[go: nahoru, domu]

1/*
2 * SPI bus driver for CSR SiRFprimaII
3 *
4 * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
5 *
6 * Licensed under GPLv2 or later.
7 */
8
9#include <linux/module.h>
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/clk.h>
13#include <linux/completion.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/of.h>
17#include <linux/bitops.h>
18#include <linux/err.h>
19#include <linux/platform_device.h>
20#include <linux/of_gpio.h>
21#include <linux/spi/spi.h>
22#include <linux/spi/spi_bitbang.h>
23#include <linux/dmaengine.h>
24#include <linux/dma-direction.h>
25#include <linux/dma-mapping.h>
26
27#define DRIVER_NAME "sirfsoc_spi"
28
29#define SIRFSOC_SPI_CTRL		0x0000
30#define SIRFSOC_SPI_CMD			0x0004
31#define SIRFSOC_SPI_TX_RX_EN		0x0008
32#define SIRFSOC_SPI_INT_EN		0x000C
33#define SIRFSOC_SPI_INT_STATUS		0x0010
34#define SIRFSOC_SPI_TX_DMA_IO_CTRL	0x0100
35#define SIRFSOC_SPI_TX_DMA_IO_LEN	0x0104
36#define SIRFSOC_SPI_TXFIFO_CTRL		0x0108
37#define SIRFSOC_SPI_TXFIFO_LEVEL_CHK	0x010C
38#define SIRFSOC_SPI_TXFIFO_OP		0x0110
39#define SIRFSOC_SPI_TXFIFO_STATUS	0x0114
40#define SIRFSOC_SPI_TXFIFO_DATA		0x0118
41#define SIRFSOC_SPI_RX_DMA_IO_CTRL	0x0120
42#define SIRFSOC_SPI_RX_DMA_IO_LEN	0x0124
43#define SIRFSOC_SPI_RXFIFO_CTRL		0x0128
44#define SIRFSOC_SPI_RXFIFO_LEVEL_CHK	0x012C
45#define SIRFSOC_SPI_RXFIFO_OP		0x0130
46#define SIRFSOC_SPI_RXFIFO_STATUS	0x0134
47#define SIRFSOC_SPI_RXFIFO_DATA		0x0138
48#define SIRFSOC_SPI_DUMMY_DELAY_CTL	0x0144
49
50/* SPI CTRL register defines */
51#define SIRFSOC_SPI_SLV_MODE		BIT(16)
52#define SIRFSOC_SPI_CMD_MODE		BIT(17)
53#define SIRFSOC_SPI_CS_IO_OUT		BIT(18)
54#define SIRFSOC_SPI_CS_IO_MODE		BIT(19)
55#define SIRFSOC_SPI_CLK_IDLE_STAT	BIT(20)
56#define SIRFSOC_SPI_CS_IDLE_STAT	BIT(21)
57#define SIRFSOC_SPI_TRAN_MSB		BIT(22)
58#define SIRFSOC_SPI_DRV_POS_EDGE	BIT(23)
59#define SIRFSOC_SPI_CS_HOLD_TIME	BIT(24)
60#define SIRFSOC_SPI_CLK_SAMPLE_MODE	BIT(25)
61#define SIRFSOC_SPI_TRAN_DAT_FORMAT_8	(0 << 26)
62#define SIRFSOC_SPI_TRAN_DAT_FORMAT_12	(1 << 26)
63#define SIRFSOC_SPI_TRAN_DAT_FORMAT_16	(2 << 26)
64#define SIRFSOC_SPI_TRAN_DAT_FORMAT_32	(3 << 26)
65#define SIRFSOC_SPI_CMD_BYTE_NUM(x)	((x & 3) << 28)
66#define SIRFSOC_SPI_ENA_AUTO_CLR	BIT(30)
67#define SIRFSOC_SPI_MUL_DAT_MODE	BIT(31)
68
69/* Interrupt Enable */
70#define SIRFSOC_SPI_RX_DONE_INT_EN	BIT(0)
71#define SIRFSOC_SPI_TX_DONE_INT_EN	BIT(1)
72#define SIRFSOC_SPI_RX_OFLOW_INT_EN	BIT(2)
73#define SIRFSOC_SPI_TX_UFLOW_INT_EN	BIT(3)
74#define SIRFSOC_SPI_RX_IO_DMA_INT_EN	BIT(4)
75#define SIRFSOC_SPI_TX_IO_DMA_INT_EN	BIT(5)
76#define SIRFSOC_SPI_RXFIFO_FULL_INT_EN	BIT(6)
77#define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN	BIT(7)
78#define SIRFSOC_SPI_RXFIFO_THD_INT_EN	BIT(8)
79#define SIRFSOC_SPI_TXFIFO_THD_INT_EN	BIT(9)
80#define SIRFSOC_SPI_FRM_END_INT_EN	BIT(10)
81
82#define SIRFSOC_SPI_INT_MASK_ALL	0x1FFF
83
84/* Interrupt status */
85#define SIRFSOC_SPI_RX_DONE		BIT(0)
86#define SIRFSOC_SPI_TX_DONE		BIT(1)
87#define SIRFSOC_SPI_RX_OFLOW		BIT(2)
88#define SIRFSOC_SPI_TX_UFLOW		BIT(3)
89#define SIRFSOC_SPI_RX_IO_DMA		BIT(4)
90#define SIRFSOC_SPI_RX_FIFO_FULL	BIT(6)
