[go: nahoru, domu]

1/*
2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3	<http://rt2x00.serialmonkey.com>
4
5	This program is free software; you can redistribute it and/or modify
6	it under the terms of the GNU General Public License as published by
7	the Free Software Foundation; either version 2 of the License, or
8	(at your option) any later version.
9
10	This program is distributed in the hope that it will be useful,
11	but WITHOUT ANY WARRANTY; without even the implied warranty of
12	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13	GNU General Public License for more details.
14
15	You should have received a copy of the GNU General Public License
16	along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19/*
20	Module: rt2500usb
21	Abstract: rt2500usb device specific routines.
22	Supported chipsets: RT2570.
23 */
24
25#include <linux/delay.h>
26#include <linux/etherdevice.h>
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/slab.h>
30#include <linux/usb.h>
31
32#include "rt2x00.h"
33#include "rt2x00usb.h"
34#include "rt2500usb.h"
35
36/*
37 * Allow hardware encryption to be disabled.
38 */
39static bool modparam_nohwcrypt;
40module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
41MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
42
43/*
44 * Register access.
45 * All access to the CSR registers will go through the methods
46 * rt2500usb_register_read and rt2500usb_register_write.
47 * BBP and RF register require indirect register access,
48 * and use the CSR registers BBPCSR and RFCSR to achieve this.
49 * These indirect registers work with busy bits,
50 * and we will try maximal REGISTER_BUSY_COUNT times to access
51 * the register while taking a REGISTER_BUSY_DELAY us delay
52 * between each attampt. When the busy bit is still set at that time,
53 * the access attempt is considered to have failed,
54 * and we will print an error.
55 * If the csr_mutex is already held then the _lock variants must
56 * be used instead.
57 */
58static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
59					   const unsigned int offset,
60					   u16 *value)
61{
62	__le16 reg;
63	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
64				      USB_VENDOR_REQUEST_IN, offset,
65				      &reg, sizeof(reg), REGISTER_TIMEOUT);
66	*value = le16_to_cpu(reg);
67}
68
69static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
70						const unsigned int offset,
71						u16 *value)
72{
73	__le16 reg;
74	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75				       USB_VENDOR_REQUEST_IN, offset,
76				       &reg, sizeof(reg), REGISTER_TIMEOUT);
77	*value = le16_to_cpu(reg);
78}
79
80static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
81						const unsigned int offset,
82						void *value, const u16 length)
83{
84	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
85				      USB_VENDOR_REQUEST_IN, offset,
86				      value, length,
87				      REGISTER_TIMEOUT16(length));
88}
89
90static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
91					    const unsigned int offset,
92					    u16 value)
93{
94	__le16 reg = cpu_to_le16(value);
95	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
96				      USB_VENDOR_REQUEST_OUT, offset,
97				      &reg, sizeof(reg), REGISTER_TIMEOUT);
98}
99
100static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
101						 const unsigned int offset,
102						 u16 value)
103{
104	__le16 reg = cpu_to_le16(value);
105	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
106				       USB_VENDOR_REQUEST_OUT, offset,
107				       &reg, sizeof(reg), REGISTER_TIMEOUT);
108}
109
110static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
111						 const unsigned int offset,
112						 void *value, const u16 length)
113{
114	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
115				      USB_VENDOR_REQUEST_OUT, offset,
116				      value, length,
117				      REGISTER_TIMEOUT16(length));
118}
119
120static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
121				  const unsigned int offset,
122				  struct rt2x00_field16 field,
123				  u16 *reg)
124{
125	unsigned int i;
126
127	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
128		rt2500usb_register_read_lock(rt2x00dev, offset, reg);
129		if (!rt2x00_get_field16(*reg, field))
130			return 1;
131		udelay(REGISTER_BUSY_DELAY);
132	}
133
134	rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
135		   offset, *reg);
136	*reg = ~0;
137
138	return 0;
139}
140
141#define WAIT_FOR_BBP(__dev, __reg) \
142	rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
143#define WAIT_FOR_RF(__dev, __reg) \
144	rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
145
146static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
147				const unsigned int word, const u8 value)
148{
149	u16 reg;
150
151	mutex_lock(&rt2x00dev->csr_mutex);
152
153	/*
154	 * Wait until the BBP becomes available, afterwards we
155	 * can safely write the new data into the register.
156	 */
157	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
158		reg = 0;
159		rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
160		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
161		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
162
163		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
164	}
165
166	mutex_unlock(&rt2x00dev->csr_mutex);
167}
168
169static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
170			       const unsigned int word, u8 *value)
171{
172	u16 reg;
173
174	mutex_lock(&rt2x00dev->csr_mutex);
175
176	/*
177	 * Wait until the BBP becomes available, afterwards we
178	 * can safely write the read request into the register.
179	 * After the data has been written, we wait until hardware
180	 * returns the correct value, if at any time the register
181	 * doesn't become available in time, reg will be 0xffffffff
182	 * which means we return 0xff to the caller.
183	 */
184	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
185		reg = 0;
186		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
187		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
188
189		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
190
191		if (WAIT_FOR_BBP(rt2x00dev, &reg))
192			rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
193	}
194
195	*value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
196
197	mutex_unlock(&rt2x00dev->csr_mutex);
198}
199
200static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
201			       const unsigned int word, const u32 value)
202{
203	u16 reg;
204
205	mutex_lock(&rt2x00dev->csr_mutex);
206
207	/*
208	 * Wait until the RF becomes available, afterwards we
209	 * can safely write the new data into the register.
