[go: nahoru, domu]

1/*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/kernel.h>
12#include <linux/clk.h>
13#include <linux/module.h>
14#include <linux/platform_device.h>
15#include <linux/delay.h>
16#include <linux/dma-mapping.h>
17#include <linux/dmaengine.h>
18#include <linux/err.h>
19#include <linux/interrupt.h>
20#include <linux/spi/spi.h>
21#include <linux/slab.h>
22#include <linux/platform_data/atmel.h>
23#include <linux/platform_data/dma-atmel.h>
24#include <linux/of.h>
25
26#include <linux/io.h>
27#include <linux/gpio.h>
28#include <linux/pinctrl/consumer.h>
29
30/* SPI register offsets */
31#define SPI_CR					0x0000
32#define SPI_MR					0x0004
33#define SPI_RDR					0x0008
34#define SPI_TDR					0x000c
35#define SPI_SR					0x0010
36#define SPI_IER					0x0014
37#define SPI_IDR					0x0018
38#define SPI_IMR					0x001c
39#define SPI_CSR0				0x0030
40#define SPI_CSR1				0x0034
41#define SPI_CSR2				0x0038
42#define SPI_CSR3				0x003c
43#define SPI_VERSION				0x00fc
44#define SPI_RPR					0x0100
45#define SPI_RCR					0x0104
46#define SPI_TPR					0x0108
47#define SPI_TCR					0x010c
48#define SPI_RNPR				0x0110
49#define SPI_RNCR				0x0114
50#define SPI_TNPR				0x0118
51#define SPI_TNCR				0x011c
52#define SPI_PTCR				0x0120
53#define SPI_PTSR				0x0124
54
55/* Bitfields in CR */
56#define SPI_SPIEN_OFFSET			0
57#define SPI_SPIEN_SIZE				1
58#define SPI_SPIDIS_OFFSET			1
59#define SPI_SPIDIS_SIZE				1
60#define SPI_SWRST_OFFSET			7
61#define SPI_SWRST_SIZE				1
62#define SPI_LASTXFER_OFFSET			24
63#define SPI_LASTXFER_SIZE			1
64
65/* Bitfields in MR */
66#define SPI_MSTR_OFFSET				0
67#define SPI_MSTR_SIZE				1
68#define SPI_PS_OFFSET				1
69#define SPI_PS_SIZE				1
70#define SPI_PCSDEC_OFFSET			2
71#define SPI_PCSDEC_SIZE				1
72#define SPI_FDIV_OFFSET				3
73#define SPI_FDIV_SIZE				1
74#define SPI_MODFDIS_OFFSET			4
75#define SPI_MODFDIS_SIZE			1
76#define SPI_WDRBT_OFFSET			5
77#define SPI_WDRBT_SIZE				1
78#define SPI_LLB_OFFSET				7
79#define SPI_LLB_SIZE				1
80#define SPI_PCS_OFFSET				16
81#define SPI_PCS_SIZE				4
82#define SPI_DLYBCS_OFFSET			24
83#define SPI_DLYBCS_SIZE				8
84
85/* Bitfields in RDR */
86#define SPI_RD_OFFSET				0
87#define SPI_RD_SIZE				16
88
89/* Bitfields in TDR */
90#define SPI_TD_OFFSET				0
91#define SPI_TD_SIZE				16
92
93/* Bitfields in SR */
94#define SPI_RDRF_OFFSET				0
95#define SPI_RDRF_SIZE				1
96#define SPI_TDRE_OFFSET				1
97#define SPI_TDRE_SIZE				1
98#define SPI_MODF_OFFSET				2
99#define SPI_MODF_SIZE				1
100#define SPI_OVRES_OFFSET			3
101#define SPI_OVRES_SIZE				1
102#define SPI_ENDRX_OFFSET			4
103#define SPI_ENDRX_SIZE				1
104#define SPI_ENDTX_OFFSET			5
105#define SPI_ENDTX_SIZE				1
106#define SPI_RXBUFF_OFFSET			6
107#define SPI_RXBUFF_SIZE				1
108#define SPI_TXBUFE_OFFSET			7
109#define SPI_TXBUFE_SIZE				1
110#define SPI_NSSR_OFFSET				8
111#define SPI_NSSR_SIZE				1
112#define SPI_TXEMPTY_OFFSET			9
113#define SPI_TXEMPTY_SIZE			1
114#define SPI_SPIENS_OFFSET			16
115#define SPI_SPIENS_SIZE				1
116
117/* Bitfields in CSR0 */
118#define SPI_CPOL_OFFSET				0
119#define SPI_CPOL_SIZE				1
120#define SPI_NCPHA_OFFSET			1
121#define SPI_NCPHA_SIZE				1
122#define SPI_CSAAT_OFFSET			3
123#define SPI_CSAAT_SIZE				1
124#define SPI_BITS_OFFSET				4
125#define SPI_BITS_SIZE				4
126#define SPI_SCBR_OFFSET				8
127#define SPI_SCBR_SIZE				8
128#define SPI_DLYBS_OFFSET			16
129#define SPI_DLYBS_SIZE				8
130#define SPI_DLYBCT_OFFSET			24
131#define SPI_DLYBCT_SIZE				8
132
133/* Bitfields in RCR */
134#define SPI_RXCTR_OFFSET			0
135#define SPI_RXCTR_SIZE				16
136
137/* Bitfields in TCR */
138#define SPI_TXCTR_OFFSET			0
139#define SPI_TXCTR_SIZE				16
140
141/* Bitfields in RNCR */
142#define SPI_RXNCR_OFFSET			0
143#define SPI_RXNCR_SIZE				16
144
145/* Bitfields in TNCR */
146#define SPI_TXNCR_OFFSET			0
147#define SPI_TXNCR_SIZE				16
148
149/* Bitfields in PTCR */
150#define SPI_RXTEN_OFFSET			0
151#define SPI_RXTEN_SIZE				1
152#define SPI_RXTDIS_OFFSET			1
153#define SPI_RXTDIS_SIZE				1
154#define SPI_TXTEN_OFFSET			8
155#define SPI_TXTEN_SIZE				1
156#define SPI_TXTDIS_OFFSET			9
157#define SPI_TXTDIS_SIZE				1
158
159/* Constants for BITS */
160#define SPI_BITS_8_BPT				0
161#define SPI_BITS_9_BPT				1
162#define SPI_BITS_10_BPT				2
163#define SPI_BITS_11_BPT				3
164#define SPI_BITS_12_BPT				4
165#define SPI_BITS_13_BPT				5
166#define SPI_BITS_14_BPT				6
167#define SPI_BITS_15_BPT				7
168#define SPI_BITS_16_BPT				8
169
170/* Bit manipulation macros */
171#define SPI_BIT(name) \
172	(1 << SPI_##name##_OFFSET)
173#define SPI_BF(name, value) \
174	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
175#define SPI_BFEXT(name, value) \
176	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
177#define SPI_BFINS(name, value, old) \
178	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
179	  | SPI_BF(name, value))
180
181/* Register access macros */
182#define spi_readl(port, reg) \
183	__raw_readl((port)->regs + SPI_##reg)
184#define spi_writel(port, reg, value) \
185	__raw_writel((value), (port)->regs + SPI_##reg)
186
187/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
188 * cache operations; better heuristics consider wordsize and bitrate.
