[go: nahoru, domu]

1/*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6 *
7 * This driver is derived from the Linux sym53c8xx driver.
8 * Copyright (C) 1998-2000  Gerard Roudier
9 *
10 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11 * a port of the FreeBSD ncr driver to Linux-1.2.13.
12 *
13 * The original ncr driver has been written for 386bsd and FreeBSD by
14 *         Wolfgang Stanglmeier        <wolf@cologne.de>
15 *         Stefan Esser                <se@mi.Uni-Koeln.de>
16 * Copyright (C) 1994  Wolfgang Stanglmeier
17 *
18 * Other major contributions:
19 *
20 * NVRAM detection and reading.
21 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
22 *
23 *-----------------------------------------------------------------------------
24 *
25 * This program is free software; you can redistribute it and/or modify
26 * it under the terms of the GNU General Public License as published by
27 * the Free Software Foundation; either version 2 of the License, or
28 * (at your option) any later version.
29 *
30 * This program is distributed in the hope that it will be useful,
31 * but WITHOUT ANY WARRANTY; without even the implied warranty of
32 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
33 * GNU General Public License for more details.
34 *
35 * You should have received a copy of the GNU General Public License
36 * along with this program; if not, write to the Free Software
37 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
38 */
39
40#include <linux/gfp.h>
41
42#ifndef SYM_HIPD_H
43#define SYM_HIPD_H
44
45/*
46 *  Generic driver options.
47 *
48 *  They may be defined in platform specific headers, if they
49 *  are useful.
50 *
51 *    SYM_OPT_HANDLE_DEVICE_QUEUEING
52 *        When this option is set, the driver will use a queue per
53 *        device and handle QUEUE FULL status requeuing internally.
54 *
55 *    SYM_OPT_LIMIT_COMMAND_REORDERING
56 *        When this option is set, the driver tries to limit tagged
57 *        command reordering to some reasonable value.
58 *        (set for Linux)
59 */
60#if 0
61#define SYM_OPT_HANDLE_DEVICE_QUEUEING
62#define SYM_OPT_LIMIT_COMMAND_REORDERING
63#endif
64
65/*
66 *  Active debugging tags and verbosity.
67 *  Both DEBUG_FLAGS and sym_verbose can be redefined
68 *  by the platform specific code to something else.
69 */
70#define DEBUG_ALLOC	(0x0001)
71#define DEBUG_PHASE	(0x0002)
72#define DEBUG_POLL	(0x0004)
73#define DEBUG_QUEUE	(0x0008)
74#define DEBUG_RESULT	(0x0010)
75#define DEBUG_SCATTER	(0x0020)
76#define DEBUG_SCRIPT	(0x0040)
77#define DEBUG_TINY	(0x0080)
78#define DEBUG_TIMING	(0x0100)
79#define DEBUG_NEGO	(0x0200)
80#define DEBUG_TAGS	(0x0400)
81#define DEBUG_POINTER	(0x0800)
82
83#ifndef DEBUG_FLAGS
84#define DEBUG_FLAGS	(0x0000)
85#endif
86
87#ifndef sym_verbose
88#define sym_verbose	(np->verbose)
89#endif
90
91/*
92 *  These ones should have been already defined.
93 */
94#ifndef assert
95#define	assert(expression) { \
96	if (!(expression)) { \
97		(void)panic( \
98			"assertion \"%s\" failed: file \"%s\", line %d\n", \
99			#expression, \
100			__FILE__, __LINE__); \
101	} \
102}
103#endif
104
105/*
106 *  Number of tasks per device we want to handle.
107 */
108#if	SYM_CONF_MAX_TAG_ORDER > 8
109#error	"more than 256 tags per logical unit not allowed."
110#endif
111#define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
112
113/*
114 *  Donnot use more tasks that we can handle.
115 */
116#ifndef	SYM_CONF_MAX_TAG
117#define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
118#endif
119#if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
120#undef	SYM_CONF_MAX_TAG
121#define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
122#endif
123
124/*
125 *    This one means 'NO TAG for this job'
126 */
127#define NO_TAG	(256)
128
129/*
130 *  Number of SCSI targets.
131 */
132#if	SYM_CONF_MAX_TARGET > 16
133#error	"more than 16 targets not allowed."
134#endif
135
136/*
137 *  Number of logical units per target.
138 */
139#if	SYM_CONF_MAX_LUN > 64
140#error	"more than 64 logical units per target not allowed."
141#endif
142
143/*
144 *    Asynchronous pre-scaler (ns). Shall be 40 for
145 *    the SCSI timings to be compliant.
146 */
147#define	SYM_CONF_MIN_ASYNC (40)
148
149
150/*
151 * MEMORY ALLOCATOR.
152 */
153
154#define SYM_MEM_WARN	1	/* Warn on failed operations */
155
156#define SYM_MEM_PAGE_ORDER 0	/* 1 PAGE  maximum */
157#define SYM_MEM_CLUSTER_SHIFT	(PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
158#define SYM_MEM_FREE_UNUSED	/* Free unused pages immediately */
159/*
160 *  Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
161 *  Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
162 *  (1 PAGE at a time is just fine).