210	 */
211	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
212		reg = 0;
213		rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
214		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
215
216		reg = 0;
217		rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
218		rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
219		rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
220		rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
221
222		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
223		rt2x00_rf_write(rt2x00dev, word, value);
224	}
225
226	mutex_unlock(&rt2x00dev->csr_mutex);
227}
228
229#ifdef CONFIG_RT2X00_LIB_DEBUGFS
230static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
231				     const unsigned int offset,
232				     u32 *value)
233{
234	rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
235}
236
237static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
238				      const unsigned int offset,
239				      u32 value)
240{
241	rt2500usb_register_write(rt2x00dev, offset, value);
242}
243
244static const struct rt2x00debug rt2500usb_rt2x00debug = {
245	.owner	= THIS_MODULE,
246	.csr	= {
247		.read		= _rt2500usb_register_read,
248		.write		= _rt2500usb_register_write,
249		.flags		= RT2X00DEBUGFS_OFFSET,
250		.word_base	= CSR_REG_BASE,
251		.word_size	= sizeof(u16),
252		.word_count	= CSR_REG_SIZE / sizeof(u16),
253	},
254	.eeprom	= {
255		.read		= rt2x00_eeprom_read,
256		.write		= rt2x00_eeprom_write,
257		.word_base	= EEPROM_BASE,
258		.word_size	= sizeof(u16),
259		.word_count	= EEPROM_SIZE / sizeof(u16),
260	},
261	.bbp	= {
262		.read		= rt2500usb_bbp_read,
263		.write		= rt2500usb_bbp_write,
264		.word_base	= BBP_BASE,
265		.word_size	= sizeof(u8),
266		.word_count	= BBP_SIZE / sizeof(u8),
267	},
268	.rf	= {
269		.read		= rt2x00_rf_read,
270		.write		= rt2500usb_rf_write,
271		.word_base	= RF_BASE,
272		.word_size	= sizeof(u32),
273		.word_count	= RF_SIZE / sizeof(u32),
274	},
275};
276#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
277
278static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
279{
280	u16 reg;
281
282	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
283	return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
284}
285
286#ifdef CONFIG_RT2X00_LIB_LEDS
287static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
288				     enum led_brightness brightness)
289{
290	struct rt2x00_led *led =
291	    container_of(led_cdev, struct rt2x00_led, led_dev);
292	unsigned int enabled = brightness != LED_OFF;
293	u16 reg;
294
295	rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
296
297	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
298		rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
299	else if (led->type == LED_TYPE_ACTIVITY)
300		rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
301
302	rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
303}
304
305static int rt2500usb_blink_set(struct led_classdev *led_cdev,
306			       unsigned long *delay_on,
307			       unsigned long *delay_off)
308{
309	struct rt2x00_led *led =
310	    container_of(led_cdev, struct rt2x00_led, led_dev);
311	u16 reg;
312
313	rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
314	rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
315	rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
316	rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
317
318	return 0;
319}
320
321static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
322			       struct rt2x00_led *led,
323			       enum led_type type)
324{
325	led->rt2x00dev = rt2x00dev;
326	led->type = type;
327	led->led_dev.brightness_set = rt2500usb_brightness_set;
328	led->led_dev.blink_set = rt2500usb_blink_set;
329	led->flags = LED_INITIALIZED;
330}
331#endif /* CONFIG_RT2X00_LIB_LEDS */
332
333/*
334 * Configuration handlers.
335 */
336
337/*
338 * rt2500usb does not differentiate between shared and pairwise
339 * keys, so we should use the same function for both key types.
340 */
341static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
342				struct rt2x00lib_crypto *crypto,
343				struct ieee80211_key_conf *key)
344{
345	u32 mask;
346	u16 reg;
347	enum cipher curr_cipher;
348
349	if (crypto->cmd == SET_KEY) {
350		/*
351		 * Disallow to set WEP key other than with index 0,
352		 * it is known that not work at least on some hardware.
353		 * SW crypto will be used in that case.
354		 */
355		if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
356		     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
357		    key->keyidx != 0)
358			return -EOPNOTSUPP;
359
360		/*
361		 * Pairwise key will always be entry 0, but this
362		 * could collide with a shared key on the same
363		 * position...
364		 */
365		mask = TXRX_CSR0_KEY_ID.bit_mask;
366
367		rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
368		curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
369		reg &= mask;
370
371		if (reg && reg == mask)
372			return -ENOSPC;
373
374		reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
375
376		key->hw_key_idx += reg ? ffz(reg) : 0;
377		/*
378		 * Hardware requires that all keys use the same cipher
379		 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
380		 * If this is not the first key, compare the cipher with the
381		 * first one and fall back to SW crypto if not the same.
382		 */
383		if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
384			return -EOPNOTSUPP;
385
386		rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
387					      crypto->key, sizeof(crypto->key));
388
389		/*
390		 * The driver does not support the IV/EIV generation
391		 * in hardware. However it demands the data to be provided
392		 * both separately as well as inside the frame.
393		 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
394		 * to ensure rt2x00lib will not strip the data from the
395		 * frame after the copy, now we must tell mac80211
396		 * to generate the IV/EIV data.
397		 */
398		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
399		key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
400	}
401
402	/*
403	 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
404	 * a particular key is valid.
405	 */
406	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
407	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
408	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
409
410	mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
411	if (crypto->cmd == SET_KEY)
412		mask |= 1 << key->hw_key_idx;
413	else if (crypto->cmd == DISABLE_KEY)
414		mask &= ~(1 << key->hw_key_idx);
415	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
416	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
417
418	return 0;
419}
420
421static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
422				    const unsigned int filter_flags)
423{
424	u16 reg;
425
426	/*
427	 * Start configuration steps.
428	 * Note that the version error will always be dropped
429	 * and broadcast frames will always be accepted since
430	 * there is no filter for it at this time.
431	 */
432	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
433	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
434			   !(filter_flags & FIF_FCSFAIL));
435	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
436			   !(filter_flags & FIF_PLCPFAIL));
437	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
438			   !(filter_flags & FIF_CONTROL));
439	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
440			   !(filter_flags & FIF_PROMISC_IN_BSS));
441	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
442			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
443			   !rt2x00dev->intf_ap_count);
444	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
445	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
446			   !(filter_flags & FIF_ALLMULTI));
447	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
448	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
449}
450
451static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
452				  struct rt2x00_intf *intf,
453				  struct rt2x00intf_conf *conf,
454				  const unsigned int flags)
455{
456	unsigned int bcn_preload;
457	u16 reg;
458
459	if (flags & CONFIG_UPDATE_TYPE) {
460		/*
461		 * Enable beacon config
462		 */
463		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
464		rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
465		rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
466		rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
467				   2 * (conf->type != NL80211_IFTYPE_STATION));
468		rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
469
470		/*
471		 * Enable synchronisation.
