[go: nahoru, domu]

1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license.  When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called COPYING.
26 *
27 * Contact Information:
28 *  Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 *  * Redistributions of source code must retain the above copyright
41 *    notice, this list of conditions and the following disclaimer.
42 *  * Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in
44 *    the documentation and/or other materials provided with the
45 *    distribution.
46 *  * Neither the name Intel Corporation nor the names of its
47 *    contributors may be used to endorse or promote products derived
48 *    from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
62
63#include <linux/slab.h>
64#include <net/mac80211.h>
65
66#include "iwl-trans.h"
67
68#include "dev.h"
69#include "calib.h"
70#include "agn.h"
71
72/*****************************************************************************
73 * INIT calibrations framework
74 *****************************************************************************/
75
76/* Opaque calibration results */
77struct iwl_calib_result {
78	struct list_head list;
79	size_t cmd_len;
80	struct iwl_calib_hdr hdr;
81	/* data follows */
82};
83
84struct statistics_general_data {
85	u32 beacon_silence_rssi_a;
86	u32 beacon_silence_rssi_b;
87	u32 beacon_silence_rssi_c;
88	u32 beacon_energy_a;
89	u32 beacon_energy_b;
90	u32 beacon_energy_c;
91};
92
93int iwl_send_calib_results(struct iwl_priv *priv)
94{
95	struct iwl_host_cmd hcmd = {
96		.id = REPLY_PHY_CALIBRATION_CMD,
97	};
98	struct iwl_calib_result *res;
99
100	list_for_each_entry(res, &priv->calib_results, list) {
101		int ret;
102
103		hcmd.len[0] = res->cmd_len;
104		hcmd.data[0] = &res->hdr;
105		hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
106		ret = iwl_dvm_send_cmd(priv, &hcmd);
107		if (ret) {
108			IWL_ERR(priv, "Error %d on calib cmd %d\n",
109				ret, res->hdr.op_code);
110			return ret;
111		}
112	}
113
114	return 0;
115}
116
117int iwl_calib_set(struct iwl_priv *priv,
118		  const struct iwl_calib_hdr *cmd, int len)
119{
120	struct iwl_calib_result *res, *tmp;
121
122	res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
123		      GFP_ATOMIC);
124	if (!res)
125		return -ENOMEM;
126	memcpy(&res->hdr, cmd, len);
127	res->cmd_len = len;
128
129	list_for_each_entry(tmp, &priv->calib_results, list) {
130		if (tmp->hdr.op_code == res->hdr.op_code) {
131			list_replace(&tmp->list, &res->list);
132			kfree(tmp);
133			return 0;
134		}
135	}
136
137	/* wasn't in list already */
138	list_add_tail(&res->list, &priv->calib_results);
139
140	return 0;
141}
142
143void iwl_calib_free_results(struct iwl_priv *priv)
144{
145	struct iwl_calib_result *res, *tmp;
146
147	list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
148		list_del(&res->list);
149		kfree(res);
150	}
151}
152
153/*****************************************************************************
154 * RUNTIME calibrations framework
155 *****************************************************************************/
156
157/* "false alarms" are signals that our DSP tries to lock onto,
158 *   but then determines that they are either noise, or transmissions
159 *   from a distant wireless network (also "noise", really) that get
160 *   "stepped on" by stronger transmissions within our own network.
161 * This algorithm attempts to set a sensitivity level that is high
162 *   enough to receive all of our own network traffic, but not so
163 *   high that our DSP gets too busy trying to lock onto non-network
164 *   activity/noise. */
165static int iwl_sens_energy_cck(struct iwl_priv *priv,
166				   u32 norm_fa,
167				   u32 rx_enable_time,
168				   struct statistics_general_data *rx_info)
169{
170	u32 max_nrg_cck = 0;
171	int i = 0;
172	u8 max_silence_rssi = 0;
173	u32 silence_ref = 0;
174	u8 silence_rssi_a = 0;
175	u8 silence_rssi_b = 0;
176	u8 silence_rssi_c = 0;
177	u32 val;
178
179	/* "false_alarms" values below are cross-multiplications to assess the
180	 *   numbers of false alarms within the measured period of actual Rx
181	 *   (Rx is off when we're txing), vs the min/max expected false alarms
182	 *   (some should be expected if rx is sensitive enough) in a
183	 *   hypothetical listening period of 200 time units (TU), 204.8 msec:
184	 *
185	 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
186	 *
187	 * */
188	u32 false_alarms = norm_fa * 200 * 1024;
189	u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
190	u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
191	struct iwl_sensitivity_data *data = NULL;
192	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
193
194	data = &(priv->sensitivity_data);
195
196	data->nrg_auto_corr_silence_diff = 0;
197
198	/* Find max silence rssi among all 3 receivers.
