[go: nahoru, domu]

phy.c revision ec182d976345b5eb671fe879ad73b90fe29a34e9
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
24
25#include "ath5k.h"
26#include "reg.h"
27#include "base.h"
28#include "rfbuffer.h"
29#include "rfgain.h"
30
31/*
32 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
33 */
34static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
35					const struct ath5k_rf_reg *rf_regs,
36					u32 val, u8 reg_id, bool set)
37{
38	const struct ath5k_rf_reg *rfreg = NULL;
39	u8 offset, bank, num_bits, col, position;
40	u16 entry;
41	u32 mask, data, last_bit, bits_shifted, first_bit;
42	u32 *rfb;
43	s32 bits_left;
44	int i;
45
46	data = 0;
47	rfb = ah->ah_rf_banks;
48
49	for (i = 0; i < ah->ah_rf_regs_count; i++) {
50		if (rf_regs[i].index == reg_id) {
51			rfreg = &rf_regs[i];
52			break;
53		}
54	}
55
56	if (rfb == NULL || rfreg == NULL) {
57		ATH5K_PRINTF("Rf register not found!\n");
58		/* should not happen */
59		return 0;
60	}
61
62	bank = rfreg->bank;
63	num_bits = rfreg->field.len;
64	first_bit = rfreg->field.pos;
65	col = rfreg->field.col;
66
67	/* first_bit is an offset from bank's
68	 * start. Since we have all banks on
69	 * the same array, we use this offset
70	 * to mark each bank's start */
71	offset = ah->ah_offset[bank];
72
73	/* Boundary check */
74	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
75		ATH5K_PRINTF("invalid values at offset %u\n", offset);
76		return 0;
77	}
78
79	entry = ((first_bit - 1) / 8) + offset;
80	position = (first_bit - 1) % 8;
81
82	if (set)
83		data = ath5k_hw_bitswap(val, num_bits);
84
85	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
86	position = 0, entry++) {
87
88		last_bit = (position + bits_left > 8) ? 8 :
89					position + bits_left;
90
91		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
92								(col * 8);
93
94		if (set) {
95			rfb[entry] &= ~mask;
96			rfb[entry] |= ((data << position) << (col * 8)) & mask;
97			data >>= (8 - position);
98		} else {
99			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
100				<< bits_shifted;
101			bits_shifted += last_bit - position;
102		}
103
104		bits_left -= 8 - position;
105	}
106
107	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
108
109	return data;
110}
111
112/**********************\
113* RF Gain optimization *
114\**********************/
115
116/*
117 * This code is used to optimize rf gain on different environments
118 * (temperature mostly) based on feedback from a power detector.
119 *
120 * It's only used on RF5111 and RF5112, later RF chips seem to have
121 * auto adjustment on hw -notice they have a much smaller BANK 7 and
122 * no gain optimization ladder-.
123 *
124 * For more infos check out this patent doc
125 * http://www.freepatentsonline.com/7400691.html
126 *
127 * This paper describes power drops as seen on the receiver due to
128 * probe packets
129 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
130 * %20of%20Power%20Control.pdf
131 *
132 * And this is the MadWiFi bug entry related to the above
133 * http://madwifi-project.org/ticket/1659
134 * with various measurements and diagrams
135 *
136 * TODO: Deal with power drops due to probes by setting an apropriate
137 * tx power on the probe packets ! Make this part of the calibration process.
138 */
139
140/* Initialize ah_gain durring attach */
141int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
142{
143	/* Initialize the gain optimization values */
144	switch (ah->ah_radio) {
145	case AR5K_RF5111:
146		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
147		ah->ah_gain.g_low = 20;
148		ah->ah_gain.g_high = 35;
149		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
150		break;
151	case AR5K_RF5112:
152		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
153		ah->ah_gain.g_low = 20;
154		ah->ah_gain.g_high = 85;
155		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
156		break;
157	default:
158		return -EINVAL;
159	}
160
161	return 0;
162}
163
164/* Schedule a gain probe check on the next transmited packet.
165 * That means our next packet is going to be sent with lower
166 * tx power and a Peak to Average Power Detector (PAPD) will try
167 * to measure the gain.
168 *
169 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
170 * just after we enable the probe so that we don't mess with
171 * standard traffic ? Maybe it's time to use sw interrupts and
172 * a probe tasklet !!!
173 */
174static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
175{
176
177	/* Skip if gain calibration is inactive or
178	 * we already handle a probe request */
179	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
180		return;
181
182	/* Send the packet with 2dB below max power as
183	 * patent doc suggest */
184	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
185			AR5K_PHY_PAPD_PROBE_TXPOWER) |
186			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
187
188	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
189
190}
191
192/* Calculate gain_F measurement correction
193 * based on the current step for RF5112 rev. 2 */
194static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
195{
196	u32 mix, step;
197	u32 *rf;
198	const struct ath5k_gain_opt *go;
199	const struct ath5k_gain_opt_step *g_step;
200	const struct ath5k_rf_reg *rf_regs;
201
202	/* Only RF5112 Rev. 2 supports it */
203	if ((ah->ah_radio != AR5K_RF5112) ||
204	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
205		return 0;
206
207	go = &rfgain_opt_5112;
208	rf_regs = rf_regs_5112a;
209	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
210
211	g_step = &go->go_step[ah->ah_gain.g_step_idx];
212
213	if (ah->ah_rf_banks == NULL)
214		return 0;
215
216	rf = ah->ah_rf_banks;
217	ah->ah_gain.g_f_corr = 0;
218
219	/* No VGA (Variable Gain Amplifier) override, skip */
220	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
221		return 0;
222
223	/* Mix gain stepping */
224	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
225
226	/* Mix gain override */
227	mix = g_step->gos_param[0];
228
229	switch (mix) {
230	case 3:
231		ah->ah_gain.g_f_corr = step * 2;
232		break;
233	case 2:
234		ah->ah_gain.g_f_corr = (step - 5) * 2;
235		break;
236	case 1:
237		ah->ah_gain.g_f_corr = step;
238		break;
239	default:
240		ah->ah_gain.g_f_corr = 0;
241		break;
242	}
243
244	return ah->ah_gain.g_f_corr;
245}
246
247/* Check if current gain_F measurement is in the range of our
248 * power detector windows. If we get a measurement outside range
249 * we know it's not accurate (detectors can't measure anything outside
250 * their detection window) so we must ignore it */
251static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
252{
253	const struct ath5k_rf_reg *rf_regs;
254	u32 step, mix_ovr, level[4];
255	u32 *rf;
256
257	if (ah->ah_rf_banks == NULL)
258		return false;
259
260	rf = ah->ah_rf_banks;
261
262	if (ah->ah_radio == AR5K_RF5111) {
263
264		rf_regs = rf_regs_5111;
265		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
266
267		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
268			false);
269
270		level[0] = 0;
271		level[1] = (step == 63) ? 50 : step + 4;
272		level[2] = (step != 63) ? 64 : level[0];
273		level[3] = level[2] + 50 ;
274
275		ah->ah_gain.g_high = level[3] -
276			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
277		ah->ah_gain.g_low = level[0] +
278			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
279	} else {
280
281		rf_regs = rf_regs_5112;
282		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
283
284		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
285			false);
286
287		level[0] = level[2] = 0;
288
289		if (mix_ovr == 1) {
290			level[1] = level[3] = 83;
291		} else {
292			level[1] = level[3] = 107;
293			ah->ah_gain.g_high = 55;
294		}
295	}
296
297	return (ah->ah_gain.g_current >= level[0] &&
298			ah->ah_gain.g_current <= level[1]) ||
299		(ah->ah_gain.g_current >= level[2] &&
300			ah->ah_gain.g_current <= level[3]);
301}
302
303/* Perform gain_F adjustment by choosing the right set
304 * of parameters from rf gain optimization ladder */
305static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
306{
307	const struct ath5k_gain_opt *go;
308	const struct ath5k_gain_opt_step *g_step;
309	int ret = 0;
310
311	switch (ah->ah_radio) {
312	case AR5K_RF5111:
313		go = &rfgain_opt_5111;
314		break;
315	case AR5K_RF5112:
316		go = &rfgain_opt_5112;
317		break;
318	default:
319		return 0;
320	}
321
322	g_step = &go->go_step[ah->ah_gain.g_step_idx];
323
324	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
325
326		/* Reached maximum */
327		if (ah->ah_gain.g_step_idx == 0)
328			return -1;
329
330		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
331				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
332				ah->ah_gain.g_step_idx > 0;
333				g_step = &go->go_step[ah->ah_gain.g_step_idx])
334			ah->ah_gain.g_target -= 2 *
335			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
336			    g_step->gos_gain);
337
338		ret = 1;
339		goto done;
340	}
341
342	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
343
344		/* Reached minimum */
345		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
346			return -2;
347
348		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
349				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
350				ah->ah_gain.g_step_idx < go->go_steps_count-1;
351				g_step = &go->go_step[ah->ah_gain.g_step_idx])
352			ah->ah_gain.g_target -= 2 *
353			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
354			    g_step->gos_gain);
355
356		ret = 2;
357		goto done;
358	}
359
360done:
361	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
362		"ret %d, gain step %u, current gain %u, target gain %u\n",
363		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
364		ah->ah_gain.g_target);
365
366	return ret;
367}
368
369/* Main callback for thermal rf gain calibration engine
370 * Check for a new gain reading and schedule an adjustment
371 * if needed.
