[go: nahoru, domu]

1/*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
4 * Copyright(c) 2008 Mike Christie
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Maintained at www.Open-FCoE.org
20 */
21
22/*
23 * Fibre Channel exchange and sequence handling.
24 */
25
26#include <linux/timer.h>
27#include <linux/slab.h>
28#include <linux/err.h>
29#include <linux/export.h>
30#include <linux/log2.h>
31
32#include <scsi/fc/fc_fc2.h>
33
34#include <scsi/libfc.h>
35#include <scsi/fc_encode.h>
36
37#include "fc_libfc.h"
38
39u16	fc_cpu_mask;		/* cpu mask for possible cpus */
40EXPORT_SYMBOL(fc_cpu_mask);
41static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
42static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
43static struct workqueue_struct *fc_exch_workqueue;
44
45/*
46 * Structure and function definitions for managing Fibre Channel Exchanges
47 * and Sequences.
48 *
49 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
50 *
51 * fc_exch_mgr holds the exchange state for an N port
52 *
53 * fc_exch holds state for one exchange and links to its active sequence.
54 *
55 * fc_seq holds the state for an individual sequence.
56 */
57
58/**
59 * struct fc_exch_pool - Per cpu exchange pool
60 * @next_index:	  Next possible free exchange index
61 * @total_exches: Total allocated exchanges
62 * @lock:	  Exch pool lock
63 * @ex_list:	  List of exchanges
64 *
65 * This structure manages per cpu exchanges in array of exchange pointers.
66 * This array is allocated followed by struct fc_exch_pool memory for
67 * assigned range of exchanges to per cpu pool.
68 */
69struct fc_exch_pool {
70	spinlock_t	 lock;
71	struct list_head ex_list;
72	u16		 next_index;
73	u16		 total_exches;
74
75	/* two cache of free slot in exch array */
76	u16		 left;
77	u16		 right;
78} ____cacheline_aligned_in_smp;
79
80/**
81 * struct fc_exch_mgr - The Exchange Manager (EM).
82 * @class:	    Default class for new sequences
83 * @kref:	    Reference counter
84 * @min_xid:	    Minimum exchange ID
85 * @max_xid:	    Maximum exchange ID
86 * @ep_pool:	    Reserved exchange pointers
87 * @pool_max_index: Max exch array index in exch pool
88 * @pool:	    Per cpu exch pool
89 * @stats:	    Statistics structure
90 *
91 * This structure is the center for creating exchanges and sequences.
92 * It manages the allocation of exchange IDs.
93 */
94struct fc_exch_mgr {
95	struct fc_exch_pool __percpu *pool;
96	mempool_t	*ep_pool;
97	enum fc_class	class;
98	struct kref	kref;
99	u16		min_xid;
100	u16		max_xid;
101	u16		pool_max_index;
102
103	struct {
104		atomic_t no_free_exch;
105		atomic_t no_free_exch_xid;
106		atomic_t xid_not_found;
107		atomic_t xid_busy;
108		atomic_t seq_not_found;
109		atomic_t non_bls_resp;
110	} stats;
111};
112
113/**
114 * struct fc_exch_mgr_anchor - primary structure for list of EMs
115 * @ema_list: Exchange Manager Anchor list
116 * @mp:	      Exchange Manager associated with this anchor
117 * @match:    Routine to determine if this anchor's EM should be used
118 *
119 * When walking the list of anchors the match routine will be called
120 * for each anchor to determine if that EM should be used. The last
121 * anchor in the list will always match to handle any exchanges not
122 * handled by other EMs. The non-default EMs would be added to the
123 * anchor list by HW that provides offloads.
124 */
125struct fc_exch_mgr_anchor {
126	struct list_head ema_list;
127	struct fc_exch_mgr *mp;
128	bool (*match)(struct fc_frame *);
129};
130
131static void fc_exch_rrq(struct fc_exch *);
132static void fc_seq_ls_acc(struct fc_frame *);
133static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
134			  enum fc_els_rjt_explan);
135static void fc_exch_els_rec(struct fc_frame *);
136static void fc_exch_els_rrq(struct fc_frame *);
137
138/*
139 * Internal implementation notes.
140 *
141 * The exchange manager is one by default in libfc but LLD may choose
142 * to have one per CPU. The sequence manager is one per exchange manager
143 * and currently never separated.
144 *
145 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
146 * assigned by the Sequence Initiator that shall be unique for a specific
147 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
148 * qualified by exchange ID, which one might think it would be.
149 * In practice this limits the number of open sequences and exchanges to 256
150 * per session.	 For most targets we could treat this limit as per exchange.
151 *
152 * The exchange and its sequence are freed when the last sequence is received.
153 * It's possible for the remote port to leave an exchange open without
154 * sending any sequences.
155 *
156 * Notes on reference counts:
157 *
158 * Exchanges are reference counted and exchange gets freed when the reference
159 * count becomes zero.
160 *
161 * Timeouts:
162 * Sequences are timed out for E_D_TOV and R_A_TOV.
163 *
164 * Sequence event handling:
165 *
166 * The following events may occur on initiator sequences:
167 *
168 *	Send.
169 *	    For now, the whole thing is sent.
170 *	Receive ACK
171 *	    This applies only to class F.
172 *	    The sequence is marked complete.
173 *	ULP completion.
174 *	    The upper layer calls fc_exch_done() when done
175 *	    with exchange and sequence tuple.
176 *	RX-inferred completion.
177 *	    When we receive the next sequence on the same exchange, we can
178 *	    retire the previous sequence ID.  (XXX not implemented).
179 *	Timeout.
180 *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
181 *	    E_D_TOV causes abort and calls upper layer response handler
182 *	    with FC_EX_TIMEOUT error.
183 *	Receive RJT
184 *	    XXX defer.
185 *	Send ABTS
186 *	    On timeout.
187 *
188 * The following events may occur on recipient sequences:
189 *
190 *	Receive
191 *	    Allocate sequence for first frame received.
192 *	    Hold during receive handler.
193 *	    Release when final frame received.
194 *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
195 *	Receive ABTS
196 *	    Deallocate sequence
197 *	Send RJT
198 *	    Deallocate
199 *
200 * For now, we neglect conditions where only part of a sequence was
201 * received or transmitted, or where out-of-order receipt is detected.
202 */
203
204/*
205 * Locking notes:
206 *
207 * The EM code run in a per-CPU worker thread.
208 *
209 * To protect against concurrency between a worker thread code and timers,
210 * sequence allocation and deallocation must be locked.
211 *  - exchange refcnt can be done atomicly without locks.
212 *  - sequence allocation must be locked by exch lock.
213 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
214 *    EM pool lock must be taken before the ex_lock.
215 */
216
217/*
218 * opcode names for debugging.
219 */
220static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
221
222/**
223 * fc_exch_name_lookup() - Lookup name by opcode
224 * @op:	       Opcode to be looked up
225 * @table:     Opcode/name table
226 * @max_index: Index not to be exceeded
227 *
228 * This routine is used to determine a human-readable string identifying
229 * a R_CTL opcode.
230 */
231static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
232					      unsigned int max_index)
233{
234	const char *name = NULL;
235
236	if (op < max_index)
237		name = table[op];
238	if (!name)
239		name = "unknown";
240	return name;
241}
242
243/**
244 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
245 * @op: The opcode to be looked up
246 */
247static const char *fc_exch_rctl_name(unsigned int op)
248{
249	return fc_exch_name_lookup(op, fc_exch_rctl_names,
250				   ARRAY_SIZE(fc_exch_rctl_names));
251}
252
253/**
254 * fc_exch_hold() - Increment an exchange's reference count
255 * @ep: Echange to be held
256 */
257static inline void fc_exch_hold(struct fc_exch *ep)
258{
259	atomic_inc(&ep->ex_refcnt);
260}
261
262/**
263 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
264 *			 and determine SOF and EOF.
265 * @ep:	   The exchange to that will use the header
266 * @fp:	   The frame whose header is to be modified
267 * @f_ctl: F_CTL bits that will be used for the frame header
268 *
269 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
270 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
271 */
272static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
273			      u32 f_ctl)
274{
275	struct fc_frame_header *fh = fc_frame_header_get(fp);
276	u16 fill;
277
278	fr_sof(fp) = ep->class;
279	if (ep->seq.cnt)
280		fr_sof(fp) = fc_sof_normal(ep->class);
281
282	if (f_ctl & FC_FC_END_SEQ) {
283		fr_eof(fp) = FC_EOF_T;
284		if (fc_sof_needs_ack(ep->class))
285			fr_eof(fp) = FC_EOF_N;
286		/*
287		 * From F_CTL.
288		 * The number of fill bytes to make the length a 4-byte
289		 * multiple is the low order 2-bits of the f_ctl.
290		 * The fill itself will have been cleared by the frame
291		 * allocation.
292		 * After this, the length will be even, as expected by
293		 * the transport.
294		 */
295		fill = fr_len(fp) & 3;
296		if (fill) {
297			fill = 4 - fill;
298			/* TODO, this may be a problem with fragmented skb */
299			skb_put(fp_skb(fp), fill);
300			hton24(fh->fh_f_ctl, f_ctl | fill);
301		}
302	} else {
303		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
304		fr_eof(fp) = FC_EOF_N;
305	}
306
307	/* Initialize remaining fh fields from fc_fill_fc_hdr */
308	fh->fh_ox_id = htons(ep->oxid);
309	fh->fh_rx_id = htons(ep->rxid);
310	fh->fh_seq_id = ep->seq.id;
311	fh->fh_seq_cnt = htons(ep->seq.cnt);
312}
313
314/**
315 * fc_exch_release() - Decrement an exchange's reference count
316 * @ep: Exchange to be released
317 *
318 * If the reference count reaches zero and the exchange is complete,
319 * it is freed.
320 */
321static void fc_exch_release(struct fc_exch *ep)
322{
323	struct fc_exch_mgr *mp;
324
325	if (atomic_dec_and_test(&ep->ex_refcnt)) {
326		mp = ep->em;
327		if (ep->destructor)
328			ep->destructor(&ep->seq, ep->arg);
329		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
330		mempool_free(ep, mp->ep_pool);
331	}
332}
333
334/**
335 * fc_exch_timer_cancel() - cancel exch timer
336 * @ep:		The exchange whose timer to be canceled
337 */
338static inline void fc_exch_timer_cancel(struct fc_exch *ep)
339{
340	if (cancel_delayed_work(&ep->timeout_work)) {
341		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
342		atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
343	}
344}
345
346/**
347 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
348 *				the exchange lock held
349 * @ep:		The exchange whose timer will start
350 * @timer_msec: The timeout period
351 *
352 * Used for upper level protocols to time out the exchange.
