[go: nahoru, domu]

1/*
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3 *
4 * Copyright (C) 2008-2012 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6 *
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 *
9 * Initial version inspired by:
10 *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 *      Sachin Verma <sachin.verma@st.com>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22 * GNU General Public License for more details.
23 */
24
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/ioport.h>
29#include <linux/errno.h>
30#include <linux/interrupt.h>
31#include <linux/spi/spi.h>
32#include <linux/delay.h>
33#include <linux/clk.h>
34#include <linux/err.h>
35#include <linux/amba/bus.h>
36#include <linux/amba/pl022.h>
37#include <linux/io.h>
38#include <linux/slab.h>
39#include <linux/dmaengine.h>
40#include <linux/dma-mapping.h>
41#include <linux/scatterlist.h>
42#include <linux/pm_runtime.h>
43#include <linux/gpio.h>
44#include <linux/of_gpio.h>
45#include <linux/pinctrl/consumer.h>
46
47/*
48 * This macro is used to define some register default values.
49 * reg is masked with mask, the OR:ed with an (again masked)
50 * val shifted sb steps to the left.
51 */
52#define SSP_WRITE_BITS(reg, val, mask, sb) \
53 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54
55/*
56 * This macro is also used to define some default values.
57 * It will just shift val by sb steps to the left and mask
58 * the result with mask.
59 */
60#define GEN_MASK_BITS(val, mask, sb) \
61 (((val)<<(sb)) & (mask))
62
63#define DRIVE_TX		0
64#define DO_NOT_DRIVE_TX		1
65
66#define DO_NOT_QUEUE_DMA	0
67#define QUEUE_DMA		1
68
69#define RX_TRANSFER		1
70#define TX_TRANSFER		2
71
72/*
73 * Macros to access SSP Registers with their offsets
74 */
75#define SSP_CR0(r)	(r + 0x000)
76#define SSP_CR1(r)	(r + 0x004)
77#define SSP_DR(r)	(r + 0x008)
78#define SSP_SR(r)	(r + 0x00C)
79#define SSP_CPSR(r)	(r + 0x010)
80#define SSP_IMSC(r)	(r + 0x014)
81#define SSP_RIS(r)	(r + 0x018)
82#define SSP_MIS(r)	(r + 0x01C)
83#define SSP_ICR(r)	(r + 0x020)
84#define SSP_DMACR(r)	(r + 0x024)
85#define SSP_CSR(r)	(r + 0x030) /* vendor extension */
86#define SSP_ITCR(r)	(r + 0x080)
87#define SSP_ITIP(r)	(r + 0x084)
88#define SSP_ITOP(r)	(r + 0x088)
89#define SSP_TDR(r)	(r + 0x08C)
90
91#define SSP_PID0(r)	(r + 0xFE0)
92#define SSP_PID1(r)	(r + 0xFE4)
93#define SSP_PID2(r)	(r + 0xFE8)
94#define SSP_PID3(r)	(r + 0xFEC)
95
96#define SSP_CID0(r)	(r + 0xFF0)
97#define SSP_CID1(r)	(r + 0xFF4)
98#define SSP_CID2(r)	(r + 0xFF8)
99#define SSP_CID3(r)	(r + 0xFFC)
100
101/*
102 * SSP Control Register 0  - SSP_CR0
103 */
104#define SSP_CR0_MASK_DSS	(0x0FUL << 0)
105#define SSP_CR0_MASK_FRF	(0x3UL << 4)
106#define SSP_CR0_MASK_SPO	(0x1UL << 6)
107#define SSP_CR0_MASK_SPH	(0x1UL << 7)
108#define SSP_CR0_MASK_SCR	(0xFFUL << 8)
109
110/*
111 * The ST version of this block moves som bits
112 * in SSP_CR0 and extends it to 32 bits
113 */
114#define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
115#define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
116#define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
117#define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
118
119/*
120 * SSP Control Register 0  - SSP_CR1
121 */
122#define SSP_CR1_MASK_LBM	(0x1UL << 0)
123#define SSP_CR1_MASK_SSE	(0x1UL << 1)
124#define SSP_CR1_MASK_MS		(0x1UL << 2)
125#define SSP_CR1_MASK_SOD	(0x1UL << 3)
126
127/*
128 * The ST version of this block adds some bits
129 * in SSP_CR1
130 */
131#define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
132#define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
133#define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
134#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
135#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
136/* This one is only in the PL023 variant */
137#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
138
139/*
140 * SSP Status Register - SSP_SR
141 */
142#define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
143#define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
144#define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
145#define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
146#define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
147
148/*
149 * SSP Clock Prescale Register  - SSP_CPSR
150 */
151#define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
152
153/*
154 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
155 */
156#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
157#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
158#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
159#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
160
161/*
162 * SSP Raw Interrupt Status Register - SSP_RIS
163 */
164/* Receive Overrun Raw Interrupt status */
165#define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
166/* Receive Timeout Raw Interrupt status */
167#define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
168/* Receive FIFO Raw Interrupt status */
169#define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
170/* Transmit FIFO Raw Interrupt status */
171#define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
172
173/*
174 * SSP Masked Interrupt Status Register - SSP_MIS
175 */
176/* Receive Overrun Masked Interrupt status */
177#define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
178/* Receive Timeout Masked Interrupt status */
179#define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
180/* Receive FIFO Masked Interrupt status */
181#define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
182/* Transmit FIFO Masked Interrupt status */
183#define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
184
185/*
186 * SSP Interrupt Clear Register - SSP_ICR
187 */
188/* Receive Overrun Raw Clear Interrupt bit */
189#define SSP_ICR_MASK_RORIC		(0x1UL << 0)
190/* Receive Timeout Clear Interrupt bit */
191#define SSP_ICR_MASK_RTIC		(0x1UL << 1)
192
193/*
194 * SSP DMA Control Register - SSP_DMACR
195 */
196/* Receive DMA Enable bit */
197#define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
198/* Transmit DMA Enable bit */
199#define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
200
201/*
202 * SSP Chip Select Control Register - SSP_CSR
203 * (vendor extension)
204 */
205#define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
206
207/*
208 * SSP Integration Test control Register - SSP_ITCR
209 */
210#define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
211#define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
212
213/*
214 * SSP Integration Test Input Register - SSP_ITIP
215 */
216#define ITIP_MASK_SSPRXD		 (0x1UL << 0)
217#define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
218#define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
219#define ITIP_MASK_RXDMAC		 (0x1UL << 3)
220#define ITIP_MASK_TXDMAC		 (0x1UL << 4)
221#define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
222
223/*
224 * SSP Integration Test output Register - SSP_ITOP
225 */
226#define ITOP_MASK_SSPTXD		 (0x1UL << 0)
227#define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
228#define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
229#define ITOP_MASK_SSPOEn		 (0x1UL << 3)
230#define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
231#define ITOP_MASK_RORINTR		 (0x1UL << 5)
232#define ITOP_MASK_RTINTR		 (0x1UL << 6)
233#define ITOP_MASK_RXINTR		 (0x1UL << 7)
234#define ITOP_MASK_TXINTR		 (0x1UL << 8)
235#define ITOP_MASK_INTR			 (0x1UL << 9)
236#define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
237#define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
238#define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
239#define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
240
241/*
242 * SSP Test Data Register - SSP_TDR
243 */
244#define TDR_MASK_TESTDATA		(0xFFFFFFFF)
245
246/*
247 * Message State
248 * we use the spi_message.state (void *) pointer to
249 * hold a single state value, that's why all this
250 * (void *) casting is done here.
251 */
252#define STATE_START			((void *) 0)
253#define STATE_RUNNING			((void *) 1)
254#define STATE_DONE			((void *) 2)
255#define STATE_ERROR			((void *) -1)
256
257/*
258 * SSP State - Whether Enabled or Disabled
259 */
260#define SSP_DISABLED			(0)
261#define SSP_ENABLED			(1)
262
263/*
264 * SSP DMA State - Whether DMA Enabled or Disabled
265 */
266#define SSP_DMA_DISABLED		(0)
267#define SSP_DMA_ENABLED			(1)
268
269/*
270 * SSP Clock Defaults
271 */
272#define SSP_DEFAULT_CLKRATE 0x2
273#define SSP_DEFAULT_PRESCALE 0x40
274
275/*
276 * SSP Clock Parameter ranges
277 */
278#define CPSDVR_MIN 0x02
279#define CPSDVR_MAX 0xFE
280#define SCR_MIN 0x00
281#define SCR_MAX 0xFF
282
283/*
284 * SSP Interrupt related Macros
285 */
286#define DEFAULT_SSP_REG_IMSC  0x0UL
287#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
288#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
289
290#define CLEAR_ALL_INTERRUPTS  0x3
291
292#define SPI_POLLING_TIMEOUT 1000
293
294/*
295 * The type of reading going on on this chip
296 */
297enum ssp_reading {
298	READING_NULL,
299	READING_U8,
300	READING_U16,
301	READING_U32
302};
303
304/**
305 * The type of writing going on on this chip
306 */
307enum ssp_writing {
308	WRITING_NULL,
309	WRITING_U8,
310	WRITING_U16,
311	WRITING_U32
312};
313
314/**
315 * struct vendor_data - vendor-specific config parameters
316 * for PL022 derivates
317 * @fifodepth: depth of FIFOs (both)
318 * @max_bpw: maximum number of bits per word
319 * @unidir: supports unidirection transfers
320 * @extended_cr: 32 bit wide control register 0 with extra
321 * features and extra features in CR1 as found in the ST variants
322 * @pl023: supports a subset of the ST extensions called "PL023"
323 * @internal_cs_ctrl: supports chip select control register
324 */
325struct vendor_data {
326	int fifodepth;
327	int max_bpw;
328	bool unidir;
329	bool extended_cr;
330	bool pl023;
331	bool loopback;
332	bool internal_cs_ctrl;
333};
334
335/**
336 * struct pl022 - This is the private SSP driver data structure
337 * @adev: AMBA device model hookup
338 * @vendor: vendor data for the IP block
339 * @phybase: the physical memory where the SSP device resides
340 * @virtbase: the virtual memory where the SSP is mapped
341 * @clk: outgoing clock "SPICLK" for the SPI bus
342 * @master: SPI framework hookup
343 * @master_info: controller-specific data from machine setup
344 * @kworker: thread struct for message pump
345 * @kworker_task: pointer to task for message pump kworker thread
346 * @pump_messages: work struct for scheduling work to the message pump
347 * @queue_lock: spinlock to syncronise access to message queue
348 * @queue: message queue
349 * @busy: message pump is busy
350 * @running: message pump is running
351 * @pump_transfers: Tasklet used in Interrupt Transfer mode
352 * @cur_msg: Pointer to current spi_message being processed
353 * @cur_transfer: Pointer to current spi_transfer
354 * @cur_chip: pointer to current clients chip(assigned from controller_state)
355 * @next_msg_cs_active: the next message in the queue has been examined
356 *  and it was found that it uses the same chip select as the previous
357 *  message, so we left it active after the previous transfer, and it's
358 *  active already.
