[go: nahoru, domu]

1/*
2 * Keystone Queue Manager subsystem driver
3 *
4 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5 * Authors:	Sandeep Nair <sandeep_n@ti.com>
6 *		Cyril Chemparathy <cyril@ti.com>
7 *		Santosh Shilimkar <santosh.shilimkar@ti.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * version 2 as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 */
18
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/device.h>
22#include <linux/clk.h>
23#include <linux/io.h>
24#include <linux/interrupt.h>
25#include <linux/bitops.h>
26#include <linux/slab.h>
27#include <linux/spinlock.h>
28#include <linux/platform_device.h>
29#include <linux/dma-mapping.h>
30#include <linux/of.h>
31#include <linux/of_irq.h>
32#include <linux/of_device.h>
33#include <linux/of_address.h>
34#include <linux/pm_runtime.h>
35#include <linux/firmware.h>
36#include <linux/debugfs.h>
37#include <linux/seq_file.h>
38#include <linux/string.h>
39#include <linux/soc/ti/knav_qmss.h>
40
41#include "knav_qmss.h"
42
43static struct knav_device *kdev;
44static DEFINE_MUTEX(knav_dev_lock);
45
46/* Queue manager register indices in DTS */
47#define KNAV_QUEUE_PEEK_REG_INDEX	0
48#define KNAV_QUEUE_STATUS_REG_INDEX	1
49#define KNAV_QUEUE_CONFIG_REG_INDEX	2
50#define KNAV_QUEUE_REGION_REG_INDEX	3
51#define KNAV_QUEUE_PUSH_REG_INDEX	4
52#define KNAV_QUEUE_POP_REG_INDEX	5
53
54/* PDSP register indices in DTS */
55#define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
56#define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
57#define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
58#define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
59
60#define knav_queue_idx_to_inst(kdev, idx)			\
61	(kdev->instances + (idx << kdev->inst_shift))
62
63#define for_each_handle_rcu(qh, inst)			\
64	list_for_each_entry_rcu(qh, &inst->handles, list)
65
66#define for_each_instance(idx, inst, kdev)		\
67	for (idx = 0, inst = kdev->instances;		\
68	     idx < (kdev)->num_queues_in_use;			\
69	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
70
71/**
72 * knav_queue_notify: qmss queue notfier call
73 *
74 * @inst:		qmss queue instance like accumulator
75 */
76void knav_queue_notify(struct knav_queue_inst *inst)
77{
78	struct knav_queue *qh;
79
80	if (!inst)
81		return;
82
83	rcu_read_lock();
84	for_each_handle_rcu(qh, inst) {
85		if (atomic_read(&qh->notifier_enabled) <= 0)
86			continue;
87		if (WARN_ON(!qh->notifier_fn))
88			continue;
89		atomic_inc(&qh->stats.notifies);
90		qh->notifier_fn(qh->notifier_fn_arg);
91	}
92	rcu_read_unlock();
93}
94EXPORT_SYMBOL_GPL(knav_queue_notify);
95
96static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
97{
98	struct knav_queue_inst *inst = _instdata;
99
100	knav_queue_notify(inst);
101	return IRQ_HANDLED;
102}
103
104static int knav_queue_setup_irq(struct knav_range_info *range,
105			  struct knav_queue_inst *inst)
106{
107	unsigned queue = inst->id - range->queue_base;
108	unsigned long cpu_map;
109	int ret = 0, irq;
110
111	if (range->flags & RANGE_HAS_IRQ) {
112		irq = range->irqs[queue].irq;
113		cpu_map = range->irqs[queue].cpu_map;
114		ret = request_irq(irq, knav_queue_int_handler, 0,
115					inst->irq_name, inst);
116		if (ret)
117			return ret;
118		disable_irq(irq);
119		if (cpu_map) {
120			ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
121			if (ret) {
122				dev_warn(range->kdev->dev,
123					 "Failed to set IRQ affinity\n");
124				return ret;
125			}
126		}
127	}
128	return ret;
129}
130
131static void knav_queue_free_irq(struct knav_queue_inst *inst)
132{
133	struct knav_range_info *range = inst->range;
134	unsigned queue = inst->id - inst->range->queue_base;
135	int irq;
136
137	if (range->flags & RANGE_HAS_IRQ) {
138		irq = range->irqs[queue].irq;
139		irq_set_affinity_hint(irq, NULL);
140		free_irq(irq, inst);
141	}
142}
143
144static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
145{
146	return !list_empty(&inst->handles);
147}
148
149static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
150{
151	return inst->range->flags & RANGE_RESERVED;
152}
153
154static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
155{
156	struct knav_queue *tmp;
157
158	rcu_read_lock();
159	for_each_handle_rcu(tmp, inst) {
160		if (tmp->flags & KNAV_QUEUE_SHARED) {
161			rcu_read_unlock();
162			return true;
163		}
164	}
165	rcu_read_unlock();
166	return false;
167}
168
169static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
170						unsigned type)
171{
172	if ((type == KNAV_QUEUE_QPEND) &&
173	    (inst->range->flags & RANGE_HAS_IRQ)) {
174		return true;
175	} else if ((type == KNAV_QUEUE_ACC) &&
176		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
177		return true;
178	} else if ((type == KNAV_QUEUE_GP) &&
179		!(inst->range->flags &
180			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
181		return true;
182	}
183	return false;
184}
185
186static inline struct knav_queue_inst *
187knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
188{
189	struct knav_queue_inst *inst;
190	int idx;
191
192	for_each_instance(idx, inst, kdev) {
193		if (inst->id == id)
194			return inst;
195	}
196	return NULL;
197}
198
199static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
200{
201	if (kdev->base_id <= id &&
202	    kdev->base_id + kdev->num_queues > id) {
203		id -= kdev->base_id;
204		return knav_queue_match_id_to_inst(kdev, id);
205	}
206	return NULL;
207}
208
209static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
210				      const char *name, unsigned flags)
211{
212	struct knav_queue *qh;
213	unsigned id;
214	int ret = 0;
215
216	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
217	if (!qh)
218		return ERR_PTR(-ENOMEM);
219
220	qh->flags = flags;
221	qh->inst = inst;
222	id = inst->id - inst->qmgr->start_queue;
223	qh->reg_push = &inst->qmgr->reg_push[id];
224	qh->reg_pop = &inst->qmgr->reg_pop[id];
225	qh->reg_peek = &inst->qmgr->reg_peek[id];
226
227	/* first opener? */
228	if (!knav_queue_is_busy(inst)) {
229		struct knav_range_info *range = inst->range;
230
231		inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
232		if (range->ops && range->ops->open_queue)
233			ret = range->ops->open_queue(range, inst, flags);
234
235		if (ret) {
236			devm_kfree(inst->kdev->dev, qh);
237			return ERR_PTR(ret);
238		}
239	}
240	list_add_tail_rcu(&qh->list, &inst->handles);
241	return qh;
242}
243
244static struct knav_queue *
245knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
246{
247	struct knav_queue_inst *inst;
248	struct knav_queue *qh;
249
250	mutex_lock(&knav_dev_lock);
251