372 *
373 * TODO: Use sw interrupt to schedule reset if gain_F needs
374 * adjustment */
375enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
376{
377	u32 data, type;
378	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
379
380	ATH5K_TRACE(ah->ah_sc);
381
382	if (ah->ah_rf_banks == NULL ||
383	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
384		return AR5K_RFGAIN_INACTIVE;
385
386	/* No check requested, either engine is inactive
387	 * or an adjustment is already requested */
388	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
389		goto done;
390
391	/* Read the PAPD (Peak to Average Power Detector)
392	 * register */
393	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
394
395	/* No probe is scheduled, read gain_F measurement */
396	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
397		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
398		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
399
400		/* If tx packet is CCK correct the gain_F measurement
401		 * by cck ofdm gain delta */
402		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
403			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
404				ah->ah_gain.g_current +=
405					ee->ee_cck_ofdm_gain_delta;
406			else
407				ah->ah_gain.g_current +=
408					AR5K_GAIN_CCK_PROBE_CORR;
409		}
410
411		/* Further correct gain_F measurement for
412		 * RF5112A radios */
413		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
414			ath5k_hw_rf_gainf_corr(ah);
415			ah->ah_gain.g_current =
416				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
417				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
418				0;
419		}
420
421		/* Check if measurement is ok and if we need
422		 * to adjust gain, schedule a gain adjustment,
423		 * else switch back to the acive state */
424		if (ath5k_hw_rf_check_gainf_readback(ah) &&
425		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
426		ath5k_hw_rf_gainf_adjust(ah)) {
427			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
428		} else {
429			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
430		}
431	}
432
433done:
434	return ah->ah_gain.g_state;
435}
436
437/* Write initial rf gain table to set the RF sensitivity
438 * this one works on all RF chips and has nothing to do
439 * with gain_F calibration */
440int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
441{
442	const struct ath5k_ini_rfgain *ath5k_rfg;
443	unsigned int i, size;
444
445	switch (ah->ah_radio) {
446	case AR5K_RF5111:
447		ath5k_rfg = rfgain_5111;
448		size = ARRAY_SIZE(rfgain_5111);
449		break;
450	case AR5K_RF5112:
451		ath5k_rfg = rfgain_5112;
452		size = ARRAY_SIZE(rfgain_5112);
453		break;
454	case AR5K_RF2413:
455		ath5k_rfg = rfgain_2413;
456		size = ARRAY_SIZE(rfgain_2413);
457		break;
458	case AR5K_RF2316:
459		ath5k_rfg = rfgain_2316;
460		size = ARRAY_SIZE(rfgain_2316);
461		break;
462	case AR5K_RF5413:
463		ath5k_rfg = rfgain_5413;
464		size = ARRAY_SIZE(rfgain_5413);
465		break;
466	case AR5K_RF2317:
467	case AR5K_RF2425:
468		ath5k_rfg = rfgain_2425;
469		size = ARRAY_SIZE(rfgain_2425);
470		break;
471	default:
472		return -EINVAL;
473	}
474
475	switch (freq) {
476	case AR5K_INI_RFGAIN_2GHZ:
477	case AR5K_INI_RFGAIN_5GHZ:
478		break;
479	default:
480		return -EINVAL;
481	}
482
483	for (i = 0; i < size; i++) {
484		AR5K_REG_WAIT(i);
485		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
486			(u32)ath5k_rfg[i].rfg_register);
487	}
488
489	return 0;
490}
491
492
493
494/********************\
495* RF Registers setup *
496\********************/
497
498
499/*
500 * Setup RF registers by writing rf buffer on hw
501 */
502int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
503		unsigned int mode)
504{
505	const struct ath5k_rf_reg *rf_regs;
506	const struct ath5k_ini_rfbuffer *ini_rfb;
507	const struct ath5k_gain_opt *go = NULL;
508	const struct ath5k_gain_opt_step *g_step;
509	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
510	u8 ee_mode = 0;
511	u32 *rfb;
512	int i, obdb = -1, bank = -1;
513
514	switch (ah->ah_radio) {
515	case AR5K_RF5111:
516		rf_regs = rf_regs_5111;
517		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
518		ini_rfb = rfb_5111;
519		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
520		go = &rfgain_opt_5111;
521		break;
522	case AR5K_RF5112:
523		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
524			rf_regs = rf_regs_5112a;
525			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
526			ini_rfb = rfb_5112a;
527			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
528		} else {
529			rf_regs = rf_regs_5112;
530			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
531			ini_rfb = rfb_5112;
532			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
533		}
534		go = &rfgain_opt_5112;
535		break;
536	case AR5K_RF2413:
537		rf_regs = rf_regs_2413;
538		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
539		ini_rfb = rfb_2413;
540		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
541		break;
542	case AR5K_RF2316:
543		rf_regs = rf_regs_2316;
544		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
545		ini_rfb = rfb_2316;
546		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
547		break;
548	case AR5K_RF5413:
549		rf_regs = rf_regs_5413;
550		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
551		ini_rfb = rfb_5413;
552		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
553		break;
554	case AR5K_RF2317:
555		rf_regs = rf_regs_2425;
556		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
557		ini_rfb = rfb_2317;
558		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
559		break;
560	case AR5K_RF2425:
561		rf_regs = rf_regs_2425;
562		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
563		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
564			ini_rfb = rfb_2425;
565			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
566		} else {
567			ini_rfb = rfb_2417;
568			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
569		}
570		break;
571	default:
572		return -EINVAL;
573	}
574
575	/* If it's the first time we set rf buffer, allocate
576	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
577	 * we set above */
578	if (ah->ah_rf_banks == NULL) {
579		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
580								GFP_KERNEL);
581		if (ah->ah_rf_banks == NULL) {
582			ATH5K_ERR(ah->ah_sc, "out of memory\n");
583			return -ENOMEM;
584		}
585	}
586
587	/* Copy values to modify them */
588	rfb = ah->ah_rf_banks;
589
590	for (i = 0; i < ah->ah_rf_banks_size; i++) {
591		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
592			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
593			return -EINVAL;
594		}
595
596		/* Bank changed, write down the offset */
597		if (bank != ini_rfb[i].rfb_bank) {
598			bank = ini_rfb[i].rfb_bank;
599			ah->ah_offset[bank] = i;
600		}
601
602		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
603	}
604
605	/* Set Output and Driver bias current (OB/DB) */
606	if (channel->hw_value & CHANNEL_2GHZ) {
607
608		if (channel->hw_value & CHANNEL_CCK)
609			ee_mode = AR5K_EEPROM_MODE_11B;
610		else
611			ee_mode = AR5K_EEPROM_MODE_11G;
612
613		/* For RF511X/RF211X combination we
614		 * use b_OB and b_DB parameters stored
615		 * in eeprom on ee->ee_ob[ee_mode][0]
616		 *
617		 * For all other chips we use OB/DB for 2Ghz
618		 * stored in the b/g modal section just like
619		 * 802.11a on ee->ee_ob[ee_mode][1] */
620		if ((ah->ah_radio == AR5K_RF5111) ||
621		(ah->ah_radio == AR5K_RF5112))
622			obdb = 0;
623		else
624			obdb = 1;
625
626		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
627						AR5K_RF_OB_2GHZ, true);
628
629		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
630						AR5K_RF_DB_2GHZ, true);
631
632	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
633	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
634			(ah->ah_radio == AR5K_RF5111)) {
635
636		/* For 11a, Turbo and XR we need to choose
637		 * OB/DB based on frequency range */
638		ee_mode = AR5K_EEPROM_MODE_11A;
639		obdb =	 channel->center_freq >= 5725 ? 3 :
640			(channel->center_freq >= 5500 ? 2 :
641			(channel->center_freq >= 5260 ? 1 :
642			 (channel->center_freq > 4000 ? 0 : -1)));
643
644		if (obdb < 0)
645			return -EINVAL;
646
647		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
648						AR5K_RF_OB_5GHZ, true);
649
650		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
651						AR5K_RF_DB_5GHZ, true);
652	}
653
654	g_step = &go->go_step[ah->ah_gain.g_step_idx];
655
656	/* Bank Modifications (chip-specific) */
657	if (ah->ah_radio == AR5K_RF5111) {
658
659		/* Set gain_F settings according to current step */
660		if (channel->hw_value & CHANNEL_OFDM) {
661
662			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
663					AR5K_PHY_FRAME_CTL_TX_CLIP,
664					g_step->gos_param[0]);
665
666			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
667							AR5K_RF_PWD_90, true);
668
669			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
670							AR5K_RF_PWD_84, true);
671
672			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
673						AR5K_RF_RFGAIN_SEL, true);
674
675			/* We programmed gain_F parameters, switch back
676			 * to active state */
677			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
678
679		}
680
681		/* Bank 6/7 setup */
682
683		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
684						AR5K_RF_PWD_XPD, true);
685
686		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
687						AR5K_RF_XPD_GAIN, true);
688
689		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
690						AR5K_RF_GAIN_I, true);
691
692		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
693						AR5K_RF_PLO_SEL, true);
694
695		/* TODO: Half/quarter channel support */
696	}
697
698	if (ah->ah_radio == AR5K_RF5112) {
699
700		/* Set gain_F settings according to current step */
701		if (channel->hw_value & CHANNEL_OFDM) {
702
703			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
704						AR5K_RF_MIXGAIN_OVR, true);
705
706			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
707						AR5K_RF_PWD_138, true);
708
709			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
710						AR5K_RF_PWD_137, true);
711
712			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
713						AR5K_RF_PWD_136, true);
714
715			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
716						AR5K_RF_PWD_132, true);
717
718			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
719						AR5K_RF_PWD_131, true);
720
721			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
722						AR5K_RF_PWD_130, true);
723
724			/* We programmed gain_F parameters, switch back
725			 * to active state */
726			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
727		}
728
729		/* Bank 6/7 setup */
730
731		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
732						AR5K_RF_XPD_SEL, true);
733
734		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
735			/* Rev. 1 supports only one xpd */
736			ath5k_hw_rfb_op(ah, rf_regs,
737						ee->ee_x_gain[ee_mode],
738						AR5K_RF_XPD_GAIN, true);
739
740		} else {
741			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
742			if (ee->ee_pd_gains[ee_mode] > 1) {
743				ath5k_hw_rfb_op(ah, rf_regs,
744						pdg_curve_to_idx[0],
745						AR5K_RF_PD_GAIN_LO, true);
746				ath5k_hw_rfb_op(ah, rf_regs,
747						pdg_curve_to_idx[1],
748						AR5K_RF_PD_GAIN_HI, true);
749			} else {
750				ath5k_hw_rfb_op(ah, rf_regs,
751						pdg_curve_to_idx[0],
752						AR5K_RF_PD_GAIN_LO, true);
753				ath5k_hw_rfb_op(ah, rf_regs,
754						pdg_curve_to_idx[0],
755						AR5K_RF_PD_GAIN_HI, true);
756			}
757
758			/* Lower synth voltage on Rev 2 */
759			ath5k_hw_rfb_op(ah, rf_regs, 2,
760					AR5K_RF_HIGH_VC_CP, true);
761
762			ath5k_hw_rfb_op(ah, rf_regs, 2,
763					AR5K_RF_MID_VC_CP, true);
764
765			ath5k_hw_rfb_op(ah, rf_regs, 2,
766					AR5K_RF_LOW_VC_CP, true);
767
768			ath5k_hw_rfb_op(ah, rf_regs, 2,
769					AR5K_RF_PUSH_UP, true);
770
771			/* Decrease power consumption on 5213+ BaseBand */
772			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
773				ath5k_hw_rfb_op(ah, rf_regs, 1,
774						AR5K_RF_PAD2GND, true);
775
776				ath5k_hw_rfb_op(ah, rf_regs, 1,
777						AR5K_RF_XB2_LVL, true);
778
779				ath5k_hw_rfb_op(ah, rf_regs, 1,
780						AR5K_RF_XB5_LVL, true);
781
782				ath5k_hw_rfb_op(ah, rf_regs, 1,
783						AR5K_RF_PWD_167, true);
784
785				ath5k_hw_rfb_op(ah, rf_regs, 1,
786						AR5K_RF_PWD_166, true);
787			}
788		}
789
790		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
791						AR5K_RF_GAIN_I, true);
792
793		/* TODO: Half/quarter channel support */
794
795	}
796
797	if (ah->ah_radio == AR5K_RF5413 &&
798	channel->hw_value & CHANNEL_2GHZ) {
799
800		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
801									true);
802
803		/* Set optimum value for early revisions (on pci-e chips) */
804		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
805		ah->ah_mac_srev < AR5K_SREV_AR5413)
806			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
807						AR5K_RF_PWD_ICLOBUF_2G, true);
808
809	}
810
811	/* Write RF banks on hw */
812	for (i = 0; i < ah->ah_rf_banks_size; i++) {
813		AR5K_REG_WAIT(i);
814		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
815	}
816
817	return 0;
818}
819
820
821/**************************\
822  PHY/RF channel functions
823\**************************/
824
825/*
826 * Check if a channel is supported
827 */
828bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
829{
830	/* Check if the channel is in our supported range */
831	if (flags & CHANNEL_2GHZ) {
832		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
833		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
834			return true;
835	} else if (flags & CHANNEL_5GHZ)
836		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
837		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
838			return true;
839
840	return false;
841}
842
843/*
844 * Convertion needed for RF5110
845 */
846static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
847{
848	u32 athchan;
849
850	/*
851	 * Convert IEEE channel/MHz to an internal channel value used
852	 * by the AR5210 chipset. This has not been verified with
853	 * newer chipsets like the AR5212A who have a completely
854	 * different RF/PHY part.