91#define SIRFSOC_SPI_TXFIFO_EMPTY	BIT(7)
92#define SIRFSOC_SPI_RXFIFO_THD_REACH	BIT(8)
93#define SIRFSOC_SPI_TXFIFO_THD_REACH	BIT(9)
94#define SIRFSOC_SPI_FRM_END		BIT(10)
95
96/* TX RX enable */
97#define SIRFSOC_SPI_RX_EN		BIT(0)
98#define SIRFSOC_SPI_TX_EN		BIT(1)
99#define SIRFSOC_SPI_CMD_TX_EN		BIT(2)
100
101#define SIRFSOC_SPI_IO_MODE_SEL		BIT(0)
102#define SIRFSOC_SPI_RX_DMA_FLUSH	BIT(2)
103
104/* FIFO OPs */
105#define SIRFSOC_SPI_FIFO_RESET		BIT(0)
106#define SIRFSOC_SPI_FIFO_START		BIT(1)
107
108/* FIFO CTRL */
109#define SIRFSOC_SPI_FIFO_WIDTH_BYTE	(0 << 0)
110#define SIRFSOC_SPI_FIFO_WIDTH_WORD	(1 << 0)
111#define SIRFSOC_SPI_FIFO_WIDTH_DWORD	(2 << 0)
112
113/* FIFO Status */
114#define	SIRFSOC_SPI_FIFO_LEVEL_MASK	0xFF
115#define SIRFSOC_SPI_FIFO_FULL		BIT(8)
116#define SIRFSOC_SPI_FIFO_EMPTY		BIT(9)
117
118/* 256 bytes rx/tx FIFO */
119#define SIRFSOC_SPI_FIFO_SIZE		256
120#define SIRFSOC_SPI_DAT_FRM_LEN_MAX	(64 * 1024)
121
122#define SIRFSOC_SPI_FIFO_SC(x)		((x) & 0x3F)
123#define SIRFSOC_SPI_FIFO_LC(x)		(((x) & 0x3F) << 10)
124#define SIRFSOC_SPI_FIFO_HC(x)		(((x) & 0x3F) << 20)
125#define SIRFSOC_SPI_FIFO_THD(x)		(((x) & 0xFF) << 2)
126
127/*
128 * only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma
129 * due to the limitation of dma controller
130 */
131
132#define ALIGNED(x) (!((u32)x & 0x3))
133#define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \
134	ALIGNED(x->len) && (x->len < 2 * PAGE_SIZE))
135
136#define SIRFSOC_MAX_CMD_BYTES	4
137
138struct sirfsoc_spi {
139	struct spi_bitbang bitbang;
140	struct completion rx_done;
141	struct completion tx_done;
142
143	void __iomem *base;
144	u32 ctrl_freq;  /* SPI controller clock speed */
145	struct clk *clk;
146
147	/* rx & tx bufs from the spi_transfer */
148	const void *tx;
149	void *rx;
150
151	/* place received word into rx buffer */
152	void (*rx_word) (struct sirfsoc_spi *);
153	/* get word from tx buffer for sending */
154	void (*tx_word) (struct sirfsoc_spi *);
155
156	/* number of words left to be tranmitted/received */
157	unsigned int left_tx_word;
158	unsigned int left_rx_word;
159
160	/* rx & tx DMA channels */
161	struct dma_chan *rx_chan;
162	struct dma_chan *tx_chan;
163	dma_addr_t src_start;
164	dma_addr_t dst_start;
165	void *dummypage;
166	int word_width; /* in bytes */
167
168	/*
169	 * if tx size is not more than 4 and rx size is NULL, use
170	 * command model
171	 */
172	bool	tx_by_cmd;
173	bool	hw_cs;
174};
175
176static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
177{
178	u32 data;
179	u8 *rx = sspi->rx;
180
181	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
182
183	if (rx) {
184		*rx++ = (u8) data;
185		sspi->rx = rx;
186	}
187
188	sspi->left_rx_word--;
189}
190
191static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
192{
193	u32 data = 0;
194	const u8 *tx = sspi->tx;
195
196	if (tx) {
197		data = *tx++;
198		sspi->tx = tx;
199	}
200
201	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
202	sspi->left_tx_word--;
203}
204
205static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
206{
207	u32 data;
208	u16 *rx = sspi->rx;
209