359 * @tx: current position in TX buffer to be read
360 * @tx_end: end position in TX buffer to be read
361 * @rx: current position in RX buffer to be written
362 * @rx_end: end position in RX buffer to be written
363 * @read: the type of read currently going on
364 * @write: the type of write currently going on
365 * @exp_fifo_level: expected FIFO level
366 * @dma_rx_channel: optional channel for RX DMA
367 * @dma_tx_channel: optional channel for TX DMA
368 * @sgt_rx: scattertable for the RX transfer
369 * @sgt_tx: scattertable for the TX transfer
370 * @dummypage: a dummy page used for driving data on the bus with DMA
371 * @cur_cs: current chip select (gpio)
372 * @chipselects: list of chipselects (gpios)
373 */
374struct pl022 {
375	struct amba_device		*adev;
376	struct vendor_data		*vendor;
377	resource_size_t			phybase;
378	void __iomem			*virtbase;
379	struct clk			*clk;
380	struct spi_master		*master;
381	struct pl022_ssp_controller	*master_info;
382	/* Message per-transfer pump */
383	struct tasklet_struct		pump_transfers;
384	struct spi_message		*cur_msg;
385	struct spi_transfer		*cur_transfer;
386	struct chip_data		*cur_chip;
387	bool				next_msg_cs_active;
388	void				*tx;
389	void				*tx_end;
390	void				*rx;
391	void				*rx_end;
392	enum ssp_reading		read;
393	enum ssp_writing		write;
394	u32				exp_fifo_level;
395	enum ssp_rx_level_trig		rx_lev_trig;
396	enum ssp_tx_level_trig		tx_lev_trig;
397	/* DMA settings */
398#ifdef CONFIG_DMA_ENGINE
399	struct dma_chan			*dma_rx_channel;
400	struct dma_chan			*dma_tx_channel;
401	struct sg_table			sgt_rx;
402	struct sg_table			sgt_tx;
403	char				*dummypage;
404	bool				dma_running;
405#endif
406	int cur_cs;
407	int *chipselects;
408};
409
410/**
411 * struct chip_data - To maintain runtime state of SSP for each client chip
412 * @cr0: Value of control register CR0 of SSP - on later ST variants this
413 *       register is 32 bits wide rather than just 16
414 * @cr1: Value of control register CR1 of SSP
415 * @dmacr: Value of DMA control Register of SSP
416 * @cpsr: Value of Clock prescale register
417 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
418 * @enable_dma: Whether to enable DMA or not
419 * @read: function ptr to be used to read when doing xfer for this chip
420 * @write: function ptr to be used to write when doing xfer for this chip
421 * @cs_control: chip select callback provided by chip
422 * @xfer_type: polling/interrupt/DMA
423 *
424 * Runtime state of the SSP controller, maintained per chip,
425 * This would be set according to the current message that would be served
426 */
427struct chip_data {
428	u32 cr0;
429	u16 cr1;
430	u16 dmacr;
431	u16 cpsr;
432	u8 n_bytes;
433	bool enable_dma;
434	enum ssp_reading read;
435	enum ssp_writing write;
436	void (*cs_control) (u32 command);
437	int xfer_type;
438};
439
440/**
441 * null_cs_control - Dummy chip select function
442 * @command: select/delect the chip
443 *
444 * If no chip select function is provided by client this is used as dummy
445 * chip select
446 */
447static void null_cs_control(u32 command)
448{
449	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
450}
451
452/**
453 * internal_cs_control - Control chip select signals via SSP_CSR.
454 * @pl022: SSP driver private data structure
455 * @command: select/delect the chip
456 *
457 * Used on controller with internal chip select control via SSP_CSR register
458 * (vendor extension). Each of the 5 LSB in the register controls one chip
459 * select signal.
460 */
461static void internal_cs_control(struct pl022 *pl022, u32 command)
462{
463	u32 tmp;
464
465	tmp = readw(SSP_CSR(pl022->virtbase));
466	if (command == SSP_CHIP_SELECT)
467		tmp &= ~BIT(pl022->cur_cs);
468	else
469		tmp |= BIT(pl022->cur_cs);
470	writew(tmp, SSP_CSR(pl022->virtbase));
471}
472
473static void pl022_cs_control(struct pl022 *pl022, u32 command)
474{
475	if (pl022->vendor->internal_cs_ctrl)
476		internal_cs_control(pl022, command);
477	else if (gpio_is_valid(pl022->cur_cs))
478		gpio_set_value(pl022->cur_cs, command);
479	else
480		pl022->cur_chip->cs_control(command);
481}
482
483/**
484 * giveback - current spi_message is over, schedule next message and call
485 * callback of this message. Assumes that caller already
486 * set message->status; dma and pio irqs are blocked
487 * @pl022: SSP driver private data structure
488 */
489static void giveback(struct pl022 *pl022)
490{
491	struct spi_transfer *last_transfer;
492	pl022->next_msg_cs_active = false;
493
494	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
495					struct spi_transfer, transfer_list);
496
497	/* Delay if requested before any change in chip select */
498	if (last_transfer->delay_usecs)
499		/*
500		 * FIXME: This runs in interrupt context.
501		 * Is this really smart?
502		 */
503		udelay(last_transfer->delay_usecs);
504
505	if (!last_transfer->cs_change) {
506		struct spi_message *next_msg;
507
508		/*
509		 * cs_change was not set. We can keep the chip select
510		 * enabled if there is message in the queue and it is
511		 * for the same spi device.
512		 *
513		 * We cannot postpone this until pump_messages, because
514		 * after calling msg->complete (below) the driver that
515		 * sent the current message could be unloaded, which
516		 * could invalidate the cs_control() callback...
517		 */
518		/* get a pointer to the next message, if any */
519		next_msg = spi_get_next_queued_message(pl022->master);
520
521		/*
522		 * see if the next and current messages point
523		 * to the same spi device.
524		 */
525		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
526			next_msg = NULL;
527		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
528			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
529		else
530			pl022->next_msg_cs_active = true;
531
532	}
533
534	pl022->cur_msg = NULL;
535	pl022->cur_transfer = NULL;
536	pl022->cur_chip = NULL;
537	spi_finalize_current_message(pl022->master);
538
539	/* disable the SPI/SSP operation */
540	writew((readw(SSP_CR1(pl022->virtbase)) &
541		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
542
543}
544
545/**
546 * flush - flush the FIFO to reach a clean state
547 * @pl022: SSP driver private data structure
548 */
549static int flush(struct pl022 *pl022)
550{
551	unsigned long limit = loops_per_jiffy << 1;
552
553	dev_dbg(&pl022->adev->dev, "flush\n");
554	do {
555		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
556			readw(SSP_DR(pl022->virtbase));
557	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
558
559	pl022->exp_fifo_level = 0;
560
561	return limit;
562}
563
564/**
565 * restore_state - Load configuration of current chip
566 * @pl022: SSP driver private data structure
567 */
568static void restore_state(struct pl022 *pl022)
569{
570	struct chip_data *chip = pl022->cur_chip;
571
572	if (pl022->vendor->extended_cr)
573		writel(chip->cr0, SSP_CR0(pl022->virtbase));
574	else
575		writew(chip->cr0, SSP_CR0(pl022->virtbase));
576	writew(chip->cr1, SSP_CR1(pl022->virtbase));
577	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
578	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
579	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
580	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
581}
582
583/*
584 * Default SSP Register Values
585 */
586#define DEFAULT_SSP_REG_CR0 ( \
587	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
588	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
589	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
590	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
591	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
592)
593
594/* ST versions have slightly different bit layout */
595#define DEFAULT_SSP_REG_CR0_ST ( \
596	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
597	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
598	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
599	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
600	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
601	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
602	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
603)
604
605/* The PL023 version is slightly different again */
606#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
607	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
608	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
609	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
610	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
611)
612
613#define DEFAULT_SSP_REG_CR1 ( \
614	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
615	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
616	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
617	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
618)
619
620/* ST versions extend this register to use all 16 bits */
621#define DEFAULT_SSP_REG_CR1_ST ( \
622	DEFAULT_SSP_REG_CR1 | \
623	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
624	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
625	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
626	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
627	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
628)
629
630/*
631 * The PL023 variant has further differences: no loopback mode, no microwire
632 * support, and a new clock feedback delay setting.
