413:
730		rf_regs = rf_regs_2413;
731		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
732		ini_rfb = rfb_2413;
733		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
734		break;
735	case AR5K_RF2316:
736		rf_regs = rf_regs_2316;
737		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
738		ini_rfb = rfb_2316;
739		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
740		break;
741	case AR5K_RF5413:
742		rf_regs = rf_regs_5413;
743		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
744		ini_rfb = rfb_5413;
745		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
746		break;
747	case AR5K_RF2317:
748		rf_regs = rf_regs_2425;
749		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
750		ini_rfb = rfb_2317;
751		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
752		break;
753	case AR5K_RF2425:
754		rf_regs = rf_regs_2425;
755		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
756		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
757			ini_rfb = rfb_2425;
758			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
759		} else {
760			ini_rfb = rfb_2417;
761			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
762		}
763		break;
764	default:
765		return -EINVAL;
766	}
767
768	/* If it's the first time we set RF buffer, allocate
769	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
770	 * we set above */
771	if (ah->ah_rf_banks == NULL) {
772		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
773								GFP_KERNEL);
774		if (ah->ah_rf_banks == NULL) {
775			ATH5K_ERR(ah->ah_sc, "out of memory\n");
776			return -ENOMEM;
777		}
778	}
779
780	/* Copy values to modify them */
781	rfb = ah->ah_rf_banks;
782
783	for (i = 0; i < ah->ah_rf_banks_size; i++) {
784		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
785			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
786			return -EINVAL;
787		}
788
789		/* Bank changed, write down the offset */
790		if (bank != ini_rfb[i].rfb_bank) {
791			bank = ini_rfb[i].rfb_bank;
792			ah->ah_offset[bank] = i;
793		}
794
795		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
796	}
797
798	/* Set Output and Driver bias current (OB/DB) */
799	if (channel->hw_value & CHANNEL_2GHZ) {
800
801		if (channel->hw_value & CHANNEL_CCK)
802			ee_mode = AR5K_EEPROM_MODE_11B;
803		else
804			ee_mode = AR5K_EEPROM_MODE_11G;
805
806		/* For RF511X/RF211X combination we
807		 * use b_OB and b_DB parameters stored
808		 * in eeprom on ee->ee_ob[ee_mode][0]
809		 *
810		 * For all other chips we use OB/DB for 2GHz
811		 * stored in the b/g modal section just like
812		 * 802.11a on ee->ee_ob[ee_mode][1] */
813		if ((ah->ah_radio == AR5K_RF5111) ||
814		(ah->ah_radio == AR5K_RF5112))
815			obdb = 0;
816		else
817			obdb = 1;
818
819		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
820						AR5K_RF_OB_2GHZ, true);
821
822		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
823						AR5K_RF_DB_2GHZ, true);
824
825	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
826	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
827			(ah->ah_radio == AR5K_RF5111)) {
828
829		/* For 11a, Turbo and XR we need to choose
830		 * OB/DB based on frequency range */
831		ee_mode = AR5K_EEPROM_MODE_11A;
832		obdb =	 channel->center_freq >= 5725 ? 3 :
833			(channel->center_freq >= 5500 ? 2 :
834			(channel->center_freq >= 5260 ? 1 :
835			 (channel->center_freq > 4000 ? 0 : -1)));
836
837		if (obdb < 0)
838			return -EINVAL;
839
840		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
841						AR5K_RF_OB_5GHZ, true);
842
843		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
844						AR5K_RF_DB_5GHZ, true);
845	}
846
847	g_step = &go->go_step[ah->ah_gain.g_step_idx];
848
849	/* Set turbo mode (N/A on RF5413) */
850	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
851	(ah->ah_radio != AR5K_RF5413))
852		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
853
854	/* Bank Modifications (chip-specific) */
855	if (ah->ah_radio == AR5K_RF5111) {
856
857		/* Set gain_F settings according to current step */
858		if (channel->hw_value & CHANNEL_OFDM) {
859
860			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
861					AR5K_PHY_FRAME_CTL_TX_CLIP,
862					g_step->gos_param[0]);
863
864			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
865							AR5K_RF_PWD_90, true);
866
867			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
868							AR5K_RF_PWD_84, true);
869
870			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
871						AR5K_RF_RFGAIN_SEL, true);
872
873			/* We programmed gain_F parameters, switch back
874			 * to active state */
875			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
876
877		}
878
879		/* Bank 6/7 setup */
880
881		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
882						AR5K_RF_PWD_XPD, true);
883
884		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
885						AR5K_RF_XPD_GAIN, true);
886
887		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
888						AR5K_RF_GAIN_I, true);
889
890		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
891						AR5K_RF_PLO_SEL, true);
892
893		/* Tweak power detectors for half/quarter rate support */
894		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
895		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
896			u8 wait_i;
897
898			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
899						AR5K_RF_WAIT_S, true);
900
901			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
902							0x1f : 0x10;
903
904			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
905						AR5K_RF_WAIT_I, true);
906			ath5k_hw_rfb_op(ah, rf_regs, 3,
907						AR5K_RF_MAX_TIME, true);
908
909		}
910	}
911
912	if (ah->ah_radio == AR5K_RF5112) {
913
914		/* Set gain_F settings according to current step */
915		if (channel->hw_value & CHANNEL_OFDM) {
916
917			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
918						AR5K_RF_MIXGAIN_OVR, true);
919
920			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
921						AR5K_RF_PWD_138, true);
922
923			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
924						AR5K_RF_PWD_137, true);
925
926			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
927						AR5K_RF_PWD_136, true);
928
929			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
930						AR5K_RF_PWD_132, true);
931
932			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
933						AR5K_RF_PWD_131, true);
934
935			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
936						AR5K_RF_PWD_130, true);
937
938			/* We programmed gain_F parameters, switch back
939			 * to active state */
940			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
941		}
942
943		/* Bank 6/7 setup */
944
945		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
946						AR5K_RF_XPD_SEL, true);
947
948		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
949			/* Rev. 1 supports only one xpd */
950			ath5k_hw_rfb_op(ah, rf_regs,
951						ee->ee_x_gain[ee_mode],
952						AR5K_RF_XPD_GAIN, true);
953
954		} else {
955			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
956			if (ee->ee_pd_gains[ee_mode] > 1) {
957				ath5k_hw_rfb_op(ah, rf_regs,
958						pdg_curve_to_idx[0],
959						AR5K_RF_PD_GAIN_LO, true);
960				ath5k_hw_rfb_op(ah, rf_regs,
961						pdg_curve_to_idx[1],
962						AR5K_RF_PD_GAIN_HI, true);
963			} else {
964				ath5k_hw_rfb_op(ah, rf_regs,
965						pdg_curve_to_idx[0],
966						AR5K_RF_PD_GAIN_LO, true);
967				ath5k_hw_rfb_op(ah, rf_regs,
968						pdg_curve_to_idx[0],
969						AR5K_RF_PD_GAIN_HI, true);
970			}
971
972			/* Lower synth voltage on Rev 2 */
973			if (ah->ah_radio == AR5K_RF5112 &&
974			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
975				ath5k_hw_rfb_op(ah, rf_regs, 2,
976						AR5K_RF_HIGH_VC_CP, true);
977
978				ath5k_hw_rfb_op(ah, rf_regs, 2,
979						AR5K_RF_MID_VC_CP, true);
980
981				ath5k_hw_rfb_op(ah, rf_regs, 2,
982						AR5K_RF_LOW_VC_CP, true);
983
984				ath5k_hw_rfb_op(ah, rf_regs, 2,
985						AR5K_RF_PUSH_UP, true);
986			}
987
988			/* Decrease power consumption on 5213+ BaseBand */
989			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
990				ath5k_hw_rfb_op(ah, rf_regs, 1,
991						AR5K_RF_PAD2GND, true);
992
993				ath5k_hw_rfb_op(ah, rf_regs, 1,
994						AR5K_RF_XB2_LVL, true);
995
996				ath5k_hw_rfb_op(ah, rf_regs, 1,
997						AR5K_RF_XB5_LVL, true);
998
999				ath5k_hw_rfb_op(ah, rf_regs, 1,
1000						AR5K_RF_PWD_167, true);
1001
1002				ath5k_hw_rfb_op(ah, rf_regs, 1,
1003						AR5K_RF_PWD_166, true);
1004			}
1005		}
1006
1007		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1008						AR5K_RF_GAIN_I, true);
1009
1010		/* Tweak power detector for half/quarter rates */
1011		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1012		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1013			u8 pd_delay;
1014
1015			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1016							0xf : 0x8;
1017
1018			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1019						AR5K_RF_PD_PERIOD_A, true);
1020			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1021						AR5K_RF_PD_DELAY_A, true);
1022
1023		}
1024	}
1025
1026	if (ah->ah_radio == AR5K_RF5413 &&
1027	channel->hw_value & CHANNEL_2GHZ) {
1028
1029		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1030									true);
1031
1032		/* Set optimum value for early revisions (on pci-e chips) */
1033		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1034		ah->ah_mac_srev < AR5K_SREV_AR5413)
1035			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1036						AR5K_RF_PWD_ICLOBUF_2G, true);
1037
1038	}
1039
1040	/* Write RF banks on hw */
1041	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1042		AR5K_REG_WAIT(i);
1043		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1044	}
1045
1046	return 0;
1047}
1048
1049
1050/**************************\
1051  PHY/RF channel functions
1052\**************************/
1053
1054/*
1055 * Conversion needed for RF5110
1056 */
1057static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1058{
1059	u32 athchan;
1060
1061	/*
1062	 * Convert IEEE channel/MHz to an internal channel value used
1063	 * by the AR5210 chipset. This has not been verified with
1064	 * newer chipsets like the AR5212A who have a completely
1065	 * different RF/PHY part.