353 * The timer is cancelled when it fires or when the exchange completes.
354 */
355static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
356					    unsigned int timer_msec)
357{
358	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
359		return;
360
361	FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
362
363	fc_exch_hold(ep);		/* hold for timer */
364	if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
365				msecs_to_jiffies(timer_msec)))
366		fc_exch_release(ep);
367}
368
369/**
370 * fc_exch_timer_set() - Lock the exchange and set the timer
371 * @ep:		The exchange whose timer will start
372 * @timer_msec: The timeout period
373 */
374static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
375{
376	spin_lock_bh(&ep->ex_lock);
377	fc_exch_timer_set_locked(ep, timer_msec);
378	spin_unlock_bh(&ep->ex_lock);
379}
380
381/**
382 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
383 * @ep: The exchange that is complete
384 *
385 * Note: May sleep if invoked from outside a response handler.
386 */
387static int fc_exch_done_locked(struct fc_exch *ep)
388{
389	int rc = 1;
390
391	/*
392	 * We must check for completion in case there are two threads
393	 * tyring to complete this. But the rrq code will reuse the
394	 * ep, and in that case we only clear the resp and set it as
395	 * complete, so it can be reused by the timer to send the rrq.
396	 */
397	if (ep->state & FC_EX_DONE)
398		return rc;
399	ep->esb_stat |= ESB_ST_COMPLETE;
400
401	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
402		ep->state |= FC_EX_DONE;
403		fc_exch_timer_cancel(ep);
404		rc = 0;
405	}
406	return rc;
407}
408
409/**
410 * fc_exch_ptr_get() - Return an exchange from an exchange pool
411 * @pool:  Exchange Pool to get an exchange from
412 * @index: Index of the exchange within the pool
413 *
414 * Use the index to get an exchange from within an exchange pool. exches
415 * will point to an array of exchange pointers. The index will select
416 * the exchange within the array.
417 */
418static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
419					      u16 index)
420{
421	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
422	return exches[index];
423}
424
425/**
426 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
427 * @pool:  The pool to assign the exchange to
428 * @index: The index in the pool where the exchange will be assigned
429 * @ep:	   The exchange to assign to the pool
430 */
431static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
432				   struct fc_exch *ep)
433{
434	((struct fc_exch **)(pool + 1))[index] = ep;
435}
436
437/**
438 * fc_exch_delete() - Delete an exchange
439 * @ep: The exchange to be deleted
440 */
441static void fc_exch_delete(struct fc_exch *ep)
442{
443	struct fc_exch_pool *pool;
444	u16 index;
445
446	pool = ep->pool;
447	spin_lock_bh(&pool->lock);
448	WARN_ON(pool->total_exches <= 0);
449	pool->total_exches--;
450
451	/* update cache of free slot */
452	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
453	if (pool->left == FC_XID_UNKNOWN)
454		pool->left = index;
455	else if (pool->right == FC_XID_UNKNOWN)
456		pool->right = index;
457	else
458		pool->next_index = index;
459
460	fc_exch_ptr_set(pool, index, NULL);
461	list_del(&ep->ex_list);
462	spin_unlock_bh(&pool->lock);
463	fc_exch_release(ep);	/* drop hold for exch in mp */
464}
465
466static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
467			      struct fc_frame *fp)
468{
469	struct fc_exch *ep;
470	struct fc_frame_header *fh = fc_frame_header_get(fp);
471	int error = -ENXIO;
472	u32 f_ctl;
473	u8 fh_type = fh->fh_type;
474
475	ep = fc_seq_exch(sp);
476
477	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
478		fc_frame_free(fp);
479		goto out;
480	}
481
482	WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
483
484	f_ctl = ntoh24(fh->fh_f_ctl);
485	fc_exch_setup_hdr(ep, fp, f_ctl);
486	fr_encaps(fp) = ep->encaps;
487
488	/*
489	 * update sequence count if this frame is carrying
490	 * multiple FC frames when sequence offload is enabled
491	 * by LLD.
492	 */
493	if (fr_max_payload(fp))
494		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
495					fr_max_payload(fp));
496	else
497		sp->cnt++;
498
499	/*
500	 * Send the frame.
501	 */
502	error = lport->tt.frame_send(lport, fp);
503
504	if (fh_type == FC_TYPE_BLS)
505		goto out;
506
507	/*
508	 * Update the exchange and sequence flags,
509	 * assuming all frames for the sequence have been sent.
510	 * We can only be called to send once for each sequence.
511	 */
512	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
513	if (f_ctl & FC_FC_SEQ_INIT)
514		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
515out:
516	return error;
517}
518
519/**
520 * fc_seq_send() - Send a frame using existing sequence/exchange pair
521 * @lport: The local port that the exchange will be sent on
522 * @sp:	   The sequence to be sent
523 * @fp:	   The frame to be sent on the exchange
524 *
525 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
526 * or indirectly by calling libfc_function_template.frame_send().
527 */
528static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
529		       struct fc_frame *fp)
530{
531	struct fc_exch *ep;
532	int error;
533	ep = fc_seq_exch(sp);
534	spin_lock_bh(&ep->ex_lock);
535	error = fc_seq_send_locked(lport, sp, fp);
536	spin_unlock_bh(&ep->ex_lock);
537	return error;
538}
539
540/**
541 * fc_seq_alloc() - Allocate a sequence for a given exchange
542 * @ep:	    The exchange to allocate a new sequence for
543 * @seq_id: The sequence ID to be used
544 *
545 * We don't support multiple originated sequences on the same exchange.
546 * By implication, any previously originated sequence on this exchange
547 * is complete, and we reallocate the same sequence.
548 */
549static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
550{
551	struct fc_seq *sp;
552
553	sp = &ep->seq;
554	sp->ssb_stat = 0;
555	sp->cnt = 0;
556	sp->id = seq_id;
557	return sp;
558}
559
560/**
561 * fc_seq_start_next_locked() - Allocate a new sequence on the same
562 *				exchange as the supplied sequence
563 * @sp: The sequence/exchange to get a new sequence for
564 */
565static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
566{
567	struct fc_exch *ep = fc_seq_exch(sp);
568
569	sp = fc_seq_alloc(ep, ep->seq_id++);
570	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
571		    ep->f_ctl, sp->id);
572	return sp;
573}
574
575/**
576 * fc_seq_start_next() - Lock the exchange and get a new sequence
577 *			 for a given sequence/exchange pair
578 * @sp: The sequence/exchange to get a new exchange for
579 */
580static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
581{
582	struct fc_exch *ep = fc_seq_exch(sp);
583
584	spin_lock_bh(&ep->ex_lock);
585	sp = fc_seq_start_next_locked(sp);
586	spin_unlock_bh(&ep->ex_lock);
587
588	return sp;
589}
590
591/*
592 * Set the response handler for the exchange associated with a sequence.
593 *
594 * Note: May sleep if invoked from outside a response handler.
595 */
596static void fc_seq_set_resp(struct fc_seq *sp,
597			    void (*resp)(struct fc_seq *, struct fc_frame *,
598					 void *),
599			    void *arg)
600{
601	struct fc_exch *ep = fc_seq_exch(sp);
602	DEFINE_WAIT(wait);
603
604	spin_lock_bh(&ep->ex_lock);
605	while (ep->resp_active && ep->resp_task != current) {
606		prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
607		spin_unlock_bh(&ep->ex_lock);
608
609		schedule();
610
611		spin_lock_bh(&ep->ex_lock);
612	}
613	finish_wait(&ep->resp_wq, &wait);
614	ep->resp = resp;
615	ep->arg = arg;
616	spin_unlock_bh(&ep->ex_lock);
617}
618
619/**
620 * fc_exch_abort_locked() - Abort an exchange
621 * @ep:	The exchange to be aborted
622 * @timer_msec: The period of time to wait before aborting
623 *
624 * Locking notes:  Called with exch lock held
625 *
626 * Return value: 0 on success else error code
627 */
628static int fc_exch_abort_locked(struct fc_exch *ep,
629				unsigned int timer_msec)
630{
631	struct fc_seq *sp;
632	struct fc_frame *fp;
633	int error;
634
635	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
636	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
637		return -ENXIO;
638
639	/*
640	 * Send the abort on a new sequence if possible.
641	 */
642	sp = fc_seq_start_next_locked(&ep->seq);
643	if (!sp)
644		return -ENOMEM;
645
646	if (timer_msec)
647		fc_exch_timer_set_locked(ep, timer_msec);
648
649	if (ep->sid) {
650		/*
651		 * Send an abort for the sequence that timed out.
652		 */
653		fp = fc_frame_alloc(ep->lp, 0);
654		if (fp) {
655			ep->esb_stat |= ESB_ST_SEQ_INIT;
656			fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
657				       FC_TYPE_BLS, FC_FC_END_SEQ |
658				       FC_FC_SEQ_INIT, 0);
659			error = fc_seq_send_locked(ep->lp, sp, fp);
660		} else {
661			error = -ENOBUFS;
662		}
663	} else {
664		/*
665		 * If not logged into the fabric, don't send ABTS but leave
666		 * sequence active until next timeout.
667		 */
668		error = 0;
669	}
670	ep->esb_stat |= ESB_ST_ABNORMAL;
671	return error;
672}
673
674/**
675 * fc_seq_exch_abort() - Abort an exchange and sequence
676 * @req_sp:	The sequence to be aborted
677 * @timer_msec: The period of time to wait before aborting
678 *
679 * Generally called because of a timeout or an abort from the upper layer.
680 *
681 * Return value: 0 on success else error code
682 */
683static int fc_seq_exch_abort(const struct fc_seq *req_sp,
684			     unsigned int timer_msec)
685{
686	struct fc_exch *ep;
687	int error;
688
689	ep = fc_seq_exch(req_sp);
690	spin_lock_bh(&ep->ex_lock);
691	error = fc_exch_abort_locked(ep, timer_msec);
692	spin_unlock_bh(&ep->ex_lock);
693	return error;
694}
695
696/**
697 * fc_invoke_resp() - invoke ep->resp()
698 *
699 * Notes:
700 * It is assumed that after initialization finished (this means the
701 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
702 * modified only via fc_seq_set_resp(). This guarantees that none of these
703 * two variables changes if ep->resp_active > 0.