252	qh = ERR_PTR(-ENODEV);
253	inst = knav_queue_find_by_id(id);
254	if (!inst)
255		goto unlock_ret;
256
257	qh = ERR_PTR(-EEXIST);
258	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
259		goto unlock_ret;
260
261	qh = ERR_PTR(-EBUSY);
262	if ((flags & KNAV_QUEUE_SHARED) &&
263	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
264		goto unlock_ret;
265
266	qh = __knav_queue_open(inst, name, flags);
267
268unlock_ret:
269	mutex_unlock(&knav_dev_lock);
270
271	return qh;
272}
273
274static struct knav_queue *knav_queue_open_by_type(const char *name,
275						unsigned type, unsigned flags)
276{
277	struct knav_queue_inst *inst;
278	struct knav_queue *qh = ERR_PTR(-EINVAL);
279	int idx;
280
281	mutex_lock(&knav_dev_lock);
282
283	for_each_instance(idx, inst, kdev) {
284		if (knav_queue_is_reserved(inst))
285			continue;
286		if (!knav_queue_match_type(inst, type))
287			continue;
288		if (knav_queue_is_busy(inst))
289			continue;
290		qh = __knav_queue_open(inst, name, flags);
291		goto unlock_ret;
292	}
293
294unlock_ret:
295	mutex_unlock(&knav_dev_lock);
296	return qh;
297}
298
299static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
300{
301	struct knav_range_info *range = inst->range;
302
303	if (range->ops && range->ops->set_notify)
304		range->ops->set_notify(range, inst, enabled);
305}
306
307static int knav_queue_enable_notifier(struct knav_queue *qh)
308{
309	struct knav_queue_inst *inst = qh->inst;
310	bool first;
311
312	if (WARN_ON(!qh->notifier_fn))
313		return -EINVAL;
314
315	/* Adjust the per handle notifier count */
316	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
317	if (!first)
318		return 0; /* nothing to do */
319
320	/* Now adjust the per instance notifier count */
321	first = (atomic_inc_return(&inst->num_notifiers) == 1);
322	if (first)
323		knav_queue_set_notify(inst, true);
324
325	return 0;
326}
327
328static int knav_queue_disable_notifier(struct knav_queue *qh)
329{
330	struct knav_queue_inst *inst = qh->inst;
331	bool last;
332
333	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
334	if (!last)
335		return 0; /* nothing to do */
336
337	last = (atomic_dec_return(&inst->num_notifiers) == 0);
338	if (last)
339		knav_queue_set_notify(inst, false);
340
341	return 0;
342}
343
344static int knav_queue_set_notifier(struct knav_queue *qh,
345				struct knav_queue_notify_config *cfg)
346{
347	knav_queue_notify_fn old_fn = qh->notifier_fn;
348
349	if (!cfg)
350		return -EINVAL;
351
352	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
353		return -ENOTSUPP;
354
355	if (!cfg->fn && old_fn)
356		knav_queue_disable_notifier(qh);
357
358	qh->notifier_fn = cfg->fn;
359	qh->notifier_fn_arg = cfg->fn_arg;
360
361	if (cfg->fn && !old_fn)
362		knav_queue_enable_notifier(qh);
363
364	return 0;
365}
366
367static int knav_gp_set_notify(struct knav_range_info *range,
368			       struct knav_queue_inst *inst,
369			       bool enabled)
370{
371	unsigned queue;
372
373	if (range->flags & RANGE_HAS_IRQ) {
374		queue = inst->id - range->queue_base;
375		if (enabled)
376			enable_irq(range->irqs[queue].irq);
377		else
378			disable_irq_nosync(range->irqs[queue].irq);
379	}
380	return 0;
381}
382
383static int knav_gp_open_queue(struct knav_range_info *range,
384				struct knav_queue_inst *inst, unsigned flags)
385{
386	return knav_queue_setup_irq(range, inst);
387}
388
389static int knav_gp_close_queue(struct knav_range_info *range,
390				struct knav_queue_inst *inst)
391{
392	knav_queue_free_irq(inst);
393	return 0;
394}
395
396struct knav_range_ops knav_gp_range_ops = {
397	.set_notify	= knav_gp_set_notify,
398	.open_queue	= knav_gp_open_queue,
399	.close_queue	= knav_gp_close_queue,
400};
401
402
403static int knav_queue_get_count(void *qhandle)
404{
405	struct knav_queue *qh = qhandle;
406	struct knav_queue_inst *inst = qh->inst;
407
408	return readl_relaxed(&qh->reg_peek[0].entry_count) +
409		atomic_read(&inst->desc_count);
410}
411
412static void knav_queue_debug_show_instance(struct seq_file *s,
413					struct knav_queue_inst *inst)
414{
415	struct knav_device *kdev = inst->kdev;
416	struct knav_queue *qh;
417
418	if (!knav_queue_is_busy(inst))
419		return;
420
421	seq_printf(s, "\tqueue id %d (%s)\n",
422		   kdev->base_id + inst->id, inst->name);
423	for_each_handle_rcu(qh, inst) {
424		seq_printf(s, "\t\thandle %p: ", qh);
425		seq_printf(s, "pushes %8d, ",
426			   atomic_read(&qh->stats.pushes));
427		seq_printf(s, "pops %8d, ",
428			   atomic_read(&qh->stats.pops));
429		seq_printf(s, "count %8d, ",
430			   knav_queue_get_count(qh));
431		seq_printf(s, "notifies %8d, ",
432			   atomic_read(&qh->stats.notifies));
433		seq_printf(s, "push errors %8d, ",
434			   atomic_read(&qh->stats.push_errors));
435		seq_printf(s, "pop errors %8d\n",
436			   atomic_read(&qh->stats.pop_errors));
437	}
438}
439
440static int knav_queue_debug_show(struct seq_file *s, void *v)
441{
442	struct knav_queue_inst *inst;
443	int idx;
444
445	mutex_lock(&knav_dev_lock);
446	seq_printf(s, "%s: %u-%u\n",
447		   dev_name(kdev->dev), kdev->base_id,
448		   kdev->base_id + kdev->num_queues - 1);
449	for_each_instance(idx, inst, kdev)
450		knav_queue_debug_show_instance(s, inst);
451	mutex_unlock(&knav_dev_lock);
452
453	return 0;
454}
455
456static int knav_queue_debug_open(struct inode *inode, struct file *file)
457{
458	return single_open(file, knav_queue_debug_show, NULL);
459}
460
461static const struct file_operations knav_queue_debug_ops = {
462	.open		= knav_queue_debug_open,
463	.read		= seq_read,
464	.llseek		= seq_lseek,
465	.release	= single_release,
466};
467
468static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
469					u32 flags)
470{
471	unsigned long end;
472	u32 val = 0;
473
474	end = jiffies + msecs_to_jiffies(timeout);
475	while (time_after(end, jiffies)) {
476		val = readl_relaxed(addr);
477		if (flags)
478			val &= flags;
479		if (!val)
480			break;
481		cpu_relax();
482	}
483	return val ? -ETIMEDOUT : 0;
484}
485
486
487static int knav_queue_flush(struct knav_queue *qh)
488{
489	struct knav_queue_inst *inst = qh->inst;
490	unsigned id = inst->id - inst->qmgr->start_queue;
491
492	atomic_set(&inst->desc_count, 0);
493	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
494	return 0;
495}
496
497/**
498 * knav_queue_open()	- open a hardware queue
499 * @name		- name to give the queue handle
500 * @id			- desired queue number if any or specifes the type
501 *			  of queue
502 * @flags		- the following flags are applicable to queues:
503 *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
504 *			     exclusive by default.