472		 */
473		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
474		rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
475		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
476
477		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
478		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
479		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
480	}
481
482	if (flags & CONFIG_UPDATE_MAC)
483		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
484					      (3 * sizeof(__le16)));
485
486	if (flags & CONFIG_UPDATE_BSSID)
487		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
488					      (3 * sizeof(__le16)));
489}
490
491static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
492				 struct rt2x00lib_erp *erp,
493				 u32 changed)
494{
495	u16 reg;
496
497	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
498		rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
499		rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
500				   !!erp->short_preamble);
501		rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
502	}
503
504	if (changed & BSS_CHANGED_BASIC_RATES)
505		rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
506					 erp->basic_rates);
507
508	if (changed & BSS_CHANGED_BEACON_INT) {
509		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
510		rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
511				   erp->beacon_int * 4);
512		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
513	}
514
515	if (changed & BSS_CHANGED_ERP_SLOT) {
516		rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
517		rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
518		rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
519	}
520}
521
522static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
523				 struct antenna_setup *ant)
524{
525	u8 r2;
526	u8 r14;
527	u16 csr5;
528	u16 csr6;
529
530	/*
531	 * We should never come here because rt2x00lib is supposed
532	 * to catch this and send us the correct antenna explicitely.
533	 */
534	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
535	       ant->tx == ANTENNA_SW_DIVERSITY);
536
537	rt2500usb_bbp_read(rt2x00dev, 2, &r2);
538	rt2500usb_bbp_read(rt2x00dev, 14, &r14);
539	rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
540	rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
541
542	/*
543	 * Configure the TX antenna.
544	 */
545	switch (ant->tx) {
546	case ANTENNA_HW_DIVERSITY:
547		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
548		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
549		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
550		break;
551	case ANTENNA_A:
552		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
553		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
554		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
555		break;
556	case ANTENNA_B:
557	default:
558		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
559		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
560		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
561		break;
562	}
563
564	/*
565	 * Configure the RX antenna.
566	 */
567	switch (ant->rx) {
568	case ANTENNA_HW_DIVERSITY:
569		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
570		break;
571	case ANTENNA_A:
572		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
573		break;
574	case ANTENNA_B:
575	default:
576		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
577		break;
578	}
579
580	/*
581	 * RT2525E and RT5222 need to flip TX I/Q
582	 */
583	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
584		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
585		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
586		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
587
588		/*
589		 * RT2525E does not need RX I/Q Flip.
590		 */
591		if (rt2x00_rf(rt2x00dev, RF2525E))
592			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
593	} else {
594		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
595		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
596	}
597
598	rt2500usb_bbp_write(rt2x00dev, 2, r2);
599	rt2500usb_bbp_write(rt2x00dev, 14, r14);
600	rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
601	rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
602}
603
604static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
605				     struct rf_channel *rf, const int txpower)
606{
607	/*
608	 * Set TXpower.
609	 */
610	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
611
612	/*
613	 * For RT2525E we should first set the channel to half band higher.
614	 */
615	if (rt2x00_rf(rt2x00dev, RF2525E)) {
616		static const u32 vals[] = {
617			0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
618			0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
619			0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
620			0x00000902, 0x00000906
621		};
622
623		rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
624		if (rf->rf4)
625			rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
626	}
627
628	rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
629	rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
630	rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
631	if (rf->rf4)
632		rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
633}
634
635static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
636				     const int txpower)
637{
638	u32 rf3;
639
640	rt2x00_rf_read(rt2x00dev, 3, &rf3);
641	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
642	rt2500usb_rf_write(rt2x00dev, 3, rf3);
643}
644
645static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
646				struct rt2x00lib_conf *libconf)
647{
648	enum dev_state state =
649	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
650		STATE_SLEEP : STATE_AWAKE;
651	u16 reg;
652
653	if (state == STATE_SLEEP) {
654		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
655		rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
656				   rt2x00dev->beacon_int - 20);
657		rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
658				   libconf->conf->listen_interval - 1);
659
660		/* We must first disable autowake before it can be enabled */
661		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
662		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
663
664		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
665		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
666	} else {
667		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
668		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
669		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
670	}
671
672	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
673}
674
675static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
676			     struct rt2x00lib_conf *libconf,
677			     const unsigned int flags)
678{
679	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
680		rt2500usb_config_channel(rt2x00dev, &libconf->rf,
681					 libconf->conf->power_level);
682	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
683	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
684		rt2500usb_config_txpower(rt2x00dev,
685					 libconf->conf->power_level);
686	if (flags & IEEE80211_CONF_CHANGE_PS)
687		rt2500usb_config_ps(rt2x00dev, libconf);
688}
689
690/*
691 * Link tuning
692 */
693static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
694				 struct link_qual *qual)
695{
696	u16 reg;
697
698	/*
699	 * Update FCS error count from register.
700	 */
701	rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
702	qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
703
704	/*
705	 * Update False CCA count from register.
706	 */
707	rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
708	qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
709}
710
711static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
712				  struct link_qual *qual)
713{
714	u16 eeprom;
715	u16 value;
716
717	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
718	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
719	rt2500usb_bbp_write(rt2x00dev, 24, value);
720
721	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
722	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
723	rt2500usb_bbp_write(rt2x00dev, 25, value);
724
725	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
726	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
727	rt2500usb_bbp_write(rt2x00dev, 61, value);
728
729	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
730	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
731	rt2500usb_bbp_write(rt2x00dev, 17, value);
732
733	qual->vgc_level = value;
734}
735
736/*
737 * Queue handlers.