704 *
705 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
706 * this function is invoked, the first spin_lock_bh() call in this function
707 * will wait until fc_seq_set_resp() has finished modifying these variables.
708 *
709 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
710 * ep->resp() won't be invoked after fc_exch_done() has returned.
711 *
712 * The response handler itself may invoke fc_exch_done(), which will clear the
713 * ep->resp pointer.
714 *
715 * Return value:
716 * Returns true if and only if ep->resp has been invoked.
717 */
718static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
719			   struct fc_frame *fp)
720{
721	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
722	void *arg;
723	bool res = false;
724
725	spin_lock_bh(&ep->ex_lock);
726	ep->resp_active++;
727	if (ep->resp_task != current)
728		ep->resp_task = !ep->resp_task ? current : NULL;
729	resp = ep->resp;
730	arg = ep->arg;
731	spin_unlock_bh(&ep->ex_lock);
732
733	if (resp) {
734		resp(sp, fp, arg);
735		res = true;
736	} else if (!IS_ERR(fp)) {
737		fc_frame_free(fp);
738	}
739
740	spin_lock_bh(&ep->ex_lock);
741	if (--ep->resp_active == 0)
742		ep->resp_task = NULL;
743	spin_unlock_bh(&ep->ex_lock);
744
745	if (ep->resp_active == 0)
746		wake_up(&ep->resp_wq);
747
748	return res;
749}
750
751/**
752 * fc_exch_timeout() - Handle exchange timer expiration
753 * @work: The work_struct identifying the exchange that timed out
754 */
755static void fc_exch_timeout(struct work_struct *work)
756{
757	struct fc_exch *ep = container_of(work, struct fc_exch,
758					  timeout_work.work);
759	struct fc_seq *sp = &ep->seq;
760	u32 e_stat;
761	int rc = 1;
762
763	FC_EXCH_DBG(ep, "Exchange timed out\n");
764
765	spin_lock_bh(&ep->ex_lock);
766	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
767		goto unlock;
768
769	e_stat = ep->esb_stat;
770	if (e_stat & ESB_ST_COMPLETE) {
771		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
772		spin_unlock_bh(&ep->ex_lock);
773		if (e_stat & ESB_ST_REC_QUAL)
774			fc_exch_rrq(ep);
775		goto done;
776	} else {
777		if (e_stat & ESB_ST_ABNORMAL)
778			rc = fc_exch_done_locked(ep);
779		spin_unlock_bh(&ep->ex_lock);
780		if (!rc)
781			fc_exch_delete(ep);
782		fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
783		fc_seq_set_resp(sp, NULL, ep->arg);
784		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
785		goto done;
786	}
787unlock:
788	spin_unlock_bh(&ep->ex_lock);
789done:
790	/*
791	 * This release matches the hold taken when the timer was set.
792	 */
793	fc_exch_release(ep);
794}
795
796/**
797 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
798 * @lport: The local port that the exchange is for
799 * @mp:	   The exchange manager that will allocate the exchange
800 *
801 * Returns pointer to allocated fc_exch with exch lock held.
802 */
803static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
804					struct fc_exch_mgr *mp)
805{
806	struct fc_exch *ep;
807	unsigned int cpu;
808	u16 index;
809	struct fc_exch_pool *pool;
810
811	/* allocate memory for exchange */
812	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
813	if (!ep) {
814		atomic_inc(&mp->stats.no_free_exch);
815		goto out;
816	}
817	memset(ep, 0, sizeof(*ep));
818
819	cpu = get_cpu();
820	pool = per_cpu_ptr(mp->pool, cpu);
821	spin_lock_bh(&pool->lock);
822	put_cpu();
823
824	/* peek cache of free slot */
825	if (pool->left != FC_XID_UNKNOWN) {
826		index = pool->left;
827		pool->left = FC_XID_UNKNOWN;
828		goto hit;
829	}
830	if (pool->right != FC_XID_UNKNOWN) {
831		index = pool->right;
832		pool->right = FC_XID_UNKNOWN;
833		goto hit;
834	}
835
836	index = pool->next_index;
837	/* allocate new exch from pool */
838	while (fc_exch_ptr_get(pool, index)) {
839		index = index == mp->pool_max_index ? 0 : index + 1;
840		if (index == pool->next_index)
841			goto err;
842	}
843	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
844hit:
845	fc_exch_hold(ep);	/* hold for exch in mp */
846	spin_lock_init(&ep->ex_lock);
847	/*
848	 * Hold exch lock for caller to prevent fc_exch_reset()
849	 * from releasing exch	while fc_exch_alloc() caller is
850	 * still working on exch.
851	 */
852	spin_lock_bh(&ep->ex_lock);
853
854	fc_exch_ptr_set(pool, index, ep);
855	list_add_tail(&ep->ex_list, &pool->ex_list);
856	fc_seq_alloc(ep, ep->seq_id++);
857	pool->total_exches++;
858	spin_unlock_bh(&pool->lock);
859
860	/*
861	 *  update exchange
862	 */
863	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
864	ep->em = mp;
865	ep->pool = pool;
866	ep->lp = lport;
867	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
868	ep->rxid = FC_XID_UNKNOWN;
869	ep->class = mp->class;
870	ep->resp_active = 0;
871	init_waitqueue_head(&ep->resp_wq);
872	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
873out:
874	return ep;
875err:
876	spin_unlock_bh(&pool->lock);
877	atomic_inc(&mp->stats.no_free_exch_xid);
878	mempool_free(ep, mp->ep_pool);
879	return NULL;
880}
881
882/**
883 * fc_exch_alloc() - Allocate an exchange from an EM on a
884 *		     local port's list of EMs.
885 * @lport: The local port that will own the exchange
886 * @fp:	   The FC frame that the exchange will be for
887 *
888 * This function walks the list of exchange manager(EM)
889 * anchors to select an EM for a new exchange allocation. The
890 * EM is selected when a NULL match function pointer is encountered
891 * or when a call to a match function returns true.
892 */
893static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
894					    struct fc_frame *fp)
895{
896	struct fc_exch_mgr_anchor *ema;
897
898	list_for_each_entry(ema, &lport->ema_list, ema_list)
899		if (!ema->match || ema->match(fp))
900			return fc_exch_em_alloc(lport, ema->mp);
901	return NULL;
902}
903
904/**
905 * fc_exch_find() - Lookup and hold an exchange
906 * @mp:	 The exchange manager to lookup the exchange from
907 * @xid: The XID of the exchange to look up
908 */
909static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
910{
911	struct fc_exch_pool *pool;
912	struct fc_exch *ep = NULL;
913
914	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
915		pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
916		spin_lock_bh(&pool->lock);
917		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
918		if (ep) {
919			WARN_ON(ep->xid != xid);
920			fc_exch_hold(ep);
921		}
922		spin_unlock_bh(&pool->lock);
923	}
924	return ep;
925}
926
927
928/**
929 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
930 *		    the memory allocated for the related objects may be freed.
931 * @sp: The sequence that has completed
932 *
933 * Note: May sleep if invoked from outside a response handler.
934 */
935static void fc_exch_done(struct fc_seq *sp)
936{
937	struct fc_exch *ep = fc_seq_exch(sp);
938	int rc;
939
940	spin_lock_bh(&ep->ex_lock);
941	rc = fc_exch_done_locked(ep);
942	spin_unlock_bh(&ep->ex_lock);
943
944	fc_seq_set_resp(sp, NULL, ep->arg);
945	if (!rc)
946		fc_exch_delete(ep);
947}
948
949/**
950 * fc_exch_resp() - Allocate a new exchange for a response frame
951 * @lport: The local port that the exchange was for
952 * @mp:	   The exchange manager to allocate the exchange from
953 * @fp:	   The response frame
954 *
955 * Sets the responder ID in the frame header.
956 */
957static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
958				    struct fc_exch_mgr *mp,
959				    struct fc_frame *fp)
960{
961	struct fc_exch *ep;
962	struct fc_frame_header *fh;
963
964	ep = fc_exch_alloc(lport, fp);
965	if (ep) {
966		ep->class = fc_frame_class(fp);
967
968		/*
969		 * Set EX_CTX indicating we're responding on this exchange.
970		 */
971		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
972		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
973		fh = fc_frame_header_get(fp);
974		ep->sid = ntoh24(fh->fh_d_id);
975		ep->did = ntoh24(fh->fh_s_id);
976		ep->oid = ep->did;
977
978		/*
979		 * Allocated exchange has placed the XID in the
980		 * originator field. Move it to the responder field,
981		 * and set the originator XID from the frame.
982		 */
983		ep->rxid = ep->xid;
984		ep->oxid = ntohs(fh->fh_ox_id);
985		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
986		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
987			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
988
989		fc_exch_hold(ep);	/* hold for caller */
990		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
991	}
992	return ep;
993}
994
995/**
996 * fc_seq_lookup_recip() - Find a sequence where the other end
997 *			   originated the sequence
998 * @lport: The local port that the frame was sent to
999 * @mp:	   The Exchange Manager to lookup the exchange from
1000 * @fp:	   The frame associated with the sequence we're looking for
1001 *
1002 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1003 * on the ep that should be released by the caller.
1004 */
1005static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1006						 struct fc_exch_mgr *mp,
1007						 struct fc_frame *fp)
1008{
1009	struct fc_frame_header *fh = fc_frame_header_get(fp);
1010	struct fc_exch *ep = NULL;
1011	struct fc_seq *sp = NULL;
1012	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1013	u32 f_ctl;
1014	u16 xid;
1015
1016	f_ctl = ntoh24(fh->fh_f_ctl);
1017	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1018
1019	/*
1020	 * Lookup or create the exchange if we will be creating the sequence.
1021	 */
1022	if (f_ctl & FC_FC_EX_CTX) {
1023		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
1024		ep = fc_exch_find(mp, xid);
1025		if (!ep) {
1026			atomic_inc(&mp->stats.xid_not_found);
1027			reject = FC_RJT_OX_ID;
1028			goto out;
1029		}
1030		if (ep->rxid == FC_XID_UNKNOWN)
1031			ep->rxid = ntohs(fh->fh_rx_id);
1032		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1033			reject = FC_RJT_OX_ID;
1034			goto rel;
1035		}
1036	} else {
1037		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
1038
1039		/*
1040		 * Special case for MDS issuing an ELS TEST with a
1041		 * bad rxid of 0.