189 */
190#define DMA_MIN_BYTES	16
191
192#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
193
194struct atmel_spi_dma {
195	struct dma_chan			*chan_rx;
196	struct dma_chan			*chan_tx;
197	struct scatterlist		sgrx;
198	struct scatterlist		sgtx;
199	struct dma_async_tx_descriptor	*data_desc_rx;
200	struct dma_async_tx_descriptor	*data_desc_tx;
201
202	struct at_dma_slave	dma_slave;
203};
204
205struct atmel_spi_caps {
206	bool	is_spi2;
207	bool	has_wdrbt;
208	bool	has_dma_support;
209};
210
211/*
212 * The core SPI transfer engine just talks to a register bank to set up
213 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
214 * framework provides the base clock, subdivided for each spi_device.
215 */
216struct atmel_spi {
217	spinlock_t		lock;
218	unsigned long		flags;
219
220	phys_addr_t		phybase;
221	void __iomem		*regs;
222	int			irq;
223	struct clk		*clk;
224	struct platform_device	*pdev;
225
226	struct spi_transfer	*current_transfer;
227	int			current_remaining_bytes;
228	int			done_status;
229
230	struct completion	xfer_completion;
231
232	/* scratch buffer */
233	void			*buffer;
234	dma_addr_t		buffer_dma;
235
236	struct atmel_spi_caps	caps;
237
238	bool			use_dma;
239	bool			use_pdc;
240	/* dmaengine data */
241	struct atmel_spi_dma	dma;
242
243	bool			keep_cs;
244	bool			cs_active;
245};
246
247/* Controller-specific per-slave state */
248struct atmel_spi_device {
249	unsigned int		npcs_pin;
250	u32			csr;
251};
252
253#define BUFFER_SIZE		PAGE_SIZE
254#define INVALID_DMA_ADDRESS	0xffffffff
255
256/*
257 * Version 2 of the SPI controller has
258 *  - CR.LASTXFER
259 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
260 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
261 *  - SPI_CSRx.CSAAT
262 *  - SPI_CSRx.SBCR allows faster clocking
263 */
264static bool atmel_spi_is_v2(struct atmel_spi *as)
265{
266	return as->caps.is_spi2;
267}
268
269/*
270 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
271 * they assume that spi slave device state will not change on deselect, so
272 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
273 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
274 * controllers have CSAAT and friends.
275 *
276 * Since the CSAAT functionality is a bit weird on newer controllers as
277 * well, we use GPIO to control nCSx pins on all controllers, updating
278 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
279 * support active-high chipselects despite the controller's belief that
280 * only active-low devices/systems exists.
281 *
282 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
283 * right when driven with GPIO.  ("Mode Fault does not allow more than one
284 * Master on Chip Select 0.")  No workaround exists for that ... so for
285 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
286 * and (c) will trigger that first erratum in some cases.
287 */
288
289static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
290{
291	struct atmel_spi_device *asd = spi->controller_state;
292	unsigned active = spi->mode & SPI_CS_HIGH;
293	u32 mr;
294
295	if (atmel_spi_is_v2(as)) {
296		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
297		/* For the low SPI version, there is a issue that PDC transfer
298		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
299		 */
300		spi_writel(as, CSR0, asd->csr);
301		if (as->caps.has_wdrbt) {
302			spi_writel(as, MR,
303					SPI_BF(PCS, ~(0x01 << spi->chip_select))
304					| SPI_BIT(WDRBT)
305					| SPI_BIT(MODFDIS)
306					| SPI_BIT(MSTR));
307		} else {
308			spi_writel(as, MR,
309					SPI_BF(PCS, ~(0x01 << spi->chip_select))
310					| SPI_BIT(MODFDIS)
311					| SPI_BIT(MSTR));
312		}
313
314		mr = spi_readl(as, MR);
315		gpio_set_value(asd->npcs_pin, active);
316	} else {
317		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
318		int i;
319		u32 csr;
320
321		/* Make sure clock polarity is correct */
322		for (i = 0; i < spi->master->num_chipselect; i++) {
323			csr = spi_readl(as, CSR0 + 4 * i);
324			if ((csr ^ cpol) & SPI_BIT(CPOL))
325				spi_writel(as, CSR0 + 4 * i,
326						csr ^ SPI_BIT(CPOL));
327		}
328
329		mr = spi_readl(as, MR);
330		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
331		if (spi->chip_select != 0)
332			gpio_set_value(asd->npcs_pin, active);
333		spi_writel(as, MR, mr);
334	}
335
336	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
337			asd->npcs_pin, active ? " (high)" : "",
338			mr);
339}
340
341static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
342{
343	struct atmel_spi_device *asd = spi->controller_state;
344	unsigned active = spi->mode & SPI_CS_HIGH;
345	u32 mr;
346
347	/* only deactivate *this* device; sometimes transfers to
348	 * another device may be active when this routine is called.