855	 */
856	athchan = (ath5k_hw_bitswap(
857			(ieee80211_frequency_to_channel(
858				channel->center_freq) - 24) / 2, 5)
859				<< 1) | (1 << 6) | 0x1;
860	return athchan;
861}
862
863/*
864 * Set channel on RF5110
865 */
866static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
867		struct ieee80211_channel *channel)
868{
869	u32 data;
870
871	/*
872	 * Set the channel and wait
873	 */
874	data = ath5k_hw_rf5110_chan2athchan(channel);
875	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
876	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
877	mdelay(1);
878
879	return 0;
880}
881
882/*
883 * Convertion needed for 5111
884 */
885static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
886		struct ath5k_athchan_2ghz *athchan)
887{
888	int channel;
889
890	/* Cast this value to catch negative channel numbers (>= -19) */
891	channel = (int)ieee;
892
893	/*
894	 * Map 2GHz IEEE channel to 5GHz Atheros channel
895	 */
896	if (channel <= 13) {
897		athchan->a2_athchan = 115 + channel;
898		athchan->a2_flags = 0x46;
899	} else if (channel == 14) {
900		athchan->a2_athchan = 124;
901		athchan->a2_flags = 0x44;
902	} else if (channel >= 15 && channel <= 26) {
903		athchan->a2_athchan = ((channel - 14) * 4) + 132;
904		athchan->a2_flags = 0x46;
905	} else
906		return -EINVAL;
907
908	return 0;
909}
910
911/*
912 * Set channel on 5111
913 */
914static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
915		struct ieee80211_channel *channel)
916{
917	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
918	unsigned int ath5k_channel =
919		ieee80211_frequency_to_channel(channel->center_freq);
920	u32 data0, data1, clock;
921	int ret;
922
923	/*
924	 * Set the channel on the RF5111 radio
925	 */
926	data0 = data1 = 0;
927
928	if (channel->hw_value & CHANNEL_2GHZ) {
929		/* Map 2GHz channel to 5GHz Atheros channel ID */
930		ret = ath5k_hw_rf5111_chan2athchan(
931			ieee80211_frequency_to_channel(channel->center_freq),
932			&ath5k_channel_2ghz);
933		if (ret)
934			return ret;
935
936		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
937		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
938		    << 5) | (1 << 4);
939	}
940
941	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
942		clock = 1;
943		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
944			(clock << 1) | (1 << 10) | 1;
945	} else {
946		clock = 0;
947		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
948			<< 2) | (clock << 1) | (1 << 10) | 1;
949	}
950
951	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
952			AR5K_RF_BUFFER);
953	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
954			AR5K_RF_BUFFER_CONTROL_3);
955
956	return 0;
957}
958
959/*
960 * Set channel on 5112 and newer
961 */
962static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
963		struct ieee80211_channel *channel)
964{
965	u32 data, data0, data1, data2;
966	u16 c;
967
968	data = data0 = data1 = data2 = 0;
969	c = channel->center_freq;
970
971	if (c < 4800) {
972		if (!((c - 2224) % 5)) {
973			data0 = ((2 * (c - 704)) - 3040) / 10;
974			data1 = 1;
975		} else if (!((c - 2192) % 5)) {
976			data0 = ((2 * (c - 672)) - 3040) / 10;
977			data1 = 0;
978		} else
979			return -EINVAL;
980
981		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
982	} else if ((c - (c % 5)) != 2 || c > 5435) {
983		if (!(c % 20) && c >= 5120) {
984			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
985			data2 = ath5k_hw_bitswap(3, 2);
986		} else if (!(c % 10)) {
987			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
988			data2 = ath5k_hw_bitswap(2, 2);
989		} else if (!(c % 5)) {
990			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
991			data2 = ath5k_hw_bitswap(1, 2);
992		} else
993			return -EINVAL;
994	} else {
995		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
996		data2 = ath5k_hw_bitswap(0, 2);
997	}
998
999	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1000
1001	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1002	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1003
1004	return 0;
1005}
1006
1007/*
1008 * Set the channel on the RF2425
1009 */
1010static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1011		struct ieee80211_channel *channel)
1012{
1013	u32 data, data0, data2;
1014	u16 c;
1015
1016	data = data0 = data2 = 0;
1017	c = channel->center_freq;
1018
1019	if (c < 4800) {
1020		data0 = ath5k_hw_bitswap((c - 2272), 8);
1021		data2 = 0;
1022	/* ? 5GHz ? */
1023	} else if ((c - (c % 5)) != 2 || c > 5435) {
1024		if (!(c % 20) && c < 5120)
1025			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1026		else if (!(c % 10))
1027			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1028		else if (!(c % 5))
1029			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1030		else
1031			return -EINVAL;
1032		data2 = ath5k_hw_bitswap(1, 2);
1033	} else {
1034		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1035		data2 = ath5k_hw_bitswap(0, 2);
1036	}
1037
1038	data = (data0 << 4) | data2 << 2 | 0x1001;
1039
1040	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1041	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1042
1043	return 0;
1044}
1045
1046/*
1047 * Set a channel on the radio chip
1048 */
1049int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1050{
1051	int ret;
1052	/*
1053	 * Check bounds supported by the PHY (we don't care about regultory
1054	 * restrictions at this point). Note: hw_value already has the band
1055	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1056	 * of the band by that */
1057	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1058		ATH5K_ERR(ah->ah_sc,
1059			"channel frequency (%u MHz) out of supported "
1060			"band range\n",
1061			channel->center_freq);
1062			return -EINVAL;
1063	}
1064
1065	/*
1066	 * Set the channel and wait
1067	 */
1068	switch (ah->ah_radio) {
1069	case AR5K_RF5110:
1070		ret = ath5k_hw_rf5110_channel(ah, channel);
1071		break;
1072	case AR5K_RF5111:
1073		ret = ath5k_hw_rf5111_channel(ah, channel);
1074		break;
1075	case AR5K_RF2425:
1076		ret = ath5k_hw_rf2425_channel(ah, channel);
1077		break;
1078	default:
1079		ret = ath5k_hw_rf5112_channel(ah, channel);
1080		break;
1081	}
1082
1083	if (ret)
1084		return ret;
1085
1086	/* Set JAPAN setting for channel 14 */
1087	if (channel->center_freq == 2484) {
1088		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1089				AR5K_PHY_CCKTXCTL_JAPAN);
1090	} else {
1091		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1092				AR5K_PHY_CCKTXCTL_WORLD);
1093	}
1094
1095	ah->ah_current_channel = channel;
1096	ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1097
1098	return 0;
1099}
1100
1101/*****************\
1102  PHY calibration
1103\*****************/
1104
1105void
1106ath5k_hw_calibration_poll(struct ath5k_hw *ah)
1107{
1108	/* Calibration interval in jiffies */
1109	unsigned long cal_intval;
1110
1111	cal_intval = msecs_to_jiffies(ah->ah_cal_intval * 1000);
1112
1113	/* Initialize timestamp if needed */
1114	if (!ah->ah_cal_tstamp)
1115		ah->ah_cal_tstamp = jiffies;
1116
1117	/* For now we always do full calibration
1118	 * Mark software interrupt mask and fire software
1119	 * interrupt (bit gets auto-cleared) */
1120	if (time_is_before_eq_jiffies(ah->ah_cal_tstamp + cal_intval)) {
1121		ah->ah_cal_tstamp = jiffies;
1122		ah->ah_swi_mask = AR5K_SWI_FULL_CALIBRATION;
1123		AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI);
1124	}
1125}
1126
1127static int sign_extend(int val, const int nbits)
1128{
1129	int order = BIT(nbits-1);
1130	return (val ^ order) - order;
1131}
1132
1133static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1134{
1135	s32 val;
1136
1137	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1138	return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1139}
1140
1141void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1142{
1143	int i;
1144
1145	ah->ah_nfcal_hist.index = 0;
1146	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1147		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1148}
1149
1150static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1151{
1152	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1153	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1154	hist->nfval[hist->index] = noise_floor;
1155}
1156
1157static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1158{
1159	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1160	s16 tmp;
1161	int i, j;
1162
1163	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1164	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1165		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1166			if (sort[j] > sort[j-1]) {
1167				tmp = sort[j];
1168				sort[j] = sort[j-1];
1169				sort[j-1] = tmp;
1170			}
1171		}
1172	}
1173	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1174		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1175			"cal %d:%d\n", i, sort[i]);
1176	}
1177	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1178}
1179
1180/*
1181 * When we tell the hardware to perform a noise floor calibration
1182 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1183 * sample-and-hold the minimum noise level seen at the antennas.
1184 * This value is then stored in a ring buffer of recently measured
1185 * noise floor values so we have a moving window of the last few
1186 * samples.
1187 *
1188 * The median of the values in the history is then loaded into the
1189 * hardware for its own use for RSSI and CCA measurements.
1190 */
1191static void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1192{
1193	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1194	u32 val;
1195	s16 nf, threshold;
1196	u8 ee_mode;
1197
1198	/* keep last value if calibration hasn't completed */
1199	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1200		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1201			"NF did not complete in calibration window\n");
1202
1203		return;
1204	}
1205
1206	switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1207	case CHANNEL_A:
1208	case CHANNEL_T:
1209	case CHANNEL_XR:
1210		ee_mode = AR5K_EEPROM_MODE_11A;
1211		break;
1212	case CHANNEL_G:
1213	case CHANNEL_TG:
1214		ee_mode = AR5K_EEPROM_MODE_11G;
1215		break;
1216	default:
1217	case CHANNEL_B:
1218		ee_mode = AR5K_EEPROM_MODE_11B;
1219		break;
1220	}
1221
1222
1223	/* completed NF calibration, test threshold */
1224	nf = ath5k_hw_read_measured_noise_floor(ah);
1225	threshold = ee->ee_noise_floor_thr[ee_mode];
1226
1227	if (nf > threshold) {
1228		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1229			"noise floor failure detected; "
1230			"read %d, threshold %d\n",
1231			nf, threshold);
1232
1233		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1234	}
1235
1236	ath5k_hw_update_nfcal_hist(ah, nf);
1237	nf = ath5k_hw_get_median_noise_floor(ah);
1238
1239	/* load noise floor (in .5 dBm) so the hardware will use it */
1240	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1241	val |= (nf * 2) & AR5K_PHY_NF_M;
1242	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1243
1244	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1245		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1246
1247	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1248		0, false);
1249
1250	/*
1251	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1252	 * so that we're not capped by the median we just loaded.