163 */
164#define SYM_MEM_SHIFT	4
165#define SYM_MEM_CLUSTER_SIZE	(1UL << SYM_MEM_CLUSTER_SHIFT)
166#define SYM_MEM_CLUSTER_MASK	(SYM_MEM_CLUSTER_SIZE-1)
167
168/*
169 *  Number of entries in the START and DONE queues.
170 *
171 *  We limit to 1 PAGE in order to succeed allocation of
172 *  these queues. Each entry is 8 bytes long (2 DWORDS).
173 */
174#ifdef	SYM_CONF_MAX_START
175#define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
176#else
177#define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
178#define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
179#endif
180
181#if	SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8
182#undef	SYM_CONF_MAX_QUEUE
183#define	SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)
184#undef	SYM_CONF_MAX_START
185#define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
186#endif
187
188/*
189 *  For this one, we want a short name :-)
190 */
191#define MAX_QUEUE	SYM_CONF_MAX_QUEUE
192
193/*
194 *  Common definitions for both bus space based and legacy IO methods.
195 */
196
197#define INB_OFF(np, o)		ioread8(np->s.ioaddr + (o))
198#define INW_OFF(np, o)		ioread16(np->s.ioaddr + (o))
199#define INL_OFF(np, o)		ioread32(np->s.ioaddr + (o))
200
201#define OUTB_OFF(np, o, val)	iowrite8((val), np->s.ioaddr + (o))
202#define OUTW_OFF(np, o, val)	iowrite16((val), np->s.ioaddr + (o))
203#define OUTL_OFF(np, o, val)	iowrite32((val), np->s.ioaddr + (o))
204
205#define INB(np, r)		INB_OFF(np, offsetof(struct sym_reg, r))
206#define INW(np, r)		INW_OFF(np, offsetof(struct sym_reg, r))
207#define INL(np, r)		INL_OFF(np, offsetof(struct sym_reg, r))
208
209#define OUTB(np, r, v)		OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
210#define OUTW(np, r, v)		OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
211#define OUTL(np, r, v)		OUTL_OFF(np, offsetof(struct sym_reg, r), (v))
212
213#define OUTONB(np, r, m)	OUTB(np, r, INB(np, r) | (m))
214#define OUTOFFB(np, r, m)	OUTB(np, r, INB(np, r) & ~(m))
215#define OUTONW(np, r, m)	OUTW(np, r, INW(np, r) | (m))
216#define OUTOFFW(np, r, m)	OUTW(np, r, INW(np, r) & ~(m))
217#define OUTONL(np, r, m)	OUTL(np, r, INL(np, r) | (m))
218#define OUTOFFL(np, r, m)	OUTL(np, r, INL(np, r) & ~(m))
219
220/*
221 *  We normally want the chip to have a consistent view
222 *  of driver internal data structures when we restart it.
223 *  Thus these macros.
224 */
225#define OUTL_DSP(np, v)				\
226	do {					\
227		MEMORY_WRITE_BARRIER();		\
228		OUTL(np, nc_dsp, (v));		\
229	} while (0)
230
231#define OUTONB_STD()				\
232	do {					\
233		MEMORY_WRITE_BARRIER();		\
234		OUTONB(np, nc_dcntl, (STD|NOCOM));	\
235	} while (0)
236
237/*
238 *  Command control block states.
239 */
240#define HS_IDLE		(0)
241#define HS_BUSY		(1)
242#define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
243#define HS_DISCONNECT	(3)	/* Disconnected by target */
244#define HS_WAIT		(4)	/* waiting for resource	  */
245
246#define HS_DONEMASK	(0x80)
247#define HS_COMPLETE	(4|HS_DONEMASK)
248#define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
249#define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
250#define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
251
252/*
253 *  Software Interrupt Codes
254 */
255#define	SIR_BAD_SCSI_STATUS	(1)
256#define	SIR_SEL_ATN_NO_MSG_OUT	(2)
257#define	SIR_MSG_RECEIVED	(3)
258#define	SIR_MSG_WEIRD		(4)
259#define	SIR_NEGO_FAILED		(5)
260#define	SIR_NEGO_PROTO		(6)
261#define	SIR_SCRIPT_STOPPED	(7)
262#define	SIR_REJECT_TO_SEND	(8)
263#define	SIR_SWIDE_OVERRUN	(9)
264#define	SIR_SODL_UNDERRUN	(10)
265#define	SIR_RESEL_NO_MSG_IN	(11)
266#define	SIR_RESEL_NO_IDENTIFY	(12)
267#define	SIR_RESEL_BAD_LUN	(13)
268#define	SIR_TARGET_SELECTED	(14)
269#define	SIR_RESEL_BAD_I_T_L	(15)
270#define	SIR_RESEL_BAD_I_T_L_Q	(16)
271#define	SIR_ABORT_SENT		(17)
272#define	SIR_RESEL_ABORTED	(18)
273#define	SIR_MSG_OUT_DONE	(19)
274#define	SIR_COMPLETE_ERROR	(20)
275#define	SIR_DATA_OVERRUN	(21)
276#define	SIR_BAD_PHASE		(22)
277#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
278#define	SIR_DMAP_DIRTY		(23)
279#define	SIR_MAX			(23)
280#else
281#define	SIR_MAX			(22)
282#endif
283
284/*
285 *  Extended error bit codes.