349	 */
350	mr = spi_readl(as, MR);
351	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
352		mr = SPI_BFINS(PCS, 0xf, mr);
353		spi_writel(as, MR, mr);
354	}
355
356	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
357			asd->npcs_pin, active ? " (low)" : "",
358			mr);
359
360	if (atmel_spi_is_v2(as) || spi->chip_select != 0)
361		gpio_set_value(asd->npcs_pin, !active);
362}
363
364static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
365{
366	spin_lock_irqsave(&as->lock, as->flags);
367}
368
369static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
370{
371	spin_unlock_irqrestore(&as->lock, as->flags);
372}
373
374static inline bool atmel_spi_use_dma(struct atmel_spi *as,
375				struct spi_transfer *xfer)
376{
377	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
378}
379
380static int atmel_spi_dma_slave_config(struct atmel_spi *as,
381				struct dma_slave_config *slave_config,
382				u8 bits_per_word)
383{
384	int err = 0;
385
386	if (bits_per_word > 8) {
387		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
388		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
389	} else {
390		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
391		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
392	}
393
394	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
395	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
396	slave_config->src_maxburst = 1;
397	slave_config->dst_maxburst = 1;
398	slave_config->device_fc = false;
399
400	slave_config->direction = DMA_MEM_TO_DEV;
401	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
402		dev_err(&as->pdev->dev,
403			"failed to configure tx dma channel\n");
404		err = -EINVAL;
405	}
406
407	slave_config->direction = DMA_DEV_TO_MEM;
408	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
409		dev_err(&as->pdev->dev,
410			"failed to configure rx dma channel\n");
411		err = -EINVAL;
412	}
413
414	return err;
415}
416
417static bool filter(struct dma_chan *chan, void *pdata)
418{
419	struct atmel_spi_dma *sl_pdata = pdata;
420	struct at_dma_slave *sl;
421
422	if (!sl_pdata)
423		return false;
424
425	sl = &sl_pdata->dma_slave;
426	if (sl->dma_dev == chan->device->dev) {
427		chan->private = sl;
428		return true;
429	} else {
430		return false;
431	}
432}
433
434static int atmel_spi_configure_dma(struct atmel_spi *as)
435{
436	struct dma_slave_config	slave_config;
437	struct device *dev = &as->pdev->dev;
438	int err;
439
440	dma_cap_mask_t mask;
441	dma_cap_zero(mask);
442	dma_cap_set(DMA_SLAVE, mask);
443
444	as->dma.chan_tx = dma_request_slave_channel_compat(mask, filter,
445							   &as->dma,
446							   dev, "tx");
447	if (!as->dma.chan_tx) {
448		dev_err(dev,
449			"DMA TX channel not available, SPI unable to use DMA\n");
450		err = -EBUSY;
451		goto error;
452	}
453
454	as->dma.chan_rx = dma_request_slave_channel_compat(mask, filter,
455							   &as->dma,
456							   dev, "rx");
457
458	if (!as->dma.chan_rx) {
459		dev_err(dev,
460			"DMA RX channel not available, SPI unable to use DMA\n");
461		err = -EBUSY;
462		goto error;
463	}
464
465	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
466	if (err)
467		goto error;
468
469	dev_info(&as->pdev->dev,
470			"Using %s (tx) and %s (rx) for DMA transfers\n",
471			dma_chan_name(as->dma.chan_tx),
472			dma_chan_name(as->dma.chan_rx));
473	return 0;
474error:
475	if (as->dma.chan_rx)
476		dma_release_channel(as->dma.chan_rx);
477	if (as->dma.chan_tx)
478		dma_release_channel(as->dma.chan_tx);
479	return err;
480}
481
482static void atmel_spi_stop_dma(struct atmel_spi *as)
483{
484	if (as->dma.chan_rx)
485		as->dma.chan_rx->device->device_control(as->dma.chan_rx,
486							DMA_TERMINATE_ALL, 0);
487	if (as->dma.chan_tx)
488		as->dma.chan_tx->device->device_control(as->dma.chan_tx,
489							DMA_TERMINATE_ALL, 0);
490}
491
492static void atmel_spi_release_dma(struct atmel_spi *as)
493{
494	if (as->dma.chan_rx)
495		dma_release_channel(as->dma.chan_rx);
496	if (as->dma.chan_tx)
497		dma_release_channel(as->dma.chan_tx);
498}
499
500/* This function is called by the DMA driver from tasklet context */
501static void dma_callback(void *data)
502{
503	struct spi_master	*master = data;
504	struct atmel_spi	*as = spi_master_get_devdata(master);
505
506	complete(&as->xfer_completion);
507}
508
509/*
510 * Next transfer using PIO.
511 */
512static void atmel_spi_next_xfer_pio(struct spi_master *master,
513				struct spi_transfer *xfer)
514{
515	struct atmel_spi	*as = spi_master_get_devdata(master);
516	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
517
518	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
519
520	/* Make sure data is not remaining in RDR */
521	spi_readl(as, RDR);
522	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
523		spi_readl(as, RDR);
524		cpu_relax();
525	}
526
527	if (xfer->tx_buf) {
528		if (xfer->bits_per_word > 8)
529			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
530		else
531			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
532	} else {
533		spi_writel(as, TDR, 0);
534	}
535
536	dev_dbg(master->dev.parent,
537		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
538		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
539		xfer->bits_per_word);
540
541	/* Enable relevant interrupts */
542	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
543}
544
545/*
546 * Submit next transfer for DMA.