633 */
634#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
635	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
636	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
637	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
638	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
639	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
640	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
641	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
642	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
643)
644
645#define DEFAULT_SSP_REG_CPSR ( \
646	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
647)
648
649#define DEFAULT_SSP_REG_DMACR (\
650	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
651	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
652)
653
654/**
655 * load_ssp_default_config - Load default configuration for SSP
656 * @pl022: SSP driver private data structure
657 */
658static void load_ssp_default_config(struct pl022 *pl022)
659{
660	if (pl022->vendor->pl023) {
661		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
662		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
663	} else if (pl022->vendor->extended_cr) {
664		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
665		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
666	} else {
667		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
668		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
669	}
670	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
671	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
672	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
673	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
674}
675
676/**
677 * This will write to TX and read from RX according to the parameters
678 * set in pl022.
679 */
680static void readwriter(struct pl022 *pl022)
681{
682
683	/*
684	 * The FIFO depth is different between primecell variants.
685	 * I believe filling in too much in the FIFO might cause
686	 * errons in 8bit wide transfers on ARM variants (just 8 words
687	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
688	 *
689	 * To prevent this issue, the TX FIFO is only filled to the
690	 * unused RX FIFO fill length, regardless of what the TX
691	 * FIFO status flag indicates.
692	 */
693	dev_dbg(&pl022->adev->dev,
694		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
695		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
696
697	/* Read as much as you can */
698	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
699	       && (pl022->rx < pl022->rx_end)) {
700		switch (pl022->read) {
701		case READING_NULL:
702			readw(SSP_DR(pl022->virtbase));
703			break;
704		case READING_U8:
705			*(u8 *) (pl022->rx) =
706				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
707			break;
708		case READING_U16:
709			*(u16 *) (pl022->rx) =
710				(u16) readw(SSP_DR(pl022->virtbase));
711			break;
712		case READING_U32:
713			*(u32 *) (pl022->rx) =
714				readl(SSP_DR(pl022->virtbase));
715			break;
716		}
717		pl022->rx += (pl022->cur_chip->n_bytes);
718		pl022->exp_fifo_level--;
719	}
720	/*
721	 * Write as much as possible up to the RX FIFO size
722	 */
723	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
724	       && (pl022->tx < pl022->tx_end)) {
725		switch (pl022->write) {
726		case WRITING_NULL:
727			writew(0x0, SSP_DR(pl022->virtbase));
728			break;
729		case WRITING_U8:
730			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
731			break;
732		case WRITING_U16:
733			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
734			break;
735		case WRITING_U32:
736			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
737			break;
738		}
739		pl022->tx += (pl022->cur_chip->n_bytes);
740		pl022->exp_fifo_level++;
741		/*
742		 * This inner reader takes care of things appearing in the RX
743		 * FIFO as we're transmitting. This will happen a lot since the
744		 * clock starts running when you put things into the TX FIFO,
745		 * and then things are continuously clocked into the RX FIFO.
746		 */
747		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
748		       && (pl022->rx < pl022->rx_end)) {
749			switch (pl022->read) {
750			case READING_NULL:
751				readw(SSP_DR(pl022->virtbase));
752				break;
753			case READING_U8:
754				*(u8 *) (pl022->rx) =
755					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
756				break;
757			case READING_U16:
758				*(u16 *) (pl022->rx) =
759					(u16) readw(SSP_DR(pl022->virtbase));
760				break;
761			case READING_U32:
762				*(u32 *) (pl022->rx) =
763					readl(SSP_DR(pl022->virtbase));
764				break;
765			}
766			pl022->rx += (pl022->cur_chip->n_bytes);
767			pl022->exp_fifo_level--;
768		}
769	}
770	/*
771	 * When we exit here the TX FIFO should be full and the RX FIFO
772	 * should be empty
773	 */
774}
775
776/**
777 * next_transfer - Move to the Next transfer in the current spi message
778 * @pl022: SSP driver private data structure
779 *
780 * This function moves though the linked list of spi transfers in the
781 * current spi message and returns with the state of current spi
782 * message i.e whether its last transfer is done(STATE_DONE) or
783 * Next transfer is ready(STATE_RUNNING)
784 */
785static void *next_transfer(struct pl022 *pl022)
786{
787	struct spi_message *msg = pl022->cur_msg;
788	struct spi_transfer *trans = pl022->cur_transfer;
789
790	/* Move to next transfer */
791	if (trans->transfer_list.next != &msg->transfers) {
792		pl022->cur_transfer =
793		    list_entry(trans->transfer_list.next,
794			       struct spi_transfer, transfer_list);
795		return STATE_RUNNING;
796	}
797	return STATE_DONE;
798}
799
800/*
801 * This DMA functionality is only compiled in if we have
802 * access to the generic DMA devices/DMA engine.
803 */
804#ifdef CONFIG_DMA_ENGINE
805static void unmap_free_dma_scatter(struct pl022 *pl022)
806{
807	/* Unmap and free the SG tables */
808	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
809		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
810	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
811		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
812	sg_free_table(&pl022->sgt_rx);
813	sg_free_table(&pl022->sgt_tx);
814}
815
816static void dma_callback(void *data)
817{
818	struct pl022 *pl022 = data;
819	struct spi_message *msg = pl022->cur_msg;
820
821	BUG_ON(!pl022->sgt_rx.sgl);
822
823#ifdef VERBOSE_DEBUG
824	/*
825	 * Optionally dump out buffers to inspect contents, this is
826	 * good if you want to convince yourself that the loopback
827	 * read/write contents are the same, when adopting to a new
828	 * DMA engine.
829	 */
830	{
831		struct scatterlist *sg;
832		unsigned int i;
833
834		dma_sync_sg_for_cpu(&pl022->adev->dev,
835				    pl022->sgt_rx.sgl,
836				    pl022->sgt_rx.nents,
837				    DMA_FROM_DEVICE);
838
839		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
840			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
841			print_hex_dump(KERN_ERR, "SPI RX: ",
842				       DUMP_PREFIX_OFFSET,
843				       16,
844				       1,
845				       sg_virt(sg),
846				       sg_dma_len(sg),
847				       1);
848		}
849		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
850			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
851			print_hex_dump(KERN_ERR, "SPI TX: ",
852				       DUMP_PREFIX_OFFSET,
853				       16,
854				       1,
855				       sg_virt(sg),
856				       sg_dma_len(sg),
857				       1);
858		}
859	}
860#endif
861
862	unmap_free_dma_scatter(pl022);
863
864	/* Update total bytes transferred */
865	msg->actual_length += pl022->cur_transfer->len;
866	if (pl022->cur_transfer->cs_change)
867		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
868
869	/* Move to next transfer */
870	msg->state = next_transfer(pl022);
871	tasklet_schedule(&pl022->pump_transfers);
872}
873
874static void setup_dma_scatter(struct pl022 *pl022,
875			      void *buffer,
876			      unsigned int length,
877			      struct sg_table *sgtab)
878{
879	struct scatterlist *sg;
880	int bytesleft = length;
881	void *bufp = buffer;
882	int mapbytes;
883	int i;
884
885	if (buffer) {
886		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
887			/*
888			 * If there are less bytes left than what fits
889			 * in the current page (plus page alignment offset)
890			 * we just feed in this, else we stuff in as much
891			 * as we can.
892			 */
893			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
894				mapbytes = bytesleft;
895			else
896				mapbytes = PAGE_SIZE - offset_in_page(bufp);
897			sg_set_page(sg, virt_to_page(bufp),
898				    mapbytes, offset_in_page(bufp));
899			bufp += mapbytes;
900			bytesleft -= mapbytes;
901			dev_dbg(&pl022->adev->dev,
902				"set RX/TX target page @ %p, %d bytes, %d left\n",
903				bufp, mapbytes, bytesleft);
904		}
905	} else {
906		/* Map the dummy buffer on every page */
907		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
908			if (bytesleft < PAGE_SIZE)
909				mapbytes = bytesleft;
910			else
911				mapbytes = PAGE_SIZE;
912			sg_set_page(sg, virt_to_page(pl022->dummypage),
913				    mapbytes, 0);
914			bytesleft -= mapbytes;
915			dev_dbg(&pl022->adev->dev,
916				"set RX/TX to dummy page %d bytes, %d left\n",
917				mapbytes, bytesleft);
918
919		}
920	}
921	BUG_ON(bytesleft);
922}
923
924/**
925 * configure_dma - configures the channels for the next transfer
926 * @pl022: SSP driver's private data structure
927 */
928static int configure_dma(struct pl022 *pl022)
929{
930	struct dma_slave_config rx_conf = {
931		.src_addr = SSP_DR(pl022->phybase),
932		.direction = DMA_DEV_TO_MEM,
933		.device_fc = false,
934	};
935	struct dma_slave_config tx_conf = {
936		.dst_addr = SSP_DR(pl022->phybase),
937		.direction = DMA_MEM_TO_DEV,
938		.device_fc = false,
939	};
940	unsigned int pages;
941	int ret;
942	int rx_sglen, tx_sglen;
943	struct dma_chan *rxchan = pl022->dma_rx_channel;
944	struct dma_chan *txchan = pl022->dma_tx_channel;
945	struct dma_async_tx_descriptor *rxdesc;
946	struct dma_async_tx_descriptor *txdesc;
947
948	/* Check that the channels are available */
949	if (!rxchan || !txchan)
950		return -ENODEV;
951
952	/*
953	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
954	 * Notice that the DMA engine uses one-to-one mapping. Since we can
955	 * not trigger on 2 elements this needs explicit mapping rather than
956	 * calculation.