1066	 */
1067	athchan = (ath5k_hw_bitswap(
1068			(ieee80211_frequency_to_channel(
1069				channel->center_freq) - 24) / 2, 5)
1070				<< 1) | (1 << 6) | 0x1;
1071	return athchan;
1072}
1073
1074/*
1075 * Set channel on RF5110
1076 */
1077static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1078		struct ieee80211_channel *channel)
1079{
1080	u32 data;
1081
1082	/*
1083	 * Set the channel and wait
1084	 */
1085	data = ath5k_hw_rf5110_chan2athchan(channel);
1086	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1087	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1088	mdelay(1);
1089
1090	return 0;
1091}
1092
1093/*
1094 * Conversion needed for 5111
1095 */
1096static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1097		struct ath5k_athchan_2ghz *athchan)
1098{
1099	int channel;
1100
1101	/* Cast this value to catch negative channel numbers (>= -19) */
1102	channel = (int)ieee;
1103
1104	/*
1105	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1106	 */
1107	if (channel <= 13) {
1108		athchan->a2_athchan = 115 + channel;
1109		athchan->a2_flags = 0x46;
1110	} else if (channel == 14) {
1111		athchan->a2_athchan = 124;
1112		athchan->a2_flags = 0x44;
1113	} else if (channel >= 15 && channel <= 26) {
1114		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1115		athchan->a2_flags = 0x46;
1116	} else
1117		return -EINVAL;
1118
1119	return 0;
1120}
1121
1122/*
1123 * Set channel on 5111
1124 */
1125static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1126		struct ieee80211_channel *channel)
1127{
1128	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1129	unsigned int ath5k_channel =
1130		ieee80211_frequency_to_channel(channel->center_freq);
1131	u32 data0, data1, clock;
1132	int ret;
1133
1134	/*
1135	 * Set the channel on the RF5111 radio
1136	 */
1137	data0 = data1 = 0;
1138
1139	if (channel->hw_value & CHANNEL_2GHZ) {
1140		/* Map 2GHz channel to 5GHz Atheros channel ID */
1141		ret = ath5k_hw_rf5111_chan2athchan(
1142			ieee80211_frequency_to_channel(channel->center_freq),
1143			&ath5k_channel_2ghz);
1144		if (ret)
1145			return ret;
1146
1147		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1148		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1149		    << 5) | (1 << 4);
1150	}
1151
1152	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1153		clock = 1;
1154		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1155			(clock << 1) | (1 << 10) | 1;
1156	} else {
1157		clock = 0;
1158		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1159			<< 2) | (clock << 1) | (1 << 10) | 1;
1160	}
1161
1162	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1163			AR5K_RF_BUFFER);
1164	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1165			AR5K_RF_BUFFER_CONTROL_3);
1166
1167	return 0;
1168}
1169
1170/*
1171 * Set channel on 5112 and newer
1172 */
1173static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1174		struct ieee80211_channel *channel)
1175{
1176	u32 data, data0, data1, data2;
1177	u16 c;
1178
1179	data = data0 = data1 = data2 = 0;
1180	c = channel->center_freq;
1181
1182	if (c < 4800) {
1183		if (!((c - 2224) % 5)) {
1184			data0 = ((2 * (c - 704)) - 3040) / 10;
1185			data1 = 1;
1186		} else if (!((c - 2192) % 5)) {
1187			data0 = ((2 * (c - 672)) - 3040) / 10;
1188			data1 = 0;
1189		} else
1190			return -EINVAL;
1191
1192		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1193	} else if ((c % 5) != 2 || c > 5435) {
1194		if (!(c % 20) && c >= 5120) {
1195			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1196			data2 = ath5k_hw_bitswap(3, 2);
1197		} else if (!(c % 10)) {
1198			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1199			data2 = ath5k_hw_bitswap(2, 2);
1200		} else if (!(c % 5)) {
1201			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1202			data2 = ath5k_hw_bitswap(1, 2);
1203		} else
1204			return -EINVAL;
1205	} else {
1206		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1207		data2 = ath5k_hw_bitswap(0, 2);
1208	}
1209
1210	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1211
1212	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1213	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1214
1215	return 0;
1216}
1217
1218/*
1219 * Set the channel on the RF2425
1220 */
1221static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1222		struct ieee80211_channel *channel)
1223{
1224	u32 data, data0, data2;
1225	u16 c;
1226
1227	data = data0 = data2 = 0;
1228	c = channel->center_freq;
1229
1230	if (c < 4800) {
1231		data0 = ath5k_hw_bitswap((c - 2272), 8);
1232		data2 = 0;
1233	/* ? 5GHz ? */
1234	} else if ((c % 5) != 2 || c > 5435) {
1235		if (!(c % 20) && c < 5120)
1236			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1237		else if (!(c % 10))
1238			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1239		else if (!(c % 5))
1240			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1241		else
1242			return -EINVAL;
1243		data2 = ath5k_hw_bitswap(1, 2);
1244	} else {
1245		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1246		data2 = ath5k_hw_bitswap(0, 2);
1247	}
1248
1249	data = (data0 << 4) | data2 << 2 | 0x1001;
1250
1251	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1252	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1253
1254	return 0;
1255}
1256
1257/*
1258 * Set a channel on the radio chip
1259 */
1260static int ath5k_hw_channel(struct ath5k_hw *ah,
1261		struct ieee80211_channel *channel)
1262{
1263	int ret;
1264	/*
1265	 * Check bounds supported by the PHY (we don't care about regulatory
1266	 * restrictions at this point). Note: hw_value already has the band
1267	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1268	 * of the band by that */
1269	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1270		ATH5K_ERR(ah->ah_sc,
1271			"channel frequency (%u MHz) out of supported "
1272			"band range\n",
1273			channel->center_freq);
1274			return -EINVAL;
1275	}
1276
1277	/*
1278	 * Set the channel and wait
1279	 */
1280	switch (ah->ah_radio) {
1281	case AR5K_RF5110:
1282		ret = ath5k_hw_rf5110_channel(ah, channel);
1283		break;
1284	case AR5K_RF5111:
1285		ret = ath5k_hw_rf5111_channel(ah, channel);
1286		break;
1287	case AR5K_RF2317:
1288	case AR5K_RF2425:
1289		ret = ath5k_hw_rf2425_channel(ah, channel);
1290		break;
1291	default:
1292		ret = ath5k_hw_rf5112_channel(ah, channel);
1293		break;
1294	}
1295
1296	if (ret)
1297		return ret;
1298
1299	/* Set JAPAN setting for channel 14 */
1300	if (channel->center_freq == 2484) {
1301		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1302				AR5K_PHY_CCKTXCTL_JAPAN);
1303	} else {
1304		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1305				AR5K_PHY_CCKTXCTL_WORLD);
1306	}
1307
1308	ah->ah_current_channel = channel;
1309
1310	return 0;
1311}
1312
1313/*****************\
1314  PHY calibration
1315\*****************/
1316
1317static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1318{
1319	s32 val;
1320
1321	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1322	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1323}
1324
1325void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1326{
1327	int i;
1328
1329	ah->ah_nfcal_hist.index = 0;
1330	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1331		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1332}
1333
1334static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1335{
1336	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1337	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1338	hist->nfval[hist->index] = noise_floor;
1339}
1340
1341static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1342{
1343	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1344	s16 tmp;
1345	int i, j;
1346
1347	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1348	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1349		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1350			if (sort[j] > sort[j - 1]) {
1351				tmp = sort[j];
1352				sort[j] = sort[j - 1];
1353				sort[j - 1] = tmp;
1354			}
1355		}
1356	}
1357	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1358		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1359			"cal %d:%d\n", i, sort[i]);
1360	}
1361	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1362}
1363
1364/*
1365 * When we tell the hardware to perform a noise floor calibration
1366 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1367 * sample-and-hold the minimum noise level seen at the antennas.
1368 * This value is then stored in a ring buffer of recently measured
1369 * noise floor values so we have a moving window of the last few
1370 * samples.
1371 *
1372 * The median of the values in the history is then loaded into the
1373 * hardware for its own use for RSSI and CCA measurements.
1374 */
1375void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1376{
1377	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1378	u32 val;
1379	s16 nf, threshold;
1380	u8 ee_mode;
1381
1382	/* keep last value if calibration hasn't completed */
1383	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1384		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1385			"NF did not complete in calibration window\n");
1386
1387		return;
1388	}
1389
1390	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1391
1392	/* completed NF calibration, test threshold */
1393	nf = ath5k_hw_read_measured_noise_floor(ah);
1394	threshold = ee->ee_noise_floor_thr[ee_mode];
1395
1396	if (nf > threshold) {
1397		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1398			"noise floor failure detected; "
1399			"read %d, threshold %d\n",
1400			nf, threshold);
1401
1402		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1403	}
1404
1405	ath5k_hw_update_nfcal_hist(ah, nf);
1406	nf = ath5k_hw_get_median_noise_floor(ah);
1407
1408	/* load noise floor (in .5 dBm) so the hardware will use it */
1409	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1410	val |= (nf * 2) & AR5K_PHY_NF_M;
1411	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1412
1413	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1414		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1415
1416	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1417		0, false);
1418
1419	/*
1420	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1421	 * so that we're not capped by the median we just loaded.
1422	 * This will be used as the initial value for the next noise
1423	 * floor calibration.