547 */
548static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
549				struct spi_transfer *xfer,
550				u32 *plen)
551{
552	struct atmel_spi	*as = spi_master_get_devdata(master);
553	struct dma_chan		*rxchan = as->dma.chan_rx;
554	struct dma_chan		*txchan = as->dma.chan_tx;
555	struct dma_async_tx_descriptor *rxdesc;
556	struct dma_async_tx_descriptor *txdesc;
557	struct dma_slave_config	slave_config;
558	dma_cookie_t		cookie;
559	u32	len = *plen;
560
561	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
562
563	/* Check that the channels are available */
564	if (!rxchan || !txchan)
565		return -ENODEV;
566
567	/* release lock for DMA operations */
568	atmel_spi_unlock(as);
569
570	/* prepare the RX dma transfer */
571	sg_init_table(&as->dma.sgrx, 1);
572	if (xfer->rx_buf) {
573		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
574	} else {
575		as->dma.sgrx.dma_address = as->buffer_dma;
576		if (len > BUFFER_SIZE)
577			len = BUFFER_SIZE;
578	}
579
580	/* prepare the TX dma transfer */
581	sg_init_table(&as->dma.sgtx, 1);
582	if (xfer->tx_buf) {
583		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
584	} else {
585		as->dma.sgtx.dma_address = as->buffer_dma;
586		if (len > BUFFER_SIZE)
587			len = BUFFER_SIZE;
588		memset(as->buffer, 0, len);
589	}
590
591	sg_dma_len(&as->dma.sgtx) = len;
592	sg_dma_len(&as->dma.sgrx) = len;
593
594	*plen = len;
595
596	if (atmel_spi_dma_slave_config(as, &slave_config, 8))
597		goto err_exit;
598
599	/* Send both scatterlists */
600	rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
601					 DMA_FROM_DEVICE,
602					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
603	if (!rxdesc)
604		goto err_dma;
605
606	txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
607					 DMA_TO_DEVICE,
608					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
609	if (!txdesc)
610		goto err_dma;
611
612	dev_dbg(master->dev.parent,
613		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
614		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
615		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
616
617	/* Enable relevant interrupts */
618	spi_writel(as, IER, SPI_BIT(OVRES));
619
620	/* Put the callback on the RX transfer only, that should finish last */
621	rxdesc->callback = dma_callback;
622	rxdesc->callback_param = master;
623
624	/* Submit and fire RX and TX with TX last so we're ready to read! */
625	cookie = rxdesc->tx_submit(rxdesc);
626	if (dma_submit_error(cookie))
627		goto err_dma;
628	cookie = txdesc->tx_submit(txdesc);
629	if (dma_submit_error(cookie))
630		goto err_dma;
631	rxchan->device->device_issue_pending(rxchan);
632	txchan->device->device_issue_pending(txchan);
633
634	/* take back lock */
635	atmel_spi_lock(as);
636	return 0;
637
638err_dma:
639	spi_writel(as, IDR, SPI_BIT(OVRES));
640	atmel_spi_stop_dma(as);
641err_exit:
642	atmel_spi_lock(as);
643	return -ENOMEM;
644}
645
646static void atmel_spi_next_xfer_data(struct spi_master *master,
647				struct spi_transfer *xfer,
648				dma_addr_t *tx_dma,
649				dma_addr_t *rx_dma,
650				u32 *plen)
651{
652	struct atmel_spi	*as = spi_master_get_devdata(master);
653	u32			len = *plen;
654
655	/* use scratch buffer only when rx or tx data is unspecified */
656	if (xfer->rx_buf)
657		*rx_dma = xfer->rx_dma + xfer->len - *plen;
658	else {
659		*rx_dma = as->buffer_dma;
660		if (len > BUFFER_SIZE)
661			len = BUFFER_SIZE;
662	}
663
664	if (xfer->tx_buf)
665		*tx_dma = xfer->tx_dma + xfer->len - *plen;
666	else {
667		*tx_dma = as->buffer_dma;
668		if (len > BUFFER_SIZE)
669			len = BUFFER_SIZE;
670		memset(as->buffer, 0, len);
671		dma_sync_single_for_device(&as->pdev->dev,
672				as->buffer_dma, len, DMA_TO_DEVICE);
673	}
674
675	*plen = len;
676}
677
678static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
679				    struct spi_device *spi,
680				    struct spi_transfer *xfer)
681{
682	u32			scbr, csr;
683	unsigned long		bus_hz;
684
685	/* v1 chips start out at half the peripheral bus speed. */
686	bus_hz = clk_get_rate(as->clk);
687	if (!atmel_spi_is_v2(as))
688		bus_hz /= 2;
689
690	/*
691	 * Calculate the lowest divider that satisfies the
692	 * constraint, assuming div32/fdiv/mbz == 0.
693	 */
694	if (xfer->speed_hz)
695		scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
696	else
697		/*
698		 * This can happend if max_speed is null.
699		 * In this case, we set the lowest possible speed
700		 */
701		scbr = 0xff;
702
703	/*
704	 * If the resulting divider doesn't fit into the
705	 * register bitfield, we can't satisfy the constraint.
706	 */
707	if (scbr >= (1 << SPI_SCBR_SIZE)) {
708		dev_err(&spi->dev,
709			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
710			xfer->speed_hz, scbr, bus_hz/255);
711		return -EINVAL;
712	}
713	if (scbr == 0) {
714		dev_err(&spi->dev,
715			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
716			xfer->speed_hz, scbr, bus_hz);
717		return -EINVAL;
718	}
719	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
720	csr = SPI_BFINS(SCBR, scbr, csr);
721	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
722
723	return 0;
724}
725
726/*
727 * Submit next transfer for PDC.