738 */
739static void rt2500usb_start_queue(struct data_queue *queue)
740{
741	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
742	u16 reg;
743
744	switch (queue->qid) {
745	case QID_RX:
746		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
747		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
748		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
749		break;
750	case QID_BEACON:
751		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
752		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
753		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
754		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
755		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
756		break;
757	default:
758		break;
759	}
760}
761
762static void rt2500usb_stop_queue(struct data_queue *queue)
763{
764	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
765	u16 reg;
766
767	switch (queue->qid) {
768	case QID_RX:
769		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
770		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
771		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
772		break;
773	case QID_BEACON:
774		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
775		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
776		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
777		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
778		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
779		break;
780	default:
781		break;
782	}
783}
784
785/*
786 * Initialization functions.
787 */
788static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
789{
790	u16 reg;
791
792	rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
793				    USB_MODE_TEST, REGISTER_TIMEOUT);
794	rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
795				    0x00f0, REGISTER_TIMEOUT);
796
797	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
798	rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
799	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
800
801	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
802	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
803
804	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
805	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
806	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
807	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
808	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
809
810	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
811	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
812	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
813	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
814	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
815
816	rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
817	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
818	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
819	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
820	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
821	rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
822
823	rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
824	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
825	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
826	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
827	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
828	rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
829
830	rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
831	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
832	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
833	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
834	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
835	rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
836
837	rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
838	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
839	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
840	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
841	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
842	rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
843
844	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
845	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
846	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
847	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
848	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
849	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
850
851	rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
852	rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
853
854	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
855		return -EBUSY;
856
857	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
858	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
859	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
860	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
861	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
862
863	if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
864		rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
865		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
866	} else {
867		reg = 0;
868		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
869		rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
870	}
871	rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
872
873	rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
874	rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
875	rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
876	rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
877
878	rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
879	rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
880			   rt2x00dev->rx->data_size);
881	rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
882
883	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
884	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
885	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
886	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
887	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
888
889	rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
890	rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
891	rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
892
893	rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
894	rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
895	rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
896
897	rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
898	rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
899	rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
900
901	return 0;
902}
903
904static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
905{
906	unsigned int i;
907	u8 value;
908
909	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
910		rt2500usb_bbp_read(rt2x00dev, 0, &value);
911		if ((value != 0xff) && (value != 0x00))
912			return 0;
913		udelay(REGISTER_BUSY_DELAY);
914	}
915
916	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
917	return -EACCES;
918}
919
920static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
921{
922	unsigned int i;
923	u16 eeprom;
924	u8 value;
925	u8 reg_id;
926
927	if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
928		return -EACCES;
929
930	rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
931	rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
932	rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
933	rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
934	rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
935	rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
936	rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
937	rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
938	rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
939	rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
940	rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
941	rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
942	rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
943	rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
944	rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
945	rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
946	rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
947	rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
948	rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
949	rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
950	rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
951	rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
952	rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
953	rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
954	rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
955	rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
956	rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
957	rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
958	rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
959	rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
960	rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
961
962	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
963		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
964
965		if (eeprom != 0xffff && eeprom != 0x0000) {
966			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
967			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
968			rt2500usb_bbp_write(rt2x00dev, reg_id, value);
969		}
970	}
971
972	return 0;
973}
974
975/*
976 * Device state switch handlers.
977 */
978static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
979{
980	/*
981	 * Initialize all registers.
982	 */
983	if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
984		     rt2500usb_init_bbp(rt2x00dev)))
985		return -EIO;
986
987	return 0;
988}
989
990static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
991{
992	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
993	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
994
995	/*
996	 * Disable synchronisation.
997	 */
998	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
999
1000	rt2x00usb_disable_radio(rt2x00dev);
1001}
1002
1003static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1004			       enum dev_state state)
1005{
1006	u16 reg;
1007	u16 reg2;
1008	unsigned int i;
1009	char put_to_sleep;
1010	char bbp_state;
1011	char rf_state;
1012
1013	put_to_sleep = (state != STATE_AWAKE);
1014
1015	reg = 0;
1016	rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1017	rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1018	rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1019	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1020	rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1021	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1022
1023	/*
1024	 * Device is not guaranteed to be in the requested state yet.
1025	 * We must wait until the register indicates that the
1026	 * device has entered the correct state.
1027	 */
1028	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1029		rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1030		bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1031		rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1032		if (bbp_state == state && rf_state == state)
1033			return 0;
1034		rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1035		msleep(30);
1036	}
1037
1038	return -EBUSY;
1039}
1040
1041static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1042				      enum dev_state state)
1043{
1044	int retval = 0;
1045
1046	switch (state) {
1047	case STATE_RADIO_ON:
1048		retval = rt2500usb_enable_radio(rt2x00dev);
1049		break;
1050	case STATE_RADIO_OFF:
1051		rt2500usb_disable_radio(rt2x00dev);
1052		break;
1053	case STATE_RADIO_IRQ_ON:
1054	case STATE_RADIO_IRQ_OFF:
1055		/* No support, but no error either */
1056		break;
1057	case STATE_DEEP_SLEEP:
1058	case STATE_SLEEP:
1059	case STATE_STANDBY:
1060	case STATE_AWAKE:
1061		retval = rt2500usb_set_state(rt2x00dev, state);
1062		break;
1063	default:
1064		retval = -ENOTSUPP;
1065		break;
1066	}
1067
1068	if (unlikely(retval))
1069		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1070			   state, retval);
1071
1072	return retval;
1073}
1074
1075/*
1076 * TX descriptor initialization
1077 */
1078static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1079				    struct txentry_desc *txdesc)
1080{
1081	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1082	__le32 *txd = (__le32 *) entry->skb->data;
1083	u32 word;
1084
1085	/*
1086	 * Start writing the descriptor words.