199	 * This is background noise, which may include transmissions from other
200	 *    networks, measured during silence before our network's beacon */
201	silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
202			    ALL_BAND_FILTER) >> 8);
203	silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
204			    ALL_BAND_FILTER) >> 8);
205	silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
206			    ALL_BAND_FILTER) >> 8);
207
208	val = max(silence_rssi_b, silence_rssi_c);
209	max_silence_rssi = max(silence_rssi_a, (u8) val);
210
211	/* Store silence rssi in 20-beacon history table */
212	data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
213	data->nrg_silence_idx++;
214	if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
215		data->nrg_silence_idx = 0;
216
217	/* Find max silence rssi across 20 beacon history */
218	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
219		val = data->nrg_silence_rssi[i];
220		silence_ref = max(silence_ref, val);
221	}
222	IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
223			silence_rssi_a, silence_rssi_b, silence_rssi_c,
224			silence_ref);
225
226	/* Find max rx energy (min value!) among all 3 receivers,
227	 *   measured during beacon frame.
228	 * Save it in 10-beacon history table. */
229	i = data->nrg_energy_idx;
230	val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
231	data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
232
233	data->nrg_energy_idx++;
234	if (data->nrg_energy_idx >= 10)
235		data->nrg_energy_idx = 0;
236
237	/* Find min rx energy (max value) across 10 beacon history.
238	 * This is the minimum signal level that we want to receive well.
239	 * Add backoff (margin so we don't miss slightly lower energy frames).
240	 * This establishes an upper bound (min value) for energy threshold. */
241	max_nrg_cck = data->nrg_value[0];
242	for (i = 1; i < 10; i++)
243		max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
244	max_nrg_cck += 6;
245
246	IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
247			rx_info->beacon_energy_a, rx_info->beacon_energy_b,
248			rx_info->beacon_energy_c, max_nrg_cck - 6);
249
250	/* Count number of consecutive beacons with fewer-than-desired
251	 *   false alarms. */
252	if (false_alarms < min_false_alarms)
253		data->num_in_cck_no_fa++;
254	else
255		data->num_in_cck_no_fa = 0;
256	IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
257			data->num_in_cck_no_fa);
258
259	/* If we got too many false alarms this time, reduce sensitivity */
260	if ((false_alarms > max_false_alarms) &&
261		(data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
262		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
263		     false_alarms, max_false_alarms);
264		IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
265		data->nrg_curr_state = IWL_FA_TOO_MANY;
266		/* Store for "fewer than desired" on later beacon */
267		data->nrg_silence_ref = silence_ref;
268
269		/* increase energy threshold (reduce nrg value)
270		 *   to decrease sensitivity */
271		data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
272	/* Else if we got fewer than desired, increase sensitivity */
273	} else if (false_alarms < min_false_alarms) {
274		data->nrg_curr_state = IWL_FA_TOO_FEW;
275
276		/* Compare silence level with silence level for most recent
277		 *   healthy number or too many false alarms */
278		data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
279						   (s32)silence_ref;
280
281		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
282			 false_alarms, min_false_alarms,
283			 data->nrg_auto_corr_silence_diff);
284
285		/* Increase value to increase sensitivity, but only if:
286		 * 1a) previous beacon did *not* have *too many* false alarms
287		 * 1b) AND there's a significant difference in Rx levels
288		 *      from a previous beacon with too many, or healthy # FAs
289		 * OR 2) We've seen a lot of beacons (100) with too few
290		 *       false alarms */
291		if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
292			((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
293			(data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
294
295			IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
296			/* Increase nrg value to increase sensitivity */
297			val = data->nrg_th_cck + NRG_STEP_CCK;
298			data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
299		} else {
300			IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
301		}
302
303	/* Else we got a healthy number of false alarms, keep status quo */
304	} else {
305		IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
306		data->nrg_curr_state = IWL_FA_GOOD_RANGE;
307
308		/* Store for use in "fewer than desired" with later beacon */
309		data->nrg_silence_ref = silence_ref;
310
311		/* If previous beacon had too many false alarms,
312		 *   give it some extra margin by reducing sensitivity again
313		 *   (but don't go below measured energy of desired Rx) */
314		if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
315			IWL_DEBUG_CALIB(priv, "... increasing margin\n");
316			if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
317				data->nrg_th_cck -= NRG_MARGIN;
318			else
319				data->nrg_th_cck = max_nrg_cck;
320		}
321	}
322
323	/* Make sure the energy threshold does not go above the measured
324	 * energy of the desired Rx signals (reduced by backoff margin),
325	 * or else we might start missing Rx frames.