1424	 */
1425	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1426	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1427	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1428		AR5K_PHY_AGCCTL_NF_EN |
1429		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1430		AR5K_PHY_AGCCTL_NF);
1431
1432	ah->ah_noise_floor = nf;
1433
1434	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1435		"noise floor calibrated: %d\n", nf);
1436}
1437
1438/*
1439 * Perform a PHY calibration on RF5110
1440 * -Fix BPSK/QAM Constellation (I/Q correction)
1441 */
1442static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1443		struct ieee80211_channel *channel)
1444{
1445	u32 phy_sig, phy_agc, phy_sat, beacon;
1446	int ret;
1447
1448	/*
1449	 * Disable beacons and RX/TX queues, wait
1450	 */
1451	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1452		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1453	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1454	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1455
1456	mdelay(2);
1457
1458	/*
1459	 * Set the channel (with AGC turned off)
1460	 */
1461	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1462	udelay(10);
1463	ret = ath5k_hw_channel(ah, channel);
1464
1465	/*
1466	 * Activate PHY and wait
1467	 */
1468	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1469	mdelay(1);
1470
1471	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1472
1473	if (ret)
1474		return ret;
1475
1476	/*
1477	 * Calibrate the radio chip
1478	 */
1479
1480	/* Remember normal state */
1481	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1482	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1483	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1484
1485	/* Update radio registers */
1486	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1487		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1488
1489	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1490			AR5K_PHY_AGCCOARSE_LO)) |
1491		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1492		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1493
1494	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1495			AR5K_PHY_ADCSAT_THR)) |
1496		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1497		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1498
1499	udelay(20);
1500
1501	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1502	udelay(10);
1503	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1504	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1505
1506	mdelay(1);
1507
1508	/*
1509	 * Enable calibration and wait until completion
1510	 */
1511	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1512
1513	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1514			AR5K_PHY_AGCCTL_CAL, 0, false);
1515
1516	/* Reset to normal state */
1517	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1518	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1519	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1520
1521	if (ret) {
1522		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1523				channel->center_freq);
1524		return ret;
1525	}
1526
1527	/*
1528	 * Re-enable RX/TX and beacons
1529	 */
1530	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1531		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1532	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1533
1534	return 0;
1535}
1536
1537/*
1538 * Perform I/Q calibration on RF5111/5112 and newer chips
1539 */
1540static int
1541ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1542{
1543	u32 i_pwr, q_pwr;
1544	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1545	int i;
1546
1547	if (!ah->ah_calibration ||
1548		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1549		return 0;
1550
1551	/* Calibration has finished, get the results and re-run */
1552	/* work around empty results which can apparently happen on 5212 */
1553	for (i = 0; i <= 10; i++) {
1554		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1555		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1556		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1557		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1558			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1559		if (i_pwr && q_pwr)
1560			break;
1561	}
1562
1563	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1564
1565	if (ah->ah_version == AR5K_AR5211)
1566		q_coffd = q_pwr >> 6;
1567	else
1568		q_coffd = q_pwr >> 7;
1569
1570	/* protect against divide by 0 and loss of sign bits */
1571	if (i_coffd == 0 || q_coffd < 2)
1572		return 0;
1573
1574	i_coff = (-iq_corr) / i_coffd;
1575	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1576
1577	if (ah->ah_version == AR5K_AR5211)
1578		q_coff = (i_pwr / q_coffd) - 64;
1579	else
1580		q_coff = (i_pwr / q_coffd) - 128;
1581	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1582
1583	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1584			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1585			i_coff, q_coff, i_coffd, q_coffd);
1586
1587	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1588	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1589	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1590	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1591
1592	/* Re-enable calibration -if we don't we'll commit
1593	 * the same values again and again */
1594	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1595			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1596	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1597
1598	return 0;
1599}
1600
1601/*
1602 * Perform a PHY calibration
1603 */
1604int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1605		struct ieee80211_channel *channel)
1606{
1607	int ret;
1608
1609	if (ah->ah_radio == AR5K_RF5110)
1610		return ath5k_hw_rf5110_calibrate(ah, channel);
1611
1612	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1613
1614	if ((ah->ah_radio == AR5K_RF5111 || ah->ah_radio == AR5K_RF5112) &&
1615	    (channel->hw_value & CHANNEL_OFDM))
1616		ath5k_hw_request_rfgain_probe(ah);
1617
1618	return ret;
1619}
1620
1621
1622/***************************\
1623* Spur mitigation functions *
1624\***************************/
1625
1626static void
1627ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1628				struct ieee80211_channel *channel)
1629{
1630	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1631	u32 mag_mask[4] = {0, 0, 0, 0};
1632	u32 pilot_mask[2] = {0, 0};
1633	/* Note: fbin values are scaled up by 2 */
1634	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1635	s32 spur_delta_phase, spur_freq_sigma_delta;
1636	s32 spur_offset, num_symbols_x16;
1637	u8 num_symbol_offsets, i, freq_band;
1638
1639	/* Convert current frequency to fbin value (the same way channels
1640	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1641	 * up by 2 so we can compare it later */
1642	if (channel->hw_value & CHANNEL_2GHZ) {
1643		chan_fbin = (channel->center_freq - 2300) * 10;
1644		freq_band = AR5K_EEPROM_BAND_2GHZ;
1645	} else {
1646		chan_fbin = (channel->center_freq - 4900) * 10;
1647		freq_band = AR5K_EEPROM_BAND_5GHZ;
1648	}
1649
1650	/* Check if any spur_chan_fbin from EEPROM is
1651	 * within our current channel's spur detection range */
1652	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1653	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1654	/* XXX: Half/Quarter channels ?*/
1655	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1656		spur_detection_window *= 2;
1657
1658	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1659		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1660
1661		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1662		 * so it's zero if we got nothing from EEPROM */
1663		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1664			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1665			break;
1666		}
1667
1668		if ((chan_fbin - spur_detection_window <=
1669		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1670		(chan_fbin + spur_detection_window >=
1671		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1672			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1673			break;
1674		}
1675	}
1676
1677	/* We need to enable spur filter for this channel */
1678	if (spur_chan_fbin) {
1679		spur_offset = spur_chan_fbin - chan_fbin;
1680		/*
1681		 * Calculate deltas:
1682		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1683		 * spur_delta_phase -> spur_offset / chip_freq << 11
1684		 * Note: Both values have 100Hz resolution
1685		 */
1686		switch (ah->ah_bwmode) {
1687		case AR5K_BWMODE_40MHZ:
1688			/* Both sample_freq and chip_freq are 80MHz */
1689			spur_delta_phase = (spur_offset << 16) / 25;
1690			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1691			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1692			break;
1693		case AR5K_BWMODE_10MHZ:
1694			/* Both sample_freq and chip_freq are 20MHz (?) */
1695			spur_delta_phase = (spur_offset << 18) / 25;
1696			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1697			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1698		case AR5K_BWMODE_5MHZ:
1699			/* Both sample_freq and chip_freq are 10MHz (?) */
1700			spur_delta_phase = (spur_offset << 19) / 25;
1701			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1702			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1703		default:
1704			if (channel->hw_value == CHANNEL_A) {
1705				/* Both sample_freq and chip_freq are 40MHz */
1706				spur_delta_phase = (spur_offset << 17) / 25;
1707				spur_freq_sigma_delta =
1708						(spur_delta_phase >> 10);
1709				symbol_width =
1710					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1711			} else {
1712				/* sample_freq -> 40MHz chip_freq -> 44MHz
1713				 * (for b compatibility) */
1714				spur_delta_phase = (spur_offset << 17) / 25;
1715				spur_freq_sigma_delta =
1716						(spur_offset << 8) / 55;
1717				symbol_width =
1718					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1719			}
1720			break;
1721		}
1722
1723		/* Calculate pilot and magnitude masks */
1724
1725		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1726		 * and divide by symbol_width to find how many symbols we have
1727		 * Note: number of symbols is scaled up by 16 */
1728		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1729
1730		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1731		if (!(num_symbols_x16 & 0xF))
1732			/* _X_ */
1733			num_symbol_offsets = 3;
1734		else
1735			/* _xx_ */
1736			num_symbol_offsets = 4;
1737
1738		for (i = 0; i < num_symbol_offsets; i++) {
1739
1740			/* Calculate pilot mask */
1741			s32 curr_sym_off =
1742				(num_symbols_x16 / 16) + i + 25;
1743
1744			/* Pilot magnitude mask seems to be a way to
1745			 * declare the boundaries for our detection
1746			 * window or something, it's 2 for the middle
1747			 * value(s) where the symbol is expected to be
1748			 * and 1 on the boundary values */
1749			u8 plt_mag_map =
1750				(i == 0 || i == (num_symbol_offsets - 1))
1751								? 1 : 2;
1752
1753			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1754				if (curr_sym_off <= 25)
1755					pilot_mask[0] |= 1 << curr_sym_off;
1756				else if (curr_sym_off >= 27)
1757					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1758			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1759				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1760
1761			/* Calculate magnitude mask (for viterbi decoder) */
1762			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1763				mag_mask[0] |=
1764					plt_mag_map << (curr_sym_off + 1) * 2;
1765			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1766				mag_mask[1] |=
1767					plt_mag_map << (curr_sym_off - 15) * 2;
1768			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1769				mag_mask[2] |=
1770					plt_mag_map << (curr_sym_off - 31) * 2;
1771			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1772				mag_mask[3] |=
1773					plt_mag_map << (curr_sym_off - 47) * 2;
1774
1775		}
1776
1777		/* Write settings on hw to enable spur filter */
1778		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1779					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1780		/* XXX: Self correlator also ? */
1781		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1782					AR5K_PHY_IQ_PILOT_MASK_EN |
1783					AR5K_PHY_IQ_CHAN_MASK_EN |
1784					AR5K_PHY_IQ_SPUR_FILT_EN);
1785
1786		/* Set delta phase and freq sigma delta */
1787		ath5k_hw_reg_write(ah,
1788				AR5K_REG_SM(spur_delta_phase,
1789					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1790				AR5K_REG_SM(spur_freq_sigma_delta,
1791				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1792				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1793				AR5K_PHY_TIMING_11);
1794
1795		/* Write pilot masks */
1796		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1797		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1798					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1799					pilot_mask[1]);
1800
1801		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1802		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1803					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1804					pilot_mask[1]);
1805
1806		/* Write magnitude masks */
1807		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1808		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1809		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1810		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1811					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1812					mag_mask[3]);
1813
1814		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1815		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1816		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1817		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1818					AR5K_PHY_BIN_MASK2_4_MASK_4,
1819					mag_mask[3]);
1820
1821	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1822	AR5K_PHY_IQ_SPUR_FILT_EN) {
1823		/* Clean up spur mitigation settings and disable filter */
1824		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1825					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1826		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1827					AR5K_PHY_IQ_PILOT_MASK_EN |
1828					AR5K_PHY_IQ_CHAN_MASK_EN |
1829					AR5K_PHY_IQ_SPUR_FILT_EN);
1830		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1831
1832		/* Clear pilot masks */
1833		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1834		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1835					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1836					0);
1837
1838		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1839		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1840					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1841					0);
1842
1843		/* Clear magnitude masks */
1844		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1845		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1846		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1847		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1848					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1849					0);
1850
1851		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1852		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1853		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1854		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1855					AR5K_PHY_BIN_MASK2_4_MASK_4,
1856					0);
1857	}
1858}
1859
1860
1861/*****************\
1862* Antenna control *
1863\*****************/
1864
1865static void /*TODO:Boundary check*/
1866ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1867{
1868	if (ah->ah_version != AR5K_AR5210)
1869		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1870}
1871
1872/*
1873 * Enable/disable fast rx antenna diversity
1874 */
1875static void
1876ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1877{
1878	switch (ee_mode) {
1879	case AR5K_EEPROM_MODE_11G:
1880		/* XXX: This is set to
1881		 * disabled on initvals !!! */
1882	case AR5K_EEPROM_MODE_11A:
1883		if (enable)
1884			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1885					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1886		else
1887			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1888					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1889		break;
1890	case AR5K_EEPROM_MODE_11B:
1891		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1892					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1893		break;
1894	default:
1895		return;
1896	}
1897
1898	if (enable) {
1899		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1900				AR5K_PHY_RESTART_DIV_GC, 4);
1901
1902		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1903					AR5K_PHY_FAST_ANT_DIV_EN);
1904	} else {
1905		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1906				AR5K_PHY_RESTART_DIV_GC, 0);
1907
1908		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1909					AR5K_PHY_FAST_ANT_DIV_EN);
1910	}
1911}
1912
1913void
1914ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1915{
1916	u8 ant0, ant1;
1917
1918	/*
1919	 * In case a fixed antenna was set as default
1920	 * use the same switch table twice.