286 *  xerr_status field of struct sym_ccb.
287 */
288#define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
289#define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
290#define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
291#define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
292#define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
293
294/*
295 *  Negotiation status.
296 *  nego_status field of struct sym_ccb.
297 */
298#define NS_SYNC		(1)
299#define NS_WIDE		(2)
300#define NS_PPR		(3)
301
302/*
303 *  A CCB hashed table is used to retrieve CCB address
304 *  from DSA value.
305 */
306#define CCB_HASH_SHIFT		8
307#define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
308#define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
309#if 1
310#define CCB_HASH_CODE(dsa)	\
311	(((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
312#else
313#define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
314#endif
315
316#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
317/*
318 *  We may want to use segment registers for 64 bit DMA.
319 *  16 segments registers -> up to 64 GB addressable.
320 */
321#define SYM_DMAP_SHIFT	(4)
322#define SYM_DMAP_SIZE	(1u<<SYM_DMAP_SHIFT)
323#define SYM_DMAP_MASK	(SYM_DMAP_SIZE-1)
324#endif
325
326/*
327 *  Device flags.
328 */
329#define SYM_DISC_ENABLED	(1)
330#define SYM_TAGS_ENABLED	(1<<1)
331#define SYM_SCAN_BOOT_DISABLED	(1<<2)
332#define SYM_SCAN_LUNS_DISABLED	(1<<3)
333
334/*
335 *  Host adapter miscellaneous flags.
336 */
337#define SYM_AVOID_BUS_RESET	(1)
338
339/*
340 *  Misc.
341 */
342#define SYM_SNOOP_TIMEOUT (10000000)
343#define BUS_8_BIT	0
344#define BUS_16_BIT	1
345
346/*
347 *  Gather negotiable parameters value
348 */
349struct sym_trans {
350	u8 period;
351	u8 offset;
352	unsigned int width:1;
353	unsigned int iu:1;
354	unsigned int dt:1;
355	unsigned int qas:1;
356	unsigned int check_nego:1;
357	unsigned int renego:2;
358};
359
360/*
361 *  Global TCB HEADER.
362 *
363 *  Due to lack of indirect addressing on earlier NCR chips,
364 *  this substructure is copied from the TCB to a global
365 *  address after selection.
366 *  For SYMBIOS chips that support LOAD/STORE this copy is
367 *  not needed and thus not performed.
368 */
369struct sym_tcbh {
370	/*
371	 *  Scripts bus addresses of LUN table accessed from scripts.
372	 *  LUN #0 is a special case, since multi-lun devices are rare,
373	 *  and we we want to speed-up the general case and not waste
374	 *  resources.
375	 */
376	u32	luntbl_sa;	/* bus address of this table	*/
377	u32	lun0_sa;	/* bus address of LCB #0	*/
378	/*
379	 *  Actual SYNC/WIDE IO registers value for this target.
380	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
381	 *  so have alignment constraints.
382	 */
383/*0*/	u_char	uval;		/* -> SCNTL4 register		*/
384/*1*/	u_char	sval;		/* -> SXFER  io register	*/
385/*2*/	u_char	filler1;
386/*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
387};
388
389/*
390 *  Target Control Block
391 */
392struct sym_tcb {
393	/*
394	 *  TCB header.
395	 *  Assumed at offset 0.
396	 */
397/*0*/	struct sym_tcbh head;
398
399	/*
400	 *  LUN table used by the SCRIPTS processor.
401	 *  An array of bus addresses is used on reselection.
402	 */
403	u32	*luntbl;	/* LCBs bus address table	*/
404	int	nlcb;		/* Number of valid LCBs (including LUN #0) */
405
406	/*
407	 *  LUN table used by the C code.
408	 */
409	struct sym_lcb *lun0p;		/* LCB of LUN #0 (usual case)	*/
410#if SYM_CONF_MAX_LUN > 1
411	struct sym_lcb **lunmp;		/* Other LCBs [1..MAX_LUN]	*/
412#endif
413
414#ifdef	SYM_HAVE_STCB
415	/*
416	 *  O/S specific data structure.
417	 */
418	struct sym_stcb s;
419#endif
420
421	/* Transfer goal */
422	struct sym_trans tgoal;
423
424	/* Last printed transfer speed */
425	struct sym_trans tprint;
426
427	/*
428	 * Keep track of the CCB used for the negotiation in order
429	 * to ensure that only 1 negotiation is queued at a time.
430	 */
431	struct sym_ccb *  nego_cp;	/* CCB used for the nego		*/
432
433	/*
434	 *  Set when we want to reset the device.
435	 */
436	u_char	to_reset;
437
438	/*
439	 *  Other user settable limits and options.
440	 *  These limits are read from the NVRAM if present.
441	 */
442	unsigned char	usrflags;
443	unsigned char	usr_period;
444	unsigned char	usr_width;
445	unsigned short	usrtags;
446	struct scsi_target *starget;
447};
448
449/*
450 *  Global LCB HEADER.
451 *
452 *  Due to lack of indirect addressing on earlier NCR chips,
453 *  this substructure is copied from the LCB to a global
454 *  address after selection.