957	 */
958	switch (pl022->rx_lev_trig) {
959	case SSP_RX_1_OR_MORE_ELEM:
960		rx_conf.src_maxburst = 1;
961		break;
962	case SSP_RX_4_OR_MORE_ELEM:
963		rx_conf.src_maxburst = 4;
964		break;
965	case SSP_RX_8_OR_MORE_ELEM:
966		rx_conf.src_maxburst = 8;
967		break;
968	case SSP_RX_16_OR_MORE_ELEM:
969		rx_conf.src_maxburst = 16;
970		break;
971	case SSP_RX_32_OR_MORE_ELEM:
972		rx_conf.src_maxburst = 32;
973		break;
974	default:
975		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
976		break;
977	}
978
979	switch (pl022->tx_lev_trig) {
980	case SSP_TX_1_OR_MORE_EMPTY_LOC:
981		tx_conf.dst_maxburst = 1;
982		break;
983	case SSP_TX_4_OR_MORE_EMPTY_LOC:
984		tx_conf.dst_maxburst = 4;
985		break;
986	case SSP_TX_8_OR_MORE_EMPTY_LOC:
987		tx_conf.dst_maxburst = 8;
988		break;
989	case SSP_TX_16_OR_MORE_EMPTY_LOC:
990		tx_conf.dst_maxburst = 16;
991		break;
992	case SSP_TX_32_OR_MORE_EMPTY_LOC:
993		tx_conf.dst_maxburst = 32;
994		break;
995	default:
996		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
997		break;
998	}
999
1000	switch (pl022->read) {
1001	case READING_NULL:
1002		/* Use the same as for writing */
1003		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1004		break;
1005	case READING_U8:
1006		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1007		break;
1008	case READING_U16:
1009		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1010		break;
1011	case READING_U32:
1012		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1013		break;
1014	}
1015
1016	switch (pl022->write) {
1017	case WRITING_NULL:
1018		/* Use the same as for reading */
1019		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1020		break;
1021	case WRITING_U8:
1022		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1023		break;
1024	case WRITING_U16:
1025		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1026		break;
1027	case WRITING_U32:
1028		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1029		break;
1030	}
1031
1032	/* SPI pecularity: we need to read and write the same width */
1033	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1034		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1035	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1036		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1037	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1038
1039	dmaengine_slave_config(rxchan, &rx_conf);
1040	dmaengine_slave_config(txchan, &tx_conf);
1041
1042	/* Create sglists for the transfers */
1043	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1044	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1045
1046	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1047	if (ret)
1048		goto err_alloc_rx_sg;
1049
1050	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1051	if (ret)
1052		goto err_alloc_tx_sg;
1053
1054	/* Fill in the scatterlists for the RX+TX buffers */
1055	setup_dma_scatter(pl022, pl022->rx,
1056			  pl022->cur_transfer->len, &pl022->sgt_rx);
1057	setup_dma_scatter(pl022, pl022->tx,
1058			  pl022->cur_transfer->len, &pl022->sgt_tx);
1059
1060	/* Map DMA buffers */
1061	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1062			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1063	if (!rx_sglen)
1064		goto err_rx_sgmap;
1065
1066	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1067			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1068	if (!tx_sglen)
1069		goto err_tx_sgmap;
1070
1071	/* Send both scatterlists */
1072	rxdesc = dmaengine_prep_slave_sg(rxchan,
1073				      pl022->sgt_rx.sgl,
1074				      rx_sglen,
1075				      DMA_DEV_TO_MEM,
1076				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1077	if (!rxdesc)
1078		goto err_rxdesc;
1079
1080	txdesc = dmaengine_prep_slave_sg(txchan,
1081				      pl022->sgt_tx.sgl,
1082				      tx_sglen,
1083				      DMA_MEM_TO_DEV,
1084				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1085	if (!txdesc)
1086		goto err_txdesc;
1087
1088	/* Put the callback on the RX transfer only, that should finish last */
1089	rxdesc->callback = dma_callback;
1090	rxdesc->callback_param = pl022;
1091
1092	/* Submit and fire RX and TX with TX last so we're ready to read! */
1093	dmaengine_submit(rxdesc);
1094	dmaengine_submit(txdesc);
1095	dma_async_issue_pending(rxchan);
1096	dma_async_issue_pending(txchan);
1097	pl022->dma_running = true;
1098
1099	return 0;
1100
1101err_txdesc:
1102	dmaengine_terminate_all(txchan);
1103err_rxdesc:
1104	dmaengine_terminate_all(rxchan);
1105	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1106		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1107err_tx_sgmap:
1108	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1109		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1110err_rx_sgmap:
1111	sg_free_table(&pl022->sgt_tx);
1112err_alloc_tx_sg:
1113	sg_free_table(&pl022->sgt_rx);
1114err_alloc_rx_sg:
1115	return -ENOMEM;
1116}
1117
1118static int pl022_dma_probe(struct pl022 *pl022)
1119{
1120	dma_cap_mask_t mask;
1121
1122	/* Try to acquire a generic DMA engine slave channel */
1123	dma_cap_zero(mask);
1124	dma_cap_set(DMA_SLAVE, mask);
1125	/*
1126	 * We need both RX and TX channels to do DMA, else do none
1127	 * of them.
1128	 */
1129	pl022->dma_rx_channel = dma_request_channel(mask,
1130					    pl022->master_info->dma_filter,
1131					    pl022->master_info->dma_rx_param);
1132	if (!pl022->dma_rx_channel) {
1133		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1134		goto err_no_rxchan;
1135	}
1136
1137	pl022->dma_tx_channel = dma_request_channel(mask,
1138					    pl022->master_info->dma_filter,
1139					    pl022->master_info->dma_tx_param);
1140	if (!pl022->dma_tx_channel) {
1141		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1142		goto err_no_txchan;
1143	}
1144
1145	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1146	if (!pl022->dummypage)
1147		goto err_no_dummypage;
1148
1149	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1150		 dma_chan_name(pl022->dma_rx_channel),
1151		 dma_chan_name(pl022->dma_tx_channel));
1152
1153	return 0;
1154
1155err_no_dummypage:
1156	dma_release_channel(pl022->dma_tx_channel);
1157err_no_txchan:
1158	dma_release_channel(pl022->dma_rx_channel);
1159	pl022->dma_rx_channel = NULL;
1160err_no_rxchan:
1161	dev_err(&pl022->adev->dev,
1162			"Failed to work in dma mode, work without dma!\n");
1163	return -ENODEV;
1164}
1165
1166static int pl022_dma_autoprobe(struct pl022 *pl022)
1167{
1168	struct device *dev = &pl022->adev->dev;
1169
1170	/* automatically configure DMA channels from platform, normally using DT */
1171	pl022->dma_rx_channel = dma_request_slave_channel(dev, "rx");
1172	if (!pl022->dma_rx_channel)
1173		goto err_no_rxchan;
1174
1175	pl022->dma_tx_channel = dma_request_slave_channel(dev, "tx");
1176	if (!pl022->dma_tx_channel)
1177		goto err_no_txchan;
1178
1179	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1180	if (!pl022->dummypage)
1181		goto err_no_dummypage;
1182
1183	return 0;
1184
1185err_no_dummypage:
1186	dma_release_channel(pl022->dma_tx_channel);
1187	pl022->dma_tx_channel = NULL;
1188err_no_txchan:
1189	dma_release_channel(pl022->dma_rx_channel);
1190	pl022->dma_rx_channel = NULL;
1191err_no_rxchan:
1192	return -ENODEV;
1193}
1194
1195static void terminate_dma(struct pl022 *pl022)
1196{
1197	struct dma_chan *rxchan = pl022->dma_rx_channel;
1198	struct dma_chan *txchan = pl022->dma_tx_channel;
1199
1200	dmaengine_terminate_all(rxchan);
1201	dmaengine_terminate_all(txchan);
1202	unmap_free_dma_scatter(pl022);
1203	pl022->dma_running = false;
1204}
1205
1206static void pl022_dma_remove(struct pl022 *pl022)
1207{
1208	if (pl022->dma_running)
1209		terminate_dma(pl022);
1210	if (pl022->dma_tx_channel)
1211		dma_release_channel(pl022->dma_tx_channel);
1212	if (pl022->dma_rx_channel)
1213		dma_release_channel(pl022->dma_rx_channel);
1214	kfree(pl022->dummypage);
1215}
1216
1217#else
1218static inline int configure_dma(struct pl022 *pl022)
1219{
1220	return -ENODEV;
1221}
1222
1223static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1224{
1225	return 0;
1226}
1227
1228static inline int pl022_dma_probe(struct pl022 *pl022)
1229{
1230	return 0;
1231}
1232
1233static inline void pl022_dma_remove(struct pl022 *pl022)
1234{
1235}
1236#endif
1237
1238/**
1239 * pl022_interrupt_handler - Interrupt handler for SSP controller
1240 *
1241 * This function handles interrupts generated for an interrupt based transfer.
1242 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1243 * current message's state as STATE_ERROR and schedule the tasklet
1244 * pump_transfers which will do the postprocessing of the current message by
1245 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1246 * more data, and writes data in TX FIFO till it is not full. If we complete
1247 * the transfer we move to the next transfer and schedule the tasklet.
1248 */
1249static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1250{
1251	struct pl022 *pl022 = dev_id;
1252	struct spi_message *msg = pl022->cur_msg;
1253	u16 irq_status = 0;
1254	u16 flag = 0;
1255
1256	if (unlikely(!msg)) {
1257		dev_err(&pl022->adev->dev,
1258			"bad message state in interrupt handler");
1259		/* Never fail */
1260		return IRQ_HANDLED;
1261	}
1262
1263	/* Read the Interrupt Status Register */
1264	irq_status = readw(SSP_MIS(pl022->virtbase));
1265
1266	if (unlikely(!irq_status))
1267		return IRQ_NONE;
1268
1269	/*
1270	 * This handles the FIFO interrupts, the timeout
1271	 * interrupts are flatly ignored, they cannot be
1272	 * trusted.