1921	 */
1922	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1923		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1924	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1925		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1926	else {
1927		ant0 = AR5K_ANT_SWTABLE_A;
1928		ant1 = AR5K_ANT_SWTABLE_B;
1929	}
1930
1931	/* Set antenna idle switch table */
1932	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1933			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1934			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1935			AR5K_PHY_ANT_CTL_TXRX_EN));
1936
1937	/* Set antenna switch tables */
1938	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1939		AR5K_PHY_ANT_SWITCH_TABLE_0);
1940	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1941		AR5K_PHY_ANT_SWITCH_TABLE_1);
1942}
1943
1944/*
1945 * Set antenna operating mode
1946 */
1947void
1948ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1949{
1950	struct ieee80211_channel *channel = ah->ah_current_channel;
1951	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1952	bool use_def_for_sg;
1953	int ee_mode;
1954	u8 def_ant, tx_ant;
1955	u32 sta_id1 = 0;
1956
1957	/* if channel is not initialized yet we can't set the antennas
1958	 * so just store the mode. it will be set on the next reset */
1959	if (channel == NULL) {
1960		ah->ah_ant_mode = ant_mode;
1961		return;
1962	}
1963
1964	def_ant = ah->ah_def_ant;
1965
1966	ee_mode = ath5k_eeprom_mode_from_channel(channel);
1967	if (ee_mode < 0) {
1968		ATH5K_ERR(ah->ah_sc,
1969			"invalid channel: %d\n", channel->center_freq);
1970		return;
1971	}
1972
1973	switch (ant_mode) {
1974	case AR5K_ANTMODE_DEFAULT:
1975		tx_ant = 0;
1976		use_def_for_tx = false;
1977		update_def_on_tx = false;
1978		use_def_for_rts = false;
1979		use_def_for_sg = false;
1980		fast_div = true;
1981		break;
1982	case AR5K_ANTMODE_FIXED_A:
1983		def_ant = 1;
1984		tx_ant = 1;
1985		use_def_for_tx = true;
1986		update_def_on_tx = false;
1987		use_def_for_rts = true;
1988		use_def_for_sg = true;
1989		fast_div = false;
1990		break;
1991	case AR5K_ANTMODE_FIXED_B:
1992		def_ant = 2;
1993		tx_ant = 2;
1994		use_def_for_tx = true;
1995		update_def_on_tx = false;
1996		use_def_for_rts = true;
1997		use_def_for_sg = true;
1998		fast_div = false;
1999		break;
2000	case AR5K_ANTMODE_SINGLE_AP:
2001		def_ant = 1;	/* updated on tx */
2002		tx_ant = 0;
2003		use_def_for_tx = true;
2004		update_def_on_tx = true;
2005		use_def_for_rts = true;
2006		use_def_for_sg = true;
2007		fast_div = true;
2008		break;
2009	case AR5K_ANTMODE_SECTOR_AP:
2010		tx_ant = 1;	/* variable */
2011		use_def_for_tx = false;
2012		update_def_on_tx = false;
2013		use_def_for_rts = true;
2014		use_def_for_sg = false;
2015		fast_div = false;
2016		break;
2017	case AR5K_ANTMODE_SECTOR_STA:
2018		tx_ant = 1;	/* variable */
2019		use_def_for_tx = true;
2020		update_def_on_tx = false;
2021		use_def_for_rts = true;
2022		use_def_for_sg = false;
2023		fast_div = true;
2024		break;
2025	case AR5K_ANTMODE_DEBUG:
2026		def_ant = 1;
2027		tx_ant = 2;
2028		use_def_for_tx = false;
2029		update_def_on_tx = false;
2030		use_def_for_rts = false;
2031		use_def_for_sg = false;
2032		fast_div = false;
2033		break;
2034	default:
2035		return;
2036	}
2037
2038	ah->ah_tx_ant = tx_ant;
2039	ah->ah_ant_mode = ant_mode;
2040	ah->ah_def_ant = def_ant;
2041
2042	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2043	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2044	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2045	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2046
2047	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2048
2049	if (sta_id1)
2050		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2051
2052	ath5k_hw_set_antenna_switch(ah, ee_mode);
2053	/* Note: set diversity before default antenna
2054	 * because it won't work correctly */
2055	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2056	ath5k_hw_set_def_antenna(ah, def_ant);
2057}
2058
2059
2060/****************\
2061* TX power setup *
2062\****************/
2063
2064/*
2065 * Helper functions
2066 */
2067
2068/*
2069 * Do linear interpolation between two given (x, y) points
2070 */
2071static s16
2072ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2073					s16 y_left, s16 y_right)
2074{
2075	s16 ratio, result;
2076
2077	/* Avoid divide by zero and skip interpolation
2078	 * if we have the same point */
2079	if ((x_left == x_right) || (y_left == y_right))
2080		return y_left;
2081
2082	/*
2083	 * Since we use ints and not fps, we need to scale up in
2084	 * order to get a sane ratio value (or else we 'll eg. get
2085	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2086	 * to have some accuracy both for 0.5 and 0.25 steps.
2087	 */
2088	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2089
2090	/* Now scale down to be in range */
2091	result = y_left + (ratio * (target - x_left) / 100);
2092
2093	return result;
2094}
2095
2096/*
2097 * Find vertical boundary (min pwr) for the linear PCDAC curve.
2098 *
2099 * Since we have the top of the curve and we draw the line below
2100 * until we reach 1 (1 pcdac step) we need to know which point
2101 * (x value) that is so that we don't go below y axis and have negative
2102 * pcdac values when creating the curve, or fill the table with zeroes.
2103 */
2104static s16
2105ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2106				const s16 *pwrL, const s16 *pwrR)
2107{
2108	s8 tmp;
2109	s16 min_pwrL, min_pwrR;
2110	s16 pwr_i;
2111
2112	/* Some vendors write the same pcdac value twice !!! */
2113	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2114		return max(pwrL[0], pwrR[0]);
2115
2116	if (pwrL[0] == pwrL[1])
2117		min_pwrL = pwrL[0];
2118	else {
2119		pwr_i = pwrL[0];
2120		do {
2121			pwr_i--;
2122			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2123							pwrL[0], pwrL[1],
2124							stepL[0], stepL[1]);
2125		} while (tmp > 1);
2126
2127		min_pwrL = pwr_i;
2128	}
2129
2130	if (pwrR[0] == pwrR[1])
2131		min_pwrR = pwrR[0];
2132	else {
2133		pwr_i = pwrR[0];
2134		do {
2135			pwr_i--;
2136			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2137							pwrR[0], pwrR[1],
2138							stepR[0], stepR[1]);
2139		} while (tmp > 1);
2140
2141		min_pwrR = pwr_i;
2142	}
2143
2144	/* Keep the right boundary so that it works for both curves */
2145	return max(min_pwrL, min_pwrR);
2146}
2147
2148/*
2149 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2150 * Power to PCDAC curve.