505 *			     Subsequent attempts to open a shared queue should
506 *			     also have this flag.
507 *
508 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
509 * to check the returned value for error codes.
510 */
511void *knav_queue_open(const char *name, unsigned id,
512					unsigned flags)
513{
514	struct knav_queue *qh = ERR_PTR(-EINVAL);
515
516	switch (id) {
517	case KNAV_QUEUE_QPEND:
518	case KNAV_QUEUE_ACC:
519	case KNAV_QUEUE_GP:
520		qh = knav_queue_open_by_type(name, id, flags);
521		break;
522
523	default:
524		qh = knav_queue_open_by_id(name, id, flags);
525		break;
526	}
527	return qh;
528}
529EXPORT_SYMBOL_GPL(knav_queue_open);
530
531/**
532 * knav_queue_close()	- close a hardware queue handle
533 * @qh			- handle to close
534 */
535void knav_queue_close(void *qhandle)
536{
537	struct knav_queue *qh = qhandle;
538	struct knav_queue_inst *inst = qh->inst;
539
540	while (atomic_read(&qh->notifier_enabled) > 0)
541		knav_queue_disable_notifier(qh);
542
543	mutex_lock(&knav_dev_lock);
544	list_del_rcu(&qh->list);
545	mutex_unlock(&knav_dev_lock);
546	synchronize_rcu();
547	if (!knav_queue_is_busy(inst)) {
548		struct knav_range_info *range = inst->range;
549
550		if (range->ops && range->ops->close_queue)
551			range->ops->close_queue(range, inst);
552	}
553	devm_kfree(inst->kdev->dev, qh);
554}
555EXPORT_SYMBOL_GPL(knav_queue_close);
556
557/**
558 * knav_queue_device_control()	- Perform control operations on a queue
559 * @qh				- queue handle
560 * @cmd				- control commands
561 * @arg				- command argument
562 *
563 * Returns 0 on success, errno otherwise.
564 */
565int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
566				unsigned long arg)
567{
568	struct knav_queue *qh = qhandle;
569	struct knav_queue_notify_config *cfg;
570	int ret;
571
572	switch ((int)cmd) {
573	case KNAV_QUEUE_GET_ID:
574		ret = qh->inst->kdev->base_id + qh->inst->id;
575		break;
576
577	case KNAV_QUEUE_FLUSH:
578		ret = knav_queue_flush(qh);
579		break;
580
581	case KNAV_QUEUE_SET_NOTIFIER:
582		cfg = (void *)arg;
583		ret = knav_queue_set_notifier(qh, cfg);
584		break;
585
586	case KNAV_QUEUE_ENABLE_NOTIFY:
587		ret = knav_queue_enable_notifier(qh);
588		break;
589
590	case KNAV_QUEUE_DISABLE_NOTIFY:
591		ret = knav_queue_disable_notifier(qh);
592		break;
593
594	case KNAV_QUEUE_GET_COUNT:
595		ret = knav_queue_get_count(qh);
596		break;
597
598	default:
599		ret = -ENOTSUPP;
600		break;
601	}
602	return ret;
603}
604EXPORT_SYMBOL_GPL(knav_queue_device_control);
605
606
607
608/**
609 * knav_queue_push()	- push data (or descriptor) to the tail of a queue
610 * @qh			- hardware queue handle
611 * @data		- data to push
612 * @size		- size of data to push
613 * @flags		- can be used to pass additional information
614 *
615 * Returns 0 on success, errno otherwise.
616 */
617int knav_queue_push(void *qhandle, dma_addr_t dma,
618					unsigned size, unsigned flags)
619{
620	struct knav_queue *qh = qhandle;
621	u32 val;
622
623	val = (u32)dma | ((size / 16) - 1);
624	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
625
626	atomic_inc(&qh->stats.pushes);
627	return 0;
628}
629
630/**
631 * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
632 * @qh			- hardware queue handle
633 * @size		- (optional) size of the data pop'ed.
634 *
635 * Returns a DMA address on success, 0 on failure.
636 */
637dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
638{
639	struct knav_queue *qh = qhandle;
640	struct knav_queue_inst *inst = qh->inst;
641	dma_addr_t dma;
642	u32 val, idx;
643
644	/* are we accumulated? */
645	if (inst->descs) {
646		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
647			atomic_inc(&inst->desc_count);
648			return 0;
649		}
650		idx  = atomic_inc_return(&inst->desc_head);
651		idx &= ACC_DESCS_MASK;
652		val = inst->descs[idx];
653	} else {
654		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
655		if (unlikely(!val))
656			return 0;
657	}
658
659	dma = val & DESC_PTR_MASK;
660	if (size)
661		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
662
663	atomic_inc(&qh->stats.pops);
664	return dma;
665}
666
667/* carve out descriptors and push into queue */
668static void kdesc_fill_pool(struct knav_pool *pool)
669{
670	struct knav_region *region;
671	int i;
672
673	region = pool->region;
674	pool->desc_size = region->desc_size;
675	for (i = 0; i < pool->num_desc; i++) {
676		int index = pool->region_offset + i;
677		dma_addr_t dma_addr;
678		unsigned dma_size;
679		dma_addr = region->dma_start + (region->desc_size * index);
680		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
681		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
682					   DMA_TO_DEVICE);
683		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
684	}
685}
686
687/* pop out descriptors and close the queue */
688static void kdesc_empty_pool(struct knav_pool *pool)
689{
690	dma_addr_t dma;
691	unsigned size;
692	void *desc;
693	int i;
694
695	if (!pool->queue)
696		return;
697
698	for (i = 0;; i++) {
699		dma = knav_queue_pop(pool->queue, &size);
700		if (!dma)
701			break;
702		desc = knav_pool_desc_dma_to_virt(pool, dma);
703		if (!desc) {
704			dev_dbg(pool->kdev->dev,
705				"couldn't unmap desc, continuing\n");
706			continue;
707		}
708	}
709	WARN_ON(i != pool->num_desc);
710	knav_queue_close(pool->queue);
711}
712
713
714/* Get the DMA address of a descriptor */
715dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
716{
717	struct knav_pool *pool = ph;
718	return pool->region->dma_start + (virt - pool->region->virt_start);
719}
720
721void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
722{
723	struct knav_pool *pool = ph;
724	return pool->region->virt_start + (dma - pool->region->dma_start);
725}
726
727/**
728 * knav_pool_create()	- Create a pool of descriptors
729 * @name		- name to give the pool handle
730 * @num_desc		- numbers of descriptors in the pool
731 * @region_id		- QMSS region id from which the descriptors are to be
732 *			  allocated.