326	 * Lower value is higher energy, so we use max()!
327	 */
328	data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
329	IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
330
331	data->nrg_prev_state = data->nrg_curr_state;
332
333	/* Auto-correlation CCK algorithm */
334	if (false_alarms > min_false_alarms) {
335
336		/* increase auto_corr values to decrease sensitivity
337		 * so the DSP won't be disturbed by the noise
338		 */
339		if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
340			data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
341		else {
342			val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
343			data->auto_corr_cck =
344				min((u32)ranges->auto_corr_max_cck, val);
345		}
346		val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
347		data->auto_corr_cck_mrc =
348			min((u32)ranges->auto_corr_max_cck_mrc, val);
349	} else if ((false_alarms < min_false_alarms) &&
350	   ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
351	   (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
352
353		/* Decrease auto_corr values to increase sensitivity */
354		val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
355		data->auto_corr_cck =
356			max((u32)ranges->auto_corr_min_cck, val);
357		val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
358		data->auto_corr_cck_mrc =
359			max((u32)ranges->auto_corr_min_cck_mrc, val);
360	}
361
362	return 0;
363}
364
365
366static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
367				       u32 norm_fa,
368				       u32 rx_enable_time)
369{
370	u32 val;
371	u32 false_alarms = norm_fa * 200 * 1024;
372	u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
373	u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
374	struct iwl_sensitivity_data *data = NULL;
375	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
376
377	data = &(priv->sensitivity_data);
378
379	/* If we got too many false alarms this time, reduce sensitivity */
380	if (false_alarms > max_false_alarms) {
381
382		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
383			     false_alarms, max_false_alarms);
384
385		val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
386		data->auto_corr_ofdm =
387			min((u32)ranges->auto_corr_max_ofdm, val);
388
389		val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
390		data->auto_corr_ofdm_mrc =
391			min((u32)ranges->auto_corr_max_ofdm_mrc, val);
392
393		val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
394		data->auto_corr_ofdm_x1 =
395			min((u32)ranges->auto_corr_max_ofdm_x1, val);
396
397		val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
398		data->auto_corr_ofdm_mrc_x1 =
399			min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
400	}
401
402	/* Else if we got fewer than desired, increase sensitivity */
403	else if (false_alarms < min_false_alarms) {
404
405		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
406			     false_alarms, min_false_alarms);
407
408		val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
409		data->auto_corr_ofdm =
410			max((u32)ranges->auto_corr_min_ofdm, val);
411
412		val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
413		data->auto_corr_ofdm_mrc =
414			max((u32)ranges->auto_corr_min_ofdm_mrc, val);
415
416		val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
417		data->auto_corr_ofdm_x1 =
418			max((u32)ranges->auto_corr_min_ofdm_x1, val);
419
420		val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
421		data->auto_corr_ofdm_mrc_x1 =
422			max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
423	} else {
424		IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
425			 min_false_alarms, false_alarms, max_false_alarms);
426	}
427	return 0;
428}
429
430static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
431				struct iwl_sensitivity_data *data,
432				__le16 *tbl)
433{
434	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
435				cpu_to_le16((u16)data->auto_corr_ofdm);
436	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
437				cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
438	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
439				cpu_to_le16((u16)data->auto_corr_ofdm_x1);
440	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
441				cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
442
443	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
444				cpu_to_le16((u16)data->auto_corr_cck);
445	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
446				cpu_to_le16((u16)data->auto_corr_cck_mrc);
447
448	tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
449				cpu_to_le16((u16)data->nrg_th_cck);
450	tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
451				cpu_to_le16((u16)data->nrg_th_ofdm);
452
453	tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
454				cpu_to_le16(data->barker_corr_th_min);
455	tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
456				cpu_to_le16(data->barker_corr_th_min_mrc);
457	tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
458				cpu_to_le16(data->nrg_th_cca);
459
460	IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
461			data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
462			data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
463			data->nrg_th_ofdm);
464
465	IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
466			data->auto_corr_cck, data->auto_corr_cck_mrc,
467			data->nrg_th_cck);
468}
469
470/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