1087	 */
1088	rt2x00_desc_read(txd, 0, &word);
1089	rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1090	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1091			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1092	rt2x00_set_field32(&word, TXD_W0_ACK,
1093			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1094	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1095			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1096	rt2x00_set_field32(&word, TXD_W0_OFDM,
1097			   (txdesc->rate_mode == RATE_MODE_OFDM));
1098	rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1099			   test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1100	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1101	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1102	rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1103	rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1104	rt2x00_desc_write(txd, 0, word);
1105
1106	rt2x00_desc_read(txd, 1, &word);
1107	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1108	rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1109	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1110	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1111	rt2x00_desc_write(txd, 1, word);
1112
1113	rt2x00_desc_read(txd, 2, &word);
1114	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1115	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1116	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1117			   txdesc->u.plcp.length_low);
1118	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1119			   txdesc->u.plcp.length_high);
1120	rt2x00_desc_write(txd, 2, word);
1121
1122	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1123		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1124		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1125	}
1126
1127	/*
1128	 * Register descriptor details in skb frame descriptor.
1129	 */
1130	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1131	skbdesc->desc = txd;
1132	skbdesc->desc_len = TXD_DESC_SIZE;
1133}
1134
1135/*
1136 * TX data initialization
1137 */
1138static void rt2500usb_beacondone(struct urb *urb);
1139
1140static void rt2500usb_write_beacon(struct queue_entry *entry,
1141				   struct txentry_desc *txdesc)
1142{
1143	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1144	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1145	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1146	int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1147	int length;
1148	u16 reg, reg0;
1149
1150	/*
1151	 * Disable beaconing while we are reloading the beacon data,
1152	 * otherwise we might be sending out invalid data.
1153	 */
1154	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1155	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1156	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1157
1158	/*
1159	 * Add space for the descriptor in front of the skb.
1160	 */
1161	skb_push(entry->skb, TXD_DESC_SIZE);
1162	memset(entry->skb->data, 0, TXD_DESC_SIZE);
1163
1164	/*
1165	 * Write the TX descriptor for the beacon.
1166	 */
1167	rt2500usb_write_tx_desc(entry, txdesc);
1168
1169	/*
1170	 * Dump beacon to userspace through debugfs.
1171	 */
1172	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1173
1174	/*
1175	 * USB devices cannot blindly pass the skb->len as the
1176	 * length of the data to usb_fill_bulk_urb. Pass the skb
1177	 * to the driver to determine what the length should be.
1178	 */
1179	length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1180
1181	usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1182			  entry->skb->data, length, rt2500usb_beacondone,
1183			  entry);
1184
1185	/*
1186	 * Second we need to create the guardian byte.
1187	 * We only need a single byte, so lets recycle
1188	 * the 'flags' field we are not using for beacons.
1189	 */
1190	bcn_priv->guardian_data = 0;
1191	usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1192			  &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1193			  entry);
1194
1195	/*
1196	 * Send out the guardian byte.
1197	 */
1198	usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1199
1200	/*
1201	 * Enable beaconing again.
1202	 */
1203	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1204	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1205	reg0 = reg;
1206	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1207	/*
1208	 * Beacon generation will fail initially.
1209	 * To prevent this we need to change the TXRX_CSR19
1210	 * register several times (reg0 is the same as reg
1211	 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1212	 * and 1 in reg).
1213	 */
1214	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1215	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1216	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1217	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1218	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1219}
1220
1221static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1222{
1223	int length;
1224
1225	/*
1226	 * The length _must_ be a multiple of 2,
1227	 * but it must _not_ be a multiple of the USB packet size.
1228	 */
1229	length = roundup(entry->skb->len, 2);
1230	length += (2 * !(length % entry->queue->usb_maxpacket));
1231
1232	return length;
1233}
1234
1235/*
1236 * RX control handlers
1237 */
1238static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1239				  struct rxdone_entry_desc *rxdesc)
1240{
1241	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1242	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1243	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1244	__le32 *rxd =
1245	    (__le32 *)(entry->skb->data +
1246		       (entry_priv->urb->actual_length -
1247			entry->queue->desc_size));
1248	u32 word0;
1249	u32 word1;
1250
1251	/*
1252	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1253	 * frame data in rt2x00usb.
1254	 */
1255	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1256	rxd = (__le32 *)skbdesc->desc;
1257
1258	/*
1259	 * It is now safe to read the descriptor on all architectures.
1260	 */
1261	rt2x00_desc_read(rxd, 0, &word0);
1262	rt2x00_desc_read(rxd, 1, &word1);
1263
1264	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1265		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1266	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1267		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1268
1269	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1270	if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1271		rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1272
1273	if (rxdesc->cipher != CIPHER_NONE) {
1274		_rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1275		_rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1276		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1277
1278		/* ICV is located at the end of frame */
1279
1280		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1281		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1282			rxdesc->flags |= RX_FLAG_DECRYPTED;
1283		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1284			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1285	}
1286
1287	/*
1288	 * Obtain the status about this packet.
1289	 * When frame was received with an OFDM bitrate,
1290	 * the signal is the PLCP value. If it was received with
1291	 * a CCK bitrate the signal is the rate in 100kbit/s.
1292	 */
1293	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1294	rxdesc->rssi =
1295	    rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1296	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1297
1298	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1299		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1300	else
1301		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1302	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1303		rxdesc->dev_flags |= RXDONE_MY_BSS;
1304
1305	/*
1306	 * Adjust the skb memory window to the frame boundaries.
1307	 */
1308	skb_trim(entry->skb, rxdesc->size);
1309}
1310
1311/*
1312 * Interrupt functions.
1313 */
1314static void rt2500usb_beacondone(struct urb *urb)
1315{
1316	struct queue_entry *entry = (struct queue_entry *)urb->context;
1317	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1318
1319	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1320		return;
1321
1322	/*
1323	 * Check if this was the guardian beacon,
1324	 * if that was the case we need to send the real beacon now.
1325	 * Otherwise we should free the sk_buffer, the device
1326	 * should be doing the rest of the work now.
1327	 */
1328	if (bcn_priv->guardian_urb == urb) {
1329		usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1330	} else if (bcn_priv->urb == urb) {
1331		dev_kfree_skb(entry->skb);
1332		entry->skb = NULL;
1333	}
1334}
1335
1336/*
1337 * Device probe functions.