728 * lock is held, spi irq is blocked
729 */
730static void atmel_spi_pdc_next_xfer(struct spi_master *master,
731					struct spi_message *msg,
732					struct spi_transfer *xfer)
733{
734	struct atmel_spi	*as = spi_master_get_devdata(master);
735	u32			len;
736	dma_addr_t		tx_dma, rx_dma;
737
738	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
739
740	len = as->current_remaining_bytes;
741	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
742	as->current_remaining_bytes -= len;
743
744	spi_writel(as, RPR, rx_dma);
745	spi_writel(as, TPR, tx_dma);
746
747	if (msg->spi->bits_per_word > 8)
748		len >>= 1;
749	spi_writel(as, RCR, len);
750	spi_writel(as, TCR, len);
751
752	dev_dbg(&msg->spi->dev,
753		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
754		xfer, xfer->len, xfer->tx_buf,
755		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
756		(unsigned long long)xfer->rx_dma);
757
758	if (as->current_remaining_bytes) {
759		len = as->current_remaining_bytes;
760		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
761		as->current_remaining_bytes -= len;
762
763		spi_writel(as, RNPR, rx_dma);
764		spi_writel(as, TNPR, tx_dma);
765
766		if (msg->spi->bits_per_word > 8)
767			len >>= 1;
768		spi_writel(as, RNCR, len);
769		spi_writel(as, TNCR, len);
770
771		dev_dbg(&msg->spi->dev,
772			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
773			xfer, xfer->len, xfer->tx_buf,
774			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
775			(unsigned long long)xfer->rx_dma);
776	}
777
778	/* REVISIT: We're waiting for ENDRX before we start the next
779	 * transfer because we need to handle some difficult timing
780	 * issues otherwise. If we wait for ENDTX in one transfer and
781	 * then starts waiting for ENDRX in the next, it's difficult
782	 * to tell the difference between the ENDRX interrupt we're
783	 * actually waiting for and the ENDRX interrupt of the
784	 * previous transfer.
785	 *
786	 * It should be doable, though. Just not now...
787	 */
788	spi_writel(as, IER, SPI_BIT(ENDRX) | SPI_BIT(OVRES));
789	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
790}
791
792/*
793 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
794 *  - The buffer is either valid for CPU access, else NULL
795 *  - If the buffer is valid, so is its DMA address
796 *
797 * This driver manages the dma address unless message->is_dma_mapped.
798 */
799static int
800atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
801{
802	struct device	*dev = &as->pdev->dev;
803
804	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
805	if (xfer->tx_buf) {
806		/* tx_buf is a const void* where we need a void * for the dma
807		 * mapping */
808		void *nonconst_tx = (void *)xfer->tx_buf;
809
810		xfer->tx_dma = dma_map_single(dev,
811				nonconst_tx, xfer->len,
812				DMA_TO_DEVICE);
813		if (dma_mapping_error(dev, xfer->tx_dma))
814			return -ENOMEM;
815	}
816	if (xfer->rx_buf) {
817		xfer->rx_dma = dma_map_single(dev,
818				xfer->rx_buf, xfer->len,
819				DMA_FROM_DEVICE);
820		if (dma_mapping_error(dev, xfer->rx_dma)) {
821			if (xfer->tx_buf)
822				dma_unmap_single(dev,
823						xfer->tx_dma, xfer->len,
824						DMA_TO_DEVICE);
825			return -ENOMEM;
826		}
827	}
828	return 0;
829}
830
831static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
832				     struct spi_transfer *xfer)
833{
834	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
835		dma_unmap_single(master->dev.parent, xfer->tx_dma,
836				 xfer->len, DMA_TO_DEVICE);
837	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
838		dma_unmap_single(master->dev.parent, xfer->rx_dma,
839				 xfer->len, DMA_FROM_DEVICE);
840}
841
842static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
843{
844	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
845}
846
847/* Called from IRQ
848 *
849 * Must update "current_remaining_bytes" to keep track of data
850 * to transfer.
851 */
852static void
853atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
854{
855	u8		*rxp;
856	u16		*rxp16;
857	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
858
859	if (xfer->rx_buf) {
860		if (xfer->bits_per_word > 8) {
861			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
862			*rxp16 = spi_readl(as, RDR);
863		} else {
864			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
865			*rxp = spi_readl(as, RDR);
866		}
867	} else {
868		spi_readl(as, RDR);
869	}
870	if (xfer->bits_per_word > 8) {
871		if (as->current_remaining_bytes > 2)
872			as->current_remaining_bytes -= 2;
873		else
874			as->current_remaining_bytes = 0;
875	} else {
876		as->current_remaining_bytes--;
877	}
878}
879
880/* Interrupt
881 *
882 * No need for locking in this Interrupt handler: done_status is the
883 * only information modified.
884 */
885static irqreturn_t
886atmel_spi_pio_interrupt(int irq, void *dev_id)
887{
888	struct spi_master	*master = dev_id;
889	struct atmel_spi	*as = spi_master_get_devdata(master);
890	u32			status, pending, imr;
891	struct spi_transfer	*xfer;
892	int			ret = IRQ_NONE;
893
894	imr = spi_readl(as, IMR);
895	status = spi_readl(as, SR);
896	pending = status & imr;
897
898	if (pending & SPI_BIT(OVRES)) {
899		ret = IRQ_HANDLED;
900		spi_writel(as, IDR, SPI_BIT(OVRES));
901		dev_warn(master->dev.parent, "overrun\n");
902
903		/*
904		 * When we get an overrun, we disregard the current
905		 * transfer. Data will not be copied back from any
906		 * bounce buffer and msg->actual_len will not be
907		 * updated with the last xfer.
908		 *
909		 * We will also not process any remaning transfers in
910		 * the message.