733 *
734 * Returns a pool handle on success.
735 * Use IS_ERR_OR_NULL() to identify error values on return.
736 */
737void *knav_pool_create(const char *name,
738					int num_desc, int region_id)
739{
740	struct knav_region *reg_itr, *region = NULL;
741	struct knav_pool *pool, *pi;
742	struct list_head *node;
743	unsigned last_offset;
744	bool slot_found;
745	int ret;
746
747	if (!kdev->dev)
748		return ERR_PTR(-ENODEV);
749
750	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
751	if (!pool) {
752		dev_err(kdev->dev, "out of memory allocating pool\n");
753		return ERR_PTR(-ENOMEM);
754	}
755
756	for_each_region(kdev, reg_itr) {
757		if (reg_itr->id != region_id)
758			continue;
759		region = reg_itr;
760		break;
761	}
762
763	if (!region) {
764		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
765		ret = -EINVAL;
766		goto err;
767	}
768
769	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
770	if (IS_ERR_OR_NULL(pool->queue)) {
771		dev_err(kdev->dev,
772			"failed to open queue for pool(%s), error %ld\n",
773			name, PTR_ERR(pool->queue));
774		ret = PTR_ERR(pool->queue);
775		goto err;
776	}
777
778	pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
779	pool->kdev = kdev;
780	pool->dev = kdev->dev;
781
782	mutex_lock(&knav_dev_lock);
783
784	if (num_desc > (region->num_desc - region->used_desc)) {
785		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
786			region_id, name);
787		ret = -ENOMEM;
788		goto err;
789	}
790
791	/* Region maintains a sorted (by region offset) list of pools
792	 * use the first free slot which is large enough to accomodate
793	 * the request
794	 */
795	last_offset = 0;
796	slot_found = false;
797	node = &region->pools;
798	list_for_each_entry(pi, &region->pools, region_inst) {
799		if ((pi->region_offset - last_offset) >= num_desc) {
800			slot_found = true;
801			break;
802		}
803		last_offset = pi->region_offset + pi->num_desc;
804	}
805	node = &pi->region_inst;
806
807	if (slot_found) {
808		pool->region = region;
809		pool->num_desc = num_desc;
810		pool->region_offset = last_offset;
811		region->used_desc += num_desc;
812		list_add_tail(&pool->list, &kdev->pools);
813		list_add_tail(&pool->region_inst, node);
814	} else {
815		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
816			name, region_id);
817		ret = -ENOMEM;
818		goto err;
819	}
820
821	mutex_unlock(&knav_dev_lock);
822	kdesc_fill_pool(pool);
823	return pool;
824
825err:
826	mutex_unlock(&knav_dev_lock);
827	kfree(pool->name);
828	devm_kfree(kdev->dev, pool);
829	return ERR_PTR(ret);
830}
831EXPORT_SYMBOL_GPL(knav_pool_create);
832
833/**
834 * knav_pool_destroy()	- Free a pool of descriptors
835 * @pool		- pool handle
836 */
837void knav_pool_destroy(void *ph)
838{
839	struct knav_pool *pool = ph;
840
841	if (!pool)
842		return;
843
844	if (!pool->region)
845		return;
846
847	kdesc_empty_pool(pool);
848	mutex_lock(&knav_dev_lock);
849
850	pool->region->used_desc -= pool->num_desc;
851	list_del(&pool->region_inst);
852	list_del(&pool->list);
853
854	mutex_unlock(&knav_dev_lock);
855	kfree(pool->name);
856	devm_kfree(kdev->dev, pool);
857}
858EXPORT_SYMBOL_GPL(knav_pool_destroy);
859
860
861/**
862 * knav_pool_desc_get()	- Get a descriptor from the pool
863 * @pool			- pool handle
864 *
865 * Returns descriptor from the pool.
866 */
867void *knav_pool_desc_get(void *ph)
868{
869	struct knav_pool *pool = ph;
870	dma_addr_t dma;
871	unsigned size;
872	void *data;
873
874	dma = knav_queue_pop(pool->queue, &size);
875	if (unlikely(!dma))
876		return ERR_PTR(-ENOMEM);
877	data = knav_pool_desc_dma_to_virt(pool, dma);
878	return data;
879}
880
881/**
882 * knav_pool_desc_put()	- return a descriptor to the pool
883 * @pool			- pool handle
884 */
885void knav_pool_desc_put(void *ph, void *desc)
886{
887	struct knav_pool *pool = ph;
888	dma_addr_t dma;
889	dma = knav_pool_desc_virt_to_dma(pool, desc);
890	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
891}
892
893/**
894 * knav_pool_desc_map()	- Map descriptor for DMA transfer
895 * @pool			- pool handle
896 * @desc			- address of descriptor to map
897 * @size			- size of descriptor to map
898 * @dma				- DMA address return pointer
899 * @dma_sz			- adjusted return pointer
900 *
901 * Returns 0 on success, errno otherwise.
902 */
903int knav_pool_desc_map(void *ph, void *desc, unsigned size,
904					dma_addr_t *dma, unsigned *dma_sz)
905{
906	struct knav_pool *pool = ph;
907	*dma = knav_pool_desc_virt_to_dma(pool, desc);
908	size = min(size, pool->region->desc_size);
909	size = ALIGN(size, SMP_CACHE_BYTES);
910	*dma_sz = size;
911	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
912
913	/* Ensure the descriptor reaches to the memory */
914	__iowmb();
915
916	return 0;
917}
918
919/**
920 * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
921 * @pool			- pool handle
922 * @dma				- DMA address of descriptor to unmap
923 * @dma_sz			- size of descriptor to unmap
924 *
925 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
926 * error values on return.
927 */
928void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
929{
930	struct knav_pool *pool = ph;
931	unsigned desc_sz;
932	void *desc;
933
934	desc_sz = min(dma_sz, pool->region->desc_size);
935	desc = knav_pool_desc_dma_to_virt(pool, dma);
936	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
937	prefetch(desc);
938	return desc;
939}
940
941/**
942 * knav_pool_count()	- Get the number of descriptors in pool.
943 * @pool		- pool handle
944 * Returns number of elements in the pool.