471static int iwl_sensitivity_write(struct iwl_priv *priv)
472{
473	struct iwl_sensitivity_cmd cmd;
474	struct iwl_sensitivity_data *data = NULL;
475	struct iwl_host_cmd cmd_out = {
476		.id = SENSITIVITY_CMD,
477		.len = { sizeof(struct iwl_sensitivity_cmd), },
478		.flags = CMD_ASYNC,
479		.data = { &cmd, },
480	};
481
482	data = &(priv->sensitivity_data);
483
484	memset(&cmd, 0, sizeof(cmd));
485
486	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
487
488	/* Update uCode's "work" table, and copy it to DSP */
489	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
490
491	/* Don't send command to uCode if nothing has changed */
492	if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
493		    sizeof(u16)*HD_TABLE_SIZE)) {
494		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
495		return 0;
496	}
497
498	/* Copy table for comparison next time */
499	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
500	       sizeof(u16)*HD_TABLE_SIZE);
501
502	return iwl_dvm_send_cmd(priv, &cmd_out);
503}
504
505/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
506static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
507{
508	struct iwl_enhance_sensitivity_cmd cmd;
509	struct iwl_sensitivity_data *data = NULL;
510	struct iwl_host_cmd cmd_out = {
511		.id = SENSITIVITY_CMD,
512		.len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
513		.flags = CMD_ASYNC,
514		.data = { &cmd, },
515	};
516
517	data = &(priv->sensitivity_data);
518
519	memset(&cmd, 0, sizeof(cmd));
520
521	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
522
523	if (priv->lib->hd_v2) {
524		cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
525			HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
526		cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
527			HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
528		cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
529			HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
530		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
531			HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
532		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
533			HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
534		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
535			HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
536		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
537			HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
538		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
539			HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
540		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
541			HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
542		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
543			HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
544		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
545			HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
546	} else {
547		cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
548			HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
549		cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
550			HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
551		cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
552			HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
553		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
554			HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
555		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
556			HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
557		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
558			HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
559		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
560			HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
561		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
562			HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
563		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
564			HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
565		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
566			HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
567		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
568			HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
569	}
570
571	/* Update uCode's "work" table, and copy it to DSP */
572	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
573
574	/* Don't send command to uCode if nothing has changed */
575	if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
576		    sizeof(u16)*HD_TABLE_SIZE) &&
577	    !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
578		    &(priv->enhance_sensitivity_tbl[0]),
579		    sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
580		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
581		return 0;
582	}
583
584	/* Copy table for comparison next time */
585	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
586	       sizeof(u16)*HD_TABLE_SIZE);
587	memcpy(&(priv->enhance_sensitivity_tbl[0]),
588	       &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
589	       sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
590
591	return iwl_dvm_send_cmd(priv, &cmd_out);
592}
593
594void iwl_init_sensitivity(struct iwl_priv *priv)
595{
596	int ret = 0;
597	int i;
598	struct iwl_sensitivity_data *data = NULL;
599	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
600
601	if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
602		return;