1253	 * This will be used as the initial value for the next noise
1254	 * floor calibration.
1255	 */
1256	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1257	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1258	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1259		AR5K_PHY_AGCCTL_NF_EN |
1260		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1261		AR5K_PHY_AGCCTL_NF);
1262
1263	ah->ah_noise_floor = nf;
1264
1265	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1266		"noise floor calibrated: %d\n", nf);
1267}
1268
1269/*
1270 * Perform a PHY calibration on RF5110
1271 * -Fix BPSK/QAM Constellation (I/Q correction)
1272 * -Calculate Noise Floor
1273 */
1274static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1275		struct ieee80211_channel *channel)
1276{
1277	u32 phy_sig, phy_agc, phy_sat, beacon;
1278	int ret;
1279
1280	/*
1281	 * Disable beacons and RX/TX queues, wait
1282	 */
1283	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1284		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1285	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1286	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1287
1288	mdelay(2);
1289
1290	/*
1291	 * Set the channel (with AGC turned off)
1292	 */
1293	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1294	udelay(10);
1295	ret = ath5k_hw_channel(ah, channel);
1296
1297	/*
1298	 * Activate PHY and wait
1299	 */
1300	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1301	mdelay(1);
1302
1303	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1304
1305	if (ret)
1306		return ret;
1307
1308	/*
1309	 * Calibrate the radio chip
1310	 */
1311
1312	/* Remember normal state */
1313	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1314	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1315	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1316
1317	/* Update radio registers */
1318	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1319		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1320
1321	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1322			AR5K_PHY_AGCCOARSE_LO)) |
1323		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1324		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1325
1326	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1327			AR5K_PHY_ADCSAT_THR)) |
1328		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1329		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1330
1331	udelay(20);
1332
1333	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1334	udelay(10);
1335	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1336	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1337
1338	mdelay(1);
1339
1340	/*
1341	 * Enable calibration and wait until completion
1342	 */
1343	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1344
1345	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1346			AR5K_PHY_AGCCTL_CAL, 0, false);
1347
1348	/* Reset to normal state */
1349	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1350	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1351	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1352
1353	if (ret) {
1354		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1355				channel->center_freq);
1356		return ret;
1357	}
1358
1359	ath5k_hw_update_noise_floor(ah);
1360
1361	/*
1362	 * Re-enable RX/TX and beacons
1363	 */
1364	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1365		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1366	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1367
1368	return 0;
1369}
1370
1371/*
1372 * Perform a PHY calibration on RF5111/5112 and newer chips
1373 */
1374static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1375		struct ieee80211_channel *channel)
1376{
1377	u32 i_pwr, q_pwr;
1378	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1379	int i;
1380	ATH5K_TRACE(ah->ah_sc);
1381
1382	if (!ah->ah_calibration ||
1383		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1384		goto done;
1385
1386	/* Calibration has finished, get the results and re-run */
1387	for (i = 0; i <= 10; i++) {
1388		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1389		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1390		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1391	}
1392
1393	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1394	q_coffd = q_pwr >> 7;
1395
1396	/* No correction */
1397	if (i_coffd == 0 || q_coffd == 0)
1398		goto done;
1399
1400	i_coff = ((-iq_corr) / i_coffd);
1401
1402	/* Boundary check */
1403	if (i_coff > 31)
1404		i_coff = 31;
1405	if (i_coff < -32)
1406		i_coff = -32;
1407
1408	q_coff = (((s32)i_pwr / q_coffd) - 128);
1409
1410	/* Boundary check */
1411	if (q_coff > 15)
1412		q_coff = 15;
1413	if (q_coff < -16)
1414		q_coff = -16;
1415
1416	/* Commit new I/Q value */
1417	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1418		((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1419
1420	/* Re-enable calibration -if we don't we'll commit
1421	 * the same values again and again */
1422	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1423			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1424	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1425
1426done:
1427
1428	/* TODO: Separate noise floor calibration from I/Q calibration
1429	 * since noise floor calibration interrupts rx path while I/Q
1430	 * calibration doesn't. We don't need to run noise floor calibration
1431	 * as often as I/Q calibration.*/
1432	ath5k_hw_update_noise_floor(ah);
1433
1434	/* Initiate a gain_F calibration */
1435	ath5k_hw_request_rfgain_probe(ah);
1436
1437	return 0;
1438}
1439
1440/*
1441 * Perform a PHY calibration
1442 */
1443int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1444		struct ieee80211_channel *channel)
1445{
1446	int ret;
1447
1448	if (ah->ah_radio == AR5K_RF5110)
1449		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1450	else
1451		ret = ath5k_hw_rf511x_calibrate(ah, channel);
1452
1453	return ret;
1454}
1455
1456/***************************\
1457* Spur mitigation functions *
1458\***************************/
1459
1460bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1461				struct ieee80211_channel *channel)
1462{
1463	u8 refclk_freq;
1464
1465	if ((ah->ah_radio == AR5K_RF5112) ||
1466	(ah->ah_radio == AR5K_RF5413) ||
1467	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1468		refclk_freq = 40;
1469	else
1470		refclk_freq = 32;
1471
1472	if ((channel->center_freq % refclk_freq != 0) &&
1473	((channel->center_freq % refclk_freq < 10) ||
1474	(channel->center_freq % refclk_freq > 22)))
1475		return true;
1476	else
1477		return false;
1478}
1479
1480void
1481ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1482				struct ieee80211_channel *channel)
1483{
1484	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1485	u32 mag_mask[4] = {0, 0, 0, 0};
1486	u32 pilot_mask[2] = {0, 0};
1487	/* Note: fbin values are scaled up by 2 */
1488	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1489	s32 spur_delta_phase, spur_freq_sigma_delta;
1490	s32 spur_offset, num_symbols_x16;
1491	u8 num_symbol_offsets, i, freq_band;
1492
1493	/* Convert current frequency to fbin value (the same way channels
1494	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1495	 * up by 2 so we can compare it later */
1496	if (channel->hw_value & CHANNEL_2GHZ) {
1497		chan_fbin = (channel->center_freq - 2300) * 10;
1498		freq_band = AR5K_EEPROM_BAND_2GHZ;
1499	} else {
1500		chan_fbin = (channel->center_freq - 4900) * 10;
1501		freq_band = AR5K_EEPROM_BAND_5GHZ;
1502	}
1503
1504	/* Check if any spur_chan_fbin from EEPROM is
1505	 * within our current channel's spur detection range */
1506	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1507	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1508	/* XXX: Half/Quarter channels ?*/
1509	if (channel->hw_value & CHANNEL_TURBO)
1510		spur_detection_window *= 2;
1511
1512	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1513		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1514
1515		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1516		 * so it's zero if we got nothing from EEPROM */
1517		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1518			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1519			break;
1520		}
1521
1522		if ((chan_fbin - spur_detection_window <=
1523		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1524		(chan_fbin + spur_detection_window >=
1525		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1526			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1527			break;
1528		}
1529	}
1530
1531	/* We need to enable spur filter for this channel */
1532	if (spur_chan_fbin) {
1533		spur_offset = spur_chan_fbin - chan_fbin;
1534		/*
1535		 * Calculate deltas:
1536		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1537		 * spur_delta_phase -> spur_offset / chip_freq << 11
1538		 * Note: Both values have 100KHz resolution
1539		 */
1540		/* XXX: Half/Quarter rate channels ? */
1541		switch (channel->hw_value) {
1542		case CHANNEL_A:
1543			/* Both sample_freq and chip_freq are 40MHz */
1544			spur_delta_phase = (spur_offset << 17) / 25;
1545			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1546			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1547			break;
1548		case CHANNEL_G:
1549			/* sample_freq -> 40MHz chip_freq -> 44MHz
1550			 * (for b compatibility) */
1551			spur_freq_sigma_delta = (spur_offset << 8) / 55;
1552			spur_delta_phase = (spur_offset << 17) / 25;
1553			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1554			break;
1555		case CHANNEL_T:
1556		case CHANNEL_TG:
1557			/* Both sample_freq and chip_freq are 80MHz */
1558			spur_delta_phase = (spur_offset << 16) / 25;
1559			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1560			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1561			break;
1562		default:
1563			return;
1564		}
1565
1566		/* Calculate pilot and magnitude masks */
1567
1568		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1569		 * and divide by symbol_width to find how many symbols we have
1570		 * Note: number of symbols is scaled up by 16 */
1571		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1572
1573		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1574		if (!(num_symbols_x16 & 0xF))
1575			/* _X_ */
1576			num_symbol_offsets = 3;
1577		else
1578			/* _xx_ */
1579			num_symbol_offsets = 4;
1580
1581		for (i = 0; i < num_symbol_offsets; i++) {
1582
1583			/* Calculate pilot mask */
1584			s32 curr_sym_off =
1585				(num_symbols_x16 / 16) + i + 25;
1586
1587			/* Pilot magnitude mask seems to be a way to
1588			 * declare the boundaries for our detection
1589			 * window or something, it's 2 for the middle
1590			 * value(s) where the symbol is expected to be
1591			 * and 1 on the boundary values */
1592			u8 plt_mag_map =
1593				(i == 0 || i == (num_symbol_offsets - 1))
1594								? 1 : 2;
1595
1596			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1597				if (curr_sym_off <= 25)
1598					pilot_mask[0] |= 1 << curr_sym_off;
1599				else if (curr_sym_off >= 27)
1600					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1601			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1602				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1603
1604			/* Calculate magnitude mask (for viterbi decoder) */
1605			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1606				mag_mask[0] |=
1607					plt_mag_map << (curr_sym_off + 1) * 2;
1608			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1609				mag_mask[1] |=
1610					plt_mag_map << (curr_sym_off - 15) * 2;
1611			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1612				mag_mask[2] |=
1613					plt_mag_map << (curr_sym_off - 31) * 2;
1614			else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1615				mag_mask[3] |=
1616					plt_mag_map << (curr_sym_off - 47) * 2;
1617
1618		}
1619
1620		/* Write settings on hw to enable spur filter */
1621		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1622					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1623		/* XXX: Self correlator also ? */
1624		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1625					AR5K_PHY_IQ_PILOT_MASK_EN |
1626					AR5K_PHY_IQ_CHAN_MASK_EN |
1627					AR5K_PHY_IQ_SPUR_FILT_EN);
1628
1629		/* Set delta phase and freq sigma delta */
1630		ath5k_hw_reg_write(ah,