911		 */
912		as->done_status = -EIO;
913		smp_wmb();
914
915		/* Clear any overrun happening while cleaning up */
916		spi_readl(as, SR);
917
918		complete(&as->xfer_completion);
919
920	} else if (pending & SPI_BIT(RDRF)) {
921		atmel_spi_lock(as);
922
923		if (as->current_remaining_bytes) {
924			ret = IRQ_HANDLED;
925			xfer = as->current_transfer;
926			atmel_spi_pump_pio_data(as, xfer);
927			if (!as->current_remaining_bytes)
928				spi_writel(as, IDR, pending);
929
930			complete(&as->xfer_completion);
931		}
932
933		atmel_spi_unlock(as);
934	} else {
935		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
936		ret = IRQ_HANDLED;
937		spi_writel(as, IDR, pending);
938	}
939
940	return ret;
941}
942
943static irqreturn_t
944atmel_spi_pdc_interrupt(int irq, void *dev_id)
945{
946	struct spi_master	*master = dev_id;
947	struct atmel_spi	*as = spi_master_get_devdata(master);
948	u32			status, pending, imr;
949	int			ret = IRQ_NONE;
950
951	imr = spi_readl(as, IMR);
952	status = spi_readl(as, SR);
953	pending = status & imr;
954
955	if (pending & SPI_BIT(OVRES)) {
956
957		ret = IRQ_HANDLED;
958
959		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
960				     | SPI_BIT(OVRES)));
961
962		/* Clear any overrun happening while cleaning up */
963		spi_readl(as, SR);
964
965		as->done_status = -EIO;
966
967		complete(&as->xfer_completion);
968
969	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
970		ret = IRQ_HANDLED;
971
972		spi_writel(as, IDR, pending);
973
974		complete(&as->xfer_completion);
975	}
976
977	return ret;
978}
979
980static int atmel_spi_setup(struct spi_device *spi)
981{
982	struct atmel_spi	*as;
983	struct atmel_spi_device	*asd;
984	u32			csr;
985	unsigned int		bits = spi->bits_per_word;
986	unsigned int		npcs_pin;
987	int			ret;
988
989	as = spi_master_get_devdata(spi->master);
990
991	/* see notes above re chipselect */
992	if (!atmel_spi_is_v2(as)
993			&& spi->chip_select == 0
994			&& (spi->mode & SPI_CS_HIGH)) {
995		dev_dbg(&spi->dev, "setup: can't be active-high\n");
996		return -EINVAL;
997	}
998
999	csr = SPI_BF(BITS, bits - 8);
1000	if (spi->mode & SPI_CPOL)
1001		csr |= SPI_BIT(CPOL);
1002	if (!(spi->mode & SPI_CPHA))
1003		csr |= SPI_BIT(NCPHA);
1004
1005	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1006	 *
1007	 * DLYBCT would add delays between words, slowing down transfers.
1008	 * It could potentially be useful to cope with DMA bottlenecks, but
1009	 * in those cases it's probably best to just use a lower bitrate.
1010	 */
1011	csr |= SPI_BF(DLYBS, 0);
1012	csr |= SPI_BF(DLYBCT, 0);
1013
1014	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1015	npcs_pin = (unsigned long)spi->controller_data;
1016
1017	if (gpio_is_valid(spi->cs_gpio))
1018		npcs_pin = spi->cs_gpio;
1019
1020	asd = spi->controller_state;
1021	if (!asd) {
1022		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1023		if (!asd)
1024			return -ENOMEM;
1025
1026		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1027		if (ret) {
1028			kfree(asd);
1029			return ret;
1030		}
1031
1032		asd->npcs_pin = npcs_pin;
1033		spi->controller_state = asd;
1034		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1035	}
1036
1037	asd->csr = csr;
1038
1039	dev_dbg(&spi->dev,
1040		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1041		bits, spi->mode, spi->chip_select, csr);
1042
1043	if (!atmel_spi_is_v2(as))
1044		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1045
1046	return 0;
1047}
1048
1049static int atmel_spi_one_transfer(struct spi_master *master,
1050					struct spi_message *msg,
1051					struct spi_transfer *xfer)
1052{
1053	struct atmel_spi	*as;
1054	struct spi_device	*spi = msg->spi;
1055	u8			bits;
1056	u32			len;
1057	struct atmel_spi_device	*asd;
1058	int			timeout;
1059	int			ret;
1060
1061	as = spi_master_get_devdata(master);
1062
1063	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1064		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1065		return -EINVAL;
1066	}
1067
1068	if (xfer->bits_per_word) {
1069		asd = spi->controller_state;
1070		bits = (asd->csr >> 4) & 0xf;
1071		if (bits != xfer->bits_per_word - 8) {
1072			dev_dbg(&spi->dev,
1073			"you can't yet change bits_per_word in transfers\n");
1074			return -ENOPROTOOPT;
1075		}
1076	}
1077
1078	/*
1079	 * DMA map early, for performance (empties dcache ASAP) and
1080	 * better fault reporting.
1081	 */
1082	if ((!msg->is_dma_mapped)
1083		&& (atmel_spi_use_dma(as, xfer)	|| as->use_pdc)) {
1084		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1085			return -ENOMEM;
1086	}
1087
1088	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1089
1090	as->done_status = 0;
1091	as->current_transfer = xfer;
1092	as->current_remaining_bytes = xfer->len;
1093	while (as->current_remaining_bytes) {
1094		reinit_completion(&as->xfer_completion);
1095
1096		if (as->use_pdc) {
1097			atmel_spi_pdc_next_xfer(master, msg, xfer);
1098		} else if (atmel_spi_use_dma(as, xfer)) {
1099			len = as->current_remaining_bytes;
1100			ret = atmel_spi_next_xfer_dma_submit(master,
1101								xfer, &len);
1102			if (ret) {
1103				dev_err(&spi->dev,
1104					"unable to use DMA, fallback to PIO\n");
1105				atmel_spi_next_xfer_pio(master, xfer);
1106			} else {
1107				as->current_remaining_bytes -= len;
1108				if (as->current_remaining_bytes < 0)
1109					as->current_remaining_bytes = 0;
1110			}
1111		} else {
1112			atmel_spi_next_xfer_pio(master, xfer);
1113		}
1114
1115		/* interrupts are disabled, so free the lock for schedule */
1116		atmel_spi_unlock(as);
1117		ret = wait_for_completion_timeout(&as->xfer_completion,
1118							SPI_DMA_TIMEOUT);
1119		atmel_spi_lock(as);
1120		if (WARN_ON(ret == 0)) {
1121			dev_err(&spi->dev,
1122				"spi trasfer timeout, err %d\n", ret);
1123			as->done_status = -EIO;
1124		} else {
1125			ret = 0;
1126		}
1127
1128		if (as->done_status)
1129			break;
1130	}
1131
1132	if (as->done_status) {
1133		if (as->use_pdc) {
1134			dev_warn(master->dev.parent,
1135				"overrun (%u/%u remaining)\n",
1136				spi_readl(as, TCR), spi_readl(as, RCR));
1137
1138			/*
1139			 * Clean up DMA registers and make sure the data
1140			 * registers are empty.