1273	 */
1274	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1275		/*
1276		 * Overrun interrupt - bail out since our Data has been
1277		 * corrupted
1278		 */
1279		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1280		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1281			dev_err(&pl022->adev->dev,
1282				"RXFIFO is full\n");
1283		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1284			dev_err(&pl022->adev->dev,
1285				"TXFIFO is full\n");
1286
1287		/*
1288		 * Disable and clear interrupts, disable SSP,
1289		 * mark message with bad status so it can be
1290		 * retried.
1291		 */
1292		writew(DISABLE_ALL_INTERRUPTS,
1293		       SSP_IMSC(pl022->virtbase));
1294		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1295		writew((readw(SSP_CR1(pl022->virtbase)) &
1296			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1297		msg->state = STATE_ERROR;
1298
1299		/* Schedule message queue handler */
1300		tasklet_schedule(&pl022->pump_transfers);
1301		return IRQ_HANDLED;
1302	}
1303
1304	readwriter(pl022);
1305
1306	if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1307		flag = 1;
1308		/* Disable Transmit interrupt, enable receive interrupt */
1309		writew((readw(SSP_IMSC(pl022->virtbase)) &
1310		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1311		       SSP_IMSC(pl022->virtbase));
1312	}
1313
1314	/*
1315	 * Since all transactions must write as much as shall be read,
1316	 * we can conclude the entire transaction once RX is complete.
1317	 * At this point, all TX will always be finished.
1318	 */
1319	if (pl022->rx >= pl022->rx_end) {
1320		writew(DISABLE_ALL_INTERRUPTS,
1321		       SSP_IMSC(pl022->virtbase));
1322		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1323		if (unlikely(pl022->rx > pl022->rx_end)) {
1324			dev_warn(&pl022->adev->dev, "read %u surplus "
1325				 "bytes (did you request an odd "
1326				 "number of bytes on a 16bit bus?)\n",
1327				 (u32) (pl022->rx - pl022->rx_end));
1328		}
1329		/* Update total bytes transferred */
1330		msg->actual_length += pl022->cur_transfer->len;
1331		if (pl022->cur_transfer->cs_change)
1332			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1333		/* Move to next transfer */
1334		msg->state = next_transfer(pl022);
1335		tasklet_schedule(&pl022->pump_transfers);
1336		return IRQ_HANDLED;
1337	}
1338
1339	return IRQ_HANDLED;
1340}
1341
1342/**
1343 * This sets up the pointers to memory for the next message to
1344 * send out on the SPI bus.
1345 */
1346static int set_up_next_transfer(struct pl022 *pl022,
1347				struct spi_transfer *transfer)
1348{
1349	int residue;
1350
1351	/* Sanity check the message for this bus width */
1352	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1353	if (unlikely(residue != 0)) {
1354		dev_err(&pl022->adev->dev,
1355			"message of %u bytes to transmit but the current "
1356			"chip bus has a data width of %u bytes!\n",
1357			pl022->cur_transfer->len,
1358			pl022->cur_chip->n_bytes);
1359		dev_err(&pl022->adev->dev, "skipping this message\n");
1360		return -EIO;
1361	}
1362	pl022->tx = (void *)transfer->tx_buf;
1363	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1364	pl022->rx = (void *)transfer->rx_buf;
1365	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1366	pl022->write =
1367	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1368	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1369	return 0;
1370}
1371
1372/**
1373 * pump_transfers - Tasklet function which schedules next transfer
1374 * when running in interrupt or DMA transfer mode.
1375 * @data: SSP driver private data structure
1376 *
1377 */
1378static void pump_transfers(unsigned long data)
1379{
1380	struct pl022 *pl022 = (struct pl022 *) data;
1381	struct spi_message *message = NULL;
1382	struct spi_transfer *transfer = NULL;
1383	struct spi_transfer *previous = NULL;
1384
1385	/* Get current state information */
1386	message = pl022->cur_msg;
1387	transfer = pl022->cur_transfer;
1388
1389	/* Handle for abort */
1390	if (message->state == STATE_ERROR) {
1391		message->status = -EIO;
1392		giveback(pl022);
1393		return;
1394	}
1395
1396	/* Handle end of message */
1397	if (message->state == STATE_DONE) {
1398		message->status = 0;
1399		giveback(pl022);
1400		return;
1401	}
1402
1403	/* Delay if requested at end of transfer before CS change */
1404	if (message->state == STATE_RUNNING) {
1405		previous = list_entry(transfer->transfer_list.prev,
1406					struct spi_transfer,
1407					transfer_list);
1408		if (previous->delay_usecs)
1409			/*
1410			 * FIXME: This runs in interrupt context.
1411			 * Is this really smart?
1412			 */
1413			udelay(previous->delay_usecs);
1414
1415		/* Reselect chip select only if cs_change was requested */
1416		if (previous->cs_change)
1417			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1418	} else {
1419		/* STATE_START */
1420		message->state = STATE_RUNNING;
1421	}
1422
1423	if (set_up_next_transfer(pl022, transfer)) {
1424		message->state = STATE_ERROR;
1425		message->status = -EIO;
1426		giveback(pl022);
1427		return;
1428	}
1429	/* Flush the FIFOs and let's go! */
1430	flush(pl022);
1431
1432	if (pl022->cur_chip->enable_dma) {
1433		if (configure_dma(pl022)) {
1434			dev_dbg(&pl022->adev->dev,
1435				"configuration of DMA failed, fall back to interrupt mode\n");
1436			goto err_config_dma;
1437		}
1438		return;
1439	}
1440
1441err_config_dma:
1442	/* enable all interrupts except RX */
1443	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1444}
1445
1446static void do_interrupt_dma_transfer(struct pl022 *pl022)
1447{
1448	/*
1449	 * Default is to enable all interrupts except RX -
1450	 * this will be enabled once TX is complete
1451	 */
1452	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1453
1454	/* Enable target chip, if not already active */
1455	if (!pl022->next_msg_cs_active)
1456		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1457
1458	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1459		/* Error path */
1460		pl022->cur_msg->state = STATE_ERROR;
1461		pl022->cur_msg->status = -EIO;
1462		giveback(pl022);
1463		return;
1464	}
1465	/* If we're using DMA, set up DMA here */
1466	if (pl022->cur_chip->enable_dma) {
1467		/* Configure DMA transfer */
1468		if (configure_dma(pl022)) {
1469			dev_dbg(&pl022->adev->dev,
1470				"configuration of DMA failed, fall back to interrupt mode\n");
1471			goto err_config_dma;
1472		}
1473		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1474		irqflags = DISABLE_ALL_INTERRUPTS;
1475	}
1476err_config_dma:
1477	/* Enable SSP, turn on interrupts */
1478	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1479	       SSP_CR1(pl022->virtbase));
1480	writew(irqflags, SSP_IMSC(pl022->virtbase));
1481}
1482
1483static void do_polling_transfer(struct pl022 *pl022)
1484{
1485	struct spi_message *message = NULL;
1486	struct spi_transfer *transfer = NULL;
1487	struct spi_transfer *previous = NULL;
1488	struct chip_data *chip;
1489	unsigned long time, timeout;
1490
1491	chip = pl022->cur_chip;
1492	message = pl022->cur_msg;
1493
1494	while (message->state != STATE_DONE) {
1495		/* Handle for abort */
1496		if (message->state == STATE_ERROR)
1497			break;
1498		transfer = pl022->cur_transfer;
1499
1500		/* Delay if requested at end of transfer */
1501		if (message->state == STATE_RUNNING) {
1502			previous =
1503			    list_entry(transfer->transfer_list.prev,
1504				       struct spi_transfer, transfer_list);
1505			if (previous->delay_usecs)
1506				udelay(previous->delay_usecs);
1507			if (previous->cs_change)
1508				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1509		} else {
1510			/* STATE_START */
1511			message->state = STATE_RUNNING;
1512			if (!pl022->next_msg_cs_active)
1513				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1514		}
1515
1516		/* Configuration Changing Per Transfer */
1517		if (set_up_next_transfer(pl022, transfer)) {
1518			/* Error path */
1519			message->state = STATE_ERROR;
1520			break;
1521		}
1522		/* Flush FIFOs and enable SSP */
1523		flush(pl022);
1524		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1525		       SSP_CR1(pl022->virtbase));
1526
1527		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1528
1529		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1530		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1531			time = jiffies;
1532			readwriter(pl022);
1533			if (time_after(time, timeout)) {
1534				dev_warn(&pl022->adev->dev,
1535				"%s: timeout!\n", __func__);
1536				message->state = STATE_ERROR;
1537				goto out;
1538			}
1539			cpu_relax();
1540		}
1541
1542		/* Update total byte transferred */
1543		message->actual_length += pl022->cur_transfer->len;
1544		if (pl022->cur_transfer->cs_change)
1545			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1546		/* Move to next transfer */