1338 */
1339static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1340{
1341	u16 word;
1342	u8 *mac;
1343	u8 bbp;
1344
1345	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1346
1347	/*
1348	 * Start validation of the data that has been read.
1349	 */
1350	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1351	if (!is_valid_ether_addr(mac)) {
1352		eth_random_addr(mac);
1353		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1354	}
1355
1356	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1357	if (word == 0xffff) {
1358		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1359		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1360				   ANTENNA_SW_DIVERSITY);
1361		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1362				   ANTENNA_SW_DIVERSITY);
1363		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1364				   LED_MODE_DEFAULT);
1365		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1366		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1367		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1368		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1369		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1370	}
1371
1372	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1373	if (word == 0xffff) {
1374		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1375		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1376		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1377		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1378		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1379	}
1380
1381	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1382	if (word == 0xffff) {
1383		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1384				   DEFAULT_RSSI_OFFSET);
1385		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1386		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1387				  word);
1388	}
1389
1390	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1391	if (word == 0xffff) {
1392		rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1393		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1394		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1395	}
1396
1397	/*
1398	 * Switch lower vgc bound to current BBP R17 value,
1399	 * lower the value a bit for better quality.
1400	 */
1401	rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1402	bbp -= 6;
1403
1404	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1405	if (word == 0xffff) {
1406		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1407		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1408		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1409		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1410	} else {
1411		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1412		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1413	}
1414
1415	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1416	if (word == 0xffff) {
1417		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1418		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1419		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1420		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1421	}
1422
1423	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1424	if (word == 0xffff) {
1425		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1426		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1427		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1428		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1429	}
1430
1431	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1432	if (word == 0xffff) {
1433		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1434		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1435		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1436		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1437	}
1438
1439	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1440	if (word == 0xffff) {
1441		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1442		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1443		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1444		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1445	}
1446
1447	return 0;
1448}
1449
1450static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1451{
1452	u16 reg;
1453	u16 value;
1454	u16 eeprom;
1455
1456	/*
1457	 * Read EEPROM word for configuration.
1458	 */
1459	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1460
1461	/*
1462	 * Identify RF chipset.
1463	 */
1464	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1465	rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1466	rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1467
1468	if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1469		rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1470		return -ENODEV;
1471	}
1472
1473	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1474	    !rt2x00_rf(rt2x00dev, RF2523) &&
1475	    !rt2x00_rf(rt2x00dev, RF2524) &&
1476	    !rt2x00_rf(rt2x00dev, RF2525) &&
1477	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1478	    !rt2x00_rf(rt2x00dev, RF5222)) {
1479		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1480		return -ENODEV;
1481	}
1482
1483	/*
1484	 * Identify default antenna configuration.
1485	 */
1486	rt2x00dev->default_ant.tx =
1487	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1488	rt2x00dev->default_ant.rx =
1489	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1490
1491	/*
1492	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1493	 * I am not 100% sure about this, but the legacy drivers do not
1494	 * indicate antenna swapping in software is required when
1495	 * diversity is enabled.
1496	 */
1497	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1498		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1499	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1500		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1501
1502	/*
1503	 * Store led mode, for correct led behaviour.
1504	 */
1505#ifdef CONFIG_RT2X00_LIB_LEDS
1506	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1507
1508	rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1509	if (value == LED_MODE_TXRX_ACTIVITY ||
1510	    value == LED_MODE_DEFAULT ||
1511	    value == LED_MODE_ASUS)
1512		rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1513				   LED_TYPE_ACTIVITY);
1514#endif /* CONFIG_RT2X00_LIB_LEDS */
1515
1516	/*
1517	 * Detect if this device has an hardware controlled radio.
1518	 */
1519	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1520		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1521
1522	/*
1523	 * Read the RSSI <-> dBm offset information.
1524	 */
1525	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1526	rt2x00dev->rssi_offset =
1527	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1528
1529	return 0;
1530}
1531
1532/*
1533 * RF value list for RF2522
1534 * Supports: 2.4 GHz
1535 */
1536static const struct rf_channel rf_vals_bg_2522[] = {
1537	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1538	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1539	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1540	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1541	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1542	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1543	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1544	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1545	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1546	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1547	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1548	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1549	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1550	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1551};
1552
1553/*
1554 * RF value list for RF2523
1555 * Supports: 2.4 GHz
1556 */
1557static const struct rf_channel rf_vals_bg_2523[] = {
1558	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1559	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1560	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1561	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1562	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1563	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1564	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1565	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1566	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1567	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1568	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1569	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1570	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1571	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1572};
1573
1574/*
1575 * RF value list for RF2524
1576 * Supports: 2.4 GHz
1577 */
1578static const struct rf_channel rf_vals_bg_2524[] = {
1579	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1580	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1581	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1582	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1583	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1584	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1585	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1586	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1587	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1588	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1589	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1590	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1591	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1592	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1593};
1594
1595/*
1596 * RF value list for RF2525
1597 * Supports: 2.4 GHz
1598 */
1599static const struct rf_channel rf_vals_bg_2525[] = {
1600	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1601	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1602	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1603	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1604	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1605	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1606	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1607	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1608	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1609	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1610	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1611	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1612	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1613	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1614};
1615
1616/*
1617 * RF value list for RF2525e
1618 * Supports: 2.4 GHz
1619 */
1620static const struct rf_channel rf_vals_bg_2525e[] = {
1621	{ 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1622	{ 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1623	{ 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1624	{ 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1625	{ 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1626	{ 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1627	{ 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1628	{ 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1629	{ 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1630	{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1631	{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1632	{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1633	{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1634	{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1635};
1636
1637/*
1638 * RF value list for RF5222
1639 * Supports: 2.4 GHz & 5.2 GHz
1640 */
1641static const struct rf_channel rf_vals_5222[] = {
1642	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1643	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1644	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1645	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1646	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1647	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1648	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1649	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1650	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1651	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1652	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1653	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1654	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1655	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1656
1657	/* 802.11 UNI / HyperLan 2 */
1658	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1659	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1660	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1661	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1662	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1663	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1664	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1665	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1666
1667	/* 802.11 HyperLan 2 */
1668	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1669	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1670	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1671	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1672	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1673	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1674	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1675	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1676	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1677	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1678
1679	/* 802.11 UNII */
1680	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1681	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1682	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1683	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1684	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1685};
1686
1687static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1688{
1689	struct hw_mode_spec *spec = &rt2x00dev->spec;
1690	struct channel_info *info;
1691	char *tx_power;
1692	unsigned int i;
1693
1694	/*
1695	 * Initialize all hw fields.