2151 *
2152 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2153 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2154 * PCDAC/PDADC step for each curve is 64 but we can write more than
2155 * one curves on hw so we can go up to 128 (which is the max step we
2156 * can write on the final table).
2157 *
2158 * We write y values (PCDAC/PDADC steps) on hw.
2159 */
2160static void
2161ath5k_create_power_curve(s16 pmin, s16 pmax,
2162			const s16 *pwr, const u8 *vpd,
2163			u8 num_points,
2164			u8 *vpd_table, u8 type)
2165{
2166	u8 idx[2] = { 0, 1 };
2167	s16 pwr_i = 2 * pmin;
2168	int i;
2169
2170	if (num_points < 2)
2171		return;
2172
2173	/* We want the whole line, so adjust boundaries
2174	 * to cover the entire power range. Note that
2175	 * power values are already 0.25dB so no need
2176	 * to multiply pwr_i by 2 */
2177	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2178		pwr_i = pmin;
2179		pmin = 0;
2180		pmax = 63;
2181	}
2182
2183	/* Find surrounding turning points (TPs)
2184	 * and interpolate between them */
2185	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2186	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2187
2188		/* We passed the right TP, move to the next set of TPs
2189		 * if we pass the last TP, extrapolate above using the last
2190		 * two TPs for ratio */
2191		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2192			idx[0]++;
2193			idx[1]++;
2194		}
2195
2196		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2197						pwr[idx[0]], pwr[idx[1]],
2198						vpd[idx[0]], vpd[idx[1]]);
2199
2200		/* Increase by 0.5dB
2201		 * (0.25 dB units) */
2202		pwr_i += 2;
2203	}
2204}
2205
2206/*
2207 * Get the surrounding per-channel power calibration piers
2208 * for a given frequency so that we can interpolate between
2209 * them and come up with an appropriate dataset for our current
2210 * channel.
2211 */
2212static void
2213ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2214			struct ieee80211_channel *channel,
2215			struct ath5k_chan_pcal_info **pcinfo_l,
2216			struct ath5k_chan_pcal_info **pcinfo_r)
2217{
2218	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2219	struct ath5k_chan_pcal_info *pcinfo;
2220	u8 idx_l, idx_r;
2221	u8 mode, max, i;
2222	u32 target = channel->center_freq;
2223
2224	idx_l = 0;
2225	idx_r = 0;
2226
2227	if (!(channel->hw_value & CHANNEL_OFDM)) {
2228		pcinfo = ee->ee_pwr_cal_b;
2229		mode = AR5K_EEPROM_MODE_11B;
2230	} else if (channel->hw_value & CHANNEL_2GHZ) {
2231		pcinfo = ee->ee_pwr_cal_g;
2232		mode = AR5K_EEPROM_MODE_11G;
2233	} else {
2234		pcinfo = ee->ee_pwr_cal_a;
2235		mode = AR5K_EEPROM_MODE_11A;
2236	}
2237	max = ee->ee_n_piers[mode] - 1;
2238
2239	/* Frequency is below our calibrated
2240	 * range. Use the lowest power curve
2241	 * we have */
2242	if (target < pcinfo[0].freq) {
2243		idx_l = idx_r = 0;
2244		goto done;
2245	}
2246
2247	/* Frequency is above our calibrated
2248	 * range. Use the highest power curve
2249	 * we have */
2250	if (target > pcinfo[max].freq) {
2251		idx_l = idx_r = max;
2252		goto done;
2253	}
2254
2255	/* Frequency is inside our calibrated
2256	 * channel range. Pick the surrounding
2257	 * calibration piers so that we can
2258	 * interpolate */
2259	for (i = 0; i <= max; i++) {
2260
2261		/* Frequency matches one of our calibration
2262		 * piers, no need to interpolate, just use
2263		 * that calibration pier */
2264		if (pcinfo[i].freq == target) {
2265			idx_l = idx_r = i;
2266			goto done;
2267		}
2268
2269		/* We found a calibration pier that's above
2270		 * frequency, use this pier and the previous
2271		 * one to interpolate */
2272		if (target < pcinfo[i].freq) {
2273			idx_r = i;
2274			idx_l = idx_r - 1;
2275			goto done;
2276		}
2277	}
2278
2279done:
2280	*pcinfo_l = &pcinfo[idx_l];
2281	*pcinfo_r = &pcinfo[idx_r];
2282}
2283
2284/*
2285 * Get the surrounding per-rate power calibration data
2286 * for a given frequency and interpolate between power
2287 * values to set max target power supported by hw for
2288 * each rate.
2289 */
2290static void
2291ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2292			struct ieee80211_channel *channel,
2293			struct ath5k_rate_pcal_info *rates)
2294{
2295	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2296	struct ath5k_rate_pcal_info *rpinfo;
2297	u8 idx_l, idx_r;
2298	u8 mode, max, i;
2299	u32 target = channel->center_freq;
2300
2301	idx_l = 0;
2302	idx_r = 0;
2303
2304	if (!(channel->hw_value & CHANNEL_OFDM)) {
2305		rpinfo = ee->ee_rate_tpwr_b;
2306		mode = AR5K_EEPROM_MODE_11B;
2307	} else if (channel->hw_value & CHANNEL_2GHZ) {
2308		rpinfo = ee->ee_rate_tpwr_g;
2309		mode = AR5K_EEPROM_MODE_11G;
2310	} else {
2311		rpinfo = ee->ee_rate_tpwr_a;
2312		mode = AR5K_EEPROM_MODE_11A;
2313	}
2314	max = ee->ee_rate_target_pwr_num[mode] - 1;
2315
2316	/* Get the surrounding calibration
2317	 * piers - same as above */
2318	if (target < rpinfo[0].freq) {
2319		idx_l = idx_r = 0;
2320		goto done;
2321	}
2322
2323	if (target > rpinfo[max].freq) {
2324		idx_l = idx_r = max;
2325		goto done;
2326	}
2327
2328	for (i = 0; i <= max; i++) {
2329
2330		if (rpinfo[i].freq == target) {
2331			idx_l = idx_r = i;
2332			goto done;
2333		}
2334
2335		if (target < rpinfo[i].freq) {
2336			idx_r = i;
2337			idx_l = idx_r - 1;
2338			goto done;
2339		}
2340	}
2341
2342done:
2343	/* Now interpolate power value, based on the frequency */
2344	rates->freq = target;
2345
2346	rates->target_power_6to24 =
2347		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2348					rpinfo[idx_r].freq,
2349					rpinfo[idx_l].target_power_6to24,
2350					rpinfo[idx_r].target_power_6to24);
2351
2352	rates->target_power_36 =
2353		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2354					rpinfo[idx_r].freq,
2355					rpinfo[idx_l].target_power_36,
2356					rpinfo[idx_r].target_power_36);
2357
2358	rates->target_power_48 =
2359		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2360					rpinfo[idx_r].freq,
2361					rpinfo[idx_l].target_power_48,
2362					rpinfo[idx_r].target_power_48);
2363
2364	rates->target_power_54 =
2365		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2366					rpinfo[idx_r].freq,
2367					rpinfo[idx_l].target_power_54,
2368					rpinfo[idx_r].target_power_54);
2369}
2370
2371/*
2372 * Get the max edge power for this channel if
2373 * we have such data from EEPROM's Conformance Test
2374 * Limits (CTL), and limit max power if needed.
2375 */
2376static void
2377ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2378			struct ieee80211_channel *channel)
2379{
2380	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2381	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2382	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2383	u8 *ctl_val = ee->ee_ctl;
2384	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2385	s16 edge_pwr = 0;
2386	u8 rep_idx;
2387	u8 i, ctl_mode;
2388	u8 ctl_idx = 0xFF;
2389	u32 target = channel->center_freq;
2390
2391	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2392
2393	switch (channel->hw_value & CHANNEL_MODES) {
2394	case CHANNEL_A:
2395		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2396			ctl_mode |= AR5K_CTL_TURBO;
2397		else
2398			ctl_mode |= AR5K_CTL_11A;
2399		break;
2400	case CHANNEL_G:
2401		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2402			ctl_mode |= AR5K_CTL_TURBOG;
2403		else
2404			ctl_mode |= AR5K_CTL_11G;
2405		break;
2406	case CHANNEL_B:
2407		ctl_mode |= AR5K_CTL_11B;
2408		break;
2409	case CHANNEL_XR:
2410		/* Fall through */
2411	default:
2412		return;
2413	}
2414
2415	for (i = 0; i < ee->ee_ctls; i++) {
2416		if (ctl_val[i] == ctl_mode) {
2417			ctl_idx = i;
2418			break;
2419		}
2420	}
2421
2422	/* If we have a CTL dataset available grab it and find the
2423	 * edge power for our frequency */
2424	if (ctl_idx == 0xFF)
2425		return;
2426
2427	/* Edge powers are sorted by frequency from lower
2428	 * to higher. Each CTL corresponds to 8 edge power
2429	 * measurements. */
2430	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2431
2432	/* Don't do boundaries check because we
2433	 * might have more that one bands defined
2434	 * for this mode */
2435
2436	/* Get the edge power that's closer to our
2437	 * frequency */
2438	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2439		rep_idx += i;
2440		if (target <= rep[rep_idx].freq)
2441			edge_pwr = (s16) rep[rep_idx].edge;
2442	}
2443
2444	if (edge_pwr)
2445		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2446}
2447
2448
2449/*
2450 * Power to PCDAC table functions
2451 */
2452
2453/*
2454 * Fill Power to PCDAC table on RF5111
2455 *
2456 * No further processing is needed for RF5111, the only thing we have to
2457 * do is fill the values below and above calibration range since eeprom data
2458 * may not cover the entire PCDAC table.