1547		message->state = next_transfer(pl022);
1548	}
1549out:
1550	/* Handle end of message */
1551	if (message->state == STATE_DONE)
1552		message->status = 0;
1553	else
1554		message->status = -EIO;
1555
1556	giveback(pl022);
1557	return;
1558}
1559
1560static int pl022_transfer_one_message(struct spi_master *master,
1561				      struct spi_message *msg)
1562{
1563	struct pl022 *pl022 = spi_master_get_devdata(master);
1564
1565	/* Initial message state */
1566	pl022->cur_msg = msg;
1567	msg->state = STATE_START;
1568
1569	pl022->cur_transfer = list_entry(msg->transfers.next,
1570					 struct spi_transfer, transfer_list);
1571
1572	/* Setup the SPI using the per chip configuration */
1573	pl022->cur_chip = spi_get_ctldata(msg->spi);
1574	pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1575
1576	restore_state(pl022);
1577	flush(pl022);
1578
1579	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1580		do_polling_transfer(pl022);
1581	else
1582		do_interrupt_dma_transfer(pl022);
1583
1584	return 0;
1585}
1586
1587static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1588{
1589	struct pl022 *pl022 = spi_master_get_devdata(master);
1590
1591	/* nothing more to do - disable spi/ssp and power off */
1592	writew((readw(SSP_CR1(pl022->virtbase)) &
1593		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1594
1595	return 0;
1596}
1597
1598static int verify_controller_parameters(struct pl022 *pl022,
1599				struct pl022_config_chip const *chip_info)
1600{
1601	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1602	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1603		dev_err(&pl022->adev->dev,
1604			"interface is configured incorrectly\n");
1605		return -EINVAL;
1606	}
1607	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1608	    (!pl022->vendor->unidir)) {
1609		dev_err(&pl022->adev->dev,
1610			"unidirectional mode not supported in this "
1611			"hardware version\n");
1612		return -EINVAL;
1613	}
1614	if ((chip_info->hierarchy != SSP_MASTER)
1615	    && (chip_info->hierarchy != SSP_SLAVE)) {
1616		dev_err(&pl022->adev->dev,
1617			"hierarchy is configured incorrectly\n");
1618		return -EINVAL;
1619	}
1620	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1621	    && (chip_info->com_mode != DMA_TRANSFER)
1622	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1623		dev_err(&pl022->adev->dev,
1624			"Communication mode is configured incorrectly\n");
1625		return -EINVAL;
1626	}
1627	switch (chip_info->rx_lev_trig) {
1628	case SSP_RX_1_OR_MORE_ELEM:
1629	case SSP_RX_4_OR_MORE_ELEM:
1630	case SSP_RX_8_OR_MORE_ELEM:
1631		/* These are always OK, all variants can handle this */
1632		break;
1633	case SSP_RX_16_OR_MORE_ELEM:
1634		if (pl022->vendor->fifodepth < 16) {
1635			dev_err(&pl022->adev->dev,
1636			"RX FIFO Trigger Level is configured incorrectly\n");
1637			return -EINVAL;
1638		}
1639		break;
1640	case SSP_RX_32_OR_MORE_ELEM:
1641		if (pl022->vendor->fifodepth < 32) {
1642			dev_err(&pl022->adev->dev,
1643			"RX FIFO Trigger Level is configured incorrectly\n");
1644			return -EINVAL;
1645		}
1646		break;
1647	default:
1648		dev_err(&pl022->adev->dev,
1649			"RX FIFO Trigger Level is configured incorrectly\n");
1650		return -EINVAL;
1651	}
1652	switch (chip_info->tx_lev_trig) {
1653	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1654	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1655	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1656		/* These are always OK, all variants can handle this */
1657		break;
1658	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1659		if (pl022->vendor->fifodepth < 16) {
1660			dev_err(&pl022->adev->dev,
1661			"TX FIFO Trigger Level is configured incorrectly\n");
1662			return -EINVAL;
1663		}
1664		break;
1665	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1666		if (pl022->vendor->fifodepth < 32) {
1667			dev_err(&pl022->adev->dev,
1668			"TX FIFO Trigger Level is configured incorrectly\n");
1669			return -EINVAL;
1670		}
1671		break;
1672	default:
1673		dev_err(&pl022->adev->dev,
1674			"TX FIFO Trigger Level is configured incorrectly\n");
1675		return -EINVAL;
1676	}
1677	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1678		if ((chip_info->ctrl_len < SSP_BITS_4)
1679		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1680			dev_err(&pl022->adev->dev,
1681				"CTRL LEN is configured incorrectly\n");
1682			return -EINVAL;
1683		}
1684		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1685		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1686			dev_err(&pl022->adev->dev,
1687				"Wait State is configured incorrectly\n");
1688			return -EINVAL;
1689		}
1690		/* Half duplex is only available in the ST Micro version */
1691		if (pl022->vendor->extended_cr) {
1692			if ((chip_info->duplex !=
1693			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1694			    && (chip_info->duplex !=
1695				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1696				dev_err(&pl022->adev->dev,
1697					"Microwire duplex mode is configured incorrectly\n");
1698				return -EINVAL;
1699			}
1700		} else {
1701			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1702				dev_err(&pl022->adev->dev,
1703					"Microwire half duplex mode requested,"
1704					" but this is only available in the"
1705					" ST version of PL022\n");
1706			return -EINVAL;
1707		}
1708	}
1709	return 0;
1710}
1711
1712static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1713{
1714	return rate / (cpsdvsr * (1 + scr));
1715}
1716
1717static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1718				    ssp_clock_params * clk_freq)
1719{
1720	/* Lets calculate the frequency parameters */
1721	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1722	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1723		best_scr = 0, tmp, found = 0;
1724
1725	rate = clk_get_rate(pl022->clk);
1726	/* cpsdvscr = 2 & scr 0 */
1727	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1728	/* cpsdvsr = 254 & scr = 255 */
1729	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1730
1731	if (freq > max_tclk)
1732		dev_warn(&pl022->adev->dev,
1733			"Max speed that can be programmed is %d Hz, you requested %d\n",
1734			max_tclk, freq);
1735
1736	if (freq < min_tclk) {
1737		dev_err(&pl022->adev->dev,
1738			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1739			freq, min_tclk);
1740		return -EINVAL;
1741	}
1742
1743	/*
1744	 * best_freq will give closest possible available rate (<= requested
1745	 * freq) for all values of scr & cpsdvsr.
1746	 */
1747	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1748		while (scr <= SCR_MAX) {
1749			tmp = spi_rate(rate, cpsdvsr, scr);
1750
1751			if (tmp > freq) {
1752				/* we need lower freq */
1753				scr++;
1754				continue;
1755			}
1756
1757			/*
1758			 * If found exact value, mark found and break.
1759			 * If found more closer value, update and break.
1760			 */
1761			if (tmp > best_freq) {
1762				best_freq = tmp;
1763				best_cpsdvsr = cpsdvsr;
1764				best_scr = scr;
1765
1766				if (tmp == freq)
1767					found = 1;
1768			}
1769			/*
1770			 * increased scr will give lower rates, which are not
1771			 * required
1772			 */
1773			break;
1774		}
1775		cpsdvsr += 2;
1776		scr = SCR_MIN;
1777	}
1778
1779	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1780			freq);
1781
1782	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1783	clk_freq->scr = (u8) (best_scr & 0xFF);
1784	dev_dbg(&pl022->adev->dev,
1785		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1786		freq, best_freq);
1787	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1788		clk_freq->cpsdvsr, clk_freq->scr);
1789
1790	return 0;
1791}
1792
1793/*
1794 * A piece of default chip info unless the platform
1795 * supplies it.
1796 */
1797static const struct pl022_config_chip pl022_default_chip_info = {
1798	.com_mode = POLLING_TRANSFER,
1799	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1800	.hierarchy = SSP_SLAVE,
1801	.slave_tx_disable = DO_NOT_DRIVE_TX,
1802	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1803	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1804	.ctrl_len = SSP_BITS_8,
1805	.wait_state = SSP_MWIRE_WAIT_ZERO,
1806	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1807	.cs_control = null_cs_control,
1808};
1809
1810/**
1811 * pl022_setup - setup function registered to SPI master framework
1812 * @spi: spi device which is requesting setup
1813 *
1814 * This function is registered to the SPI framework for this SPI master
1815 * controller. If it is the first time when setup is called by this device,
1816 * this function will initialize the runtime state for this chip and save
1817 * the same in the device structure. Else it will update the runtime info
1818 * with the updated chip info. Nothing is really being written to the
1819 * controller hardware here, that is not done until the actual transfer
1820 * commence.