603
604	IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
605
606	/* Clear driver's sensitivity algo data */
607	data = &(priv->sensitivity_data);
608
609	if (ranges == NULL)
610		return;
611
612	memset(data, 0, sizeof(struct iwl_sensitivity_data));
613
614	data->num_in_cck_no_fa = 0;
615	data->nrg_curr_state = IWL_FA_TOO_MANY;
616	data->nrg_prev_state = IWL_FA_TOO_MANY;
617	data->nrg_silence_ref = 0;
618	data->nrg_silence_idx = 0;
619	data->nrg_energy_idx = 0;
620
621	for (i = 0; i < 10; i++)
622		data->nrg_value[i] = 0;
623
624	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
625		data->nrg_silence_rssi[i] = 0;
626
627	data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
628	data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
629	data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
630	data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
631	data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
632	data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
633	data->nrg_th_cck = ranges->nrg_th_cck;
634	data->nrg_th_ofdm = ranges->nrg_th_ofdm;
635	data->barker_corr_th_min = ranges->barker_corr_th_min;
636	data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
637	data->nrg_th_cca = ranges->nrg_th_cca;
638
639	data->last_bad_plcp_cnt_ofdm = 0;
640	data->last_fa_cnt_ofdm = 0;
641	data->last_bad_plcp_cnt_cck = 0;
642	data->last_fa_cnt_cck = 0;
643
644	if (priv->fw->enhance_sensitivity_table)
645		ret |= iwl_enhance_sensitivity_write(priv);
646	else
647		ret |= iwl_sensitivity_write(priv);
648	IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
649}
650
651void iwl_sensitivity_calibration(struct iwl_priv *priv)
652{
653	u32 rx_enable_time;
654	u32 fa_cck;
655	u32 fa_ofdm;
656	u32 bad_plcp_cck;
657	u32 bad_plcp_ofdm;
658	u32 norm_fa_ofdm;
659	u32 norm_fa_cck;
660	struct iwl_sensitivity_data *data = NULL;
661	struct statistics_rx_non_phy *rx_info;
662	struct statistics_rx_phy *ofdm, *cck;
663	struct statistics_general_data statis;
664
665	if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
666		return;
667
668	data = &(priv->sensitivity_data);
669
670	if (!iwl_is_any_associated(priv)) {
671		IWL_DEBUG_CALIB(priv, "<< - not associated\n");
672		return;
673	}
674
675	spin_lock_bh(&priv->statistics.lock);
676	rx_info = &priv->statistics.rx_non_phy;
677	ofdm = &priv->statistics.rx_ofdm;
678	cck = &priv->statistics.rx_cck;
679	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
680		IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
681		spin_unlock_bh(&priv->statistics.lock);
682		return;
683	}
684
685	/* Extract Statistics: */
686	rx_enable_time = le32_to_cpu(rx_info->channel_load);
687	fa_cck = le32_to_cpu(cck->false_alarm_cnt);
688	fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
689	bad_plcp_cck = le32_to_cpu(cck->plcp_err);
690	bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
691
692	statis.beacon_silence_rssi_a =
693			le32_to_cpu(rx_info->beacon_silence_rssi_a);
694	statis.beacon_silence_rssi_b =
695			le32_to_cpu(rx_info->beacon_silence_rssi_b);
696	statis.beacon_silence_rssi_c =
697			le32_to_cpu(rx_info->beacon_silence_rssi_c);
698	statis.beacon_energy_a =
699			le32_to_cpu(rx_info->beacon_energy_a);
700	statis.beacon_energy_b =
701			le32_to_cpu(rx_info->beacon_energy_b);
702	statis.beacon_energy_c =
703			le32_to_cpu(rx_info->beacon_energy_c);
704
705	spin_unlock_bh(&priv->statistics.lock);
706
707	IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
708
709	if (!rx_enable_time) {
710		IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
711		return;
712	}
713
714	/* These statistics increase monotonically, and do not reset
715	 *   at each beacon.  Calculate difference from last value, or just
716	 *   use the new statistics value if it has reset or wrapped around. */
717	if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
718		data->last_bad_plcp_cnt_cck = bad_plcp_cck;
719	else {
720		bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
721		data->last_bad_plcp_cnt_cck += bad_plcp_cck;
722	}
723
724	if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
725		data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
726	else {
727		bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
728		data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
729	}
730
731	if (data->last_fa_cnt_ofdm > fa_ofdm)
732		data->last_fa_cnt_ofdm = fa_ofdm;
733	else {
734		fa_ofdm -= data->last_fa_cnt_ofdm;
735		data->last_fa_cnt_ofdm += fa_ofdm;
736	}
737
738	if (data->last_fa_cnt_cck > fa_cck)
739		data->last_fa_cnt_cck = fa_cck;
740	else {
741		fa_cck -= data->last_fa_cnt_cck;
742		data->last_fa_cnt_cck += fa_cck;
743	}
744
745	/* Total aborted signal locks */
746	norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
747	norm_fa_cck = fa_cck + bad_plcp_cck;
748
749	IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
750			bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
751
752	iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
753	iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
754	if (priv->fw->enhance_sensitivity_table)
755		iwl_enhance_sensitivity_write(priv);
756	else
757		iwl_sensitivity_write(priv);
758}
759
760static inline u8 find_first_chain(u8 mask)
761{
762	if (mask & ANT_A)
763		return CHAIN_A;
764	if (mask & ANT_B)
765		return CHAIN_B;
766	return CHAIN_C;
767}
768
769/**
770 * Run disconnected antenna algorithm to find out which antennas are
771 * disconnected.