1631				AR5K_REG_SM(spur_delta_phase,
1632					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1633				AR5K_REG_SM(spur_freq_sigma_delta,
1634				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1635				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1636				AR5K_PHY_TIMING_11);
1637
1638		/* Write pilot masks */
1639		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1640		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1641					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1642					pilot_mask[1]);
1643
1644		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1645		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1646					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1647					pilot_mask[1]);
1648
1649		/* Write magnitude masks */
1650		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1651		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1652		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1653		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1654					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1655					mag_mask[3]);
1656
1657		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1658		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1659		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1660		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1661					AR5K_PHY_BIN_MASK2_4_MASK_4,
1662					mag_mask[3]);
1663
1664	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1665	AR5K_PHY_IQ_SPUR_FILT_EN) {
1666		/* Clean up spur mitigation settings and disable fliter */
1667		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1668					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1669		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1670					AR5K_PHY_IQ_PILOT_MASK_EN |
1671					AR5K_PHY_IQ_CHAN_MASK_EN |
1672					AR5K_PHY_IQ_SPUR_FILT_EN);
1673		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1674
1675		/* Clear pilot masks */
1676		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1677		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1678					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1679					0);
1680
1681		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1682		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1683					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1684					0);
1685
1686		/* Clear magnitude masks */
1687		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1688		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1689		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1690		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1691					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1692					0);
1693
1694		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1695		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1696		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1697		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1698					AR5K_PHY_BIN_MASK2_4_MASK_4,
1699					0);
1700	}
1701}
1702
1703/********************\
1704  Misc PHY functions
1705\********************/
1706
1707int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1708{
1709	ATH5K_TRACE(ah->ah_sc);
1710	/*Just a try M.F.*/
1711	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1712
1713	return 0;
1714}
1715
1716/*
1717 * Get the PHY Chip revision
1718 */
1719u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1720{
1721	unsigned int i;
1722	u32 srev;
1723	u16 ret;
1724
1725	ATH5K_TRACE(ah->ah_sc);
1726
1727	/*
1728	 * Set the radio chip access register
1729	 */
1730	switch (chan) {
1731	case CHANNEL_2GHZ:
1732		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1733		break;
1734	case CHANNEL_5GHZ:
1735		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1736		break;
1737	default:
1738		return 0;
1739	}
1740
1741	mdelay(2);
1742
1743	/* ...wait until PHY is ready and read the selected radio revision */
1744	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1745
1746	for (i = 0; i < 8; i++)
1747		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1748
1749	if (ah->ah_version == AR5K_AR5210) {
1750		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1751		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1752	} else {
1753		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1754		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1755				((srev & 0x0f) << 4), 8);
1756	}
1757
1758	/* Reset to the 5GHz mode */
1759	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1760
1761	return ret;
1762}
1763
1764/*****************\
1765* Antenna control *
1766\*****************/
1767
1768static void /*TODO:Boundary check*/
1769ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1770{
1771	ATH5K_TRACE(ah->ah_sc);
1772
1773	if (ah->ah_version != AR5K_AR5210)
1774		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1775}
1776
1777#if 0
1778unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1779{
1780	ATH5K_TRACE(ah->ah_sc);
1781
1782	if (ah->ah_version != AR5K_AR5210)
1783		return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
1784
1785	return false; /*XXX: What do we return for 5210 ?*/
1786}
1787#endif
1788
1789/*
1790 * Enable/disable fast rx antenna diversity
1791 */
1792static void
1793ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1794{
1795	switch (ee_mode) {
1796	case AR5K_EEPROM_MODE_11G:
1797		/* XXX: This is set to
1798		 * disabled on initvals !!! */
1799	case AR5K_EEPROM_MODE_11A:
1800		if (enable)
1801			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1802					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1803		else
1804			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1805					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1806		break;
1807	case AR5K_EEPROM_MODE_11B:
1808		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1809					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1810		break;
1811	default:
1812		return;
1813	}
1814
1815	if (enable) {
1816		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1817				AR5K_PHY_RESTART_DIV_GC, 0xc);
1818
1819		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1820					AR5K_PHY_FAST_ANT_DIV_EN);
1821	} else {
1822		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1823				AR5K_PHY_RESTART_DIV_GC, 0x8);
1824
1825		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1826					AR5K_PHY_FAST_ANT_DIV_EN);
1827	}
1828}
1829
1830/*
1831 * Set antenna operating mode
1832 */
1833void
1834ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1835{
1836	struct ieee80211_channel *channel = ah->ah_current_channel;
1837	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1838	bool use_def_for_sg;
1839	u8 def_ant, tx_ant, ee_mode;
1840	u32 sta_id1 = 0;
1841
1842	def_ant = ah->ah_def_ant;
1843
1844	ATH5K_TRACE(ah->ah_sc);
1845
1846	switch (channel->hw_value & CHANNEL_MODES) {
1847	case CHANNEL_A:
1848	case CHANNEL_T:
1849	case CHANNEL_XR:
1850		ee_mode = AR5K_EEPROM_MODE_11A;
1851		break;
1852	case CHANNEL_G:
1853	case CHANNEL_TG:
1854		ee_mode = AR5K_EEPROM_MODE_11G;
1855		break;
1856	case CHANNEL_B:
1857		ee_mode = AR5K_EEPROM_MODE_11B;
1858		break;
1859	default:
1860		ATH5K_ERR(ah->ah_sc,
1861			"invalid channel: %d\n", channel->center_freq);
1862		return;
1863	}
1864
1865	switch (ant_mode) {
1866	case AR5K_ANTMODE_DEFAULT:
1867		tx_ant = 0;
1868		use_def_for_tx = false;
1869		update_def_on_tx = false;
1870		use_def_for_rts = false;
1871		use_def_for_sg = false;
1872		fast_div = true;
1873		break;
1874	case AR5K_ANTMODE_FIXED_A:
1875		def_ant = 1;
1876		tx_ant = 0;
1877		use_def_for_tx = true;
1878		update_def_on_tx = false;
1879		use_def_for_rts = true;
1880		use_def_for_sg = true;
1881		fast_div = false;
1882		break;
1883	case AR5K_ANTMODE_FIXED_B:
1884		def_ant = 2;
1885		tx_ant = 0;
1886		use_def_for_tx = true;
1887		update_def_on_tx = false;
1888		use_def_for_rts = true;
1889		use_def_for_sg = true;
1890		fast_div = false;
1891		break;
1892	case AR5K_ANTMODE_SINGLE_AP:
1893		def_ant = 1;	/* updated on tx */
1894		tx_ant = 0;
1895		use_def_for_tx = true;
1896		update_def_on_tx = true;
1897		use_def_for_rts = true;
1898		use_def_for_sg = true;
1899		fast_div = true;
1900		break;
1901	case AR5K_ANTMODE_SECTOR_AP:
1902		tx_ant = 1;	/* variable */
1903		use_def_for_tx = false;
1904		update_def_on_tx = false;
1905		use_def_for_rts = true;
1906		use_def_for_sg = false;
1907		fast_div = false;
1908		break;
1909	case AR5K_ANTMODE_SECTOR_STA:
1910		tx_ant = 1;	/* variable */
1911		use_def_for_tx = true;
1912		update_def_on_tx = false;
1913		use_def_for_rts = true;
1914		use_def_for_sg = false;
1915		fast_div = true;
1916		break;
1917	case AR5K_ANTMODE_DEBUG:
1918		def_ant = 1;
1919		tx_ant = 2;
1920		use_def_for_tx = false;
1921		update_def_on_tx = false;
1922		use_def_for_rts = false;
1923		use_def_for_sg = false;
1924		fast_div = false;
1925		break;
1926	default:
1927		return;
1928	}
1929
1930	ah->ah_tx_ant = tx_ant;
1931	ah->ah_ant_mode = ant_mode;
1932
1933	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1934	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1935	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1936	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1937
1938	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1939
1940	if (sta_id1)
1941		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1942
1943	/* Note: set diversity before default antenna
1944	 * because it won't work correctly */
1945	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1946	ath5k_hw_set_def_antenna(ah, def_ant);
1947}
1948
1949
1950/****************\
1951* TX power setup *
1952\****************/
1953
1954/*
1955 * Helper functions
1956 */
1957
1958/*
1959 * Do linear interpolation between two given (x, y) points
1960 */
1961static s16
1962ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1963					s16 y_left, s16 y_right)
1964{
1965	s16 ratio, result;
1966
1967	/* Avoid divide by zero and skip interpolation
1968	 * if we have the same point */
1969	if ((x_left == x_right) || (y_left == y_right))
1970		return y_left;
1971
1972	/*
1973	 * Since we use ints and not fps, we need to scale up in
1974	 * order to get a sane ratio value (or else we 'll eg. get
1975	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1976	 * to have some accuracy both for 0.5 and 0.25 steps.
1977	 */
1978	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1979
1980	/* Now scale down to be in range */
1981	result = y_left + (ratio * (target - x_left) / 100);
1982
1983	return result;
1984}
1985
1986/*
1987 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1988 *
1989 * Since we have the top of the curve and we draw the line below
1990 * until we reach 1 (1 pcdac step) we need to know which point
1991 * (x value) that is so that we don't go below y axis and have negative
1992 * pcdac values when creating the curve, or fill the table with zeroes.
1993 */
1994static s16
1995ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1996				const s16 *pwrL, const s16 *pwrR)
1997{
1998	s8 tmp;
1999	s16 min_pwrL, min_pwrR;
2000	s16 pwr_i;
2001
2002	/* Some vendors write the same pcdac value twice !!! */
2003	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2004		return max(pwrL[0], pwrR[0]);
2005
2006	if (pwrL[0] == pwrL[1])
2007		min_pwrL = pwrL[0];
2008	else {
2009		pwr_i = pwrL[0];
2010		do {
2011			pwr_i--;
2012			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2013							pwrL[0], pwrL[1],
2014							stepL[0], stepL[1]);
2015		} while (tmp > 1);
2016
2017		min_pwrL = pwr_i;
2018	}
2019
2020	if (pwrR[0] == pwrR[1])
2021		min_pwrR = pwrR[0];
2022	else {
2023		pwr_i = pwrR[0];
2024		do {
2025			pwr_i--;
2026			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2027							pwrR[0], pwrR[1],
2028							stepR[0], stepR[1]);
2029		} while (tmp > 1);
2030
2031		min_pwrR = pwr_i;
2032	}
2033
2034	/* Keep the right boundary so that it works for both curves */
2035	return max(min_pwrL, min_pwrR);
2036}
2037
2038/*
2039 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2040 * Power to PCDAC curve.
2041 *
2042 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2043 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2044 * PCDAC/PDADC step for each curve is 64 but we can write more than
2045 * one curves on hw so we can go up to 128 (which is the max step we
2046 * can write on the final table).
2047 *
2048 * We write y values (PCDAC/PDADC steps) on hw.