455 *  For SYMBIOS chips that support LOAD/STORE this copy is
456 *  not needed and thus not performed.
457 */
458struct sym_lcbh {
459	/*
460	 *  SCRIPTS address jumped by SCRIPTS on reselection.
461	 *  For not probed logical units, this address points to
462	 *  SCRIPTS that deal with bad LU handling (must be at
463	 *  offset zero of the LCB for that reason).
464	 */
465/*0*/	u32	resel_sa;
466
467	/*
468	 *  Task (bus address of a CCB) read from SCRIPTS that points
469	 *  to the unique ITL nexus allowed to be disconnected.
470	 */
471	u32	itl_task_sa;
472
473	/*
474	 *  Task table bus address (read from SCRIPTS).
475	 */
476	u32	itlq_tbl_sa;
477};
478
479/*
480 *  Logical Unit Control Block
481 */
482struct sym_lcb {
483	/*
484	 *  TCB header.
485	 *  Assumed at offset 0.
486	 */
487/*0*/	struct sym_lcbh head;
488
489	/*
490	 *  Task table read from SCRIPTS that contains pointers to
491	 *  ITLQ nexuses. The bus address read from SCRIPTS is
492	 *  inside the header.
493	 */
494	u32	*itlq_tbl;	/* Kernel virtual address	*/
495
496	/*
497	 *  Busy CCBs management.
498	 */
499	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
500	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
501
502	/*
503	 *  Circular tag allocation buffer.
504	 */
505	u_short	ia_tag;		/* Tag allocation index		*/
506	u_short	if_tag;		/* Tag release index		*/
507	u_char	*cb_tags;	/* Circular tags buffer		*/
508
509	/*
510	 *  O/S specific data structure.
511	 */
512#ifdef	SYM_HAVE_SLCB
513	struct sym_slcb s;
514#endif
515
516#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
517	/*
518	 *  Optionnaly the driver can handle device queueing,
519	 *  and requeues internally command to redo.
520	 */
521	SYM_QUEHEAD waiting_ccbq;
522	SYM_QUEHEAD started_ccbq;
523	int	num_sgood;
524	u_short	started_tags;
525	u_short	started_no_tag;
526	u_short	started_max;
527	u_short	started_limit;
528#endif
529
530#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
531	/*
532	 *  Optionally the driver can try to prevent SCSI
533	 *  IOs from being reordered too much.
534	 */
535	u_char		tags_si;	/* Current index to tags sum	*/
536	u_short		tags_sum[2];	/* Tags sum counters		*/
537	u_short		tags_since;	/* # of tags since last switch	*/
538#endif
539
540	/*
541	 *  Set when we want to clear all tasks.
542	 */
543	u_char to_clear;
544
545	/*
546	 *  Capabilities.
547	 */
548	u_char	user_flags;
549	u_char	curr_flags;
550};
551
552/*
553 *  Action from SCRIPTS on a task.
554 *  Is part of the CCB, but is also used separately to plug
555 *  error handling action to perform from SCRIPTS.
556 */
557struct sym_actscr {
558	u32	start;		/* Jumped by SCRIPTS after selection	*/
559	u32	restart;	/* Jumped by SCRIPTS on relection	*/
560};
561
562/*
563 *  Phase mismatch context.
564 *
565 *  It is part of the CCB and is used as parameters for the
566 *  DATA pointer. We need two contexts to handle correctly the
567 *  SAVED DATA POINTER.
568 */
569struct sym_pmc {
570	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
571	u32	ret;		/* SCRIPT return address	*/
572};
573
574/*
575 *  LUN control block lookup.
576 *  We use a direct pointer for LUN #0, and a table of
577 *  pointers which is only allocated for devices that support
578 *  LUN(s) > 0.
579 */
580#if SYM_CONF_MAX_LUN <= 1
581#define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
582#else
583#define sym_lp(tp, lun) \
584	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[((u8)lun)] : NULL
585#endif
586
587/*
588 *  Status are used by the host and the script processor.
589 *
590 *  The last four bytes (status[4]) are copied to the
591 *  scratchb register (declared as scr0..scr3) just after the
592 *  select/reselect, and copied back just after disconnecting.
593 *  Inside the script the XX_REG are used.
594 */
595
596/*
597 *  Last four bytes (script)
598 */
599#define  HX_REG	scr0
600#define  HX_PRT	nc_scr0
601#define  HS_REG	scr1
602#define  HS_PRT	nc_scr1
603#define  SS_REG	scr2
604#define  SS_PRT	nc_scr2
605#define  HF_REG	scr3
606#define  HF_PRT	nc_scr3
607
608/*
609 *  Last four bytes (host)
610 */
611#define  host_xflags   phys.head.status[0]
612#define  host_status   phys.head.status[1]
613#define  ssss_status   phys.head.status[2]
614#define  host_flags    phys.head.status[3]
615
616/*
617 *  Host flags
618 */
619#define HF_IN_PM0	1u
620#define HF_IN_PM1	(1u<<1)
621#define HF_ACT_PM	(1u<<2)
622#define HF_DP_SAVED	(1u<<3)
623#define HF_SENSE	(1u<<4)
624#define HF_EXT_ERR	(1u<<5)
625#define HF_DATA_IN	(1u<<6)
626#ifdef SYM_CONF_IARB_SUPPORT
627#define HF_HINT_IARB	(1u<<7)
628#endif
629
630/*
631 *  More host flags
632 */
633#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
634#define	HX_DMAP_DIRTY	(1u<<7)
635#endif
636
637/*
638 *  Global CCB HEADER.