945 */
946int knav_pool_count(void *ph)
947{
948	struct knav_pool *pool = ph;
949	return knav_queue_get_count(pool->queue);
950}
951
952static void knav_queue_setup_region(struct knav_device *kdev,
953					struct knav_region *region)
954{
955	unsigned hw_num_desc, hw_desc_size, size;
956	struct knav_reg_region __iomem  *regs;
957	struct knav_qmgr_info *qmgr;
958	struct knav_pool *pool;
959	int id = region->id;
960	struct page *page;
961
962	/* unused region? */
963	if (!region->num_desc) {
964		dev_warn(kdev->dev, "unused region %s\n", region->name);
965		return;
966	}
967
968	/* get hardware descriptor value */
969	hw_num_desc = ilog2(region->num_desc - 1) + 1;
970
971	/* did we force fit ourselves into nothingness? */
972	if (region->num_desc < 32) {
973		region->num_desc = 0;
974		dev_warn(kdev->dev, "too few descriptors in region %s\n",
975			 region->name);
976		return;
977	}
978
979	size = region->num_desc * region->desc_size;
980	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
981						GFP_DMA32);
982	if (!region->virt_start) {
983		region->num_desc = 0;
984		dev_err(kdev->dev, "memory alloc failed for region %s\n",
985			region->name);
986		return;
987	}
988	region->virt_end = region->virt_start + size;
989	page = virt_to_page(region->virt_start);
990
991	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
992					 DMA_BIDIRECTIONAL);
993	if (dma_mapping_error(kdev->dev, region->dma_start)) {
994		dev_err(kdev->dev, "dma map failed for region %s\n",
995			region->name);
996		goto fail;
997	}
998	region->dma_end = region->dma_start + size;
999
1000	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1001	if (!pool) {
1002		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1003		goto fail;
1004	}
1005	pool->num_desc = 0;
1006	pool->region_offset = region->num_desc;
1007	list_add(&pool->region_inst, &region->pools);
1008
1009	dev_dbg(kdev->dev,
1010		"region %s (%d): size:%d, link:%d@%d, phys:%08x-%08x, virt:%p-%p\n",
1011		region->name, id, region->desc_size, region->num_desc,
1012		region->link_index, region->dma_start, region->dma_end,
1013		region->virt_start, region->virt_end);
1014
1015	hw_desc_size = (region->desc_size / 16) - 1;
1016	hw_num_desc -= 5;
1017
1018	for_each_qmgr(kdev, qmgr) {
1019		regs = qmgr->reg_region + id;
1020		writel_relaxed(region->dma_start, &regs->base);
1021		writel_relaxed(region->link_index, &regs->start_index);
1022		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1023			       &regs->size_count);
1024	}
1025	return;
1026
1027fail:
1028	if (region->dma_start)
1029		dma_unmap_page(kdev->dev, region->dma_start, size,
1030				DMA_BIDIRECTIONAL);
1031	if (region->virt_start)
1032		free_pages_exact(region->virt_start, size);
1033	region->num_desc = 0;
1034	return;
1035}
1036
1037static const char *knav_queue_find_name(struct device_node *node)
1038{
1039	const char *name;
1040
1041	if (of_property_read_string(node, "label", &name) < 0)
1042		name = node->name;
1043	if (!name)
1044		name = "unknown";
1045	return name;
1046}
1047
1048static int knav_queue_setup_regions(struct knav_device *kdev,
1049					struct device_node *regions)
1050{
1051	struct device *dev = kdev->dev;
1052	struct knav_region *region;
1053	struct device_node *child;
1054	u32 temp[2];
1055	int ret;
1056
1057	for_each_child_of_node(regions, child) {
1058		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1059		if (!region) {
1060			dev_err(dev, "out of memory allocating region\n");
1061			return -ENOMEM;
1062		}
1063
1064		region->name = knav_queue_find_name(child);
1065		of_property_read_u32(child, "id", &region->id);
1066		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1067		if (!ret) {
1068			region->num_desc  = temp[0];
1069			region->desc_size = temp[1];
1070		} else {
1071			dev_err(dev, "invalid region info %s\n", region->name);
1072			devm_kfree(dev, region);
1073			continue;
1074		}
1075
1076		if (!of_get_property(child, "link-index", NULL)) {
1077			dev_err(dev, "No link info for %s\n", region->name);
1078			devm_kfree(dev, region);
1079			continue;
1080		}
1081		ret = of_property_read_u32(child, "link-index",
1082					   &region->link_index);
1083		if (ret) {
1084			dev_err(dev, "link index not found for %s\n",
1085				region->name);
1086			devm_kfree(dev, region);
1087			continue;
1088		}
1089
1090		INIT_LIST_HEAD(&region->pools);
1091		list_add_tail(&region->list, &kdev->regions);
1092	}
1093	if (list_empty(&kdev->regions)) {
1094		dev_err(dev, "no valid region information found\n");
1095		return -ENODEV;
1096	}
1097
1098	/* Next, we run through the regions and set things up */
1099	for_each_region(kdev, region)
1100		knav_queue_setup_region(kdev, region);
1101
1102	return 0;
1103}
1104
1105static int knav_get_link_ram(struct knav_device *kdev,
1106				       const char *name,
1107				       struct knav_link_ram_block *block)
1108{
1109	struct platform_device *pdev = to_platform_device(kdev->dev);
1110	struct device_node *node = pdev->dev.of_node;
1111	u32 temp[2];
1112
1113	/*
1114	 * Note: link ram resources are specified in "entry" sized units. In
1115	 * reality, although entries are ~40bits in hardware, we treat them as
1116	 * 64-bit entities here.
1117	 *
1118	 * For example, to specify the internal link ram for Keystone-I class
1119	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1120	 *
1121	 * This gets a bit weird when other link rams are used.  For example,
1122	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1123	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1124	 * which accounts for 64-bits per entry, for 16K entries.