2049 */
2050static void
2051ath5k_create_power_curve(s16 pmin, s16 pmax,
2052			const s16 *pwr, const u8 *vpd,
2053			u8 num_points,
2054			u8 *vpd_table, u8 type)
2055{
2056	u8 idx[2] = { 0, 1 };
2057	s16 pwr_i = 2*pmin;
2058	int i;
2059
2060	if (num_points < 2)
2061		return;
2062
2063	/* We want the whole line, so adjust boundaries
2064	 * to cover the entire power range. Note that
2065	 * power values are already 0.25dB so no need
2066	 * to multiply pwr_i by 2 */
2067	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2068		pwr_i = pmin;
2069		pmin = 0;
2070		pmax = 63;
2071	}
2072
2073	/* Find surrounding turning points (TPs)
2074	 * and interpolate between them */
2075	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2076	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2077
2078		/* We passed the right TP, move to the next set of TPs
2079		 * if we pass the last TP, extrapolate above using the last
2080		 * two TPs for ratio */
2081		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2082			idx[0]++;
2083			idx[1]++;
2084		}
2085
2086		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2087						pwr[idx[0]], pwr[idx[1]],
2088						vpd[idx[0]], vpd[idx[1]]);
2089
2090		/* Increase by 0.5dB
2091		 * (0.25 dB units) */
2092		pwr_i += 2;
2093	}
2094}
2095
2096/*
2097 * Get the surrounding per-channel power calibration piers
2098 * for a given frequency so that we can interpolate between
2099 * them and come up with an apropriate dataset for our current
2100 * channel.
2101 */
2102static void
2103ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2104			struct ieee80211_channel *channel,
2105			struct ath5k_chan_pcal_info **pcinfo_l,
2106			struct ath5k_chan_pcal_info **pcinfo_r)
2107{
2108	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2109	struct ath5k_chan_pcal_info *pcinfo;
2110	u8 idx_l, idx_r;
2111	u8 mode, max, i;
2112	u32 target = channel->center_freq;
2113
2114	idx_l = 0;
2115	idx_r = 0;
2116
2117	if (!(channel->hw_value & CHANNEL_OFDM)) {
2118		pcinfo = ee->ee_pwr_cal_b;
2119		mode = AR5K_EEPROM_MODE_11B;
2120	} else if (channel->hw_value & CHANNEL_2GHZ) {
2121		pcinfo = ee->ee_pwr_cal_g;
2122		mode = AR5K_EEPROM_MODE_11G;
2123	} else {
2124		pcinfo = ee->ee_pwr_cal_a;
2125		mode = AR5K_EEPROM_MODE_11A;
2126	}
2127	max = ee->ee_n_piers[mode] - 1;
2128
2129	/* Frequency is below our calibrated
2130	 * range. Use the lowest power curve
2131	 * we have */
2132	if (target < pcinfo[0].freq) {
2133		idx_l = idx_r = 0;
2134		goto done;
2135	}
2136
2137	/* Frequency is above our calibrated
2138	 * range. Use the highest power curve
2139	 * we have */
2140	if (target > pcinfo[max].freq) {
2141		idx_l = idx_r = max;
2142		goto done;
2143	}
2144
2145	/* Frequency is inside our calibrated
2146	 * channel range. Pick the surrounding
2147	 * calibration piers so that we can
2148	 * interpolate */
2149	for (i = 0; i <= max; i++) {
2150
2151		/* Frequency matches one of our calibration
2152		 * piers, no need to interpolate, just use
2153		 * that calibration pier */
2154		if (pcinfo[i].freq == target) {
2155			idx_l = idx_r = i;
2156			goto done;
2157		}
2158
2159		/* We found a calibration pier that's above
2160		 * frequency, use this pier and the previous
2161		 * one to interpolate */
2162		if (target < pcinfo[i].freq) {
2163			idx_r = i;
2164			idx_l = idx_r - 1;
2165			goto done;
2166		}
2167	}
2168
2169done:
2170	*pcinfo_l = &pcinfo[idx_l];
2171	*pcinfo_r = &pcinfo[idx_r];
2172
2173	return;
2174}
2175
2176/*
2177 * Get the surrounding per-rate power calibration data
2178 * for a given frequency and interpolate between power
2179 * values to set max target power supported by hw for
2180 * each rate.
2181 */
2182static void
2183ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2184			struct ieee80211_channel *channel,
2185			struct ath5k_rate_pcal_info *rates)
2186{
2187	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2188	struct ath5k_rate_pcal_info *rpinfo;
2189	u8 idx_l, idx_r;
2190	u8 mode, max, i;
2191	u32 target = channel->center_freq;
2192
2193	idx_l = 0;
2194	idx_r = 0;
2195
2196	if (!(channel->hw_value & CHANNEL_OFDM)) {
2197		rpinfo = ee->ee_rate_tpwr_b;
2198		mode = AR5K_EEPROM_MODE_11B;
2199	} else if (channel->hw_value & CHANNEL_2GHZ) {
2200		rpinfo = ee->ee_rate_tpwr_g;
2201		mode = AR5K_EEPROM_MODE_11G;
2202	} else {
2203		rpinfo = ee->ee_rate_tpwr_a;
2204		mode = AR5K_EEPROM_MODE_11A;
2205	}
2206	max = ee->ee_rate_target_pwr_num[mode] - 1;
2207
2208	/* Get the surrounding calibration
2209	 * piers - same as above */
2210	if (target < rpinfo[0].freq) {
2211		idx_l = idx_r = 0;
2212		goto done;
2213	}
2214
2215	if (target > rpinfo[max].freq) {
2216		idx_l = idx_r = max;
2217		goto done;
2218	}
2219
2220	for (i = 0; i <= max; i++) {
2221
2222		if (rpinfo[i].freq == target) {
2223			idx_l = idx_r = i;
2224			goto done;
2225		}
2226
2227		if (target < rpinfo[i].freq) {
2228			idx_r = i;
2229			idx_l = idx_r - 1;
2230			goto done;
2231		}
2232	}
2233
2234done:
2235	/* Now interpolate power value, based on the frequency */
2236	rates->freq = target;
2237
2238	rates->target_power_6to24 =
2239		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2240					rpinfo[idx_r].freq,
2241					rpinfo[idx_l].target_power_6to24,
2242					rpinfo[idx_r].target_power_6to24);
2243
2244	rates->target_power_36 =
2245		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2246					rpinfo[idx_r].freq,
2247					rpinfo[idx_l].target_power_36,
2248					rpinfo[idx_r].target_power_36);
2249
2250	rates->target_power_48 =
2251		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2252					rpinfo[idx_r].freq,
2253					rpinfo[idx_l].target_power_48,
2254					rpinfo[idx_r].target_power_48);
2255
2256	rates->target_power_54 =
2257		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2258					rpinfo[idx_r].freq,
2259					rpinfo[idx_l].target_power_54,
2260					rpinfo[idx_r].target_power_54);
2261}
2262
2263/*
2264 * Get the max edge power for this channel if
2265 * we have such data from EEPROM's Conformance Test
2266 * Limits (CTL), and limit max power if needed.
2267 */
2268static void
2269ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2270			struct ieee80211_channel *channel)
2271{
2272	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2273	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2274	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2275	u8 *ctl_val = ee->ee_ctl;
2276	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2277	s16 edge_pwr = 0;
2278	u8 rep_idx;
2279	u8 i, ctl_mode;
2280	u8 ctl_idx = 0xFF;
2281	u32 target = channel->center_freq;
2282
2283	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2284
2285	switch (channel->hw_value & CHANNEL_MODES) {
2286	case CHANNEL_A:
2287		ctl_mode |= AR5K_CTL_11A;
2288		break;
2289	case CHANNEL_G:
2290		ctl_mode |= AR5K_CTL_11G;
2291		break;
2292	case CHANNEL_B:
2293		ctl_mode |= AR5K_CTL_11B;
2294		break;
2295	case CHANNEL_T:
2296		ctl_mode |= AR5K_CTL_TURBO;
2297		break;
2298	case CHANNEL_TG:
2299		ctl_mode |= AR5K_CTL_TURBOG;
2300		break;
2301	case CHANNEL_XR:
2302		/* Fall through */
2303	default:
2304		return;
2305	}
2306
2307	for (i = 0; i < ee->ee_ctls; i++) {
2308		if (ctl_val[i] == ctl_mode) {
2309			ctl_idx = i;
2310			break;
2311		}
2312	}
2313
2314	/* If we have a CTL dataset available grab it and find the
2315	 * edge power for our frequency */
2316	if (ctl_idx == 0xFF)
2317		return;
2318
2319	/* Edge powers are sorted by frequency from lower
2320	 * to higher. Each CTL corresponds to 8 edge power
2321	 * measurements. */
2322	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2323
2324	/* Don't do boundaries check because we
2325	 * might have more that one bands defined
2326	 * for this mode */
2327
2328	/* Get the edge power that's closer to our
2329	 * frequency */
2330	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2331		rep_idx += i;
2332		if (target <= rep[rep_idx].freq)
2333			edge_pwr = (s16) rep[rep_idx].edge;
2334	}
2335
2336	if (edge_pwr)
2337		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2338}
2339
2340
2341/*
2342 * Power to PCDAC table functions
2343 */
2344
2345/*
2346 * Fill Power to PCDAC table on RF5111
2347 *
2348 * No further processing is needed for RF5111, the only thing we have to
2349 * do is fill the values below and above calibration range since eeprom data
2350 * may not cover the entire PCDAC table.
2351 */
2352static void
2353ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2354							s16 *table_max)
2355{
2356	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2357	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2358	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2359	s16	min_pwr, max_pwr;
2360
2361	/* Get table boundaries */
2362	min_pwr = table_min[0];
2363	pcdac_0 = pcdac_tmp[0];
2364
2365	max_pwr = table_max[0];
2366	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2367
2368	/* Extrapolate below minimum using pcdac_0 */
2369	pcdac_i = 0;
2370	for (i = 0; i < min_pwr; i++)
2371		pcdac_out[pcdac_i++] = pcdac_0;
2372
2373	/* Copy values from pcdac_tmp */
2374	pwr_idx = min_pwr;
2375	for (i = 0 ; pwr_idx <= max_pwr &&
2376	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2377		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2378		pwr_idx++;
2379	}
2380
2381	/* Extrapolate above maximum */
2382	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2383		pcdac_out[pcdac_i++] = pcdac_n;
2384
2385}
2386
2387/*
2388 * Combine available XPD Curves and fill Linear Power to PCDAC table
2389 * on RF5112
2390 *
2391 * RFX112 can have up to 2 curves (one for low txpower range and one for
2392 * higher txpower range). We need to put them both on pcdac_out and place
2393 * them in the correct location. In case we only have one curve available
2394 * just fit it on pcdac_out (it's supposed to cover the entire range of
2395 * available pwr levels since it's always the higher power curve). Extrapolate
2396 * below and above final table if needed.