639 *
640 *  Due to lack of indirect addressing on earlier NCR chips,
641 *  this substructure is copied from the ccb to a global
642 *  address after selection (or reselection) and copied back
643 *  before disconnect.
644 *  For SYMBIOS chips that support LOAD/STORE this copy is
645 *  not needed and thus not performed.
646 */
647
648struct sym_ccbh {
649	/*
650	 *  Start and restart SCRIPTS addresses (must be at 0).
651	 */
652/*0*/	struct sym_actscr go;
653
654	/*
655	 *  SCRIPTS jump address that deal with data pointers.
656	 *  'savep' points to the position in the script responsible
657	 *  for the actual transfer of data.
658	 *  It's written on reception of a SAVE_DATA_POINTER message.
659	 */
660	u32	savep;		/* Jump address to saved data pointer	*/
661	u32	lastp;		/* SCRIPTS address at end of data	*/
662
663	/*
664	 *  Status fields.
665	 */
666	u8	status[4];
667};
668
669/*
670 *  GET/SET the value of the data pointer used by SCRIPTS.
671 *
672 *  We must distinguish between the LOAD/STORE-based SCRIPTS
673 *  that use directly the header in the CCB, and the NCR-GENERIC
674 *  SCRIPTS that use the copy of the header in the HCB.
675 */
676#if	SYM_CONF_GENERIC_SUPPORT
677#define sym_set_script_dp(np, cp, dp)				\
678	do {							\
679		if (np->features & FE_LDSTR)			\
680			cp->phys.head.lastp = cpu_to_scr(dp);	\
681		else						\
682			np->ccb_head.lastp = cpu_to_scr(dp);	\
683	} while (0)
684#define sym_get_script_dp(np, cp) 				\
685	scr_to_cpu((np->features & FE_LDSTR) ?			\
686		cp->phys.head.lastp : np->ccb_head.lastp)
687#else
688#define sym_set_script_dp(np, cp, dp)				\
689	do {							\
690		cp->phys.head.lastp = cpu_to_scr(dp);		\
691	} while (0)
692
693#define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
694#endif
695
696/*
697 *  Data Structure Block
698 *
699 *  During execution of a ccb by the script processor, the
700 *  DSA (data structure address) register points to this
701 *  substructure of the ccb.
702 */
703struct sym_dsb {
704	/*
705	 *  CCB header.
706	 *  Also assumed at offset 0 of the sym_ccb structure.
707	 */
708/*0*/	struct sym_ccbh head;
709
710	/*
711	 *  Phase mismatch contexts.
712	 *  We need two to handle correctly the SAVED DATA POINTER.
713	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
714	 *  for address calculation from SCRIPTS.
715	 */
716	struct sym_pmc pm0;
717	struct sym_pmc pm1;
718
719	/*
720	 *  Table data for Script
721	 */
722	struct sym_tblsel  select;
723	struct sym_tblmove smsg;
724	struct sym_tblmove smsg_ext;
725	struct sym_tblmove cmd;
726	struct sym_tblmove sense;
727	struct sym_tblmove wresid;
728	struct sym_tblmove data [SYM_CONF_MAX_SG];
729};
730
731/*
732 *  Our Command Control Block
733 */
734struct sym_ccb {
735	/*
736	 *  This is the data structure which is pointed by the DSA
737	 *  register when it is executed by the script processor.
738	 *  It must be the first entry.
739	 */
740	struct sym_dsb phys;
741
742	/*
743	 *  Pointer to CAM ccb and related stuff.
744	 */
745	struct scsi_cmnd *cmd;	/* CAM scsiio ccb		*/
746	u8	cdb_buf[16];	/* Copy of CDB			*/
747#define	SYM_SNS_BBUF_LEN 32
748	u8	sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
749	int	data_len;	/* Total data length		*/
750	int	segments;	/* Number of SG segments	*/
751
752	u8	order;		/* Tag type (if tagged command)	*/
753	unsigned char odd_byte_adjustment;	/* odd-sized req on wide bus */
754
755	u_char	nego_status;	/* Negotiation status		*/
756	u_char	xerr_status;	/* Extended error flags		*/
757	u32	extra_bytes;	/* Extraneous bytes transferred	*/
758
759	/*
760	 *  Message areas.
761	 *  We prepare a message to be sent after selection.
762	 *  We may use a second one if the command is rescheduled
763	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
764	 *  Contents are IDENTIFY and SIMPLE_TAG.
765	 *  While negotiating sync or wide transfer,
766	 *  a SDTR or WDTR message is appended.
767	 */
768	u_char	scsi_smsg [12];
769	u_char	scsi_smsg2[12];
770
771	/*
772	 *  Auto request sense related fields.
773	 */
774	u_char	sensecmd[6];	/* Request Sense command	*/
775	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
776	u_char	sv_xerr_status;	/* Saved extended status	*/
777	int	sv_resid;	/* Saved residual		*/
778
779	/*
780	 *  Other fields.