1125	 */
1126	if (!of_property_read_u32_array(node, name , temp, 2)) {
1127		if (temp[0]) {
1128			/*
1129			 * queue_base specified => using internal or onchip
1130			 * link ram WARNING - we do not "reserve" this block
1131			 */
1132			block->phys = (dma_addr_t)temp[0];
1133			block->virt = NULL;
1134			block->size = temp[1];
1135		} else {
1136			block->size = temp[1];
1137			/* queue_base not specific => allocate requested size */
1138			block->virt = dmam_alloc_coherent(kdev->dev,
1139						  8 * block->size, &block->phys,
1140						  GFP_KERNEL);
1141			if (!block->virt) {
1142				dev_err(kdev->dev, "failed to alloc linkram\n");
1143				return -ENOMEM;
1144			}
1145		}
1146	} else {
1147		return -ENODEV;
1148	}
1149	return 0;
1150}
1151
1152static int knav_queue_setup_link_ram(struct knav_device *kdev)
1153{
1154	struct knav_link_ram_block *block;
1155	struct knav_qmgr_info *qmgr;
1156
1157	for_each_qmgr(kdev, qmgr) {
1158		block = &kdev->link_rams[0];
1159		dev_dbg(kdev->dev, "linkram0: phys:%x, virt:%p, size:%x\n",
1160			block->phys, block->virt, block->size);
1161		writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base0);
1162		writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
1163
1164		block++;
1165		if (!block->size)
1166			return 0;
1167
1168		dev_dbg(kdev->dev, "linkram1: phys:%x, virt:%p, size:%x\n",
1169			block->phys, block->virt, block->size);
1170		writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base1);
1171	}
1172
1173	return 0;
1174}
1175
1176static int knav_setup_queue_range(struct knav_device *kdev,
1177					struct device_node *node)
1178{
1179	struct device *dev = kdev->dev;
1180	struct knav_range_info *range;
1181	struct knav_qmgr_info *qmgr;
1182	u32 temp[2], start, end, id, index;
1183	int ret, i;
1184
1185	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1186	if (!range) {
1187		dev_err(dev, "out of memory allocating range\n");
1188		return -ENOMEM;
1189	}
1190
1191	range->kdev = kdev;
1192	range->name = knav_queue_find_name(node);
1193	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1194	if (!ret) {
1195		range->queue_base = temp[0] - kdev->base_id;
1196		range->num_queues = temp[1];
1197	} else {
1198		dev_err(dev, "invalid queue range %s\n", range->name);
1199		devm_kfree(dev, range);
1200		return -EINVAL;
1201	}
1202
1203	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1204		struct of_phandle_args oirq;
1205
1206		if (of_irq_parse_one(node, i, &oirq))
1207			break;
1208
1209		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1210		if (range->irqs[i].irq == IRQ_NONE)
1211			break;
1212
1213		range->num_irqs++;
1214
1215		if (oirq.args_count == 3)
1216			range->irqs[i].cpu_map =
1217				(oirq.args[2] & 0x0000ff00) >> 8;
1218	}
1219
1220	range->num_irqs = min(range->num_irqs, range->num_queues);
1221	if (range->num_irqs)
1222		range->flags |= RANGE_HAS_IRQ;
1223
1224	if (of_get_property(node, "qalloc-by-id", NULL))
1225		range->flags |= RANGE_RESERVED;
1226
1227	if (of_get_property(node, "accumulator", NULL)) {
1228		ret = knav_init_acc_range(kdev, node, range);
1229		if (ret < 0) {
1230			devm_kfree(dev, range);
1231			return ret;
1232		}
1233	} else {
1234		range->ops = &knav_gp_range_ops;
1235	}
1236
1237	/* set threshold to 1, and flush out the queues */
1238	for_each_qmgr(kdev, qmgr) {
1239		start = max(qmgr->start_queue, range->queue_base);
1240		end   = min(qmgr->start_queue + qmgr->num_queues,
1241			    range->queue_base + range->num_queues);
1242		for (id = start; id < end; id++) {
1243			index = id - qmgr->start_queue;
1244			writel_relaxed(THRESH_GTE | 1,
1245				       &qmgr->reg_peek[index].ptr_size_thresh);
1246			writel_relaxed(0,
1247				       &qmgr->reg_push[index].ptr_size_thresh);
1248		}
1249	}
1250
1251	list_add_tail(&range->list, &kdev->queue_ranges);
1252	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1253		range->name, range->queue_base,
1254		range->queue_base + range->num_queues - 1,
1255		range->num_irqs,
1256		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1257		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1258		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1259	kdev->num_queues_in_use += range->num_queues;
1260	return 0;
1261}
1262
1263static int knav_setup_queue_pools(struct knav_device *kdev,
1264				   struct device_node *queue_pools)
1265{
1266	struct device_node *type, *range;
1267	int ret;
1268
1269	for_each_child_of_node(queue_pools, type) {
1270		for_each_child_of_node(type, range) {
1271			ret = knav_setup_queue_range(kdev, range);
1272			/* return value ignored, we init the rest... */
1273		}
1274	}
1275
1276	/* ... and barf if they all failed! */
1277	if (list_empty(&kdev->queue_ranges)) {
1278		dev_err(kdev->dev, "no valid queue range found\n");
1279		return -ENODEV;
1280	}
1281	return 0;
1282}
1283
1284static void knav_free_queue_range(struct knav_device *kdev,
1285				  struct knav_range_info *range)
1286{
1287	if (range->ops && range->ops->free_range)
1288		range->ops->free_range(range);
1289	list_del(&range->list);
1290	devm_kfree(kdev->dev, range);
1291}
1292
1293static void knav_free_queue_ranges(struct knav_device *kdev)
1294{
1295	struct knav_range_info *range;
1296
1297	for (;;) {
1298		range = first_queue_range(kdev);
1299		if (!range)
1300			break;
1301		knav_free_queue_range(kdev, range);
1302	}
1303}
1304
1305static void knav_queue_free_regions(struct knav_device *kdev)
1306{
1307	struct knav_region *region;
1308	struct knav_pool *pool;
1309	unsigned size;
1310
1311	for (;;) {
1312		region = first_region(kdev);
1313		if (!region)
1314			break;
1315		list_for_each_entry(pool, &region->pools, region_inst)
1316			knav_pool_destroy(pool);
1317
1318		size = region->virt_end - region->virt_start;
1319		if (size)
1320			free_pages_exact(region->virt_start, size);
1321		list_del(&region->list);
1322		devm_kfree(kdev->dev, region);
1323	}
1324}
1325
1326static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1327					struct device_node *node, int index)
1328{
1329	struct resource res;
1330	void __iomem *regs;
1331	int ret;
1332
1333	ret = of_address_to_resource(node, index, &res);
1334	if (ret) {
1335		dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1336			node->name, index);
1337		return ERR_PTR(ret);
1338	}
1339
1340	regs = devm_ioremap_resource(kdev->dev, &res);
1341	if (IS_ERR(regs))
1342		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1343			index, node->name);
1344	return regs;
1345}
1346
1347static int knav_queue_init_qmgrs(struct knav_device *kdev,
1348					struct device_node *qmgrs)
1349{
1350	struct device *dev = kdev->dev;
1351	struct knav_qmgr_info *qmgr;
1352	struct device_node *child;
1353	u32 temp[2];
1354	int ret;
1355
1356	for_each_child_of_node(qmgrs, child) {
1357		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1358		if (!qmgr) {
1359			dev_err(dev, "out of memory allocating qmgr\n");
1360			return -ENOMEM;
1361		}
1362
1363		ret = of_property_read_u32_array(child, "managed-queues",
1364						 temp, 2);
1365		if (!ret) {
1366			qmgr->start_queue = temp[0];
1367			qmgr->num_queues = temp[1];
1368		} else {
1369			dev_err(dev, "invalid qmgr queue range\n");
1370			devm_kfree(dev, qmgr);
1371			continue;
1372		}
1373
1374		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1375			 qmgr->start_queue, qmgr->num_queues);
1376
1377		qmgr->reg_peek =
1378			knav_queue_map_reg(kdev, child,
1379					   KNAV_QUEUE_PEEK_REG_INDEX);
1380		qmgr->reg_status =
1381			knav_queue_map_reg(kdev, child,
1382					   KNAV_QUEUE_STATUS_REG_INDEX);
1383		qmgr->reg_config =
1384			knav_queue_map_reg(kdev, child,
1385					   KNAV_QUEUE_CONFIG_REG_INDEX);