1042		 * XXX take this out once we do the proper reject.
1043		 */
1044		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1045		    fc_frame_payload_op(fp) == ELS_TEST) {
1046			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1047			xid = FC_XID_UNKNOWN;
1048		}
1049
1050		/*
1051		 * new sequence - find the exchange
1052		 */
1053		ep = fc_exch_find(mp, xid);
1054		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1055			if (ep) {
1056				atomic_inc(&mp->stats.xid_busy);
1057				reject = FC_RJT_RX_ID;
1058				goto rel;
1059			}
1060			ep = fc_exch_resp(lport, mp, fp);
1061			if (!ep) {
1062				reject = FC_RJT_EXCH_EST;	/* XXX */
1063				goto out;
1064			}
1065			xid = ep->xid;	/* get our XID */
1066		} else if (!ep) {
1067			atomic_inc(&mp->stats.xid_not_found);
1068			reject = FC_RJT_RX_ID;	/* XID not found */
1069			goto out;
1070		}
1071	}
1072
1073	spin_lock_bh(&ep->ex_lock);
1074	/*
1075	 * At this point, we have the exchange held.
1076	 * Find or create the sequence.
1077	 */
1078	if (fc_sof_is_init(fr_sof(fp))) {
1079		sp = &ep->seq;
1080		sp->ssb_stat |= SSB_ST_RESP;
1081		sp->id = fh->fh_seq_id;
1082	} else {
1083		sp = &ep->seq;
1084		if (sp->id != fh->fh_seq_id) {
1085			atomic_inc(&mp->stats.seq_not_found);
1086			if (f_ctl & FC_FC_END_SEQ) {
1087				/*
1088				 * Update sequence_id based on incoming last
1089				 * frame of sequence exchange. This is needed
1090				 * for FC target where DDP has been used
1091				 * on target where, stack is indicated only
1092				 * about last frame's (payload _header) header.
1093				 * Whereas "seq_id" which is part of
1094				 * frame_header is allocated by initiator
1095				 * which is totally different from "seq_id"
1096				 * allocated when XFER_RDY was sent by target.
1097				 * To avoid false -ve which results into not
1098				 * sending RSP, hence write request on other
1099				 * end never finishes.
1100				 */
1101				sp->ssb_stat |= SSB_ST_RESP;
1102				sp->id = fh->fh_seq_id;
1103			} else {
1104				spin_unlock_bh(&ep->ex_lock);
1105
1106				/* sequence/exch should exist */
1107				reject = FC_RJT_SEQ_ID;
1108				goto rel;
1109			}
1110		}
1111	}
1112	WARN_ON(ep != fc_seq_exch(sp));
1113
1114	if (f_ctl & FC_FC_SEQ_INIT)
1115		ep->esb_stat |= ESB_ST_SEQ_INIT;
1116	spin_unlock_bh(&ep->ex_lock);
1117
1118	fr_seq(fp) = sp;
1119out:
1120	return reject;
1121rel:
1122	fc_exch_done(&ep->seq);
1123	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1124	return reject;
1125}
1126
1127/**
1128 * fc_seq_lookup_orig() - Find a sequence where this end
1129 *			  originated the sequence
1130 * @mp:	   The Exchange Manager to lookup the exchange from
1131 * @fp:	   The frame associated with the sequence we're looking for
1132 *
1133 * Does not hold the sequence for the caller.
1134 */
1135static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1136					 struct fc_frame *fp)
1137{
1138	struct fc_frame_header *fh = fc_frame_header_get(fp);
1139	struct fc_exch *ep;
1140	struct fc_seq *sp = NULL;
1141	u32 f_ctl;
1142	u16 xid;
1143
1144	f_ctl = ntoh24(fh->fh_f_ctl);
1145	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1146	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1147	ep = fc_exch_find(mp, xid);
1148	if (!ep)
1149		return NULL;
1150	if (ep->seq.id == fh->fh_seq_id) {
1151		/*
1152		 * Save the RX_ID if we didn't previously know it.
1153		 */
1154		sp = &ep->seq;
1155		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1156		    ep->rxid == FC_XID_UNKNOWN) {
1157			ep->rxid = ntohs(fh->fh_rx_id);
1158		}
1159	}
1160	fc_exch_release(ep);
1161	return sp;
1162}
1163
1164/**
1165 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1166 * @ep:	     The exchange to set the addresses for
1167 * @orig_id: The originator's ID
1168 * @resp_id: The responder's ID
1169 *
1170 * Note this must be done before the first sequence of the exchange is sent.
1171 */
1172static void fc_exch_set_addr(struct fc_exch *ep,
1173			     u32 orig_id, u32 resp_id)
1174{
1175	ep->oid = orig_id;
1176	if (ep->esb_stat & ESB_ST_RESP) {
1177		ep->sid = resp_id;
1178		ep->did = orig_id;
1179	} else {
1180		ep->sid = orig_id;
1181		ep->did = resp_id;
1182	}
1183}
1184
1185/**
1186 * fc_seq_els_rsp_send() - Send an ELS response using information from
1187 *			   the existing sequence/exchange.
1188 * @fp:	      The received frame
1189 * @els_cmd:  The ELS command to be sent
1190 * @els_data: The ELS data to be sent
1191 *
1192 * The received frame is not freed.
1193 */
1194static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1195				struct fc_seq_els_data *els_data)
1196{
1197	switch (els_cmd) {
1198	case ELS_LS_RJT:
1199		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1200		break;
1201	case ELS_LS_ACC:
1202		fc_seq_ls_acc(fp);
1203		break;
1204	case ELS_RRQ:
1205		fc_exch_els_rrq(fp);
1206		break;
1207	case ELS_REC:
1208		fc_exch_els_rec(fp);
1209		break;
1210	default:
1211		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1212	}
1213}
1214
1215/**
1216 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1217 * @sp:	     The sequence that is to be sent
1218 * @fp:	     The frame that will be sent on the sequence
1219 * @rctl:    The R_CTL information to be sent
1220 * @fh_type: The frame header type
1221 */
1222static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1223			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1224{
1225	u32 f_ctl;
1226	struct fc_exch *ep = fc_seq_exch(sp);
1227
1228	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1229	f_ctl |= ep->f_ctl;
1230	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1231	fc_seq_send_locked(ep->lp, sp, fp);
1232}
1233
1234/**
1235 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1236 * @sp:	   The sequence to send the ACK on
1237 * @rx_fp: The received frame that is being acknoledged
1238 *
1239 * Send ACK_1 (or equiv.) indicating we received something.
1240 */
1241static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1242{
1243	struct fc_frame *fp;
1244	struct fc_frame_header *rx_fh;
1245	struct fc_frame_header *fh;
1246	struct fc_exch *ep = fc_seq_exch(sp);
1247	struct fc_lport *lport = ep->lp;
1248	unsigned int f_ctl;
1249
1250	/*
1251	 * Don't send ACKs for class 3.
1252	 */
1253	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1254		fp = fc_frame_alloc(lport, 0);
1255		if (!fp)
1256			return;
1257
1258		fh = fc_frame_header_get(fp);
1259		fh->fh_r_ctl = FC_RCTL_ACK_1;
1260		fh->fh_type = FC_TYPE_BLS;
1261
1262		/*
1263		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1264		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1265		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1266		 * Last ACK uses bits 7-6 (continue sequence),
1267		 * bits 5-4 are meaningful (what kind of ACK to use).
1268		 */
1269		rx_fh = fc_frame_header_get(rx_fp);
1270		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1271		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1272			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1273			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1274			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1275		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1276		hton24(fh->fh_f_ctl, f_ctl);
1277
1278		fc_exch_setup_hdr(ep, fp, f_ctl);
1279		fh->fh_seq_id = rx_fh->fh_seq_id;
1280		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1281		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1282
1283		fr_sof(fp) = fr_sof(rx_fp);
1284		if (f_ctl & FC_FC_END_SEQ)
1285			fr_eof(fp) = FC_EOF_T;
1286		else
1287			fr_eof(fp) = FC_EOF_N;
1288
1289		lport->tt.frame_send(lport, fp);
1290	}
1291}
1292
1293/**
1294 * fc_exch_send_ba_rjt() - Send BLS Reject
1295 * @rx_fp:  The frame being rejected
1296 * @reason: The reason the frame is being rejected
1297 * @explan: The explanation for the rejection
1298 *
1299 * This is for rejecting BA_ABTS only.
1300 */
1301static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1302				enum fc_ba_rjt_reason reason,
1303				enum fc_ba_rjt_explan explan)
1304{
1305	struct fc_frame *fp;
1306	struct fc_frame_header *rx_fh;
1307	struct fc_frame_header *fh;
1308	struct fc_ba_rjt *rp;
1309	struct fc_lport *lport;
1310	unsigned int f_ctl;
1311
1312	lport = fr_dev(rx_fp);
1313	fp = fc_frame_alloc(lport, sizeof(*rp));
1314	if (!fp)
1315		return;
1316	fh = fc_frame_header_get(fp);
1317	rx_fh = fc_frame_header_get(rx_fp);
1318
1319	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1320
1321	rp = fc_frame_payload_get(fp, sizeof(*rp));
1322	rp->br_reason = reason;
1323	rp->br_explan = explan;
1324
1325	/*
1326	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1327	 */
1328	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1329	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1330	fh->fh_ox_id = rx_fh->fh_ox_id;
1331	fh->fh_rx_id = rx_fh->fh_rx_id;
1332	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1333	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1334	fh->fh_type = FC_TYPE_BLS;
1335
1336	/*
1337	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1338	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1339	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1340	 * Last ACK uses bits 7-6 (continue sequence),
1341	 * bits 5-4 are meaningful (what kind of ACK to use).
1342	 * Always set LAST_SEQ, END_SEQ.