2459 */
2460static void
2461ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2462							s16 *table_max)
2463{
2464	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2465	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2466	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2467	s16	min_pwr, max_pwr;
2468
2469	/* Get table boundaries */
2470	min_pwr = table_min[0];
2471	pcdac_0 = pcdac_tmp[0];
2472
2473	max_pwr = table_max[0];
2474	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2475
2476	/* Extrapolate below minimum using pcdac_0 */
2477	pcdac_i = 0;
2478	for (i = 0; i < min_pwr; i++)
2479		pcdac_out[pcdac_i++] = pcdac_0;
2480
2481	/* Copy values from pcdac_tmp */
2482	pwr_idx = min_pwr;
2483	for (i = 0; pwr_idx <= max_pwr &&
2484		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2485		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2486		pwr_idx++;
2487	}
2488
2489	/* Extrapolate above maximum */
2490	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2491		pcdac_out[pcdac_i++] = pcdac_n;
2492
2493}
2494
2495/*
2496 * Combine available XPD Curves and fill Linear Power to PCDAC table
2497 * on RF5112
2498 *
2499 * RFX112 can have up to 2 curves (one for low txpower range and one for
2500 * higher txpower range). We need to put them both on pcdac_out and place
2501 * them in the correct location. In case we only have one curve available
2502 * just fit it on pcdac_out (it's supposed to cover the entire range of
2503 * available pwr levels since it's always the higher power curve). Extrapolate
2504 * below and above final table if needed.
2505 */
2506static void
2507ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2508						s16 *table_max, u8 pdcurves)
2509{
2510	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2511	u8	*pcdac_low_pwr;
2512	u8	*pcdac_high_pwr;
2513	u8	*pcdac_tmp;
2514	u8	pwr;
2515	s16	max_pwr_idx;
2516	s16	min_pwr_idx;
2517	s16	mid_pwr_idx = 0;
2518	/* Edge flag turns on the 7nth bit on the PCDAC
2519	 * to declare the higher power curve (force values
2520	 * to be greater than 64). If we only have one curve
2521	 * we don't need to set this, if we have 2 curves and
2522	 * fill the table backwards this can also be used to
2523	 * switch from higher power curve to lower power curve */
2524	u8	edge_flag;
2525	int	i;
2526
2527	/* When we have only one curve available
2528	 * that's the higher power curve. If we have
2529	 * two curves the first is the high power curve
2530	 * and the next is the low power curve. */
2531	if (pdcurves > 1) {
2532		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2533		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2534		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2535		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2536
2537		/* If table size goes beyond 31.5dB, keep the
2538		 * upper 31.5dB range when setting tx power.
2539		 * Note: 126 = 31.5 dB in quarter dB steps */
2540		if (table_max[0] - table_min[1] > 126)
2541			min_pwr_idx = table_max[0] - 126;
2542		else
2543			min_pwr_idx = table_min[1];
2544
2545		/* Since we fill table backwards
2546		 * start from high power curve */
2547		pcdac_tmp = pcdac_high_pwr;
2548
2549		edge_flag = 0x40;
2550	} else {
2551		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2552		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2553		min_pwr_idx = table_min[0];
2554		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2555		pcdac_tmp = pcdac_high_pwr;
2556		edge_flag = 0;
2557	}
2558
2559	/* This is used when setting tx power*/
2560	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2561
2562	/* Fill Power to PCDAC table backwards */
2563	pwr = max_pwr_idx;
2564	for (i = 63; i >= 0; i--) {
2565		/* Entering lower power range, reset
2566		 * edge flag and set pcdac_tmp to lower
2567		 * power curve.*/
2568		if (edge_flag == 0x40 &&
2569		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2570			edge_flag = 0x00;
2571			pcdac_tmp = pcdac_low_pwr;
2572			pwr = mid_pwr_idx / 2;
2573		}
2574
2575		/* Don't go below 1, extrapolate below if we have
2576		 * already switched to the lower power curve -or
2577		 * we only have one curve and edge_flag is zero
2578		 * anyway */
2579		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2580			while (i >= 0) {
2581				pcdac_out[i] = pcdac_out[i + 1];
2582				i--;
2583			}
2584			break;
2585		}
2586
2587		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2588
2589		/* Extrapolate above if pcdac is greater than
2590		 * 126 -this can happen because we OR pcdac_out
2591		 * value with edge_flag on high power curve */
2592		if (pcdac_out[i] > 126)
2593			pcdac_out[i] = 126;
2594
2595		/* Decrease by a 0.5dB step */
2596		pwr--;
2597	}
2598}
2599
2600/* Write PCDAC values on hw */
2601static void
2602ath5k_write_pcdac_table(struct ath5k_hw *ah)
2603{
2604	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2605	int	i;
2606
2607	/*
2608	 * Write TX power values
2609	 */
2610	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2611		ath5k_hw_reg_write(ah,
2612			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
2613			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
2614			AR5K_PHY_PCDAC_TXPOWER(i));
2615	}
2616}
2617
2618
2619/*
2620 * Power to PDADC table functions
2621 */
2622
2623/*
2624 * Set the gain boundaries and create final Power to PDADC table
2625 *
2626 * We can have up to 4 pd curves, we need to do a similar process
2627 * as we do for RF5112. This time we don't have an edge_flag but we
2628 * set the gain boundaries on a separate register.
2629 */
2630static void
2631ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2632			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2633{
2634	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2635	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2636	u8 *pdadc_tmp;
2637	s16 pdadc_0;
2638	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2639	u8 pd_gain_overlap;
2640
2641	/* Note: Register value is initialized on initvals
2642	 * there is no feedback from hw.
2643	 * XXX: What about pd_gain_overlap from EEPROM ? */
2644	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2645		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2646
2647	/* Create final PDADC table */
2648	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2649		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2650
2651		if (pdg == pdcurves - 1)
2652			/* 2 dB boundary stretch for last
2653			 * (higher power) curve */
2654			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2655		else
2656			/* Set gain boundary in the middle
2657			 * between this curve and the next one */
2658			gain_boundaries[pdg] =
2659				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2660
2661		/* Sanity check in case our 2 db stretch got out of
2662		 * range. */
2663		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2664			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2665
2666		/* For the first curve (lower power)
2667		 * start from 0 dB */
2668		if (pdg == 0)
2669			pdadc_0 = 0;
2670		else
2671			/* For the other curves use the gain overlap */
2672			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2673							pd_gain_overlap;
2674
2675		/* Force each power step to be at least 0.5 dB */
2676		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2677			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2678		else
2679			pwr_step = 1;
2680
2681		/* If pdadc_0 is negative, we need to extrapolate
2682		 * below this pdgain by a number of pwr_steps */
2683		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2684			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2685			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2686			pdadc_0++;
2687		}
2688
2689		/* Set last pwr level, using gain boundaries */
2690		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2691		/* Limit it to be inside pwr range */
2692		table_size = pwr_max[pdg] - pwr_min[pdg];
2693		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2694
2695		/* Fill pdadc_out table */
2696		while (pdadc_0 < max_idx && pdadc_i < 128)
2697			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2698
2699		/* Need to extrapolate above this pdgain? */
2700		if (pdadc_n <= max_idx)
2701			continue;
2702
2703		/* Force each power step to be at least 0.5 dB */
2704		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2705			pwr_step = pdadc_tmp[table_size - 1] -
2706						pdadc_tmp[table_size - 2];
2707		else
2708			pwr_step = 1;
2709
2710		/* Extrapolate above */
2711		while ((pdadc_0 < (s16) pdadc_n) &&
2712		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2713			s16 tmp = pdadc_tmp[table_size - 1] +
2714					(pdadc_0 - max_idx) * pwr_step;
2715			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2716			pdadc_0++;
2717		}
2718	}
2719
2720	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2721		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2722		pdg++;
2723	}
2724
2725	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2726		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2727		pdadc_i++;
2728	}
2729
2730	/* Set gain boundaries */
2731	ath5k_hw_reg_write(ah,
2732		AR5K_REG_SM(pd_gain_overlap,
2733			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2734		AR5K_REG_SM(gain_boundaries[0],
2735			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2736		AR5K_REG_SM(gain_boundaries[1],
2737			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2738		AR5K_REG_SM(gain_boundaries[2],
2739			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2740		AR5K_REG_SM(gain_boundaries[3],
2741			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2742		AR5K_PHY_TPC_RG5);
2743
2744	/* Used for setting rate power table */
2745	ah->ah_txpower.txp_min_idx = pwr_min[0];
2746
2747}
2748
2749/* Write PDADC values on hw */
2750static void
2751ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
2752{
2753	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2754	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2755	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
2756	u8 pdcurves = ee->ee_pd_gains[ee_mode];
2757	u32 reg;
2758	u8 i;
2759
2760	/* Select the right pdgain curves */
2761
2762	/* Clear current settings */
2763	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2764	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2765		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2766		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2767		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2768
2769	/*
2770	 * Use pd_gains curve from eeprom
2771	 *
2772	 * This overrides the default setting from initvals
2773	 * in case some vendors (e.g. Zcomax) don't use the default
2774	 * curves. If we don't honor their settings we 'll get a
2775	 * 5dB (1 * gain overlap ?) drop.