1141			 */
1142			spi_writel(as, RNCR, 0);
1143			spi_writel(as, TNCR, 0);
1144			spi_writel(as, RCR, 0);
1145			spi_writel(as, TCR, 0);
1146			for (timeout = 1000; timeout; timeout--)
1147				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1148					break;
1149			if (!timeout)
1150				dev_warn(master->dev.parent,
1151					 "timeout waiting for TXEMPTY");
1152			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1153				spi_readl(as, RDR);
1154
1155			/* Clear any overrun happening while cleaning up */
1156			spi_readl(as, SR);
1157
1158		} else if (atmel_spi_use_dma(as, xfer)) {
1159			atmel_spi_stop_dma(as);
1160		}
1161
1162		if (!msg->is_dma_mapped
1163			&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1164			atmel_spi_dma_unmap_xfer(master, xfer);
1165
1166		return 0;
1167
1168	} else {
1169		/* only update length if no error */
1170		msg->actual_length += xfer->len;
1171	}
1172
1173	if (!msg->is_dma_mapped
1174		&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1175		atmel_spi_dma_unmap_xfer(master, xfer);
1176
1177	if (xfer->delay_usecs)
1178		udelay(xfer->delay_usecs);
1179
1180	if (xfer->cs_change) {
1181		if (list_is_last(&xfer->transfer_list,
1182				 &msg->transfers)) {
1183			as->keep_cs = true;
1184		} else {
1185			as->cs_active = !as->cs_active;
1186			if (as->cs_active)
1187				cs_activate(as, msg->spi);
1188			else
1189				cs_deactivate(as, msg->spi);
1190		}
1191	}
1192
1193	return 0;
1194}
1195
1196static int atmel_spi_transfer_one_message(struct spi_master *master,
1197						struct spi_message *msg)
1198{
1199	struct atmel_spi *as;
1200	struct spi_transfer *xfer;
1201	struct spi_device *spi = msg->spi;
1202	int ret = 0;
1203
1204	as = spi_master_get_devdata(master);
1205
1206	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1207					msg, dev_name(&spi->dev));
1208
1209	atmel_spi_lock(as);
1210	cs_activate(as, spi);
1211
1212	as->cs_active = true;
1213	as->keep_cs = false;
1214
1215	msg->status = 0;
1216	msg->actual_length = 0;
1217
1218	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1219		ret = atmel_spi_one_transfer(master, msg, xfer);
1220		if (ret)
1221			goto msg_done;
1222	}
1223
1224	if (as->use_pdc)
1225		atmel_spi_disable_pdc_transfer(as);
1226
1227	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1228		dev_dbg(&spi->dev,
1229			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1230			xfer, xfer->len,
1231			xfer->tx_buf, &xfer->tx_dma,
1232			xfer->rx_buf, &xfer->rx_dma);
1233	}
1234
1235msg_done:
1236	if (!as->keep_cs)
1237		cs_deactivate(as, msg->spi);
1238
1239	atmel_spi_unlock(as);
1240
1241	msg->status = as->done_status;
1242	spi_finalize_current_message(spi->master);
1243
1244	return ret;
1245}
1246
1247static void atmel_spi_cleanup(struct spi_device *spi)
1248{
1249	struct atmel_spi_device	*asd = spi->controller_state;
1250	unsigned		gpio = (unsigned long) spi->controller_data;
1251
1252	if (!asd)
1253		return;
1254
1255	spi->controller_state = NULL;
1256	gpio_free(gpio);
1257	kfree(asd);
1258}
1259
1260static inline unsigned int atmel_get_version(struct atmel_spi *as)
1261{
1262	return spi_readl(as, VERSION) & 0x00000fff;
1263}
1264
1265static void atmel_get_caps(struct atmel_spi *as)
1266{
1267	unsigned int version;
1268
1269	version = atmel_get_version(as);
1270	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1271
1272	as->caps.is_spi2 = version > 0x121;
1273	as->caps.has_wdrbt = version >= 0x210;
1274	as->caps.has_dma_support = version >= 0x212;
1275}
1276
1277/*-------------------------------------------------------------------------*/
1278
1279static int atmel_spi_probe(struct platform_device *pdev)
1280{
1281	struct resource		*regs;
1282	int			irq;
1283	struct clk		*clk;
1284	int			ret;
1285	struct spi_master	*master;
1286	struct atmel_spi	*as;
1287
1288	/* Select default pin state */
1289	pinctrl_pm_select_default_state(&pdev->dev);
1290
1291	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1292	if (!regs)
1293		return -ENXIO;
1294
1295	irq = platform_get_irq(pdev, 0);
1296	if (irq < 0)
1297		return irq;
1298
1299	clk = devm_clk_get(&pdev->dev, "spi_clk");
1300	if (IS_ERR(clk))
1301		return PTR_ERR(clk);
1302
1303	/* setup spi core then atmel-specific driver state */
1304	ret = -ENOMEM;
1305	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1306	if (!master)
1307		goto out_free;
1308
1309	/* the spi->mode bits understood by this driver: */
1310	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1311	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1312	master->dev.of_node = pdev->dev.of_node;
1313	master->bus_num = pdev->id;
1314	master->num_chipselect = master->dev.of_node ? 0 : 4;
1315	master->setup = atmel_spi_setup;
1316	master->transfer_one_message = atmel_spi_transfer_one_message;
1317	master->cleanup = atmel_spi_cleanup;
1318	platform_set_drvdata(pdev, master);
1319
1320	as = spi_master_get_devdata(master);
1321
1322	/*
1323	 * Scratch buffer is used for throwaway rx and tx data.