1696	 *
1697	 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1698	 * capable of sending the buffered frames out after the DTIM
1699	 * transmission using rt2x00lib_beacondone. This will send out
1700	 * multicast and broadcast traffic immediately instead of buffering it
1701	 * infinitly and thus dropping it after some time.
1702	 */
1703	rt2x00dev->hw->flags =
1704	    IEEE80211_HW_RX_INCLUDES_FCS |
1705	    IEEE80211_HW_SIGNAL_DBM |
1706	    IEEE80211_HW_SUPPORTS_PS |
1707	    IEEE80211_HW_PS_NULLFUNC_STACK;
1708
1709	/*
1710	 * Disable powersaving as default.
1711	 */
1712	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1713
1714	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1715	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1716				rt2x00_eeprom_addr(rt2x00dev,
1717						   EEPROM_MAC_ADDR_0));
1718
1719	/*
1720	 * Initialize hw_mode information.
1721	 */
1722	spec->supported_bands = SUPPORT_BAND_2GHZ;
1723	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1724
1725	if (rt2x00_rf(rt2x00dev, RF2522)) {
1726		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1727		spec->channels = rf_vals_bg_2522;
1728	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1729		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1730		spec->channels = rf_vals_bg_2523;
1731	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1732		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1733		spec->channels = rf_vals_bg_2524;
1734	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1735		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1736		spec->channels = rf_vals_bg_2525;
1737	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1738		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1739		spec->channels = rf_vals_bg_2525e;
1740	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1741		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1742		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1743		spec->channels = rf_vals_5222;
1744	}
1745
1746	/*
1747	 * Create channel information array
1748	 */
1749	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1750	if (!info)
1751		return -ENOMEM;
1752
1753	spec->channels_info = info;
1754
1755	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1756	for (i = 0; i < 14; i++) {
1757		info[i].max_power = MAX_TXPOWER;
1758		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1759	}
1760
1761	if (spec->num_channels > 14) {
1762		for (i = 14; i < spec->num_channels; i++) {
1763			info[i].max_power = MAX_TXPOWER;
1764			info[i].default_power1 = DEFAULT_TXPOWER;
1765		}
1766	}
1767
1768	return 0;
1769}
1770
1771static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1772{
1773	int retval;
1774	u16 reg;
1775
1776	/*
1777	 * Allocate eeprom data.
1778	 */
1779	retval = rt2500usb_validate_eeprom(rt2x00dev);
1780	if (retval)
1781		return retval;
1782
1783	retval = rt2500usb_init_eeprom(rt2x00dev);
1784	if (retval)
1785		return retval;
1786
1787	/*
1788	 * Enable rfkill polling by setting GPIO direction of the
1789	 * rfkill switch GPIO pin correctly.
1790	 */
1791	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1792	rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1793	rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1794
1795	/*
1796	 * Initialize hw specifications.
1797	 */
1798	retval = rt2500usb_probe_hw_mode(rt2x00dev);
1799	if (retval)
1800		return retval;
1801
1802	/*
1803	 * This device requires the atim queue
1804	 */
1805	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1806	__set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1807	if (!modparam_nohwcrypt) {
1808		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1809		__set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1810	}
1811	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1812	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1813
1814	/*
1815	 * Set the rssi offset.
1816	 */
1817	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1818
1819	return 0;
1820}
1821
1822static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1823	.tx			= rt2x00mac_tx,
1824	.start			= rt2x00mac_start,
1825	.stop			= rt2x00mac_stop,
1826	.add_interface		= rt2x00mac_add_interface,
1827	.remove_interface	= rt2x00mac_remove_interface,
1828	.config			= rt2x00mac_config,
1829	.configure_filter	= rt2x00mac_configure_filter,
1830	.set_tim		= rt2x00mac_set_tim,
1831	.set_key		= rt2x00mac_set_key,
1832	.sw_scan_start		= rt2x00mac_sw_scan_start,
1833	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1834	.get_stats		= rt2x00mac_get_stats,
1835	.bss_info_changed	= rt2x00mac_bss_info_changed,
1836	.conf_tx		= rt2x00mac_conf_tx,
1837	.rfkill_poll		= rt2x00mac_rfkill_poll,
1838	.flush			= rt2x00mac_flush,
1839	.set_antenna		= rt2x00mac_set_antenna,
1840	.get_antenna		= rt2x00mac_get_antenna,
1841	.get_ringparam		= rt2x00mac_get_ringparam,
1842	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1843};
1844
1845static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1846	.probe_hw		= rt2500usb_probe_hw,