1343	 */
1344	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1345	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1346		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1347		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1348	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1349	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1350	f_ctl &= ~FC_FC_FIRST_SEQ;
1351	hton24(fh->fh_f_ctl, f_ctl);
1352
1353	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1354	fr_eof(fp) = FC_EOF_T;
1355	if (fc_sof_needs_ack(fr_sof(fp)))
1356		fr_eof(fp) = FC_EOF_N;
1357
1358	lport->tt.frame_send(lport, fp);
1359}
1360
1361/**
1362 * fc_exch_recv_abts() - Handle an incoming ABTS
1363 * @ep:	   The exchange the abort was on
1364 * @rx_fp: The ABTS frame
1365 *
1366 * This would be for target mode usually, but could be due to lost
1367 * FCP transfer ready, confirm or RRQ. We always handle this as an
1368 * exchange abort, ignoring the parameter.
1369 */
1370static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1371{
1372	struct fc_frame *fp;
1373	struct fc_ba_acc *ap;
1374	struct fc_frame_header *fh;
1375	struct fc_seq *sp;
1376
1377	if (!ep)
1378		goto reject;
1379
1380	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1381	if (!fp)
1382		goto free;
1383
1384	spin_lock_bh(&ep->ex_lock);
1385	if (ep->esb_stat & ESB_ST_COMPLETE) {
1386		spin_unlock_bh(&ep->ex_lock);
1387
1388		fc_frame_free(fp);
1389		goto reject;
1390	}
1391	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1392		ep->esb_stat |= ESB_ST_REC_QUAL;
1393		fc_exch_hold(ep);		/* hold for REC_QUAL */
1394	}
1395	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1396	fh = fc_frame_header_get(fp);
1397	ap = fc_frame_payload_get(fp, sizeof(*ap));
1398	memset(ap, 0, sizeof(*ap));
1399	sp = &ep->seq;
1400	ap->ba_high_seq_cnt = htons(0xffff);
1401	if (sp->ssb_stat & SSB_ST_RESP) {
1402		ap->ba_seq_id = sp->id;
1403		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1404		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1405		ap->ba_low_seq_cnt = htons(sp->cnt);
1406	}
1407	sp = fc_seq_start_next_locked(sp);
1408	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1409	ep->esb_stat |= ESB_ST_ABNORMAL;
1410	spin_unlock_bh(&ep->ex_lock);
1411
1412free:
1413	fc_frame_free(rx_fp);
1414	return;
1415
1416reject:
1417	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1418	goto free;
1419}
1420
1421/**
1422 * fc_seq_assign() - Assign exchange and sequence for incoming request
1423 * @lport: The local port that received the request
1424 * @fp:    The request frame
1425 *
1426 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1427 * A reference will be held on the exchange/sequence for the caller, which
1428 * must call fc_seq_release().
1429 */
1430static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1431{
1432	struct fc_exch_mgr_anchor *ema;
1433
1434	WARN_ON(lport != fr_dev(fp));
1435	WARN_ON(fr_seq(fp));
1436	fr_seq(fp) = NULL;
1437
1438	list_for_each_entry(ema, &lport->ema_list, ema_list)
1439		if ((!ema->match || ema->match(fp)) &&
1440		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1441			break;
1442	return fr_seq(fp);
1443}
1444
1445/**
1446 * fc_seq_release() - Release the hold
1447 * @sp:    The sequence.
1448 */
1449static void fc_seq_release(struct fc_seq *sp)
1450{
1451	fc_exch_release(fc_seq_exch(sp));
1452}
1453
1454/**
1455 * fc_exch_recv_req() - Handler for an incoming request
1456 * @lport: The local port that received the request
1457 * @mp:	   The EM that the exchange is on
1458 * @fp:	   The request frame
1459 *
1460 * This is used when the other end is originating the exchange
1461 * and the sequence.
1462 */
1463static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1464			     struct fc_frame *fp)
1465{
1466	struct fc_frame_header *fh = fc_frame_header_get(fp);
1467	struct fc_seq *sp = NULL;
1468	struct fc_exch *ep = NULL;
1469	enum fc_pf_rjt_reason reject;
1470
1471	/* We can have the wrong fc_lport at this point with NPIV, which is a
1472	 * problem now that we know a new exchange needs to be allocated
1473	 */
1474	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1475	if (!lport) {
1476		fc_frame_free(fp);
1477		return;
1478	}
1479	fr_dev(fp) = lport;
1480
1481	BUG_ON(fr_seq(fp));		/* XXX remove later */
1482
1483	/*
1484	 * If the RX_ID is 0xffff, don't allocate an exchange.
1485	 * The upper-level protocol may request one later, if needed.
1486	 */
1487	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1488		return lport->tt.lport_recv(lport, fp);
1489
1490	reject = fc_seq_lookup_recip(lport, mp, fp);
1491	if (reject == FC_RJT_NONE) {
1492		sp = fr_seq(fp);	/* sequence will be held */
1493		ep = fc_seq_exch(sp);
1494		fc_seq_send_ack(sp, fp);
1495		ep->encaps = fr_encaps(fp);
1496
1497		/*
1498		 * Call the receive function.
1499		 *
1500		 * The receive function may allocate a new sequence
1501		 * over the old one, so we shouldn't change the
1502		 * sequence after this.
1503		 *
1504		 * The frame will be freed by the receive function.
1505		 * If new exch resp handler is valid then call that
1506		 * first.
1507		 */
1508		if (!fc_invoke_resp(ep, sp, fp))
1509			lport->tt.lport_recv(lport, fp);
1510		fc_exch_release(ep);	/* release from lookup */
1511	} else {
1512		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1513			     reject);
1514		fc_frame_free(fp);
1515	}
1516}
1517
1518/**
1519 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1520 *			     end is the originator of the sequence that is a
1521 *			     response to our initial exchange
1522 * @mp: The EM that the exchange is on
1523 * @fp: The response frame
1524 */
1525static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1526{
1527	struct fc_frame_header *fh = fc_frame_header_get(fp);
1528	struct fc_seq *sp;
1529	struct fc_exch *ep;
1530	enum fc_sof sof;
1531	u32 f_ctl;
1532	int rc;
1533
1534	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1535	if (!ep) {
1536		atomic_inc(&mp->stats.xid_not_found);
1537		goto out;
1538	}
1539	if (ep->esb_stat & ESB_ST_COMPLETE) {
1540		atomic_inc(&mp->stats.xid_not_found);
1541		goto rel;
1542	}
1543	if (ep->rxid == FC_XID_UNKNOWN)
1544		ep->rxid = ntohs(fh->fh_rx_id);
1545	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1546		atomic_inc(&mp->stats.xid_not_found);
1547		goto rel;
1548	}
1549	if (ep->did != ntoh24(fh->fh_s_id) &&
1550	    ep->did != FC_FID_FLOGI) {
1551		atomic_inc(&mp->stats.xid_not_found);
1552		goto rel;
1553	}
1554	sof = fr_sof(fp);
1555	sp = &ep->seq;
1556	if (fc_sof_is_init(sof)) {
1557		sp->ssb_stat |= SSB_ST_RESP;
1558		sp->id = fh->fh_seq_id;
1559	} else if (sp->id != fh->fh_seq_id) {
1560		atomic_inc(&mp->stats.seq_not_found);
1561		goto rel;
1562	}
1563
1564	f_ctl = ntoh24(fh->fh_f_ctl);
1565	fr_seq(fp) = sp;
1566
1567	spin_lock_bh(&ep->ex_lock);
1568	if (f_ctl & FC_FC_SEQ_INIT)
1569		ep->esb_stat |= ESB_ST_SEQ_INIT;
1570	spin_unlock_bh(&ep->ex_lock);
1571
1572	if (fc_sof_needs_ack(sof))
1573		fc_seq_send_ack(sp, fp);
1574
1575	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1576	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1577	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1578		spin_lock_bh(&ep->ex_lock);
1579		rc = fc_exch_done_locked(ep);
1580		WARN_ON(fc_seq_exch(sp) != ep);
1581		spin_unlock_bh(&ep->ex_lock);
1582		if (!rc)
1583			fc_exch_delete(ep);
1584	}
1585
1586	/*
1587	 * Call the receive function.
1588	 * The sequence is held (has a refcnt) for us,
1589	 * but not for the receive function.
1590	 *
1591	 * The receive function may allocate a new sequence
1592	 * over the old one, so we shouldn't change the
1593	 * sequence after this.
1594	 *
1595	 * The frame will be freed by the receive function.
1596	 * If new exch resp handler is valid then call that
1597	 * first.
1598	 */
1599	fc_invoke_resp(ep, sp, fp);
1600
1601	fc_exch_release(ep);
1602	return;
1603rel:
1604	fc_exch_release(ep);
1605out:
1606	fc_frame_free(fp);
1607}
1608
1609/**
1610 * fc_exch_recv_resp() - Handler for a sequence where other end is
1611 *			 responding to our sequence
1612 * @mp: The EM that the exchange is on
1613 * @fp: The response frame
1614 */
1615static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1616{
1617	struct fc_seq *sp;
1618
1619	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1620
1621	if (!sp)
1622		atomic_inc(&mp->stats.xid_not_found);
1623	else
1624		atomic_inc(&mp->stats.non_bls_resp);
1625
1626	fc_frame_free(fp);
1627}
1628
1629/**
1630 * fc_exch_abts_resp() - Handler for a response to an ABT
1631 * @ep: The exchange that the frame is on
1632 * @fp: The response frame
1633 *
1634 * This response would be to an ABTS cancelling an exchange or sequence.
1635 * The response can be either BA_ACC or BA_RJT
1636 */
1637static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1638{
1639	struct fc_frame_header *fh;
1640	struct fc_ba_acc *ap;
1641	struct fc_seq *sp;
1642	u16 low;
1643	u16 high;
1644	int rc = 1, has_rec = 0;
1645
1646	fh = fc_frame_header_get(fp);
1647	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1648		    fc_exch_rctl_name(fh->fh_r_ctl));
1649
1650	if (cancel_delayed_work_sync(&ep->timeout_work)) {
1651		FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1652		fc_exch_release(ep);	/* release from pending timer hold */
1653	}
1654
1655	spin_lock_bh(&ep->ex_lock);
1656	switch (fh->fh_r_ctl) {
1657	case FC_RCTL_BA_ACC:
1658		ap = fc_frame_payload_get(fp, sizeof(*ap));
1659		if (!ap)
1660			break;
1661
1662		/*
1663		 * Decide whether to establish a Recovery Qualifier.
1664		 * We do this if there is a non-empty SEQ_CNT range and
1665		 * SEQ_ID is the same as the one we aborted.