1324	 * It's coherent to minimize dcache pollution.
1325	 */
1326	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1327					&as->buffer_dma, GFP_KERNEL);
1328	if (!as->buffer)
1329		goto out_free;
1330
1331	spin_lock_init(&as->lock);
1332
1333	as->pdev = pdev;
1334	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1335	if (IS_ERR(as->regs)) {
1336		ret = PTR_ERR(as->regs);
1337		goto out_free_buffer;
1338	}
1339	as->phybase = regs->start;
1340	as->irq = irq;
1341	as->clk = clk;
1342
1343	init_completion(&as->xfer_completion);
1344
1345	atmel_get_caps(as);
1346
1347	as->use_dma = false;
1348	as->use_pdc = false;
1349	if (as->caps.has_dma_support) {
1350		if (atmel_spi_configure_dma(as) == 0)
1351			as->use_dma = true;
1352	} else {
1353		as->use_pdc = true;
1354	}
1355
1356	if (as->caps.has_dma_support && !as->use_dma)
1357		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1358
1359	if (as->use_pdc) {
1360		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1361					0, dev_name(&pdev->dev), master);
1362	} else {
1363		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1364					0, dev_name(&pdev->dev), master);
1365	}
1366	if (ret)
1367		goto out_unmap_regs;
1368
1369	/* Initialize the hardware */
1370	ret = clk_prepare_enable(clk);
1371	if (ret)
1372		goto out_free_irq;
1373	spi_writel(as, CR, SPI_BIT(SWRST));
1374	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1375	if (as->caps.has_wdrbt) {
1376		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1377				| SPI_BIT(MSTR));
1378	} else {
1379		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1380	}
1381
1382	if (as->use_pdc)
1383		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1384	spi_writel(as, CR, SPI_BIT(SPIEN));
1385
1386	/* go! */
1387	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1388			(unsigned long)regs->start, irq);
1389
1390	ret = devm_spi_register_master(&pdev->dev, master);
1391	if (ret)
1392		goto out_free_dma;
1393
1394	return 0;
1395
1396out_free_dma:
1397	if (as->use_dma)
1398		atmel_spi_release_dma(as);
1399
1400	spi_writel(as, CR, SPI_BIT(SWRST));
1401	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1402	clk_disable_unprepare(clk);
1403out_free_irq:
1404out_unmap_regs:
1405out_free_buffer:
1406	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1407			as->buffer_dma);
1408out_free:
1409	spi_master_put(master);
1410	return ret;
1411}
1412
1413static int atmel_spi_remove(struct platform_device *pdev)
1414{
1415	struct spi_master	*master = platform_get_drvdata(pdev);
1416	struct atmel_spi	*as = spi_master_get_devdata(master);
1417
1418	/* reset the hardware and block queue progress */
1419	spin_lock_irq(&as->lock);
1420	if (as->use_dma) {
1421		atmel_spi_stop_dma(as);
1422		atmel_spi_release_dma(as);
1423	}
1424
1425	spi_writel(as, CR, SPI_BIT(SWRST));
1426	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1427	spi_readl(as, SR);
1428	spin_unlock_irq(&as->lock);
1429
1430	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1431			as->buffer_dma);
1432
1433	clk_disable_unprepare(as->clk);
1434
1435	return 0;
1436}
1437
1438#ifdef CONFIG_PM_SLEEP
1439static int atmel_spi_suspend(struct device *dev)
1440{
1441	struct spi_master	*master = dev_get_drvdata(dev);
1442	struct atmel_spi	*as = spi_master_get_devdata(master);
1443	int ret;
1444
1445	/* Stop the queue running */
1446	ret = spi_master_suspend(master);
1447	if (ret) {
1448		dev_warn(dev, "cannot suspend master\n");
1449		return ret;
1450	}
1451
1452	clk_disable_unprepare(as->clk);
1453
1454	pinctrl_pm_select_sleep_state(dev);
1455
1456	return 0;
1457}
1458
1459static int atmel_spi_resume(struct device *dev)
1460{
1461	struct spi_master	*master = dev_get_drvdata(dev);
1462	struct atmel_spi	*as = spi_master_get_devdata(master);
1463	int ret;
1464
1465	pinctrl_pm_select_default_state(dev);
1466
1467	clk_prepare_enable(as->clk);
1468
1469	/* Start the queue running */
1470	ret = spi_master_resume(master);
1471	if (ret)
1472		dev_err(dev, "problem starting queue (%d)\n", ret);
1473
1474	return ret;
1475}
1476
1477static SIMPLE_DEV_PM_OPS(atmel_spi_pm_ops, atmel_spi_suspend, atmel_spi_resume);
1478
1479#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1480#else
1481#define ATMEL_SPI_PM_OPS	NULL
1482#endif
1483
1484#if defined(CONFIG_OF)
1485static const struct of_device_id atmel_spi_dt_ids[] = {
1486	{ .compatible = "atmel,at91rm9200-spi" },
1487	{ /* sentinel */ }
1488};
1489
1490MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1491#endif
1492
1493static struct platform_driver atmel_spi_driver = {
1494	.driver		= {
1495		.name	= "atmel_spi",
1496		.owner	= THIS_MODULE,
1497		.pm	= ATMEL_SPI_PM_OPS,
1498		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1499	},
1500	.probe		= atmel_spi_probe,
1501	.remove		= atmel_spi_remove,
1502};
1503module_platform_driver(atmel_spi_driver);
1504
1505MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1506MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1507MODULE_LICENSE("GPL");
1508MODULE_ALIAS("platform:atmel_spi");
1509