2776	 */
2777	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2778
2779	switch (pdcurves) {
2780	case 3:
2781		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2782		/* Fall through */
2783	case 2:
2784		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2785		/* Fall through */
2786	case 1:
2787		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2788		break;
2789	}
2790	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2791
2792	/*
2793	 * Write TX power values
2794	 */
2795	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2796		ath5k_hw_reg_write(ah,
2797			((pdadc_out[4 * i + 0] & 0xff) << 0) |
2798			((pdadc_out[4 * i + 1] & 0xff) << 8) |
2799			((pdadc_out[4 * i + 2] & 0xff) << 16) |
2800			((pdadc_out[4 * i + 3] & 0xff) << 24),
2801			AR5K_PHY_PDADC_TXPOWER(i));
2802	}
2803}
2804
2805
2806/*
2807 * Common code for PCDAC/PDADC tables
2808 */
2809
2810/*
2811 * This is the main function that uses all of the above
2812 * to set PCDAC/PDADC table on hw for the current channel.
2813 * This table is used for tx power calibration on the baseband,
2814 * without it we get weird tx power levels and in some cases
2815 * distorted spectral mask
2816 */
2817static int
2818ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2819			struct ieee80211_channel *channel,
2820			u8 ee_mode, u8 type)
2821{
2822	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2823	struct ath5k_chan_pcal_info *pcinfo_L;
2824	struct ath5k_chan_pcal_info *pcinfo_R;
2825	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2826	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2827	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2828	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2829	u8 *tmpL;
2830	u8 *tmpR;
2831	u32 target = channel->center_freq;
2832	int pdg, i;
2833
2834	/* Get surrounding freq piers for this channel */
2835	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2836						&pcinfo_L,
2837						&pcinfo_R);
2838
2839	/* Loop over pd gain curves on
2840	 * surrounding freq piers by index */
2841	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2842
2843		/* Fill curves in reverse order
2844		 * from lower power (max gain)
2845		 * to higher power. Use curve -> idx
2846		 * backmapping we did on eeprom init */
2847		u8 idx = pdg_curve_to_idx[pdg];
2848
2849		/* Grab the needed curves by index */
2850		pdg_L = &pcinfo_L->pd_curves[idx];
2851		pdg_R = &pcinfo_R->pd_curves[idx];
2852
2853		/* Initialize the temp tables */
2854		tmpL = ah->ah_txpower.tmpL[pdg];
2855		tmpR = ah->ah_txpower.tmpR[pdg];
2856
2857		/* Set curve's x boundaries and create
2858		 * curves so that they cover the same
2859		 * range (if we don't do that one table
2860		 * will have values on some range and the
2861		 * other one won't have any so interpolation
2862		 * will fail) */
2863		table_min[pdg] = min(pdg_L->pd_pwr[0],
2864					pdg_R->pd_pwr[0]) / 2;
2865
2866		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2867				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2868
2869		/* Now create the curves on surrounding channels
2870		 * and interpolate if needed to get the final
2871		 * curve for this gain on this channel */
2872		switch (type) {
2873		case AR5K_PWRTABLE_LINEAR_PCDAC:
2874			/* Override min/max so that we don't loose
2875			 * accuracy (don't divide by 2) */
2876			table_min[pdg] = min(pdg_L->pd_pwr[0],
2877						pdg_R->pd_pwr[0]);
2878
2879			table_max[pdg] =
2880				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2881					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2882
2883			/* Override minimum so that we don't get
2884			 * out of bounds while extrapolating
2885			 * below. Don't do this when we have 2
2886			 * curves and we are on the high power curve
2887			 * because table_min is ok in this case */
2888			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2889
2890				table_min[pdg] =
2891					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2892								pdg_R->pd_step,
2893								pdg_L->pd_pwr,
2894								pdg_R->pd_pwr);
2895
2896				/* Don't go too low because we will
2897				 * miss the upper part of the curve.
2898				 * Note: 126 = 31.5dB (max power supported)
2899				 * in 0.25dB units */
2900				if (table_max[pdg] - table_min[pdg] > 126)
2901					table_min[pdg] = table_max[pdg] - 126;
2902			}
2903
2904			/* Fall through */
2905		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2906		case AR5K_PWRTABLE_PWR_TO_PDADC:
2907
2908			ath5k_create_power_curve(table_min[pdg],
2909						table_max[pdg],
2910						pdg_L->pd_pwr,
2911						pdg_L->pd_step,
2912						pdg_L->pd_points, tmpL, type);
2913
2914			/* We are in a calibration
2915			 * pier, no need to interpolate
2916			 * between freq piers */
2917			if (pcinfo_L == pcinfo_R)
2918				continue;
2919
2920			ath5k_create_power_curve(table_min[pdg],
2921						table_max[pdg],
2922						pdg_R->pd_pwr,
2923						pdg_R->pd_step,
2924						pdg_R->pd_points, tmpR, type);
2925			break;
2926		default:
2927			return -EINVAL;
2928		}
2929
2930		/* Interpolate between curves
2931		 * of surrounding freq piers to
2932		 * get the final curve for this
2933		 * pd gain. Re-use tmpL for interpolation
2934		 * output */
2935		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2936		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2937			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2938							(s16) pcinfo_L->freq,
2939							(s16) pcinfo_R->freq,
2940							(s16) tmpL[i],
2941							(s16) tmpR[i]);
2942		}
2943	}
2944
2945	/* Now we have a set of curves for this
2946	 * channel on tmpL (x range is table_max - table_min
2947	 * and y values are tmpL[pdg][]) sorted in the same
2948	 * order as EEPROM (because we've used the backmapping).
2949	 * So for RF5112 it's from higher power to lower power
2950	 * and for RF2413 it's from lower power to higher power.
2951	 * For RF5111 we only have one curve. */
2952
2953	/* Fill min and max power levels for this
2954	 * channel by interpolating the values on
2955	 * surrounding channels to complete the dataset */
2956	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2957					(s16) pcinfo_L->freq,
2958					(s16) pcinfo_R->freq,
2959					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2960
2961	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2962					(s16) pcinfo_L->freq,
2963					(s16) pcinfo_R->freq,
2964					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2965
2966	/* Fill PCDAC/PDADC table */
2967	switch (type) {
2968	case AR5K_PWRTABLE_LINEAR_PCDAC:
2969		/* For RF5112 we can have one or two curves
2970		 * and each curve covers a certain power lvl
2971		 * range so we need to do some more processing */
2972		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2973						ee->ee_pd_gains[ee_mode]);
2974
2975		/* Set txp.offset so that we can
2976		 * match max power value with max
2977		 * table index */
2978		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2979		break;
2980	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2981		/* We are done for RF5111 since it has only
2982		 * one curve, just fit the curve on the table */
2983		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2984
2985		/* No rate powertable adjustment for RF5111 */
2986		ah->ah_txpower.txp_min_idx = 0;
2987		ah->ah_txpower.txp_offset = 0;
2988		break;
2989	case AR5K_PWRTABLE_PWR_TO_PDADC:
2990		/* Set PDADC boundaries and fill
2991		 * final PDADC table */
2992		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2993						ee->ee_pd_gains[ee_mode]);
2994
2995		/* Set txp.offset, note that table_min
2996		 * can be negative */
2997		ah->ah_txpower.txp_offset = table_min[0];
2998		break;
2999	default:
3000		return -EINVAL;
3001	}
3002
3003	ah->ah_txpower.txp_setup = true;
3004
3005	return 0;
3006}
3007
3008/* Write power table for current channel to hw */
3009static void
3010ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3011{
3012	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3013		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3014	else
3015		ath5k_write_pcdac_table(ah);
3016}
3017
3018/*
3019 * Per-rate tx power setting
3020 *
3021 * This is the code that sets the desired tx power (below
3022 * maximum) on hw for each rate (we also have TPC that sets
3023 * power per packet). We do that by providing an index on the
3024 * PCDAC/PDADC table we set up.
3025 */
3026
3027/*
3028 * Set rate power table
3029 *
3030 * For now we only limit txpower based on maximum tx power
3031 * supported by hw (what's inside rate_info). We need to limit
3032 * this even more, based on regulatory domain etc.