1666		 */
1667		low = ntohs(ap->ba_low_seq_cnt);
1668		high = ntohs(ap->ba_high_seq_cnt);
1669		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1670		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1671		     ap->ba_seq_id == ep->seq_id) && low != high) {
1672			ep->esb_stat |= ESB_ST_REC_QUAL;
1673			fc_exch_hold(ep);  /* hold for recovery qualifier */
1674			has_rec = 1;
1675		}
1676		break;
1677	case FC_RCTL_BA_RJT:
1678		break;
1679	default:
1680		break;
1681	}
1682
1683	/* do we need to do some other checks here. Can we reuse more of
1684	 * fc_exch_recv_seq_resp
1685	 */
1686	sp = &ep->seq;
1687	/*
1688	 * do we want to check END_SEQ as well as LAST_SEQ here?
1689	 */
1690	if (ep->fh_type != FC_TYPE_FCP &&
1691	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1692		rc = fc_exch_done_locked(ep);
1693	spin_unlock_bh(&ep->ex_lock);
1694
1695	fc_exch_hold(ep);
1696	if (!rc)
1697		fc_exch_delete(ep);
1698	fc_invoke_resp(ep, sp, fp);
1699	if (has_rec)
1700		fc_exch_timer_set(ep, ep->r_a_tov);
1701	fc_exch_release(ep);
1702}
1703
1704/**
1705 * fc_exch_recv_bls() - Handler for a BLS sequence
1706 * @mp: The EM that the exchange is on
1707 * @fp: The request frame
1708 *
1709 * The BLS frame is always a sequence initiated by the remote side.
1710 * We may be either the originator or recipient of the exchange.
1711 */
1712static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1713{
1714	struct fc_frame_header *fh;
1715	struct fc_exch *ep;
1716	u32 f_ctl;
1717
1718	fh = fc_frame_header_get(fp);
1719	f_ctl = ntoh24(fh->fh_f_ctl);
1720	fr_seq(fp) = NULL;
1721
1722	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1723			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1724	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1725		spin_lock_bh(&ep->ex_lock);
1726		ep->esb_stat |= ESB_ST_SEQ_INIT;
1727		spin_unlock_bh(&ep->ex_lock);
1728	}
1729	if (f_ctl & FC_FC_SEQ_CTX) {
1730		/*
1731		 * A response to a sequence we initiated.
1732		 * This should only be ACKs for class 2 or F.
1733		 */
1734		switch (fh->fh_r_ctl) {
1735		case FC_RCTL_ACK_1:
1736		case FC_RCTL_ACK_0:
1737			break;
1738		default:
1739			if (ep)
1740				FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1741					    fh->fh_r_ctl,
1742					    fc_exch_rctl_name(fh->fh_r_ctl));
1743			break;
1744		}
1745		fc_frame_free(fp);
1746	} else {
1747		switch (fh->fh_r_ctl) {
1748		case FC_RCTL_BA_RJT:
1749		case FC_RCTL_BA_ACC:
1750			if (ep)
1751				fc_exch_abts_resp(ep, fp);
1752			else
1753				fc_frame_free(fp);
1754			break;
1755		case FC_RCTL_BA_ABTS:
1756			fc_exch_recv_abts(ep, fp);
1757			break;
1758		default:			/* ignore junk */
1759			fc_frame_free(fp);
1760			break;
1761		}
1762	}
1763	if (ep)
1764		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1765}
1766
1767/**
1768 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1769 * @rx_fp: The received frame, not freed here.
1770 *
1771 * If this fails due to allocation or transmit congestion, assume the
1772 * originator will repeat the sequence.
1773 */
1774static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1775{
1776	struct fc_lport *lport;
1777	struct fc_els_ls_acc *acc;
1778	struct fc_frame *fp;
1779
1780	lport = fr_dev(rx_fp);
1781	fp = fc_frame_alloc(lport, sizeof(*acc));
1782	if (!fp)
1783		return;
1784	acc = fc_frame_payload_get(fp, sizeof(*acc));
1785	memset(acc, 0, sizeof(*acc));
1786	acc->la_cmd = ELS_LS_ACC;
1787	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1788	lport->tt.frame_send(lport, fp);
1789}
1790
1791/**
1792 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1793 * @rx_fp: The received frame, not freed here.
1794 * @reason: The reason the sequence is being rejected
1795 * @explan: The explanation for the rejection
1796 *
1797 * If this fails due to allocation or transmit congestion, assume the
1798 * originator will repeat the sequence.
1799 */
1800static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1801			  enum fc_els_rjt_explan explan)
1802{
1803	struct fc_lport *lport;
1804	struct fc_els_ls_rjt *rjt;
1805	struct fc_frame *fp;
1806
1807	lport = fr_dev(rx_fp);
1808	fp = fc_frame_alloc(lport, sizeof(*rjt));
1809	if (!fp)
1810		return;
1811	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1812	memset(rjt, 0, sizeof(*rjt));
1813	rjt->er_cmd = ELS_LS_RJT;
1814	rjt->er_reason = reason;
1815	rjt->er_explan = explan;
1816	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1817	lport->tt.frame_send(lport, fp);
1818}
1819
1820/**
1821 * fc_exch_reset() - Reset an exchange
1822 * @ep: The exchange to be reset
1823 *
1824 * Note: May sleep if invoked from outside a response handler.
1825 */
1826static void fc_exch_reset(struct fc_exch *ep)
1827{
1828	struct fc_seq *sp;
1829	int rc = 1;
1830
1831	spin_lock_bh(&ep->ex_lock);
1832	fc_exch_abort_locked(ep, 0);
1833	ep->state |= FC_EX_RST_CLEANUP;
1834	fc_exch_timer_cancel(ep);
1835	if (ep->esb_stat & ESB_ST_REC_QUAL)
1836		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1837	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1838	sp = &ep->seq;
1839	rc = fc_exch_done_locked(ep);
1840	spin_unlock_bh(&ep->ex_lock);
1841
1842	fc_exch_hold(ep);
1843
1844	if (!rc)
1845		fc_exch_delete(ep);
1846
1847	fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1848	fc_seq_set_resp(sp, NULL, ep->arg);
1849	fc_exch_release(ep);
1850}
1851
1852/**
1853 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1854 * @lport: The local port that the exchange pool is on
1855 * @pool:  The exchange pool to be reset
1856 * @sid:   The source ID
1857 * @did:   The destination ID
1858 *
1859 * Resets a per cpu exches pool, releasing all of its sequences
1860 * and exchanges. If sid is non-zero then reset only exchanges
1861 * we sourced from the local port's FID. If did is non-zero then
1862 * only reset exchanges destined for the local port's FID.
1863 */
1864static void fc_exch_pool_reset(struct fc_lport *lport,
1865			       struct fc_exch_pool *pool,
1866			       u32 sid, u32 did)
1867{
1868	struct fc_exch *ep;
1869	struct fc_exch *next;
1870
1871	spin_lock_bh(&pool->lock);
1872restart:
1873	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1874		if ((lport == ep->lp) &&
1875		    (sid == 0 || sid == ep->sid) &&
1876		    (did == 0 || did == ep->did)) {
1877			fc_exch_hold(ep);
1878			spin_unlock_bh(&pool->lock);
1879
1880			fc_exch_reset(ep);
1881
1882			fc_exch_release(ep);
1883			spin_lock_bh(&pool->lock);
1884
1885			/*
1886			 * must restart loop incase while lock
1887			 * was down multiple eps were released.
1888			 */
1889			goto restart;
1890		}
1891	}
1892	pool->next_index = 0;
1893	pool->left = FC_XID_UNKNOWN;
1894	pool->right = FC_XID_UNKNOWN;
1895	spin_unlock_bh(&pool->lock);
1896}
1897
1898/**
1899 * fc_exch_mgr_reset() - Reset all EMs of a local port
1900 * @lport: The local port whose EMs are to be reset
1901 * @sid:   The source ID
1902 * @did:   The destination ID
1903 *
1904 * Reset all EMs associated with a given local port. Release all
1905 * sequences and exchanges. If sid is non-zero then reset only the
1906 * exchanges sent from the local port's FID. If did is non-zero then
1907 * reset only exchanges destined for the local port's FID.
1908 */
1909void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1910{
1911	struct fc_exch_mgr_anchor *ema;
1912	unsigned int cpu;
1913
1914	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1915		for_each_possible_cpu(cpu)
1916			fc_exch_pool_reset(lport,
1917					   per_cpu_ptr(ema->mp->pool, cpu),
1918					   sid, did);
1919	}
1920}
1921EXPORT_SYMBOL(fc_exch_mgr_reset);
1922
1923/**
1924 * fc_exch_lookup() - find an exchange
1925 * @lport: The local port
1926 * @xid: The exchange ID
1927 *
1928 * Returns exchange pointer with hold for caller, or NULL if not found.
1929 */
1930static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1931{
1932	struct fc_exch_mgr_anchor *ema;
1933
1934	list_for_each_entry(ema, &lport->ema_list, ema_list)
1935		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1936			return fc_exch_find(ema->mp, xid);
1937	return NULL;
1938}
1939
1940/**
1941 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1942 * @rfp: The REC frame, not freed here.
1943 *
1944 * Note that the requesting port may be different than the S_ID in the request.