772 */
773static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
774				     struct iwl_chain_noise_data *data)
775{
776	u32 active_chains = 0;
777	u32 max_average_sig;
778	u16 max_average_sig_antenna_i;
779	u8 num_tx_chains;
780	u8 first_chain;
781	u16 i = 0;
782
783	average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
784	average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
785	average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
786
787	if (average_sig[0] >= average_sig[1]) {
788		max_average_sig = average_sig[0];
789		max_average_sig_antenna_i = 0;
790		active_chains = (1 << max_average_sig_antenna_i);
791	} else {
792		max_average_sig = average_sig[1];
793		max_average_sig_antenna_i = 1;
794		active_chains = (1 << max_average_sig_antenna_i);
795	}
796
797	if (average_sig[2] >= max_average_sig) {
798		max_average_sig = average_sig[2];
799		max_average_sig_antenna_i = 2;
800		active_chains = (1 << max_average_sig_antenna_i);
801	}
802
803	IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
804		     average_sig[0], average_sig[1], average_sig[2]);
805	IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
806		     max_average_sig, max_average_sig_antenna_i);
807
808	/* Compare signal strengths for all 3 receivers. */
809	for (i = 0; i < NUM_RX_CHAINS; i++) {
810		if (i != max_average_sig_antenna_i) {
811			s32 rssi_delta = (max_average_sig - average_sig[i]);
812
813			/* If signal is very weak, compared with
814			 * strongest, mark it as disconnected. */
815			if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
816				data->disconn_array[i] = 1;
817			else
818				active_chains |= (1 << i);
819			IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
820			     "disconn_array[i] = %d\n",
821			     i, rssi_delta, data->disconn_array[i]);
822		}
823	}
824
825	/*
826	 * The above algorithm sometimes fails when the ucode
827	 * reports 0 for all chains. It's not clear why that
828	 * happens to start with, but it is then causing trouble
829	 * because this can make us enable more chains than the
830	 * hardware really has.
831	 *
832	 * To be safe, simply mask out any chains that we know
833	 * are not on the device.