1847	.initialize		= rt2x00usb_initialize,
1848	.uninitialize		= rt2x00usb_uninitialize,
1849	.clear_entry		= rt2x00usb_clear_entry,
1850	.set_device_state	= rt2500usb_set_device_state,
1851	.rfkill_poll		= rt2500usb_rfkill_poll,
1852	.link_stats		= rt2500usb_link_stats,
1853	.reset_tuner		= rt2500usb_reset_tuner,
1854	.watchdog		= rt2x00usb_watchdog,
1855	.start_queue		= rt2500usb_start_queue,
1856	.kick_queue		= rt2x00usb_kick_queue,
1857	.stop_queue		= rt2500usb_stop_queue,
1858	.flush_queue		= rt2x00usb_flush_queue,
1859	.write_tx_desc		= rt2500usb_write_tx_desc,
1860	.write_beacon		= rt2500usb_write_beacon,
1861	.get_tx_data_len	= rt2500usb_get_tx_data_len,
1862	.fill_rxdone		= rt2500usb_fill_rxdone,
1863	.config_shared_key	= rt2500usb_config_key,
1864	.config_pairwise_key	= rt2500usb_config_key,
1865	.config_filter		= rt2500usb_config_filter,
1866	.config_intf		= rt2500usb_config_intf,
1867	.config_erp		= rt2500usb_config_erp,
1868	.config_ant		= rt2500usb_config_ant,
1869	.config			= rt2500usb_config,
1870};
1871
1872static void rt2500usb_queue_init(struct data_queue *queue)
1873{
1874	switch (queue->qid) {
1875	case QID_RX:
1876		queue->limit = 32;
1877		queue->data_size = DATA_FRAME_SIZE;
1878		queue->desc_size = RXD_DESC_SIZE;
1879		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1880		break;
1881
1882	case QID_AC_VO:
1883	case QID_AC_VI:
1884	case QID_AC_BE:
1885	case QID_AC_BK:
1886		queue->limit = 32;
1887		queue->data_size = DATA_FRAME_SIZE;
1888		queue->desc_size = TXD_DESC_SIZE;
1889		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1890		break;
1891
1892	case QID_BEACON:
1893		queue->limit = 1;
1894		queue->data_size = MGMT_FRAME_SIZE;
1895		queue->desc_size = TXD_DESC_SIZE;
1896		queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1897		break;
1898
1899	case QID_ATIM:
1900		queue->limit = 8;
1901		queue->data_size = DATA_FRAME_SIZE;
1902		queue->desc_size = TXD_DESC_SIZE;
1903		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1904		break;
1905
1906	default:
1907		BUG();
1908		break;
1909	}
1910}
1911
1912static const struct rt2x00_ops rt2500usb_ops = {
1913	.name			= KBUILD_MODNAME,
1914	.max_ap_intf		= 1,
1915	.eeprom_size		= EEPROM_SIZE,
1916	.rf_size		= RF_SIZE,
1917	.tx_queues		= NUM_TX_QUEUES,
1918	.queue_init		= rt2500usb_queue_init,
1919	.lib			= &rt2500usb_rt2x00_ops,
1920	.hw			= &rt2500usb_mac80211_ops,
1921#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1922	.debugfs		= &rt2500usb_rt2x00debug,
1923#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1924};
1925
1926/*
1927 * rt2500usb module information.
1928 */
1929static struct usb_device_id rt2500usb_device_table[] = {
1930	/* ASUS */
1931	{ USB_DEVICE(0x0b05, 0x1706) },
1932	{ USB_DEVICE(0x0b05, 0x1707) },
1933	/* Belkin */
1934	{ USB_DEVICE(0x050d, 0x7050) },	/* FCC ID: K7SF5D7050A ver. 2.x */
1935	{ USB_DEVICE(0x050d, 0x7051) },
1936	/* Cisco Systems */
1937	{ USB_DEVICE(0x13b1, 0x000d) },
1938	{ USB_DEVICE(0x13b1, 0x0011) },
1939	{ USB_DEVICE(0x13b1, 0x001a) },
1940	/* Conceptronic */
1941	{ USB_DEVICE(0x14b2, 0x3c02) },
1942	/* D-LINK */
1943	{ USB_DEVICE(0x2001, 0x3c00) },
1944	/* Gigabyte */
1945	{ USB_DEVICE(0x1044, 0x8001) },
1946	{ USB_DEVICE(0x1044, 0x8007) },
1947	/* Hercules */
1948	{ USB_DEVICE(0x06f8, 0xe000) },
1949	/* Melco */
1950	{ USB_DEVICE(0x0411, 0x005e) },
1951	{ USB_DEVICE(0x0411, 0x0066) },
1952	{ USB_DEVICE(0x0411, 0x0067) },
1953	{ USB_DEVICE(0x0411, 0x008b) },
1954	{ USB_DEVICE(0x0411, 0x0097) },
1955	/* MSI */
1956	{ USB_DEVICE(0x0db0, 0x6861) },
1957	{ USB_DEVICE(0x0db0, 0x6865) },
1958	{ USB_DEVICE(0x0db0, 0x6869) },
1959	/* Ralink */
1960	{ USB_DEVICE(0x148f, 0x1706) },
1961	{ USB_DEVICE(0x148f, 0x2570) },
1962	{ USB_DEVICE(0x148f, 0x9020) },
1963	/* Sagem */
1964	{ USB_DEVICE(0x079b, 0x004b) },
1965	/* Siemens */
1966	{ USB_DEVICE(0x0681, 0x3c06) },
1967	/* SMC */
1968	{ USB_DEVICE(0x0707, 0xee13) },
1969	/* Spairon */
1970	{ USB_DEVICE(0x114b, 0x0110) },
1971	/* SURECOM */
1972	{ USB_DEVICE(0x0769, 0x11f3) },
1973	/* Trust */
1974	{ USB_DEVICE(0x0eb0, 0x9020) },
1975	/* VTech */
1976	{ USB_DEVICE(0x0f88, 0x3012) },
1977	/* Zinwell */
1978	{ USB_DEVICE(0x5a57, 0x0260) },
1979	{ 0, }
1980};
1981
1982MODULE_AUTHOR(DRV_PROJECT);
1983MODULE_VERSION(DRV_VERSION);
1984MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1985MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1986MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1987MODULE_LICENSE("GPL");
1988
1989static int rt2500usb_probe(struct usb_interface *usb_intf,
1990			   const struct usb_device_id *id)
1991{
1992	return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1993}
1994
1995static struct usb_driver rt2500usb_driver = {
1996	.name		= KBUILD_MODNAME,
1997	.id_table	= rt2500usb_device_table,
1998	.probe		= rt2500usb_probe,
1999	.disconnect	= rt2x00usb_disconnect,
2000	.suspend	= rt2x00usb_suspend,
2001	.resume		= rt2x00usb_resume,
2002	.reset_resume	= rt2x00usb_resume,
2003	.disable_hub_initiated_lpm = 1,
2004};
2005
2006module_usb_driver(rt2500usb_driver);
2007