1821 */
1822static int pl022_setup(struct spi_device *spi)
1823{
1824	struct pl022_config_chip const *chip_info;
1825	struct pl022_config_chip chip_info_dt;
1826	struct chip_data *chip;
1827	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1828	int status = 0;
1829	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1830	unsigned int bits = spi->bits_per_word;
1831	u32 tmp;
1832	struct device_node *np = spi->dev.of_node;
1833
1834	if (!spi->max_speed_hz)
1835		return -EINVAL;
1836
1837	/* Get controller_state if one is supplied */
1838	chip = spi_get_ctldata(spi);
1839
1840	if (chip == NULL) {
1841		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1842		if (!chip)
1843			return -ENOMEM;
1844		dev_dbg(&spi->dev,
1845			"allocated memory for controller's runtime state\n");
1846	}
1847
1848	/* Get controller data if one is supplied */
1849	chip_info = spi->controller_data;
1850
1851	if (chip_info == NULL) {
1852		if (np) {
1853			chip_info_dt = pl022_default_chip_info;
1854
1855			chip_info_dt.hierarchy = SSP_MASTER;
1856			of_property_read_u32(np, "pl022,interface",
1857				&chip_info_dt.iface);
1858			of_property_read_u32(np, "pl022,com-mode",
1859				&chip_info_dt.com_mode);
1860			of_property_read_u32(np, "pl022,rx-level-trig",
1861				&chip_info_dt.rx_lev_trig);
1862			of_property_read_u32(np, "pl022,tx-level-trig",
1863				&chip_info_dt.tx_lev_trig);
1864			of_property_read_u32(np, "pl022,ctrl-len",
1865				&chip_info_dt.ctrl_len);
1866			of_property_read_u32(np, "pl022,wait-state",
1867				&chip_info_dt.wait_state);
1868			of_property_read_u32(np, "pl022,duplex",
1869				&chip_info_dt.duplex);
1870
1871			chip_info = &chip_info_dt;
1872		} else {
1873			chip_info = &pl022_default_chip_info;
1874			/* spi_board_info.controller_data not is supplied */
1875			dev_dbg(&spi->dev,
1876				"using default controller_data settings\n");
1877		}
1878	} else
1879		dev_dbg(&spi->dev,
1880			"using user supplied controller_data settings\n");
1881
1882	/*
1883	 * We can override with custom divisors, else we use the board
1884	 * frequency setting
1885	 */
1886	if ((0 == chip_info->clk_freq.cpsdvsr)
1887	    && (0 == chip_info->clk_freq.scr)) {
1888		status = calculate_effective_freq(pl022,
1889						  spi->max_speed_hz,
1890						  &clk_freq);
1891		if (status < 0)
1892			goto err_config_params;
1893	} else {
1894		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1895		if ((clk_freq.cpsdvsr % 2) != 0)
1896			clk_freq.cpsdvsr =
1897				clk_freq.cpsdvsr - 1;
1898	}
1899	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1900	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1901		status = -EINVAL;
1902		dev_err(&spi->dev,
1903			"cpsdvsr is configured incorrectly\n");
1904		goto err_config_params;
1905	}
1906
1907	status = verify_controller_parameters(pl022, chip_info);
1908	if (status) {
1909		dev_err(&spi->dev, "controller data is incorrect");
1910		goto err_config_params;
1911	}
1912
1913	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1914	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1915
1916	/* Now set controller state based on controller data */
1917	chip->xfer_type = chip_info->com_mode;
1918	if (!chip_info->cs_control) {
1919		chip->cs_control = null_cs_control;
1920		if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1921			dev_warn(&spi->dev,
1922				 "invalid chip select\n");
1923	} else
1924		chip->cs_control = chip_info->cs_control;
1925
1926	/* Check bits per word with vendor specific range */
1927	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1928		status = -ENOTSUPP;
1929		dev_err(&spi->dev, "illegal data size for this controller!\n");
1930		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1931				pl022->vendor->max_bpw);
1932		goto err_config_params;
1933	} else if (bits <= 8) {
1934		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1935		chip->n_bytes = 1;
1936		chip->read = READING_U8;
1937		chip->write = WRITING_U8;
1938	} else if (bits <= 16) {
1939		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1940		chip->n_bytes = 2;
1941		chip->read = READING_U16;
1942		chip->write = WRITING_U16;
1943	} else {
1944		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1945		chip->n_bytes = 4;
1946		chip->read = READING_U32;
1947		chip->write = WRITING_U32;
1948	}
1949
1950	/* Now Initialize all register settings required for this chip */
1951	chip->cr0 = 0;
1952	chip->cr1 = 0;
1953	chip->dmacr = 0;
1954	chip->cpsr = 0;
1955	if ((chip_info->com_mode == DMA_TRANSFER)
1956	    && ((pl022->master_info)->enable_dma)) {
1957		chip->enable_dma = true;
1958		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1959		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1960			       SSP_DMACR_MASK_RXDMAE, 0);
1961		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1962			       SSP_DMACR_MASK_TXDMAE, 1);
1963	} else {
1964		chip->enable_dma = false;
1965		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1966		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1967			       SSP_DMACR_MASK_RXDMAE, 0);
1968		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1969			       SSP_DMACR_MASK_TXDMAE, 1);
1970	}
1971
1972	chip->cpsr = clk_freq.cpsdvsr;
1973
1974	/* Special setup for the ST micro extended control registers */
1975	if (pl022->vendor->extended_cr) {
1976		u32 etx;
1977
1978		if (pl022->vendor->pl023) {
1979			/* These bits are only in the PL023 */
1980			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1981				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1982		} else {
1983			/* These bits are in the PL022 but not PL023 */
1984			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1985				       SSP_CR0_MASK_HALFDUP_ST, 5);
1986			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1987				       SSP_CR0_MASK_CSS_ST, 16);
1988			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1989				       SSP_CR0_MASK_FRF_ST, 21);
1990			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1991				       SSP_CR1_MASK_MWAIT_ST, 6);
1992		}
1993		SSP_WRITE_BITS(chip->cr0, bits - 1,
1994			       SSP_CR0_MASK_DSS_ST, 0);
1995
1996		if (spi->mode & SPI_LSB_FIRST) {
1997			tmp = SSP_RX_LSB;
1998			etx = SSP_TX_LSB;
1999		} else {
2000			tmp = SSP_RX_MSB;
2001			etx = SSP_TX_MSB;
2002		}
2003		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2004		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2005		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2006			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2007		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2008			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2009	} else {
2010		SSP_WRITE_BITS(chip->cr0, bits - 1,
2011			       SSP_CR0_MASK_DSS, 0);
2012		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2013			       SSP_CR0_MASK_FRF, 4);
2014	}
2015
2016	/* Stuff that is common for all versions */
2017	if (spi->mode & SPI_CPOL)
2018		tmp = SSP_CLK_POL_IDLE_HIGH;
2019	else
2020		tmp = SSP_CLK_POL_IDLE_LOW;
2021	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2022
2023	if (spi->mode & SPI_CPHA)
2024		tmp = SSP_CLK_SECOND_EDGE;
2025	else
2026		tmp = SSP_CLK_FIRST_EDGE;
2027	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2028
2029	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2030	/* Loopback is available on all versions except PL023 */
2031	if (pl022->vendor->loopback) {
2032		if (spi->mode & SPI_LOOP)
2033			tmp = LOOPBACK_ENABLED;
2034		else
2035			tmp = LOOPBACK_DISABLED;
2036		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2037	}
2038	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2039	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2040	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2041		3);
2042
2043	/* Save controller_state */
2044	spi_set_ctldata(spi, chip);
2045	return status;
2046 err_config_params:
2047	spi_set_ctldata(spi, NULL);
2048	kfree(chip);
2049	return status;
2050}
2051
2052/**
2053 * pl022_cleanup - cleanup function registered to SPI master framework
2054 * @spi: spi device which is requesting cleanup
2055 *
2056 * This function is registered to the SPI framework for this SPI master
2057 * controller. It will free the runtime state of chip.
2058 */
2059static void pl022_cleanup(struct spi_device *spi)
2060{
2061	struct chip_data *chip = spi_get_ctldata(spi);
2062
2063	spi_set_ctldata(spi, NULL);
2064	kfree(chip);
2065}
2066
2067static struct pl022_ssp_controller *
2068pl022_platform_data_dt_get(struct device *dev)
2069{
2070	struct device_node *np = dev->of_node;
2071	struct pl022_ssp_controller *pd;
2072	u32 tmp;
2073
2074	if (!np) {
2075		dev_err(dev, "no dt node defined\n");
2076		return NULL;
2077	}
2078
2079	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2080	if (!pd)
2081		return NULL;
2082
2083	pd->bus_id = -1;
2084	pd->enable_dma = 1;
2085	of_property_read_u32(np, "num-cs", &tmp);
2086	pd->num_chipselect = tmp;
2087	of_property_read_u32(np, "pl022,autosuspend-delay",
2088			     &pd->autosuspend_delay);
2089	pd->rt = of_property_read_bool(np, "pl022,rt");
2090
2091	return pd;
2092}
2093
2094static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2095{
2096	struct device *dev = &adev->dev;
2097	struct pl022_ssp_controller *platform_info =
2098			dev_get_platdata(&adev->dev);
2099	struct spi_master *master;
2100	struct pl022 *pl022 = NULL;	/*Data for this driver */
2101	struct device_node *np = adev->dev.of_node;
2102	int status = 0, i, num_cs;
2103
2104	dev_info(&adev->dev,
2105		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2106	if (!platform_info && IS_ENABLED(CONFIG_OF))
2107		platform_info = pl022_platform_data_dt_get(dev);
2108
2109	if (!platform_info) {
2110		dev_err(dev, "probe: no platform data defined\n");
2111		return -ENODEV;
2112	}
2113
2114	if (platform_info->num_chipselect) {
2115		num_cs = platform_info->num_chipselect;
2116	} else {
2117		dev_err(dev, "probe: no chip select defined\n");
2118		return -ENODEV;
2119	}
2120
2121	/* Allocate master with space for data */
2122	master = spi_alloc_master(dev, sizeof(struct pl022));
2123	if (master == NULL) {
2124		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2125		return -ENOMEM;
2126	}
2127
2128	pl022 = spi_master_get_devdata(master);
2129	pl022->master = master;
2130	pl022->master_info = platform_info;
2131	pl022->adev = adev;
2132	pl022->vendor = id->data;
2133	pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
2134					  GFP_KERNEL);
2135	if (!pl022->chipselects) {
2136		status = -ENOMEM;
2137		goto err_no_mem;
2138	}
2139
2140	/*
2141	 * Bus Number Which has been Assigned to this SSP controller
2142	 * on this board
2143	 */
2144	master->bus_num = platform_info->bus_id;
2145	master->num_chipselect = num_cs;
2146	master->cleanup = pl022_cleanup;
2147	master->setup = pl022_setup;
2148	master->auto_runtime_pm = true;
2149	master->transfer_one_message = pl022_transfer_one_message;
2150	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2151	master->rt = platform_info->rt;
2152	master->dev.of_node = dev->of_node;
2153
2154	if (platform_info->num_chipselect && platform_info->chipselects) {
2155		for (i = 0; i < num_cs; i++)
2156			pl022->chipselects[i] = platform_info->chipselects[i];
2157	} else if (pl022->vendor->internal_cs_ctrl) {
2158		for (i = 0; i < num_cs; i++)
2159			pl022->chipselects[i] = i;
2160	} else if (IS_ENABLED(CONFIG_OF)) {
2161		for (i = 0; i < num_cs; i++) {
2162			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2163
2164			if (cs_gpio == -EPROBE_DEFER) {
2165				status = -EPROBE_DEFER;
2166				goto err_no_gpio;
2167			}
2168
2169			pl022->chipselects[i] = cs_gpio;
2170
2171			if (gpio_is_valid(cs_gpio)) {
2172				if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2173					dev_err(&adev->dev,
2174						"could not request %d gpio\n",
2175						cs_gpio);
2176				else if (gpio_direction_output(cs_gpio, 1))
2177					dev_err(&adev->dev,
2178						"could not set gpio %d as output\n",
2179						cs_gpio);
2180			}
2181		}
2182	}
2183
2184	/*
2185	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2186	 * always MS bit first on the original pl022.