781	 */
782	u32	ccb_ba;		/* BUS address of this CCB	*/
783	u_short	tag;		/* Tag for this transfer	*/
784				/*  NO_TAG means no tag		*/
785	u_char	target;
786	u_char	lun;
787	struct sym_ccb *link_ccbh;	/* Host adapter CCB hash chain	*/
788	SYM_QUEHEAD link_ccbq;	/* Link to free/busy CCB queue	*/
789	u32	startp;		/* Initial data pointer		*/
790	u32	goalp;		/* Expected last data pointer	*/
791	int	ext_sg;		/* Extreme data pointer, used	*/
792	int	ext_ofs;	/*  to calculate the residual.	*/
793#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
794	SYM_QUEHEAD link2_ccbq;	/* Link for device queueing	*/
795	u_char	started;	/* CCB queued to the squeue	*/
796#endif
797	u_char	to_abort;	/* Want this IO to be aborted	*/
798#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
799	u_char	tags_si;	/* Lun tags sum index (0,1)	*/
800#endif
801};
802
803#define CCB_BA(cp,lbl)	cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
804
805typedef struct device *m_pool_ident_t;
806
807/*
808 *  Host Control Block
809 */
810struct sym_hcb {
811	/*
812	 *  Global headers.
813	 *  Due to poorness of addressing capabilities, earlier
814	 *  chips (810, 815, 825) copy part of the data structures
815	 *  (CCB, TCB and LCB) in fixed areas.
816	 */
817#if	SYM_CONF_GENERIC_SUPPORT
818	struct sym_ccbh	ccb_head;
819	struct sym_tcbh	tcb_head;
820	struct sym_lcbh	lcb_head;
821#endif
822	/*
823	 *  Idle task and invalid task actions and
824	 *  their bus addresses.
825	 */
826	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
827	u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
828
829	/*
830	 *  Dummy lun table to protect us against target
831	 *  returning bad lun number on reselection.
832	 */
833	u32	*badluntbl;	/* Table physical address	*/
834	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
835
836	/*
837	 *  Bus address of this host control block.
838	 */
839	u32	hcb_ba;
840
841	/*
842	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
843	 *  The START_RAM64 script loads the MMRS and MMWS from this
844	 *  field.
845	 */
846	u32	scr_ram_seg;
847
848	/*
849	 *  Initial value of some IO register bits.
850	 *  These values are assumed to have been set by BIOS, and may
851	 *  be used to probe adapter implementation differences.
852	 */
853	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
854		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
855		sv_stest1;
856
857	/*
858	 *  Actual initial value of IO register bits used by the
859	 *  driver. They are loaded at initialisation according to
860	 *  features that are to be enabled/disabled.
861	 */
862	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
863		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
864
865	/*
866	 *  Target data.
867	 */
868	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
869
870	/*
871	 *  Target control block bus address array used by the SCRIPT
872	 *  on reselection.
873	 */
874	u32		*targtbl;
875	u32		targtbl_ba;
876
877	/*
878	 *  DMA pool handle for this HBA.
879	 */
880	m_pool_ident_t	bus_dmat;
881
882	/*
883	 *  O/S specific data structure
884	 */
885	struct sym_shcb s;
886
887	/*
888	 *  Physical bus addresses of the chip.
889	 */
890	u32		mmio_ba;	/* MMIO 32 bit BUS address	*/
891	u32		ram_ba;		/* RAM 32 bit BUS address	*/
892
893	/*
894	 *  SCRIPTS virtual and physical bus addresses.
895	 *  'script'  is loaded in the on-chip RAM if present.
896	 *  'scripth' stays in main memory for all chips except the
897	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
898	 */
899	u_char		*scripta0;	/* Copy of scripts A, B, Z	*/
900	u_char		*scriptb0;
901	u_char		*scriptz0;
902	u32		scripta_ba;	/* Actual scripts A, B, Z	*/
903	u32		scriptb_ba;	/* 32 bit bus addresses.	*/
904	u32		scriptz_ba;
905	u_short		scripta_sz;	/* Actual size of script A, B, Z*/
906	u_short		scriptb_sz;
907	u_short		scriptz_sz;
908
909	/*
910	 *  Bus addresses, setup and patch methods for
911	 *  the selected firmware.
912	 */
913	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
914	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
915	struct sym_fwz_ba fwz_bas;	/* Useful SCRIPTZ bus addresses	*/
916	void		(*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
917	void		(*fw_patch)(struct Scsi_Host *);
918	char		*fw_name;
919
920	/*
921	 *  General controller parameters and configuration.
922	 */
923	u_int	features;	/* Chip features map		*/
924	u_char	myaddr;		/* SCSI id of the adapter	*/
925	u_char	maxburst;	/* log base 2 of dwords burst	*/
926	u_char	maxwide;	/* Maximum transfer width	*/
927	u_char	minsync;	/* Min sync period factor (ST)	*/
928	u_char	maxsync;	/* Max sync period factor (ST)	*/
929	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
930	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
931	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
932	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
933	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
934	u_char	clock_divn;	/* Number of clock divisors	*/
935	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
936	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
937	/*
938	 *  Start queue management.