834	 */
835	active_chains &= priv->nvm_data->valid_rx_ant;
836
837	num_tx_chains = 0;
838	for (i = 0; i < NUM_RX_CHAINS; i++) {
839		/* loops on all the bits of
840		 * priv->hw_setting.valid_tx_ant */
841		u8 ant_msk = (1 << i);
842		if (!(priv->nvm_data->valid_tx_ant & ant_msk))
843			continue;
844
845		num_tx_chains++;
846		if (data->disconn_array[i] == 0)
847			/* there is a Tx antenna connected */
848			break;
849		if (num_tx_chains == priv->hw_params.tx_chains_num &&
850		    data->disconn_array[i]) {
851			/*
852			 * If all chains are disconnected
853			 * connect the first valid tx chain
854			 */
855			first_chain =
856				find_first_chain(priv->nvm_data->valid_tx_ant);
857			data->disconn_array[first_chain] = 0;
858			active_chains |= BIT(first_chain);
859			IWL_DEBUG_CALIB(priv,
860					"All Tx chains are disconnected W/A - declare %d as connected\n",
861					first_chain);
862			break;
863		}
864	}
865
866	if (active_chains != priv->nvm_data->valid_rx_ant &&
867	    active_chains != priv->chain_noise_data.active_chains)
868		IWL_DEBUG_CALIB(priv,
869				"Detected that not all antennas are connected! "
870				"Connected: %#x, valid: %#x.\n",
871				active_chains,
872				priv->nvm_data->valid_rx_ant);
873
874	/* Save for use within RXON, TX, SCAN commands, etc. */
875	data->active_chains = active_chains;
876	IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
877			active_chains);
878}
879
880static void iwlagn_gain_computation(struct iwl_priv *priv,
881				    u32 average_noise[NUM_RX_CHAINS],
882				    u8 default_chain)
883{
884	int i;
885	s32 delta_g;
886	struct iwl_chain_noise_data *data = &priv->chain_noise_data;
887
888	/*
889	 * Find Gain Code for the chains based on "default chain"
890	 */
891	for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
892		if ((data->disconn_array[i])) {
893			data->delta_gain_code[i] = 0;
894			continue;
895		}
896
897		delta_g = (priv->lib->chain_noise_scale *
898			((s32)average_noise[default_chain] -
899			(s32)average_noise[i])) / 1500;
900
901		/* bound gain by 2 bits value max, 3rd bit is sign */
902		data->delta_gain_code[i] =
903			min(abs(delta_g),
904			(long) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
905
906		if (delta_g < 0)
907			/*
908			 * set negative sign ...
909			 * note to Intel developers:  This is uCode API format,
910			 *   not the format of any internal device registers.
911			 *   Do not change this format for e.g. 6050 or similar
912			 *   devices.  Change format only if more resolution
913			 *   (i.e. more than 2 bits magnitude) is needed.
914			 */
915			data->delta_gain_code[i] |= (1 << 2);
916	}
917
918	IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d  ANT_C = %d\n",
919			data->delta_gain_code[1], data->delta_gain_code[2]);
920
921	if (!data->radio_write) {
922		struct iwl_calib_chain_noise_gain_cmd cmd;
923
924		memset(&cmd, 0, sizeof(cmd));
925
926		iwl_set_calib_hdr(&cmd.hdr,
927			priv->phy_calib_chain_noise_gain_cmd);
928		cmd.delta_gain_1 = data->delta_gain_code[1];
929		cmd.delta_gain_2 = data->delta_gain_code[2];
930		iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
931			CMD_ASYNC, sizeof(cmd), &cmd);
932
933		data->radio_write = 1;
934		data->state = IWL_CHAIN_NOISE_CALIBRATED;
935	}
936}
937
938/*
939 * Accumulate 16 beacons of signal and noise statistics for each of
940 *   3 receivers/antennas/rx-chains, then figure out:
941 * 1)  Which antennas are connected.
942 * 2)  Differential rx gain settings to balance the 3 receivers.
943 */
944void iwl_chain_noise_calibration(struct iwl_priv *priv)
945{
946	struct iwl_chain_noise_data *data = NULL;
947
948	u32 chain_noise_a;
949	u32 chain_noise_b;
950	u32 chain_noise_c;
951	u32 chain_sig_a;
952	u32 chain_sig_b;
953	u32 chain_sig_c;
954	u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
955	u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
956	u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
957	u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
958	u16 i = 0;
959	u16 rxon_chnum = INITIALIZATION_VALUE;
960	u16 stat_chnum = INITIALIZATION_VALUE;
961	u8 rxon_band24;
962	u8 stat_band24;
963	struct statistics_rx_non_phy *rx_info;
964
965	/*
966	 * MULTI-FIXME:
967	 * When we support multiple interfaces on different channels,
968	 * this must be modified/fixed.
969	 */
970	struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
971
972	if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
973		return;
974
975	data = &(priv->chain_noise_data);
976
977	/*
978	 * Accumulate just the first "chain_noise_num_beacons" after
979	 * the first association, then we're done forever.