2187	 */
2188	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2189	if (pl022->vendor->extended_cr)
2190		master->mode_bits |= SPI_LSB_FIRST;
2191
2192	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2193
2194	status = amba_request_regions(adev, NULL);
2195	if (status)
2196		goto err_no_ioregion;
2197
2198	pl022->phybase = adev->res.start;
2199	pl022->virtbase = devm_ioremap(dev, adev->res.start,
2200				       resource_size(&adev->res));
2201	if (pl022->virtbase == NULL) {
2202		status = -ENOMEM;
2203		goto err_no_ioremap;
2204	}
2205	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2206		&adev->res.start, pl022->virtbase);
2207
2208	pl022->clk = devm_clk_get(&adev->dev, NULL);
2209	if (IS_ERR(pl022->clk)) {
2210		status = PTR_ERR(pl022->clk);
2211		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2212		goto err_no_clk;
2213	}
2214
2215	status = clk_prepare_enable(pl022->clk);
2216	if (status) {
2217		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2218		goto err_no_clk_en;
2219	}
2220
2221	/* Initialize transfer pump */
2222	tasklet_init(&pl022->pump_transfers, pump_transfers,
2223		     (unsigned long)pl022);
2224
2225	/* Disable SSP */
2226	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2227	       SSP_CR1(pl022->virtbase));
2228	load_ssp_default_config(pl022);
2229
2230	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2231				  0, "pl022", pl022);
2232	if (status < 0) {
2233		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2234		goto err_no_irq;
2235	}
2236
2237	/* Get DMA channels, try autoconfiguration first */
2238	status = pl022_dma_autoprobe(pl022);
2239
2240	/* If that failed, use channels from platform_info */
2241	if (status == 0)
2242		platform_info->enable_dma = 1;
2243	else if (platform_info->enable_dma) {
2244		status = pl022_dma_probe(pl022);
2245		if (status != 0)
2246			platform_info->enable_dma = 0;
2247	}
2248
2249	/* Register with the SPI framework */
2250	amba_set_drvdata(adev, pl022);
2251	status = devm_spi_register_master(&adev->dev, master);
2252	if (status != 0) {
2253		dev_err(&adev->dev,
2254			"probe - problem registering spi master\n");
2255		goto err_spi_register;
2256	}
2257	dev_dbg(dev, "probe succeeded\n");
2258
2259	/* let runtime pm put suspend */
2260	if (platform_info->autosuspend_delay > 0) {
2261		dev_info(&adev->dev,
2262			"will use autosuspend for runtime pm, delay %dms\n",
2263			platform_info->autosuspend_delay);
2264		pm_runtime_set_autosuspend_delay(dev,
2265			platform_info->autosuspend_delay);
2266		pm_runtime_use_autosuspend(dev);
2267	}
2268	pm_runtime_put(dev);
2269
2270	return 0;
2271
2272 err_spi_register:
2273	if (platform_info->enable_dma)
2274		pl022_dma_remove(pl022);
2275 err_no_irq:
2276	clk_disable_unprepare(pl022->clk);
2277 err_no_clk_en:
2278 err_no_clk:
2279 err_no_ioremap:
2280	amba_release_regions(adev);
2281 err_no_ioregion:
2282 err_no_gpio:
2283 err_no_mem:
2284	spi_master_put(master);
2285	return status;
2286}
2287
2288static int
2289pl022_remove(struct amba_device *adev)
2290{
2291	struct pl022 *pl022 = amba_get_drvdata(adev);
2292
2293	if (!pl022)
2294		return 0;
2295
2296	/*
2297	 * undo pm_runtime_put() in probe.  I assume that we're not
2298	 * accessing the primecell here.
2299	 */
2300	pm_runtime_get_noresume(&adev->dev);
2301
2302	load_ssp_default_config(pl022);
2303	if (pl022->master_info->enable_dma)
2304		pl022_dma_remove(pl022);
2305
2306	clk_disable_unprepare(pl022->clk);
2307	amba_release_regions(adev);
2308	tasklet_disable(&pl022->pump_transfers);
2309	return 0;
2310}
2311
2312#ifdef CONFIG_PM_SLEEP
2313static int pl022_suspend(struct device *dev)
2314{
2315	struct pl022 *pl022 = dev_get_drvdata(dev);
2316	int ret;
2317
2318	ret = spi_master_suspend(pl022->master);
2319	if (ret) {
2320		dev_warn(dev, "cannot suspend master\n");
2321		return ret;
2322	}
2323
2324	ret = pm_runtime_force_suspend(dev);
2325	if (ret) {
2326		spi_master_resume(pl022->master);
2327		return ret;
2328	}
2329
2330	pinctrl_pm_select_sleep_state(dev);
2331
2332	dev_dbg(dev, "suspended\n");
2333	return 0;
2334}
2335
2336static int pl022_resume(struct device *dev)
2337{
2338	struct pl022 *pl022 = dev_get_drvdata(dev);
2339	int ret;
2340
2341	ret = pm_runtime_force_resume(dev);
2342	if (ret)
2343		dev_err(dev, "problem resuming\n");
2344
2345	/* Start the queue running */
2346	ret = spi_master_resume(pl022->master);
2347	if (ret)
2348		dev_err(dev, "problem starting queue (%d)\n", ret);
2349	else
2350		dev_dbg(dev, "resumed\n");
2351
2352	return ret;
2353}
2354#endif
2355
2356#ifdef CONFIG_PM
2357static int pl022_runtime_suspend(struct device *dev)
2358{
2359	struct pl022 *pl022 = dev_get_drvdata(dev);
2360
2361	clk_disable_unprepare(pl022->clk);
2362	pinctrl_pm_select_idle_state(dev);
2363
2364	return 0;
2365}
2366
2367static int pl022_runtime_resume(struct device *dev)
2368{
2369	struct pl022 *pl022 = dev_get_drvdata(dev);
2370
2371	pinctrl_pm_select_default_state(dev);
2372	clk_prepare_enable(pl022->clk);
2373
2374	return 0;
2375}
2376#endif
2377
2378static const struct dev_pm_ops pl022_dev_pm_ops = {
2379	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2380	SET_PM_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2381};
2382
2383static struct vendor_data vendor_arm = {
2384	.fifodepth = 8,
2385	.max_bpw = 16,
2386	.unidir = false,
2387	.extended_cr = false,
2388	.pl023 = false,
2389	.loopback = true,
2390	.internal_cs_ctrl = false,
2391};
2392
2393static struct vendor_data vendor_st = {
2394	.fifodepth = 32,
2395	.max_bpw = 32,
2396	.unidir = false,
2397	.extended_cr = true,
2398	.pl023 = false,
2399	.loopback = true,
2400	.internal_cs_ctrl = false,
2401};
2402
2403static struct vendor_data vendor_st_pl023 = {
2404	.fifodepth = 32,
2405	.max_bpw = 32,
2406	.unidir = false,
2407	.extended_cr = true,
2408	.pl023 = true,
2409	.loopback = false,
2410	.internal_cs_ctrl = false,
2411};
2412
2413static struct vendor_data vendor_lsi = {
2414	.fifodepth = 8,
2415	.max_bpw = 16,
2416	.unidir = false,
2417	.extended_cr = false,
2418	.pl023 = false,
2419	.loopback = true,
2420	.internal_cs_ctrl = true,
2421};
2422
2423static struct amba_id pl022_ids[] = {
2424	{
2425		/*
2426		 * ARM PL022 variant, this has a 16bit wide
2427		 * and 8 locations deep TX/RX FIFO
2428		 */
2429		.id	= 0x00041022,
2430		.mask	= 0x000fffff,
2431		.data	= &vendor_arm,
2432	},
2433	{
2434		/*
2435		 * ST Micro derivative, this has 32bit wide
2436		 * and 32 locations deep TX/RX FIFO
2437		 */
2438		.id	= 0x01080022,
2439		.mask	= 0xffffffff,
2440		.data	= &vendor_st,
2441	},
2442	{
2443		/*
2444		 * ST-Ericsson derivative "PL023" (this is not
2445		 * an official ARM number), this is a PL022 SSP block
2446		 * stripped to SPI mode only, it has 32bit wide
2447		 * and 32 locations deep TX/RX FIFO but no extended
2448		 * CR0/CR1 register
2449		 */
2450		.id	= 0x00080023,
2451		.mask	= 0xffffffff,
2452		.data	= &vendor_st_pl023,
2453	},
2454	{
2455		/*
2456		 * PL022 variant that has a chip select control register whih
2457		 * allows control of 5 output signals nCS[0:4].
2458		 */
2459		.id	= 0x000b6022,
2460		.mask	= 0x000fffff,
2461		.data	= &vendor_lsi,
2462	},
2463	{ 0, 0 },
2464};
2465
2466MODULE_DEVICE_TABLE(amba, pl022_ids);
2467
2468static struct amba_driver pl022_driver = {
2469	.drv = {
2470		.name	= "ssp-pl022",
2471		.pm	= &pl022_dev_pm_ops,
2472	},
2473	.id_table	= pl022_ids,
2474	.probe		= pl022_probe,
2475	.remove		= pl022_remove,
2476};
2477
2478static int __init pl022_init(void)
2479{
2480	return amba_driver_register(&pl022_driver);
2481}
2482subsys_initcall(pl022_init);
2483
2484static void __exit pl022_exit(void)
2485{
2486	amba_driver_unregister(&pl022_driver);
2487}
2488module_exit(pl022_exit);
2489
2490MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2491MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2492MODULE_LICENSE("GPL");
2493