3033 *
3034 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3035 * and is indexed as follows:
3036 * rates[0] - rates[7] -> OFDM rates
3037 * rates[8] - rates[14] -> CCK rates
3038 * rates[15] -> XR rates (they all have the same power)
3039 */
3040static void
3041ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3042			struct ath5k_rate_pcal_info *rate_info,
3043			u8 ee_mode)
3044{
3045	unsigned int i;
3046	u16 *rates;
3047
3048	/* max_pwr is power level we got from driver/user in 0.5dB
3049	 * units, switch to 0.25dB units so we can compare */
3050	max_pwr *= 2;
3051	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3052
3053	/* apply rate limits */
3054	rates = ah->ah_txpower.txp_rates_power_table;
3055
3056	/* OFDM rates 6 to 24Mb/s */
3057	for (i = 0; i < 5; i++)
3058		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3059
3060	/* Rest OFDM rates */
3061	rates[5] = min(rates[0], rate_info->target_power_36);
3062	rates[6] = min(rates[0], rate_info->target_power_48);
3063	rates[7] = min(rates[0], rate_info->target_power_54);
3064
3065	/* CCK rates */
3066	/* 1L */
3067	rates[8] = min(rates[0], rate_info->target_power_6to24);
3068	/* 2L */
3069	rates[9] = min(rates[0], rate_info->target_power_36);
3070	/* 2S */
3071	rates[10] = min(rates[0], rate_info->target_power_36);
3072	/* 5L */
3073	rates[11] = min(rates[0], rate_info->target_power_48);
3074	/* 5S */
3075	rates[12] = min(rates[0], rate_info->target_power_48);
3076	/* 11L */
3077	rates[13] = min(rates[0], rate_info->target_power_54);
3078	/* 11S */
3079	rates[14] = min(rates[0], rate_info->target_power_54);
3080
3081	/* XR rates */
3082	rates[15] = min(rates[0], rate_info->target_power_6to24);
3083
3084	/* CCK rates have different peak to average ratio
3085	 * so we have to tweak their power so that gainf
3086	 * correction works ok. For this we use OFDM to
3087	 * CCK delta from eeprom */
3088	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3089	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3090		for (i = 8; i <= 15; i++)
3091			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3092
3093	/* Now that we have all rates setup use table offset to
3094	 * match the power range set by user with the power indices
3095	 * on PCDAC/PDADC table */
3096	for (i = 0; i < 16; i++) {
3097		rates[i] += ah->ah_txpower.txp_offset;
3098		/* Don't get out of bounds */
3099		if (rates[i] > 63)
3100			rates[i] = 63;
3101	}
3102
3103	/* Min/max in 0.25dB units */
3104	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3105	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3106	ah->ah_txpower.txp_ofdm = rates[7];
3107}
3108
3109
3110/*
3111 * Set transmission power
3112 */
3113static int
3114ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3115		 u8 txpower)
3116{
3117	struct ath5k_rate_pcal_info rate_info;
3118	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3119	int ee_mode;
3120	u8 type;
3121	int ret;
3122
3123	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3124		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3125		return -EINVAL;
3126	}
3127
3128	ee_mode = ath5k_eeprom_mode_from_channel(channel);
3129	if (ee_mode < 0) {
3130		ATH5K_ERR(ah->ah_sc,
3131			"invalid channel: %d\n", channel->center_freq);
3132		return -EINVAL;
3133	}
3134
3135	/* Initialize TX power table */
3136	switch (ah->ah_radio) {
3137	case AR5K_RF5110:
3138		/* TODO */
3139		return 0;
3140	case AR5K_RF5111:
3141		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3142		break;
3143	case AR5K_RF5112:
3144		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3145		break;
3146	case AR5K_RF2413:
3147	case AR5K_RF5413:
3148	case AR5K_RF2316:
3149	case AR5K_RF2317:
3150	case AR5K_RF2425:
3151		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3152		break;
3153	default:
3154		return -EINVAL;
3155	}
3156
3157	/*
3158	 * If we don't change channel/mode skip tx powertable calculation
3159	 * and use the cached one.
3160	 */
3161	if (!ah->ah_txpower.txp_setup ||
3162	    (channel->hw_value != curr_channel->hw_value) ||
3163	    (channel->center_freq != curr_channel->center_freq)) {
3164		/* Reset TX power values */
3165		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3166		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3167
3168		/* Calculate the powertable */
3169		ret = ath5k_setup_channel_powertable(ah, channel,
3170							ee_mode, type);
3171		if (ret)
3172			return ret;
3173	}
3174
3175	/* Write table on hw */
3176	ath5k_write_channel_powertable(ah, ee_mode, type);
3177
3178	/* Limit max power if we have a CTL available */
3179	ath5k_get_max_ctl_power(ah, channel);
3180
3181	/* FIXME: Antenna reduction stuff */
3182
3183	/* FIXME: Limit power on turbo modes */
3184
3185	/* FIXME: TPC scale reduction */
3186
3187	/* Get surrounding channels for per-rate power table
3188	 * calibration */
3189	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3190
3191	/* Setup rate power table */
3192	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3193
3194	/* Write rate power table on hw */
3195	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3196		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3197		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3198
3199	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3200		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3201		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3202
3203	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3204		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3205		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3206
3207	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3208		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3209		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3210
3211	/* FIXME: TPC support */
3212	if (ah->ah_txpower.txp_tpc) {
3213		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3214			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3215
3216		ath5k_hw_reg_write(ah,
3217			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3218			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3219			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3220			AR5K_TPC);
3221	} else {
3222		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3223			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3224	}
3225
3226	return 0;
3227}
3228
3229int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3230{
3231	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3232		"changing txpower to %d\n", txpower);
3233
3234	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3235}
3236
3237/*************\
3238 Init function
3239\*************/
3240
3241int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3242		      u8 mode, bool fast)
3243{
3244	struct ieee80211_channel *curr_channel;
3245	int ret, i;
3246	u32 phy_tst1;
3247	ret = 0;
3248
3249	/*
3250	 * Sanity check for fast flag
3251	 * Don't try fast channel change when changing modulation
3252	 * mode/band. We check for chip compatibility on
3253	 * ath5k_hw_reset.
3254	 */
3255	curr_channel = ah->ah_current_channel;
3256	if (fast && (channel->hw_value != curr_channel->hw_value))
3257		return -EINVAL;
3258
3259	/*
3260	 * On fast channel change we only set the synth parameters
3261	 * while PHY is running, enable calibration and skip the rest.
3262	 */
3263	if (fast) {
3264		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3265				    AR5K_PHY_RFBUS_REQ_REQUEST);
3266		for (i = 0; i < 100; i++) {
3267			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3268				break;
3269			udelay(5);
3270		}
3271		/* Failed */
3272		if (i >= 100)
3273			return -EIO;
3274
3275		/* Set channel and wait for synth */
3276		ret = ath5k_hw_channel(ah, channel);
3277		if (ret)
3278			return ret;
3279
3280		ath5k_hw_wait_for_synth(ah, channel);
3281	}
3282
3283	/*
3284	 * Set TX power
3285	 *
3286	 * Note: We need to do that before we set
3287	 * RF buffer settings on 5211/5212+ so that we
3288	 * properly set curve indices.
3289	 */
3290	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3291			ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3292	if (ret)
3293		return ret;
3294
3295	/* Write OFDM timings on 5212*/
3296	if (ah->ah_version == AR5K_AR5212 &&
3297		channel->hw_value & CHANNEL_OFDM) {
3298
3299		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3300		if (ret)
3301			return ret;
3302
3303		/* Spur info is available only from EEPROM versions
3304		 * greater than 5.3, but the EEPROM routines will use
3305		 * static values for older versions */
3306		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3307			ath5k_hw_set_spur_mitigation_filter(ah,
3308							    channel);
3309	}
3310
3311	/* If we used fast channel switching
3312	 * we are done, release RF bus and
3313	 * fire up NF calibration.
3314	 *
3315	 * Note: Only NF calibration due to
3316	 * channel change, not AGC calibration
3317	 * since AGC is still running !
3318	 */
3319	if (fast) {
3320		/*
3321		 * Release RF Bus grant
3322		 */
3323		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3324				    AR5K_PHY_RFBUS_REQ_REQUEST);
3325
3326		/*
3327		 * Start NF calibration
3328		 */
3329		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3330					AR5K_PHY_AGCCTL_NF);
3331
3332		return ret;
3333	}
3334
3335	/*
3336	 * For 5210 we do all initialization using
3337	 * initvals, so we don't have to modify
3338	 * any settings (5210 also only supports
3339	 * a/aturbo modes)
3340	 */
3341	if (ah->ah_version != AR5K_AR5210) {
3342
3343		/*
3344		 * Write initial RF gain settings
3345		 * This should work for both 5111/5112
3346		 */
3347		ret = ath5k_hw_rfgain_init(ah, channel->band);
3348		if (ret)
3349			return ret;
3350
3351		mdelay(1);
3352
3353		/*
3354		 * Write RF buffer
3355		 */
3356		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3357		if (ret)
3358			return ret;
3359
3360		/*Enable/disable 802.11b mode on 5111
3361		(enable 2111 frequency converter + CCK)*/
3362		if (ah->ah_radio == AR5K_RF5111) {
3363			if (mode == AR5K_MODE_11B)
3364				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3365				    AR5K_TXCFG_B_MODE);
3366			else
3367				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3368				    AR5K_TXCFG_B_MODE);
3369		}
3370
3371	} else if (ah->ah_version == AR5K_AR5210) {
3372		mdelay(1);
3373		/* Disable phy and wait */
3374		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3375		mdelay(1);
3376	}
3377
3378	/* Set channel on PHY */
3379	ret = ath5k_hw_channel(ah, channel);
3380	if (ret)
3381		return ret;
3382
3383	/*
3384	 * Enable the PHY and wait until completion
3385	 * This includes BaseBand and Synthesizer
3386	 * activation.
3387	 */
3388	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3389
3390	ath5k_hw_wait_for_synth(ah, channel);
3391
3392	/*
3393	 * Perform ADC test to see if baseband is ready
3394	 * Set tx hold and check adc test register
3395	 */
3396	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3397	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3398	for (i = 0; i <= 20; i++) {
3399		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3400			break;
3401		udelay(200);
3402	}
3403	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3404
3405	/*
3406	 * Start automatic gain control calibration
3407	 *
3408	 * During AGC calibration RX path is re-routed to
3409	 * a power detector so we don't receive anything.
3410	 *
3411	 * This method is used to calibrate some static offsets
3412	 * used together with on-the fly I/Q calibration (the
3413	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3414	 * interrupt rx path.
3415	 *
3416	 * While rx path is re-routed to the power detector we also
3417	 * start a noise floor calibration to measure the
3418	 * card's noise floor (the noise we measure when we are not
3419	 * transmitting or receiving anything).
3420	 *
3421	 * If we are in a noisy environment, AGC calibration may time
3422	 * out and/or noise floor calibration might timeout.
3423	 */
3424	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3425				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3426
3427	/* At the same time start I/Q calibration for QAM constellation
3428	 * -no need for CCK- */
3429	ah->ah_calibration = false;
3430	if (!(mode == AR5K_MODE_11B)) {
3431		ah->ah_calibration = true;
3432		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3433				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3434		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3435				AR5K_PHY_IQ_RUN);
3436	}
3437
3438	/* Wait for gain calibration to finish (we check for I/Q calibration
3439	 * during ath5k_phy_calibrate) */
3440	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3441			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3442		ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
3443			channel->center_freq);
3444	}
3445
3446	/* Restore antenna mode */
3447	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3448
3449	return ret;
3450}
3451