939	 *  It is filled up by the host processor and accessed by the
940	 *  SCRIPTS processor in order to start SCSI commands.
941	 */
942	volatile		/* Prevent code optimizations	*/
943	u32	*squeue;	/* Start queue virtual address	*/
944	u32	squeue_ba;	/* Start queue BUS address	*/
945	u_short	squeueput;	/* Next free slot of the queue	*/
946	u_short	actccbs;	/* Number of allocated CCBs	*/
947
948	/*
949	 *  Command completion queue.
950	 *  It is the same size as the start queue to avoid overflow.
951	 */
952	u_short	dqueueget;	/* Next position to scan	*/
953	volatile		/* Prevent code optimizations	*/
954	u32	*dqueue;	/* Completion (done) queue	*/
955	u32	dqueue_ba;	/* Done queue BUS address	*/
956
957	/*
958	 *  Miscellaneous buffers accessed by the scripts-processor.
959	 *  They shall be DWORD aligned, because they may be read or
960	 *  written with a script command.
961	 */
962	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
963	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
964	u32		lastmsg;	/* Last SCSI message sent	*/
965	u32		scratch;	/* Scratch for SCSI receive	*/
966					/* Also used for cache test 	*/
967	/*
968	 *  Miscellaneous configuration and status parameters.
969	 */
970	u_char		usrflags;	/* Miscellaneous user flags	*/
971	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
972	u_char		verbose;	/* Verbosity for this controller*/
973
974	/*
975	 *  CCB lists and queue.
976	 */
977	struct sym_ccb **ccbh;			/* CCBs hashed by DSA value	*/
978					/* CCB_HASH_SIZE lists of CCBs	*/
979	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
980	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
981
982	/*
983	 *  During error handling and/or recovery,
984	 *  active CCBs that are to be completed with
985	 *  error or requeued are moved from the busy_ccbq
986	 *  to the comp_ccbq prior to completion.
987	 */
988	SYM_QUEHEAD	comp_ccbq;
989
990#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
991	SYM_QUEHEAD	dummy_ccbq;
992#endif
993
994	/*
995	 *  IMMEDIATE ARBITRATION (IARB) control.
996	 *
997	 *  We keep track in 'last_cp' of the last CCB that has been
998	 *  queued to the SCRIPTS processor and clear 'last_cp' when
999	 *  this CCB completes. If last_cp is not zero at the moment
1000	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1001	 *  used by the SCRIPTS as a hint for setting IARB.
1002	 *  We donnot set more than 'iarb_max' consecutive hints for
1003	 *  IARB in order to leave devices a chance to reselect.
1004	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1005	 */
1006#ifdef SYM_CONF_IARB_SUPPORT
1007	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1008	u_short		iarb_count;	/* Actual # of these hints	*/
1009	struct sym_ccb *	last_cp;
1010#endif
1011
1012	/*
1013	 *  Command abort handling.
1014	 *  We need to synchronize tightly with the SCRIPTS
1015	 *  processor in order to handle things correctly.
1016	 */
1017	u_char		abrt_msg[4];	/* Message to send buffer	*/
1018	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1019	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1020	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1021
1022	/*
1023	 *  64 bit DMA handling.
1024	 */
1025#if	SYM_CONF_DMA_ADDRESSING_MODE != 0
1026	u_char	use_dac;		/* Use PCI DAC cycles		*/
1027#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1028	u_char	dmap_dirty;		/* Dma segments registers dirty	*/
1029	u32	dmap_bah[SYM_DMAP_SIZE];/* Segment registers map	*/
1030#endif
1031#endif
1032};
1033
1034#if SYM_CONF_DMA_ADDRESSING_MODE == 0
1035#define use_dac(np)	0
1036#define set_dac(np)	do { } while (0)
1037#else
1038#define use_dac(np)	(np)->use_dac
1039#define set_dac(np)	(np)->use_dac = 1
1040#endif
1041
1042#define HCB_BA(np, lbl)	(np->hcb_ba + offsetof(struct sym_hcb, lbl))
1043
1044
1045/*
1046 *  FIRMWARES (sym_fw.c)
1047 */
1048struct sym_fw * sym_find_firmware(struct sym_chip *chip);
1049void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);
1050
1051/*
1052 *  Driver methods called from O/S specific code.
1053 */
1054char *sym_driver_name(void);
1055void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
1056int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
1057struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
1058#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1059void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
1060#else
1061void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
1062#endif
1063void sym_start_up(struct Scsi_Host *, int reason);
1064irqreturn_t sym_interrupt(struct Scsi_Host *);
1065int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
1066struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
1067void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
1068struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
1069int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln);
1070int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
1071int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
1072int sym_reset_scsi_target(struct sym_hcb *np, int target);
1073void sym_hcb_free(struct sym_hcb *np);
1074int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);
1075
1076/*
1077 *  Build a scatter/gather entry.
1078 *
1079 *  For 64 bit systems, we use the 8 upper bits of the size field
1080 *  to provide bus address bits 32-39 to the SCRIPTS processor.
1081 *  This allows the 895A, 896, 1010 to address up to 1 TB of memory.