2397 */
2398static void
2399ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2400						s16 *table_max, u8 pdcurves)
2401{
2402	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2403	u8	*pcdac_low_pwr;
2404	u8	*pcdac_high_pwr;
2405	u8	*pcdac_tmp;
2406	u8	pwr;
2407	s16	max_pwr_idx;
2408	s16	min_pwr_idx;
2409	s16	mid_pwr_idx = 0;
2410	/* Edge flag turs on the 7nth bit on the PCDAC
2411	 * to delcare the higher power curve (force values
2412	 * to be greater than 64). If we only have one curve
2413	 * we don't need to set this, if we have 2 curves and
2414	 * fill the table backwards this can also be used to
2415	 * switch from higher power curve to lower power curve */
2416	u8	edge_flag;
2417	int	i;
2418
2419	/* When we have only one curve available
2420	 * that's the higher power curve. If we have
2421	 * two curves the first is the high power curve
2422	 * and the next is the low power curve. */
2423	if (pdcurves > 1) {
2424		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2425		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2426		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2427		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2428
2429		/* If table size goes beyond 31.5dB, keep the
2430		 * upper 31.5dB range when setting tx power.
2431		 * Note: 126 = 31.5 dB in quarter dB steps */
2432		if (table_max[0] - table_min[1] > 126)
2433			min_pwr_idx = table_max[0] - 126;
2434		else
2435			min_pwr_idx = table_min[1];
2436
2437		/* Since we fill table backwards
2438		 * start from high power curve */
2439		pcdac_tmp = pcdac_high_pwr;
2440
2441		edge_flag = 0x40;
2442#if 0
2443		/* If both min and max power limits are in lower
2444		 * power curve's range, only use the low power curve.
2445		 * TODO: min/max levels are related to target
2446		 * power values requested from driver/user
2447		 * XXX: Is this really needed ? */
2448		if (min_pwr < table_max[1] &&
2449		max_pwr < table_max[1]) {
2450			edge_flag = 0;
2451			pcdac_tmp = pcdac_low_pwr;
2452			max_pwr_idx = (table_max[1] - table_min[1])/2;
2453		}
2454#endif
2455	} else {
2456		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2457		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2458		min_pwr_idx = table_min[0];
2459		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2460		pcdac_tmp = pcdac_high_pwr;
2461		edge_flag = 0;
2462	}
2463
2464	/* This is used when setting tx power*/
2465	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2466
2467	/* Fill Power to PCDAC table backwards */
2468	pwr = max_pwr_idx;
2469	for (i = 63; i >= 0; i--) {
2470		/* Entering lower power range, reset
2471		 * edge flag and set pcdac_tmp to lower
2472		 * power curve.*/
2473		if (edge_flag == 0x40 &&
2474		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2475			edge_flag = 0x00;
2476			pcdac_tmp = pcdac_low_pwr;
2477			pwr = mid_pwr_idx/2;
2478		}
2479
2480		/* Don't go below 1, extrapolate below if we have
2481		 * already swithced to the lower power curve -or
2482		 * we only have one curve and edge_flag is zero
2483		 * anyway */
2484		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2485			while (i >= 0) {
2486				pcdac_out[i] = pcdac_out[i + 1];
2487				i--;
2488			}
2489			break;
2490		}
2491
2492		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2493
2494		/* Extrapolate above if pcdac is greater than
2495		 * 126 -this can happen because we OR pcdac_out
2496		 * value with edge_flag on high power curve */
2497		if (pcdac_out[i] > 126)
2498			pcdac_out[i] = 126;
2499
2500		/* Decrease by a 0.5dB step */
2501		pwr--;
2502	}
2503}
2504
2505/* Write PCDAC values on hw */
2506static void
2507ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2508{
2509	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2510	int	i;
2511
2512	/*
2513	 * Write TX power values
2514	 */
2515	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2516		ath5k_hw_reg_write(ah,
2517			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2518			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2519			AR5K_PHY_PCDAC_TXPOWER(i));
2520	}
2521}
2522
2523
2524/*
2525 * Power to PDADC table functions
2526 */
2527
2528/*
2529 * Set the gain boundaries and create final Power to PDADC table
2530 *
2531 * We can have up to 4 pd curves, we need to do a simmilar process
2532 * as we do for RF5112. This time we don't have an edge_flag but we
2533 * set the gain boundaries on a separate register.
2534 */
2535static void
2536ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2537			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2538{
2539	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2540	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2541	u8 *pdadc_tmp;
2542	s16 pdadc_0;
2543	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2544	u8 pd_gain_overlap;
2545
2546	/* Note: Register value is initialized on initvals
2547	 * there is no feedback from hw.
2548	 * XXX: What about pd_gain_overlap from EEPROM ? */
2549	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2550		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2551
2552	/* Create final PDADC table */
2553	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2554		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2555
2556		if (pdg == pdcurves - 1)
2557			/* 2 dB boundary stretch for last
2558			 * (higher power) curve */
2559			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2560		else
2561			/* Set gain boundary in the middle
2562			 * between this curve and the next one */
2563			gain_boundaries[pdg] =
2564				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2565
2566		/* Sanity check in case our 2 db stretch got out of
2567		 * range. */
2568		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2569			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2570
2571		/* For the first curve (lower power)
2572		 * start from 0 dB */
2573		if (pdg == 0)
2574			pdadc_0 = 0;
2575		else
2576			/* For the other curves use the gain overlap */
2577			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2578							pd_gain_overlap;
2579
2580		/* Force each power step to be at least 0.5 dB */
2581		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2582			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2583		else
2584			pwr_step = 1;
2585
2586		/* If pdadc_0 is negative, we need to extrapolate
2587		 * below this pdgain by a number of pwr_steps */
2588		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2589			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2590			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2591			pdadc_0++;
2592		}
2593
2594		/* Set last pwr level, using gain boundaries */
2595		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2596		/* Limit it to be inside pwr range */
2597		table_size = pwr_max[pdg] - pwr_min[pdg];
2598		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2599
2600		/* Fill pdadc_out table */
2601		while (pdadc_0 < max_idx)
2602			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2603
2604		/* Need to extrapolate above this pdgain? */
2605		if (pdadc_n <= max_idx)
2606			continue;
2607
2608		/* Force each power step to be at least 0.5 dB */
2609		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2610			pwr_step = pdadc_tmp[table_size - 1] -
2611						pdadc_tmp[table_size - 2];
2612		else
2613			pwr_step = 1;
2614
2615		/* Extrapolate above */
2616		while ((pdadc_0 < (s16) pdadc_n) &&
2617		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2618			s16 tmp = pdadc_tmp[table_size - 1] +
2619					(pdadc_0 - max_idx) * pwr_step;
2620			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2621			pdadc_0++;
2622		}
2623	}
2624
2625	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2626		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2627		pdg++;
2628	}
2629
2630	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2631		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2632		pdadc_i++;
2633	}
2634
2635	/* Set gain boundaries */
2636	ath5k_hw_reg_write(ah,
2637		AR5K_REG_SM(pd_gain_overlap,
2638			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2639		AR5K_REG_SM(gain_boundaries[0],
2640			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2641		AR5K_REG_SM(gain_boundaries[1],
2642			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2643		AR5K_REG_SM(gain_boundaries[2],
2644			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2645		AR5K_REG_SM(gain_boundaries[3],
2646			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2647		AR5K_PHY_TPC_RG5);
2648
2649	/* Used for setting rate power table */
2650	ah->ah_txpower.txp_min_idx = pwr_min[0];
2651
2652}
2653
2654/* Write PDADC values on hw */
2655static void
2656ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2657			u8 pdcurves, u8 *pdg_to_idx)
2658{
2659	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2660	u32 reg;
2661	u8 i;
2662
2663	/* Select the right pdgain curves */
2664
2665	/* Clear current settings */
2666	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2667	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2668		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2669		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2670		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2671
2672	/*
2673	 * Use pd_gains curve from eeprom
2674	 *
2675	 * This overrides the default setting from initvals
2676	 * in case some vendors (e.g. Zcomax) don't use the default
2677	 * curves. If we don't honor their settings we 'll get a
2678	 * 5dB (1 * gain overlap ?) drop.
2679	 */
2680	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2681
2682	switch (pdcurves) {
2683	case 3:
2684		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2685		/* Fall through */
2686	case 2:
2687		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2688		/* Fall through */
2689	case 1:
2690		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2691		break;
2692	}
2693	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2694
2695	/*
2696	 * Write TX power values
2697	 */
2698	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2699		ath5k_hw_reg_write(ah,
2700			((pdadc_out[4*i + 0] & 0xff) << 0) |
2701			((pdadc_out[4*i + 1] & 0xff) << 8) |
2702			((pdadc_out[4*i + 2] & 0xff) << 16) |
2703			((pdadc_out[4*i + 3] & 0xff) << 24),
2704			AR5K_PHY_PDADC_TXPOWER(i));
2705	}
2706}
2707
2708
2709/*
2710 * Common code for PCDAC/PDADC tables
2711 */
2712
2713/*
2714 * This is the main function that uses all of the above
2715 * to set PCDAC/PDADC table on hw for the current channel.
2716 * This table is used for tx power calibration on the basband,
2717 * without it we get weird tx power levels and in some cases
2718 * distorted spectral mask
2719 */
2720static int
2721ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2722			struct ieee80211_channel *channel,
2723			u8 ee_mode, u8 type)
2724{
2725	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2726	struct ath5k_chan_pcal_info *pcinfo_L;
2727	struct ath5k_chan_pcal_info *pcinfo_R;
2728	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2729	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2730	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2731	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2732	u8 *tmpL;
2733	u8 *tmpR;
2734	u32 target = channel->center_freq;
2735	int pdg, i;
2736
2737	/* Get surounding freq piers for this channel */
2738	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2739						&pcinfo_L,
2740						&pcinfo_R);
2741
2742	/* Loop over pd gain curves on
2743	 * surounding freq piers by index */
2744	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2745
2746		/* Fill curves in reverse order
2747		 * from lower power (max gain)
2748		 * to higher power. Use curve -> idx
2749		 * backmapping we did on eeprom init */
2750		u8 idx = pdg_curve_to_idx[pdg];
2751
2752		/* Grab the needed curves by index */
2753		pdg_L = &pcinfo_L->pd_curves[idx];
2754		pdg_R = &pcinfo_R->pd_curves[idx];
2755
2756		/* Initialize the temp tables */
2757		tmpL = ah->ah_txpower.tmpL[pdg];
2758		tmpR = ah->ah_txpower.tmpR[pdg];
2759
2760		/* Set curve's x boundaries and create
2761		 * curves so that they cover the same
2762		 * range (if we don't do that one table
2763		 * will have values on some range and the
2764		 * other one won't have any so interpolation
2765		 * will fail) */
2766		table_min[pdg] = min(pdg_L->pd_pwr[0],
2767					pdg_R->pd_pwr[0]) / 2;
2768
2769		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2770				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2771
2772		/* Now create the curves on surrounding channels
2773		 * and interpolate if needed to get the final
2774		 * curve for this gain on this channel */
2775		switch (type) {
2776		case AR5K_PWRTABLE_LINEAR_PCDAC:
2777			/* Override min/max so that we don't loose
2778			 * accuracy (don't divide by 2) */
2779			table_min[pdg] = min(pdg_L->pd_pwr[0],
2780						pdg_R->pd_pwr[0]);
2781
2782			table_max[pdg] =
2783				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2784					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2785
2786			/* Override minimum so that we don't get
2787			 * out of bounds while extrapolating
2788			 * below. Don't do this when we have 2
2789			 * curves and we are on the high power curve
2790			 * because table_min is ok in this case */
2791			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2792
2793				table_min[pdg] =
2794					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2795								pdg_R->pd_step,
2796								pdg_L->pd_pwr,
2797								pdg_R->pd_pwr);
2798
2799				/* Don't go too low because we will
2800				 * miss the upper part of the curve.