1945 */
1946static void fc_exch_els_rec(struct fc_frame *rfp)
1947{
1948	struct fc_lport *lport;
1949	struct fc_frame *fp;
1950	struct fc_exch *ep;
1951	struct fc_els_rec *rp;
1952	struct fc_els_rec_acc *acc;
1953	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1954	enum fc_els_rjt_explan explan;
1955	u32 sid;
1956	u16 rxid;
1957	u16 oxid;
1958
1959	lport = fr_dev(rfp);
1960	rp = fc_frame_payload_get(rfp, sizeof(*rp));
1961	explan = ELS_EXPL_INV_LEN;
1962	if (!rp)
1963		goto reject;
1964	sid = ntoh24(rp->rec_s_id);
1965	rxid = ntohs(rp->rec_rx_id);
1966	oxid = ntohs(rp->rec_ox_id);
1967
1968	ep = fc_exch_lookup(lport,
1969			    sid == fc_host_port_id(lport->host) ? oxid : rxid);
1970	explan = ELS_EXPL_OXID_RXID;
1971	if (!ep)
1972		goto reject;
1973	if (ep->oid != sid || oxid != ep->oxid)
1974		goto rel;
1975	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1976		goto rel;
1977	fp = fc_frame_alloc(lport, sizeof(*acc));
1978	if (!fp)
1979		goto out;
1980
1981	acc = fc_frame_payload_get(fp, sizeof(*acc));
1982	memset(acc, 0, sizeof(*acc));
1983	acc->reca_cmd = ELS_LS_ACC;
1984	acc->reca_ox_id = rp->rec_ox_id;
1985	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1986	acc->reca_rx_id = htons(ep->rxid);
1987	if (ep->sid == ep->oid)
1988		hton24(acc->reca_rfid, ep->did);
1989	else
1990		hton24(acc->reca_rfid, ep->sid);
1991	acc->reca_fc4value = htonl(ep->seq.rec_data);
1992	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1993						 ESB_ST_SEQ_INIT |
1994						 ESB_ST_COMPLETE));
1995	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1996	lport->tt.frame_send(lport, fp);
1997out:
1998	fc_exch_release(ep);
1999	return;
2000
2001rel:
2002	fc_exch_release(ep);
2003reject:
2004	fc_seq_ls_rjt(rfp, reason, explan);
2005}
2006
2007/**
2008 * fc_exch_rrq_resp() - Handler for RRQ responses
2009 * @sp:	 The sequence that the RRQ is on
2010 * @fp:	 The RRQ frame
2011 * @arg: The exchange that the RRQ is on
2012 *
2013 * TODO: fix error handler.
2014 */
2015static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2016{
2017	struct fc_exch *aborted_ep = arg;
2018	unsigned int op;
2019
2020	if (IS_ERR(fp)) {
2021		int err = PTR_ERR(fp);
2022
2023		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2024			goto cleanup;
2025		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2026			    "frame error %d\n", err);
2027		return;
2028	}
2029
2030	op = fc_frame_payload_op(fp);
2031	fc_frame_free(fp);
2032
2033	switch (op) {
2034	case ELS_LS_RJT:
2035		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2036		/* fall through */
2037	case ELS_LS_ACC:
2038		goto cleanup;
2039	default:
2040		FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2041			    op);
2042		return;
2043	}
2044
2045cleanup:
2046	fc_exch_done(&aborted_ep->seq);
2047	/* drop hold for rec qual */
2048	fc_exch_release(aborted_ep);
2049}
2050
2051
2052/**
2053 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2054 * @lport:	The local port to send the frame on
2055 * @fp:		The frame to be sent
2056 * @resp:	The response handler for this request
2057 * @destructor: The destructor for the exchange
2058 * @arg:	The argument to be passed to the response handler
2059 * @timer_msec: The timeout period for the exchange
2060 *
2061 * The frame pointer with some of the header's fields must be
2062 * filled before calling this routine, those fields are:
2063 *
2064 * - routing control
2065 * - FC port did
2066 * - FC port sid
2067 * - FC header type
2068 * - frame control
2069 * - parameter or relative offset
2070 */
2071static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2072				       struct fc_frame *fp,
2073				       void (*resp)(struct fc_seq *,
2074						    struct fc_frame *fp,
2075						    void *arg),
2076				       void (*destructor)(struct fc_seq *,
2077							  void *),
2078				       void *arg, u32 timer_msec)
2079{
2080	struct fc_exch *ep;
2081	struct fc_seq *sp = NULL;
2082	struct fc_frame_header *fh;
2083	struct fc_fcp_pkt *fsp = NULL;
2084	int rc = 1;
2085
2086	ep = fc_exch_alloc(lport, fp);
2087	if (!ep) {
2088		fc_frame_free(fp);
2089		return NULL;
2090	}
2091	ep->esb_stat |= ESB_ST_SEQ_INIT;
2092	fh = fc_frame_header_get(fp);
2093	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2094	ep->resp = resp;
2095	ep->destructor = destructor;
2096	ep->arg = arg;
2097	ep->r_a_tov = FC_DEF_R_A_TOV;
2098	ep->lp = lport;
2099	sp = &ep->seq;
2100
2101	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2102	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2103	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2104	sp->cnt++;
2105
2106	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2107		fsp = fr_fsp(fp);
2108		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2109	}
2110
2111	if (unlikely(lport->tt.frame_send(lport, fp)))
2112		goto err;
2113
2114	if (timer_msec)
2115		fc_exch_timer_set_locked(ep, timer_msec);
2116	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2117
2118	if (ep->f_ctl & FC_FC_SEQ_INIT)
2119		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2120	spin_unlock_bh(&ep->ex_lock);
2121	return sp;
2122err:
2123	if (fsp)
2124		fc_fcp_ddp_done(fsp);
2125	rc = fc_exch_done_locked(ep);
2126	spin_unlock_bh(&ep->ex_lock);
2127	if (!rc)
2128		fc_exch_delete(ep);
2129	return NULL;
2130}
2131
2132/**
2133 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2134 * @ep: The exchange to send the RRQ on
2135 *
2136 * This tells the remote port to stop blocking the use of
2137 * the exchange and the seq_cnt range.
2138 */
2139static void fc_exch_rrq(struct fc_exch *ep)
2140{
2141	struct fc_lport *lport;
2142	struct fc_els_rrq *rrq;
2143	struct fc_frame *fp;
2144	u32 did;
2145
2146	lport = ep->lp;
2147
2148	fp = fc_frame_alloc(lport, sizeof(*rrq));
2149	if (!fp)
2150		goto retry;
2151
2152	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2153	memset(rrq, 0, sizeof(*rrq));
2154	rrq->rrq_cmd = ELS_RRQ;
2155	hton24(rrq->rrq_s_id, ep->sid);
2156	rrq->rrq_ox_id = htons(ep->oxid);
2157	rrq->rrq_rx_id = htons(ep->rxid);
2158
2159	did = ep->did;
2160	if (ep->esb_stat & ESB_ST_RESP)
2161		did = ep->sid;
2162
2163	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2164		       lport->port_id, FC_TYPE_ELS,
2165		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2166
2167	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2168			     lport->e_d_tov))
2169		return;
2170
2171retry:
2172	spin_lock_bh(&ep->ex_lock);
2173	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2174		spin_unlock_bh(&ep->ex_lock);
2175		/* drop hold for rec qual */
2176		fc_exch_release(ep);
2177		return;
2178	}
2179	ep->esb_stat |= ESB_ST_REC_QUAL;
2180	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2181	spin_unlock_bh(&ep->ex_lock);
2182}
2183
2184/**
2185 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2186 * @fp: The RRQ frame, not freed here.
2187 */
2188static void fc_exch_els_rrq(struct fc_frame *fp)
2189{
2190	struct fc_lport *lport;
2191	struct fc_exch *ep = NULL;	/* request or subject exchange */
2192	struct fc_els_rrq *rp;
2193	u32 sid;
2194	u16 xid;
2195	enum fc_els_rjt_explan explan;
2196
2197	lport = fr_dev(fp);
2198	rp = fc_frame_payload_get(fp, sizeof(*rp));
2199	explan = ELS_EXPL_INV_LEN;
2200	if (!rp)
2201		goto reject;
2202
2203	/*
2204	 * lookup subject exchange.
2205	 */
2206	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2207	xid = fc_host_port_id(lport->host) == sid ?
2208			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2209	ep = fc_exch_lookup(lport, xid);
2210	explan = ELS_EXPL_OXID_RXID;
2211	if (!ep)
2212		goto reject;
2213	spin_lock_bh(&ep->ex_lock);
2214	if (ep->oxid != ntohs(rp->rrq_ox_id))
2215		goto unlock_reject;
2216	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2217	    ep->rxid != FC_XID_UNKNOWN)
2218		goto unlock_reject;
2219	explan = ELS_EXPL_SID;
2220	if (ep->sid != sid)
2221		goto unlock_reject;
2222
2223	/*
2224	 * Clear Recovery Qualifier state, and cancel timer if complete.
2225	 */
2226	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2227		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2228		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2229	}
2230	if (ep->esb_stat & ESB_ST_COMPLETE)
2231		fc_exch_timer_cancel(ep);
2232
2233	spin_unlock_bh(&ep->ex_lock);
2234
2235	/*
2236	 * Send LS_ACC.