1082 */
1083
1084#if   SYM_CONF_DMA_ADDRESSING_MODE == 0
1085#define DMA_DAC_MASK	DMA_BIT_MASK(32)
1086#define sym_build_sge(np, data, badd, len)	\
1087do {						\
1088	(data)->addr = cpu_to_scr(badd);	\
1089	(data)->size = cpu_to_scr(len);		\
1090} while (0)
1091#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
1092#define DMA_DAC_MASK	DMA_BIT_MASK(40)
1093#define sym_build_sge(np, data, badd, len)				\
1094do {									\
1095	(data)->addr = cpu_to_scr(badd);				\
1096	(data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len);	\
1097} while (0)
1098#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
1099#define DMA_DAC_MASK	DMA_BIT_MASK(64)
1100int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
1101static inline void
1102sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)
1103{
1104	u32 h = (badd>>32);
1105	int s = (h&SYM_DMAP_MASK);
1106
1107	if (h != np->dmap_bah[s])
1108		goto bad;
1109good:
1110	(data)->addr = cpu_to_scr(badd);
1111	(data)->size = cpu_to_scr((s<<24) + len);
1112	return;
1113bad:
1114	s = sym_lookup_dmap(np, h, s);
1115	goto good;
1116}
1117#else
1118#error "Unsupported DMA addressing mode"
1119#endif
1120
1121/*
1122 *  MEMORY ALLOCATOR.
1123 */
1124
1125#define sym_get_mem_cluster()	\
1126	(void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER)
1127#define sym_free_mem_cluster(p)	\
1128	free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER)
1129
1130/*
1131 *  Link between free memory chunks of a given size.
1132 */
1133typedef struct sym_m_link {
1134	struct sym_m_link *next;
1135} *m_link_p;
1136
1137/*
1138 *  Virtual to bus physical translation for a given cluster.
1139 *  Such a structure is only useful with DMA abstraction.
1140 */
1141typedef struct sym_m_vtob {	/* Virtual to Bus address translation */
1142	struct sym_m_vtob *next;
1143	void *vaddr;		/* Virtual address */
1144	dma_addr_t baddr;	/* Bus physical address */
1145} *m_vtob_p;
1146
1147/* Hash this stuff a bit to speed up translations */
1148#define VTOB_HASH_SHIFT		5
1149#define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
1150#define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
1151#define VTOB_HASH_CODE(m)	\
1152	((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK)
1153
1154/*
1155 *  Memory pool of a given kind.
1156 *  Ideally, we want to use:
1157 *  1) 1 pool for memory we donnot need to involve in DMA.
1158 *  2) The same pool for controllers that require same DMA
1159 *     constraints and features.
1160 *     The OS specific m_pool_id_t thing and the sym_m_pool_match()
1161 *     method are expected to tell the driver about.
1162 */
1163typedef struct sym_m_pool {
1164	m_pool_ident_t	dev_dmat;	/* Identifies the pool (see above) */
1165	void * (*get_mem_cluster)(struct sym_m_pool *);
1166#ifdef	SYM_MEM_FREE_UNUSED
1167	void (*free_mem_cluster)(struct sym_m_pool *, void *);
1168#endif
1169#define M_GET_MEM_CLUSTER()		mp->get_mem_cluster(mp)
1170#define M_FREE_MEM_CLUSTER(p)		mp->free_mem_cluster(mp, p)
1171	int nump;
1172	m_vtob_p vtob[VTOB_HASH_SIZE];
1173	struct sym_m_pool *next;
1174	struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1];
1175} *m_pool_p;
1176
1177/*
1178 *  Alloc, free and translate addresses to bus physical
1179 *  for DMAable memory.
1180 */
1181void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
1182void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
1183dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);
1184
1185/*
1186 * Verbs used by the driver code for DMAable memory handling.
1187 * The _uvptv_ macro avoids a nasty warning about pointer to volatile
1188 * being discarded.
1189 */
1190#define _uvptv_(p) ((void *)((u_long)(p)))
1191
1192#define _sym_calloc_dma(np, l, n)	__sym_calloc_dma(np->bus_dmat, l, n)
1193#define _sym_mfree_dma(np, p, l, n)	\
1194			__sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n)
1195#define sym_calloc_dma(l, n)		_sym_calloc_dma(np, l, n)
1196#define sym_mfree_dma(p, l, n)		_sym_mfree_dma(np, p, l, n)
1197#define vtobus(p)			__vtobus(np->bus_dmat, _uvptv_(p))
1198
1199/*
1200 *  We have to provide the driver memory allocator with methods for
1201 *  it to maintain virtual to bus physical address translations.
1202 */
1203
1204#define sym_m_pool_match(mp_id1, mp_id2)	(mp_id1 == mp_id2)
1205
1206static inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1207{
1208	void *vaddr = NULL;
1209	dma_addr_t baddr = 0;
1210
1211	vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr,
1212			GFP_ATOMIC);
1213	if (vaddr) {
1214		vbp->vaddr = vaddr;
1215		vbp->baddr = baddr;
1216	}
1217	return vaddr;
1218}
1219
1220static inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1221{
1222	dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr,
1223			vbp->baddr);
1224}
1225
1226#endif /* SYM_HIPD_H */
1227