1386		qmgr->reg_region =
1387			knav_queue_map_reg(kdev, child,
1388					   KNAV_QUEUE_REGION_REG_INDEX);
1389		qmgr->reg_push =
1390			knav_queue_map_reg(kdev, child,
1391					   KNAV_QUEUE_PUSH_REG_INDEX);
1392		qmgr->reg_pop =
1393			knav_queue_map_reg(kdev, child,
1394					   KNAV_QUEUE_POP_REG_INDEX);
1395
1396		if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
1397		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1398		    IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
1399			dev_err(dev, "failed to map qmgr regs\n");
1400			if (!IS_ERR(qmgr->reg_peek))
1401				devm_iounmap(dev, qmgr->reg_peek);
1402			if (!IS_ERR(qmgr->reg_status))
1403				devm_iounmap(dev, qmgr->reg_status);
1404			if (!IS_ERR(qmgr->reg_config))
1405				devm_iounmap(dev, qmgr->reg_config);
1406			if (!IS_ERR(qmgr->reg_region))
1407				devm_iounmap(dev, qmgr->reg_region);
1408			if (!IS_ERR(qmgr->reg_push))
1409				devm_iounmap(dev, qmgr->reg_push);
1410			if (!IS_ERR(qmgr->reg_pop))
1411				devm_iounmap(dev, qmgr->reg_pop);
1412			devm_kfree(dev, qmgr);
1413			continue;
1414		}
1415
1416		list_add_tail(&qmgr->list, &kdev->qmgrs);
1417		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1418			 qmgr->start_queue, qmgr->num_queues,
1419			 qmgr->reg_peek, qmgr->reg_status,
1420			 qmgr->reg_config, qmgr->reg_region,
1421			 qmgr->reg_push, qmgr->reg_pop);
1422	}
1423	return 0;
1424}
1425
1426static int knav_queue_init_pdsps(struct knav_device *kdev,
1427					struct device_node *pdsps)
1428{
1429	struct device *dev = kdev->dev;
1430	struct knav_pdsp_info *pdsp;
1431	struct device_node *child;
1432	int ret;
1433
1434	for_each_child_of_node(pdsps, child) {
1435		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1436		if (!pdsp) {
1437			dev_err(dev, "out of memory allocating pdsp\n");
1438			return -ENOMEM;
1439		}
1440		pdsp->name = knav_queue_find_name(child);
1441		ret = of_property_read_string(child, "firmware",
1442					      &pdsp->firmware);
1443		if (ret < 0 || !pdsp->firmware) {
1444			dev_err(dev, "unknown firmware for pdsp %s\n",
1445				pdsp->name);
1446			devm_kfree(dev, pdsp);
1447			continue;
1448		}
1449		dev_dbg(dev, "pdsp name %s fw name :%s\n", pdsp->name,
1450			pdsp->firmware);
1451
1452		pdsp->iram =
1453			knav_queue_map_reg(kdev, child,
1454					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1455		pdsp->regs =
1456			knav_queue_map_reg(kdev, child,
1457					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1458		pdsp->intd =
1459			knav_queue_map_reg(kdev, child,
1460					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1461		pdsp->command =
1462			knav_queue_map_reg(kdev, child,
1463					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1464
1465		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1466		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1467			dev_err(dev, "failed to map pdsp %s regs\n",
1468				pdsp->name);
1469			if (!IS_ERR(pdsp->command))
1470				devm_iounmap(dev, pdsp->command);
1471			if (!IS_ERR(pdsp->iram))
1472				devm_iounmap(dev, pdsp->iram);
1473			if (!IS_ERR(pdsp->regs))
1474				devm_iounmap(dev, pdsp->regs);
1475			if (!IS_ERR(pdsp->intd))
1476				devm_iounmap(dev, pdsp->intd);
1477			devm_kfree(dev, pdsp);
1478			continue;
1479		}
1480		of_property_read_u32(child, "id", &pdsp->id);
1481		list_add_tail(&pdsp->list, &kdev->pdsps);
1482		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p, firmware %s\n",
1483			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1484			pdsp->intd, pdsp->firmware);
1485	}
1486	return 0;
1487}
1488
1489static int knav_queue_stop_pdsp(struct knav_device *kdev,
1490			  struct knav_pdsp_info *pdsp)
1491{
1492	u32 val, timeout = 1000;
1493	int ret;
1494
1495	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1496	writel_relaxed(val, &pdsp->regs->control);
1497	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1498					PDSP_CTRL_RUNNING);
1499	if (ret < 0) {
1500		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1501		return ret;
1502	}
1503	return 0;
1504}
1505
1506static int knav_queue_load_pdsp(struct knav_device *kdev,
1507			  struct knav_pdsp_info *pdsp)
1508{
1509	int i, ret, fwlen;
1510	const struct firmware *fw;
1511	u32 *fwdata;
1512
1513	ret = request_firmware(&fw, pdsp->firmware, kdev->dev);
1514	if (ret) {
1515		dev_err(kdev->dev, "failed to get firmware %s for pdsp %s\n",
1516			pdsp->firmware, pdsp->name);
1517		return ret;
1518	}
1519	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1520	/* download the firmware */
1521	fwdata = (u32 *)fw->data;
1522	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1523	for (i = 0; i < fwlen; i++)
1524		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1525
1526	release_firmware(fw);
1527	return 0;
1528}
1529
1530static int knav_queue_start_pdsp(struct knav_device *kdev,
1531			   struct knav_pdsp_info *pdsp)
1532{
1533	u32 val, timeout = 1000;
1534	int ret;
1535
1536	/* write a command for sync */
1537	writel_relaxed(0xffffffff, pdsp->command);
1538	while (readl_relaxed(pdsp->command) != 0xffffffff)
1539		cpu_relax();
1540
1541	/* soft reset the PDSP */
1542	val  = readl_relaxed(&pdsp->regs->control);
1543	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1544	writel_relaxed(val, &pdsp->regs->control);
1545
1546	/* enable pdsp */
1547	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1548	writel_relaxed(val, &pdsp->regs->control);
1549
1550	/* wait for command register to clear */
1551	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1552	if (ret < 0) {
1553		dev_err(kdev->dev,
1554			"timed out on pdsp %s command register wait\n",
1555			pdsp->name);
1556		return ret;
1557	}
1558	return 0;
1559}
1560
1561static void knav_queue_stop_pdsps(struct knav_device *kdev)
1562{
1563	struct knav_pdsp_info *pdsp;
1564
1565	/* disable all pdsps */
1566	for_each_pdsp(kdev, pdsp)
1567		knav_queue_stop_pdsp(kdev, pdsp);
1568}
1569
1570static int knav_queue_start_pdsps(struct knav_device *kdev)
1571{
1572	struct knav_pdsp_info *pdsp;
1573	int ret;
1574
1575	knav_queue_stop_pdsps(kdev);
1576	/* now load them all */
1577	for_each_pdsp(kdev, pdsp) {
1578		ret = knav_queue_load_pdsp(kdev, pdsp);
1579		if (ret < 0)
1580			return ret;
1581	}
1582
1583	for_each_pdsp(kdev, pdsp) {
1584		ret = knav_queue_start_pdsp(kdev, pdsp);
1585		WARN_ON(ret);
1586	}
1587	return 0;
1588}
1589
1590static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1591{
1592	struct knav_qmgr_info *qmgr;
1593
1594	for_each_qmgr(kdev, qmgr) {
1595		if ((id >= qmgr->start_queue) &&
1596		    (id < qmgr->start_queue + qmgr->num_queues))
1597			return qmgr;
1598	}
1599	return NULL;
1600}
1601
1602static int knav_queue_init_queue(struct knav_device *kdev,
1603					struct knav_range_info *range,
1604					struct knav_queue_inst *inst,
1605					unsigned id)
1606{
1607	char irq_name[KNAV_NAME_SIZE];
1608	inst->qmgr = knav_find_qmgr(id);
1609	if (!inst->qmgr)
1610		return -1;
1611
1612	INIT_LIST_HEAD(&inst->handles);
1613	inst->kdev = kdev;
1614	inst->range = range;
1615	inst->irq_num = -1;
1616	inst->id = id;
1617	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1618	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1619
1620	if (range->ops && range->ops->init_queue)
1621		return range->ops->init_queue(range, inst);
1622	else
1623		return 0;
1624}
1625
1626static int knav_queue_init_queues(struct knav_device *kdev)
1627{
1628	struct knav_range_info *range;
1629	int size, id, base_idx;
1630	int idx = 0, ret = 0;
1631
1632	/* how much do we need for instance data? */
1633	size = sizeof(struct knav_queue_inst);
1634
1635	/* round this up to a power of 2, keep the index to instance
1636	 * arithmetic fast.