2801				 * Note: 126 = 31.5dB (max power supported)
2802				 * in 0.25dB units */
2803				if (table_max[pdg] - table_min[pdg] > 126)
2804					table_min[pdg] = table_max[pdg] - 126;
2805			}
2806
2807			/* Fall through */
2808		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2809		case AR5K_PWRTABLE_PWR_TO_PDADC:
2810
2811			ath5k_create_power_curve(table_min[pdg],
2812						table_max[pdg],
2813						pdg_L->pd_pwr,
2814						pdg_L->pd_step,
2815						pdg_L->pd_points, tmpL, type);
2816
2817			/* We are in a calibration
2818			 * pier, no need to interpolate
2819			 * between freq piers */
2820			if (pcinfo_L == pcinfo_R)
2821				continue;
2822
2823			ath5k_create_power_curve(table_min[pdg],
2824						table_max[pdg],
2825						pdg_R->pd_pwr,
2826						pdg_R->pd_step,
2827						pdg_R->pd_points, tmpR, type);
2828			break;
2829		default:
2830			return -EINVAL;
2831		}
2832
2833		/* Interpolate between curves
2834		 * of surounding freq piers to
2835		 * get the final curve for this
2836		 * pd gain. Re-use tmpL for interpolation
2837		 * output */
2838		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2839		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2840			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2841							(s16) pcinfo_L->freq,
2842							(s16) pcinfo_R->freq,
2843							(s16) tmpL[i],
2844							(s16) tmpR[i]);
2845		}
2846	}
2847
2848	/* Now we have a set of curves for this
2849	 * channel on tmpL (x range is table_max - table_min
2850	 * and y values are tmpL[pdg][]) sorted in the same
2851	 * order as EEPROM (because we've used the backmapping).
2852	 * So for RF5112 it's from higher power to lower power
2853	 * and for RF2413 it's from lower power to higher power.
2854	 * For RF5111 we only have one curve. */
2855
2856	/* Fill min and max power levels for this
2857	 * channel by interpolating the values on
2858	 * surounding channels to complete the dataset */
2859	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2860					(s16) pcinfo_L->freq,
2861					(s16) pcinfo_R->freq,
2862					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2863
2864	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2865					(s16) pcinfo_L->freq,
2866					(s16) pcinfo_R->freq,
2867					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2868
2869	/* We are ready to go, fill PCDAC/PDADC
2870	 * table and write settings on hardware */
2871	switch (type) {
2872	case AR5K_PWRTABLE_LINEAR_PCDAC:
2873		/* For RF5112 we can have one or two curves
2874		 * and each curve covers a certain power lvl
2875		 * range so we need to do some more processing */
2876		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2877						ee->ee_pd_gains[ee_mode]);
2878
2879		/* Set txp.offset so that we can
2880		 * match max power value with max
2881		 * table index */
2882		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2883
2884		/* Write settings on hw */
2885		ath5k_setup_pcdac_table(ah);
2886		break;
2887	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2888		/* We are done for RF5111 since it has only
2889		 * one curve, just fit the curve on the table */
2890		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2891
2892		/* No rate powertable adjustment for RF5111 */
2893		ah->ah_txpower.txp_min_idx = 0;
2894		ah->ah_txpower.txp_offset = 0;
2895
2896		/* Write settings on hw */
2897		ath5k_setup_pcdac_table(ah);
2898		break;
2899	case AR5K_PWRTABLE_PWR_TO_PDADC:
2900		/* Set PDADC boundaries and fill
2901		 * final PDADC table */
2902		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2903						ee->ee_pd_gains[ee_mode]);
2904
2905		/* Write settings on hw */
2906		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2907
2908		/* Set txp.offset, note that table_min
2909		 * can be negative */
2910		ah->ah_txpower.txp_offset = table_min[0];
2911		break;
2912	default:
2913		return -EINVAL;
2914	}
2915
2916	return 0;
2917}
2918
2919
2920/*
2921 * Per-rate tx power setting
2922 *
2923 * This is the code that sets the desired tx power (below
2924 * maximum) on hw for each rate (we also have TPC that sets
2925 * power per packet). We do that by providing an index on the
2926 * PCDAC/PDADC table we set up.
2927 */
2928
2929/*
2930 * Set rate power table
2931 *
2932 * For now we only limit txpower based on maximum tx power
2933 * supported by hw (what's inside rate_info). We need to limit
2934 * this even more, based on regulatory domain etc.
2935 *
2936 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2937 * and is indexed as follows:
2938 * rates[0] - rates[7] -> OFDM rates
2939 * rates[8] - rates[14] -> CCK rates
2940 * rates[15] -> XR rates (they all have the same power)
2941 */
2942static void
2943ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2944			struct ath5k_rate_pcal_info *rate_info,
2945			u8 ee_mode)
2946{
2947	unsigned int i;
2948	u16 *rates;
2949
2950	/* max_pwr is power level we got from driver/user in 0.5dB
2951	 * units, switch to 0.25dB units so we can compare */
2952	max_pwr *= 2;
2953	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2954
2955	/* apply rate limits */
2956	rates = ah->ah_txpower.txp_rates_power_table;
2957
2958	/* OFDM rates 6 to 24Mb/s */
2959	for (i = 0; i < 5; i++)
2960		rates[i] = min(max_pwr, rate_info->target_power_6to24);
2961
2962	/* Rest OFDM rates */
2963	rates[5] = min(rates[0], rate_info->target_power_36);
2964	rates[6] = min(rates[0], rate_info->target_power_48);
2965	rates[7] = min(rates[0], rate_info->target_power_54);
2966
2967	/* CCK rates */
2968	/* 1L */
2969	rates[8] = min(rates[0], rate_info->target_power_6to24);
2970	/* 2L */
2971	rates[9] = min(rates[0], rate_info->target_power_36);
2972	/* 2S */
2973	rates[10] = min(rates[0], rate_info->target_power_36);
2974	/* 5L */
2975	rates[11] = min(rates[0], rate_info->target_power_48);
2976	/* 5S */
2977	rates[12] = min(rates[0], rate_info->target_power_48);
2978	/* 11L */
2979	rates[13] = min(rates[0], rate_info->target_power_54);
2980	/* 11S */
2981	rates[14] = min(rates[0], rate_info->target_power_54);
2982
2983	/* XR rates */
2984	rates[15] = min(rates[0], rate_info->target_power_6to24);
2985
2986	/* CCK rates have different peak to average ratio
2987	 * so we have to tweak their power so that gainf
2988	 * correction works ok. For this we use OFDM to
2989	 * CCK delta from eeprom */
2990	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2991	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2992		for (i = 8; i <= 15; i++)
2993			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2994
2995	/* Now that we have all rates setup use table offset to
2996	 * match the power range set by user with the power indices
2997	 * on PCDAC/PDADC table */
2998	for (i = 0; i < 16; i++) {
2999		rates[i] += ah->ah_txpower.txp_offset;
3000		/* Don't get out of bounds */
3001		if (rates[i] > 63)
3002			rates[i] = 63;
3003	}
3004
3005	/* Min/max in 0.25dB units */
3006	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3007	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
3008	ah->ah_txpower.txp_ofdm = rates[7];
3009}
3010
3011
3012/*
3013 * Set transmition power
3014 */
3015int
3016ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3017		u8 ee_mode, u8 txpower)
3018{
3019	struct ath5k_rate_pcal_info rate_info;
3020	u8 type;
3021	int ret;
3022
3023	ATH5K_TRACE(ah->ah_sc);
3024	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3025		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3026		return -EINVAL;
3027	}
3028
3029	/* Reset TX power values */
3030	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3031	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3032	ah->ah_txpower.txp_min_pwr = 0;
3033	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3034
3035	/* Initialize TX power table */
3036	switch (ah->ah_radio) {
3037	case AR5K_RF5111:
3038		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3039		break;
3040	case AR5K_RF5112:
3041		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3042		break;
3043	case AR5K_RF2413:
3044	case AR5K_RF5413:
3045	case AR5K_RF2316:
3046	case AR5K_RF2317:
3047	case AR5K_RF2425:
3048		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3049		break;
3050	default:
3051		return -EINVAL;
3052	}
3053
3054	/* FIXME: Only on channel/mode change */
3055	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3056	if (ret)
3057		return ret;
3058
3059	/* Limit max power if we have a CTL available */
3060	ath5k_get_max_ctl_power(ah, channel);
3061
3062	/* FIXME: Tx power limit for this regdomain
3063	 * XXX: Mac80211/CRDA will do that anyway ? */
3064
3065	/* FIXME: Antenna reduction stuff */
3066
3067	/* FIXME: Limit power on turbo modes */
3068
3069	/* FIXME: TPC scale reduction */
3070
3071	/* Get surounding channels for per-rate power table
3072	 * calibration */
3073	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3074
3075	/* Setup rate power table */
3076	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3077
3078	/* Write rate power table on hw */
3079	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3080		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3081		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3082
3083	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3084		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3085		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3086
3087	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3088		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3089		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3090
3091	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3092		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3093		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3094
3095	/* FIXME: TPC support */
3096	if (ah->ah_txpower.txp_tpc) {
3097		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3098			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3099
3100		ath5k_hw_reg_write(ah,
3101			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3102			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3103			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3104			AR5K_TPC);
3105	} else {
3106		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3107			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3108	}
3109
3110	return 0;
3111}
3112
3113int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3114{
3115	/*Just a try M.F.*/
3116	struct ieee80211_channel *channel = ah->ah_current_channel;
3117	u8 ee_mode;
3118
3119	ATH5K_TRACE(ah->ah_sc);
3120
3121	switch (channel->hw_value & CHANNEL_MODES) {
3122	case CHANNEL_A:
3123	case CHANNEL_T:
3124	case CHANNEL_XR:
3125		ee_mode = AR5K_EEPROM_MODE_11A;
3126		break;
3127	case CHANNEL_G:
3128	case CHANNEL_TG:
3129		ee_mode = AR5K_EEPROM_MODE_11G;
3130		break;
3131	case CHANNEL_B:
3132		ee_mode = AR5K_EEPROM_MODE_11B;
3133		break;
3134	default:
3135		ATH5K_ERR(ah->ah_sc,
3136			"invalid channel: %d\n", channel->center_freq);
3137		return -EINVAL;
3138	}
3139
3140	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3141		"changing txpower to %d\n", txpower);
3142
3143	return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3144}
3145