980	 */
981	if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
982		if (data->state == IWL_CHAIN_NOISE_ALIVE)
983			IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
984		return;
985	}
986
987	spin_lock_bh(&priv->statistics.lock);
988
989	rx_info = &priv->statistics.rx_non_phy;
990
991	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
992		IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
993		spin_unlock_bh(&priv->statistics.lock);
994		return;
995	}
996
997	rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
998	rxon_chnum = le16_to_cpu(ctx->staging.channel);
999	stat_band24 =
1000		!!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
1001	stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
1002
1003	/* Make sure we accumulate data for just the associated channel
1004	 *   (even if scanning). */
1005	if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
1006		IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
1007				rxon_chnum, rxon_band24);
1008		spin_unlock_bh(&priv->statistics.lock);
1009		return;
1010	}
1011
1012	/*
1013	 *  Accumulate beacon statistics values across
1014	 * "chain_noise_num_beacons"
1015	 */
1016	chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
1017				IN_BAND_FILTER;
1018	chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
1019				IN_BAND_FILTER;
1020	chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
1021				IN_BAND_FILTER;
1022
1023	chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
1024	chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
1025	chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
1026
1027	spin_unlock_bh(&priv->statistics.lock);
1028
1029	data->beacon_count++;
1030
1031	data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
1032	data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
1033	data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
1034
1035	data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
1036	data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
1037	data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
1038
1039	IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
1040			rxon_chnum, rxon_band24, data->beacon_count);
1041	IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
1042			chain_sig_a, chain_sig_b, chain_sig_c);
1043	IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
1044			chain_noise_a, chain_noise_b, chain_noise_c);
1045
1046	/* If this is the "chain_noise_num_beacons", determine:
1047	 * 1)  Disconnected antennas (using signal strengths)
1048	 * 2)  Differential gain (using silence noise) to balance receivers */
1049	if (data->beacon_count != IWL_CAL_NUM_BEACONS)
1050		return;
1051
1052	/* Analyze signal for disconnected antenna */
1053	if (priv->lib->bt_params &&
1054	    priv->lib->bt_params->advanced_bt_coexist) {
1055		/* Disable disconnected antenna algorithm for advanced
1056		   bt coex, assuming valid antennas are connected */
1057		data->active_chains = priv->nvm_data->valid_rx_ant;
1058		for (i = 0; i < NUM_RX_CHAINS; i++)
1059			if (!(data->active_chains & (1<<i)))
1060				data->disconn_array[i] = 1;
1061	} else
1062		iwl_find_disconn_antenna(priv, average_sig, data);
1063
1064	/* Analyze noise for rx balance */
1065	average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1066	average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1067	average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1068
1069	for (i = 0; i < NUM_RX_CHAINS; i++) {
1070		if (!(data->disconn_array[i]) &&
1071		   (average_noise[i] <= min_average_noise)) {
1072			/* This means that chain i is active and has
1073			 * lower noise values so far: */
1074			min_average_noise = average_noise[i];
1075			min_average_noise_antenna_i = i;
1076		}
1077	}
1078
1079	IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1080			average_noise[0], average_noise[1],
1081			average_noise[2]);
1082
1083	IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1084			min_average_noise, min_average_noise_antenna_i);
1085
1086	iwlagn_gain_computation(
1087		priv, average_noise,
1088		find_first_chain(priv->nvm_data->valid_rx_ant));
1089
1090	/* Some power changes may have been made during the calibration.
1091	 * Update and commit the RXON
1092	 */
1093	iwl_update_chain_flags(priv);
1094
1095	data->state = IWL_CHAIN_NOISE_DONE;
1096	iwl_power_update_mode(priv, false);
1097}
1098
1099void iwl_reset_run_time_calib(struct iwl_priv *priv)
1100{
1101	int i;
1102	memset(&(priv->sensitivity_data), 0,
1103	       sizeof(struct iwl_sensitivity_data));
1104	memset(&(priv->chain_noise_data), 0,
1105	       sizeof(struct iwl_chain_noise_data));
1106	for (i = 0; i < NUM_RX_CHAINS; i++)
1107		priv->chain_noise_data.delta_gain_code[i] =
1108				CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1109
1110	/* Ask for statistics now, the uCode will send notification
1111	 * periodically after association */
1112	iwl_send_statistics_request(priv, CMD_ASYNC, true);
1113}
1114