1637	 * */
1638	kdev->inst_shift = order_base_2(size);
1639	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1640	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1641	if (!kdev->instances)
1642		return -1;
1643
1644	for_each_queue_range(kdev, range) {
1645		if (range->ops && range->ops->init_range)
1646			range->ops->init_range(range);
1647		base_idx = idx;
1648		for (id = range->queue_base;
1649		     id < range->queue_base + range->num_queues; id++, idx++) {
1650			ret = knav_queue_init_queue(kdev, range,
1651					knav_queue_idx_to_inst(kdev, idx), id);
1652			if (ret < 0)
1653				return ret;
1654		}
1655		range->queue_base_inst =
1656			knav_queue_idx_to_inst(kdev, base_idx);
1657	}
1658	return 0;
1659}
1660
1661static int knav_queue_probe(struct platform_device *pdev)
1662{
1663	struct device_node *node = pdev->dev.of_node;
1664	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1665	struct device *dev = &pdev->dev;
1666	u32 temp[2];
1667	int ret;
1668
1669	if (!node) {
1670		dev_err(dev, "device tree info unavailable\n");
1671		return -ENODEV;
1672	}
1673
1674	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1675	if (!kdev) {
1676		dev_err(dev, "memory allocation failed\n");
1677		return -ENOMEM;
1678	}
1679
1680	platform_set_drvdata(pdev, kdev);
1681	kdev->dev = dev;
1682	INIT_LIST_HEAD(&kdev->queue_ranges);
1683	INIT_LIST_HEAD(&kdev->qmgrs);
1684	INIT_LIST_HEAD(&kdev->pools);
1685	INIT_LIST_HEAD(&kdev->regions);
1686	INIT_LIST_HEAD(&kdev->pdsps);
1687
1688	pm_runtime_enable(&pdev->dev);
1689	ret = pm_runtime_get_sync(&pdev->dev);
1690	if (ret < 0) {
1691		dev_err(dev, "Failed to enable QMSS\n");
1692		return ret;
1693	}
1694
1695	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1696		dev_err(dev, "queue-range not specified\n");
1697		ret = -ENODEV;
1698		goto err;
1699	}
1700	kdev->base_id    = temp[0];
1701	kdev->num_queues = temp[1];
1702
1703	/* Initialize queue managers using device tree configuration */
1704	qmgrs =  of_get_child_by_name(node, "qmgrs");
1705	if (!qmgrs) {
1706		dev_err(dev, "queue manager info not specified\n");
1707		ret = -ENODEV;
1708		goto err;
1709	}
1710	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1711	of_node_put(qmgrs);
1712	if (ret)
1713		goto err;
1714
1715	/* get pdsp configuration values from device tree */
1716	pdsps =  of_get_child_by_name(node, "pdsps");
1717	if (pdsps) {
1718		ret = knav_queue_init_pdsps(kdev, pdsps);
1719		if (ret)
1720			goto err;
1721
1722		ret = knav_queue_start_pdsps(kdev);
1723		if (ret)
1724			goto err;
1725	}
1726	of_node_put(pdsps);
1727
1728	/* get usable queue range values from device tree */
1729	queue_pools = of_get_child_by_name(node, "queue-pools");
1730	if (!queue_pools) {
1731		dev_err(dev, "queue-pools not specified\n");
1732		ret = -ENODEV;
1733		goto err;
1734	}
1735	ret = knav_setup_queue_pools(kdev, queue_pools);
1736	of_node_put(queue_pools);
1737	if (ret)
1738		goto err;
1739
1740	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1741	if (ret) {
1742		dev_err(kdev->dev, "could not setup linking ram\n");
1743		goto err;
1744	}
1745
1746	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1747	if (ret) {
1748		/*
1749		 * nothing really, we have one linking ram already, so we just
1750		 * live within our means
1751		 */
1752	}
1753
1754	ret = knav_queue_setup_link_ram(kdev);
1755	if (ret)
1756		goto err;
1757
1758	regions =  of_get_child_by_name(node, "descriptor-regions");
1759	if (!regions) {
1760		dev_err(dev, "descriptor-regions not specified\n");
1761		goto err;
1762	}
1763	ret = knav_queue_setup_regions(kdev, regions);
1764	of_node_put(regions);
1765	if (ret)
1766		goto err;
1767
1768	ret = knav_queue_init_queues(kdev);
1769	if (ret < 0) {
1770		dev_err(dev, "hwqueue initialization failed\n");
1771		goto err;
1772	}
1773
1774	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1775			    &knav_queue_debug_ops);
1776	return 0;
1777
1778err:
1779	knav_queue_stop_pdsps(kdev);
1780	knav_queue_free_regions(kdev);
1781	knav_free_queue_ranges(kdev);
1782	pm_runtime_put_sync(&pdev->dev);
1783	pm_runtime_disable(&pdev->dev);
1784	return ret;
1785}
1786
1787static int knav_queue_remove(struct platform_device *pdev)
1788{
1789	/* TODO: Free resources */
1790	pm_runtime_put_sync(&pdev->dev);
1791	pm_runtime_disable(&pdev->dev);
1792	return 0;
1793}
1794
1795/* Match table for of_platform binding */
1796static struct of_device_id keystone_qmss_of_match[] = {
1797	{ .compatible = "ti,keystone-navigator-qmss", },
1798	{},
1799};
1800MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1801
1802static struct platform_driver keystone_qmss_driver = {
1803	.probe		= knav_queue_probe,
1804	.remove		= knav_queue_remove,
1805	.driver		= {
1806		.name	= "keystone-navigator-qmss",
1807		.owner	= THIS_MODULE,
1808		.of_match_table = keystone_qmss_of_match,
1809	},
1810};
1811module_platform_driver(keystone_qmss_driver);
1812
1813MODULE_LICENSE("GPL v2");
1814MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1815MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1816MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1817