2237	 */
2238	fc_seq_ls_acc(fp);
2239	goto out;
2240
2241unlock_reject:
2242	spin_unlock_bh(&ep->ex_lock);
2243reject:
2244	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2245out:
2246	if (ep)
2247		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2248}
2249
2250/**
2251 * fc_exch_update_stats() - update exches stats to lport
2252 * @lport: The local port to update exchange manager stats
2253 */
2254void fc_exch_update_stats(struct fc_lport *lport)
2255{
2256	struct fc_host_statistics *st;
2257	struct fc_exch_mgr_anchor *ema;
2258	struct fc_exch_mgr *mp;
2259
2260	st = &lport->host_stats;
2261
2262	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2263		mp = ema->mp;
2264		st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2265		st->fc_no_free_exch_xid +=
2266				atomic_read(&mp->stats.no_free_exch_xid);
2267		st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2268		st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2269		st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2270		st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2271	}
2272}
2273EXPORT_SYMBOL(fc_exch_update_stats);
2274
2275/**
2276 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2277 * @lport: The local port to add the exchange manager to
2278 * @mp:	   The exchange manager to be added to the local port
2279 * @match: The match routine that indicates when this EM should be used
2280 */
2281struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2282					   struct fc_exch_mgr *mp,
2283					   bool (*match)(struct fc_frame *))
2284{
2285	struct fc_exch_mgr_anchor *ema;
2286
2287	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2288	if (!ema)
2289		return ema;
2290
2291	ema->mp = mp;
2292	ema->match = match;
2293	/* add EM anchor to EM anchors list */
2294	list_add_tail(&ema->ema_list, &lport->ema_list);
2295	kref_get(&mp->kref);
2296	return ema;
2297}
2298EXPORT_SYMBOL(fc_exch_mgr_add);
2299
2300/**
2301 * fc_exch_mgr_destroy() - Destroy an exchange manager
2302 * @kref: The reference to the EM to be destroyed
2303 */
2304static void fc_exch_mgr_destroy(struct kref *kref)
2305{
2306	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2307
2308	mempool_destroy(mp->ep_pool);
2309	free_percpu(mp->pool);
2310	kfree(mp);
2311}
2312
2313/**
2314 * fc_exch_mgr_del() - Delete an EM from a local port's list
2315 * @ema: The exchange manager anchor identifying the EM to be deleted
2316 */
2317void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2318{
2319	/* remove EM anchor from EM anchors list */
2320	list_del(&ema->ema_list);
2321	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2322	kfree(ema);
2323}
2324EXPORT_SYMBOL(fc_exch_mgr_del);
2325
2326/**
2327 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2328 * @src: Source lport to clone exchange managers from
2329 * @dst: New lport that takes references to all the exchange managers
2330 */
2331int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2332{
2333	struct fc_exch_mgr_anchor *ema, *tmp;
2334
2335	list_for_each_entry(ema, &src->ema_list, ema_list) {
2336		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2337			goto err;
2338	}
2339	return 0;
2340err:
2341	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2342		fc_exch_mgr_del(ema);
2343	return -ENOMEM;
2344}
2345EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2346
2347/**
2348 * fc_exch_mgr_alloc() - Allocate an exchange manager
2349 * @lport:   The local port that the new EM will be associated with
2350 * @class:   The default FC class for new exchanges
2351 * @min_xid: The minimum XID for exchanges from the new EM
2352 * @max_xid: The maximum XID for exchanges from the new EM
2353 * @match:   The match routine for the new EM
2354 */
2355struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2356				      enum fc_class class,
2357				      u16 min_xid, u16 max_xid,
2358				      bool (*match)(struct fc_frame *))
2359{
2360	struct fc_exch_mgr *mp;
2361	u16 pool_exch_range;
2362	size_t pool_size;
2363	unsigned int cpu;
2364	struct fc_exch_pool *pool;
2365
2366	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2367	    (min_xid & fc_cpu_mask) != 0) {
2368		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2369			     min_xid, max_xid);
2370		return NULL;
2371	}
2372
2373	/*
2374	 * allocate memory for EM
2375	 */
2376	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2377	if (!mp)
2378		return NULL;
2379
2380	mp->class = class;
2381	/* adjust em exch xid range for offload */
2382	mp->min_xid = min_xid;
2383
2384       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2385	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2386		sizeof(struct fc_exch *);
2387	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2388		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2389			min_xid - 1;
2390	} else {
2391		mp->max_xid = max_xid;
2392		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2393			(fc_cpu_mask + 1);
2394	}
2395
2396	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2397	if (!mp->ep_pool)
2398		goto free_mp;
2399
2400	/*
2401	 * Setup per cpu exch pool with entire exchange id range equally
2402	 * divided across all cpus. The exch pointers array memory is
2403	 * allocated for exch range per pool.
2404	 */
2405	mp->pool_max_index = pool_exch_range - 1;
2406
2407	/*
2408	 * Allocate and initialize per cpu exch pool
2409	 */
2410	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2411	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2412	if (!mp->pool)
2413		goto free_mempool;
2414	for_each_possible_cpu(cpu) {
2415		pool = per_cpu_ptr(mp->pool, cpu);
2416		pool->next_index = 0;
2417		pool->left = FC_XID_UNKNOWN;
2418		pool->right = FC_XID_UNKNOWN;
2419		spin_lock_init(&pool->lock);
2420		INIT_LIST_HEAD(&pool->ex_list);
2421	}
2422
2423	kref_init(&mp->kref);
2424	if (!fc_exch_mgr_add(lport, mp, match)) {
2425		free_percpu(mp->pool);
2426		goto free_mempool;
2427	}
2428
2429	/*
2430	 * Above kref_init() sets mp->kref to 1 and then
2431	 * call to fc_exch_mgr_add incremented mp->kref again,
2432	 * so adjust that extra increment.
2433	 */
2434	kref_put(&mp->kref, fc_exch_mgr_destroy);
2435	return mp;
2436
2437free_mempool:
2438	mempool_destroy(mp->ep_pool);
2439free_mp:
2440	kfree(mp);
2441	return NULL;
2442}
2443EXPORT_SYMBOL(fc_exch_mgr_alloc);
2444
2445/**
2446 * fc_exch_mgr_free() - Free all exchange managers on a local port
2447 * @lport: The local port whose EMs are to be freed
2448 */
2449void fc_exch_mgr_free(struct fc_lport *lport)
2450{
2451	struct fc_exch_mgr_anchor *ema, *next;
2452
2453	flush_workqueue(fc_exch_workqueue);
2454	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2455		fc_exch_mgr_del(ema);
2456}
2457EXPORT_SYMBOL(fc_exch_mgr_free);
2458
2459/**
2460 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2461 * upon 'xid'.
2462 * @f_ctl: f_ctl
2463 * @lport: The local port the frame was received on
2464 * @fh: The received frame header
2465 */
2466static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2467					      struct fc_lport *lport,
2468					      struct fc_frame_header *fh)
2469{
2470	struct fc_exch_mgr_anchor *ema;
2471	u16 xid;
2472
2473	if (f_ctl & FC_FC_EX_CTX)
2474		xid = ntohs(fh->fh_ox_id);
2475	else {
2476		xid = ntohs(fh->fh_rx_id);
2477		if (xid == FC_XID_UNKNOWN)
2478			return list_entry(lport->ema_list.prev,
2479					  typeof(*ema), ema_list);
2480	}
2481
2482	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2483		if ((xid >= ema->mp->min_xid) &&
2484		    (xid <= ema->mp->max_xid))
2485			return ema;
2486	}
2487	return NULL;
2488}
2489/**
2490 * fc_exch_recv() - Handler for received frames
2491 * @lport: The local port the frame was received on
2492 * @fp:	The received frame
2493 */
2494void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2495{
2496	struct fc_frame_header *fh = fc_frame_header_get(fp);
2497	struct fc_exch_mgr_anchor *ema;
2498	u32 f_ctl;
2499
2500	/* lport lock ? */
2501	if (!lport || lport->state == LPORT_ST_DISABLED) {
2502		FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2503			     "has not been initialized correctly\n");
2504		fc_frame_free(fp);
2505		return;
2506	}
2507
2508	f_ctl = ntoh24(fh->fh_f_ctl);
2509	ema = fc_find_ema(f_ctl, lport, fh);
2510	if (!ema) {
2511		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2512				    "fc_ctl <0x%x>, xid <0x%x>\n",
2513				     f_ctl,
2514				     (f_ctl & FC_FC_EX_CTX) ?
2515				     ntohs(fh->fh_ox_id) :
2516				     ntohs(fh->fh_rx_id));
2517		fc_frame_free(fp);
2518		return;
2519	}
2520
2521	/*
2522	 * If frame is marked invalid, just drop it.
2523	 */
2524	switch (fr_eof(fp)) {
2525	case FC_EOF_T:
2526		if (f_ctl & FC_FC_END_SEQ)
2527			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2528		/* fall through */
2529	case FC_EOF_N:
2530		if (fh->fh_type == FC_TYPE_BLS)
2531			fc_exch_recv_bls(ema->mp, fp);
2532		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2533			 FC_FC_EX_CTX)
2534			fc_exch_recv_seq_resp(ema->mp, fp);
2535		else if (f_ctl & FC_FC_SEQ_CTX)
2536			fc_exch_recv_resp(ema->mp, fp);
2537		else	/* no EX_CTX and no SEQ_CTX */
2538			fc_exch_recv_req(lport, ema->mp, fp);
2539		break;
2540	default:
2541		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2542			     fr_eof(fp));
2543		fc_frame_free(fp);
2544	}
2545}
2546EXPORT_SYMBOL(fc_exch_recv);
2547
2548/**
2549 * fc_exch_init() - Initialize the exchange layer for a local port
2550 * @lport: The local port to initialize the exchange layer for
2551 */
2552int fc_exch_init(struct fc_lport *lport)
2553{
2554	if (!lport->tt.seq_start_next)
2555		lport->tt.seq_start_next = fc_seq_start_next;
2556
2557	if (!lport->tt.seq_set_resp)
2558		lport->tt.seq_set_resp = fc_seq_set_resp;
2559
2560	if (!lport->tt.exch_seq_send)
2561		lport->tt.exch_seq_send = fc_exch_seq_send;
2562
2563	if (!lport->tt.seq_send)
2564		lport->tt.seq_send = fc_seq_send;
2565
2566	if (!lport->tt.seq_els_rsp_send)
2567		lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2568
2569	if (!lport->tt.exch_done)
2570		lport->tt.exch_done = fc_exch_done;
2571
2572	if (!lport->tt.exch_mgr_reset)
2573		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2574
2575	if (!lport->tt.seq_exch_abort)
2576		lport->tt.seq_exch_abort = fc_seq_exch_abort;
2577
2578	if (!lport->tt.seq_assign)
2579		lport->tt.seq_assign = fc_seq_assign;
2580
2581	if (!lport->tt.seq_release)
2582		lport->tt.seq_release = fc_seq_release;
2583
2584	return 0;
2585}
2586EXPORT_SYMBOL(fc_exch_init);
2587
2588/**
2589 * fc_setup_exch_mgr() - Setup an exchange manager
2590 */
2591int fc_setup_exch_mgr(void)
2592{
2593	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2594					 0, SLAB_HWCACHE_ALIGN, NULL);
2595	if (!fc_em_cachep)
2596		return -ENOMEM;
2597
2598	/*
2599	 * Initialize fc_cpu_mask and fc_cpu_order. The
2600	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2601	 * to order of 2's * power and order is stored
2602	 * in fc_cpu_order as this is later required in
2603	 * mapping between an exch id and exch array index
2604	 * in per cpu exch pool.
2605	 *
2606	 * This round up is required to align fc_cpu_mask
2607	 * to exchange id's lower bits such that all incoming
2608	 * frames of an exchange gets delivered to the same
2609	 * cpu on which exchange originated by simple bitwise
2610	 * AND operation between fc_cpu_mask and exchange id.
2611	 */
2612	fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2613	fc_cpu_mask = (1 << fc_cpu_order) - 1;
2614
2615	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2616	if (!fc_exch_workqueue)
2617		goto err;
2618	return 0;
2619err:
2620	kmem_cache_destroy(fc_em_cachep);
2621	return -ENOMEM;
2622}
2623
2624/**
2625 * fc_destroy_exch_mgr() - Destroy an exchange manager
2626 */
2627void fc_destroy_exch_mgr(void)
2628{
2629	destroy_workqueue(fc_exch_workqueue);
2630	kmem_cache_destroy(fc_em_cachep);
2631}
2632