210	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
211
212	if (rx) {
213		*rx++ = (u16) data;
214		sspi->rx = rx;
215	}
216
217	sspi->left_rx_word--;
218}
219
220static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
221{
222	u32 data = 0;
223	const u16 *tx = sspi->tx;
224
225	if (tx) {
226		data = *tx++;
227		sspi->tx = tx;
228	}
229
230	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
231	sspi->left_tx_word--;
232}
233
234static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
235{
236	u32 data;
237	u32 *rx = sspi->rx;
238
239	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
240
241	if (rx) {
242		*rx++ = (u32) data;
243		sspi->rx = rx;
244	}
245
246	sspi->left_rx_word--;
247
248}
249
250static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
251{
252	u32 data = 0;
253	const u32 *tx = sspi->tx;
254
255	if (tx) {
256		data = *tx++;
257		sspi->tx = tx;
258	}
259
260	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
261	sspi->left_tx_word--;
262}
263
264static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
265{
266	struct sirfsoc_spi *sspi = dev_id;
267	u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS);
268	if (sspi->tx_by_cmd && (spi_stat & SIRFSOC_SPI_FRM_END)) {
269		complete(&sspi->tx_done);
270		writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
271		writel(SIRFSOC_SPI_INT_MASK_ALL,
272				sspi->base + SIRFSOC_SPI_INT_STATUS);
273		return IRQ_HANDLED;
274	}
275
276	/* Error Conditions */
277	if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
278			spi_stat & SIRFSOC_SPI_TX_UFLOW) {
279		complete(&sspi->tx_done);
280		complete(&sspi->rx_done);
281		writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
282		writel(SIRFSOC_SPI_INT_MASK_ALL,
283				sspi->base + SIRFSOC_SPI_INT_STATUS);
284		return IRQ_HANDLED;
285	}
286	if (spi_stat & SIRFSOC_SPI_TXFIFO_EMPTY)
287		complete(&sspi->tx_done);
288	while (!(readl(sspi->base + SIRFSOC_SPI_INT_STATUS) &
289		SIRFSOC_SPI_RX_IO_DMA))
290		cpu_relax();
291	complete(&sspi->rx_done);
292	writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
293	writel(SIRFSOC_SPI_INT_MASK_ALL,
294			sspi->base + SIRFSOC_SPI_INT_STATUS);
295
296	return IRQ_HANDLED;
297}
298
299static void spi_sirfsoc_dma_fini_callback(void *data)
300{
301	struct completion *dma_complete = data;
302
303	complete(dma_complete);
304}
305
306static void spi_sirfsoc_cmd_transfer(struct spi_device *spi,
307	struct spi_transfer *t)
308{
309	struct sirfsoc_spi *sspi;
310	int timeout = t->len * 10;
311	u32 cmd;
312
313	sspi = spi_master_get_devdata(spi->master);
314	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
315	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
316	memcpy(&cmd, sspi->tx, t->len);
317	if (sspi->word_width == 1 && !(spi->mode & SPI_LSB_FIRST))
318		cmd = cpu_to_be32(cmd) >>
319			((SIRFSOC_MAX_CMD_BYTES - t->len) * 8);
320	if (sspi->word_width == 2 && t->len == 4 &&
321			(!(spi->mode & SPI_LSB_FIRST)))
322		cmd = ((cmd & 0xffff) << 16) | (cmd >> 16);
323	writel(cmd, sspi->base + SIRFSOC_SPI_CMD);
324	writel(SIRFSOC_SPI_FRM_END_INT_EN,
325		sspi->base + SIRFSOC_SPI_INT_EN);
326	writel(SIRFSOC_SPI_CMD_TX_EN,
327		sspi->base + SIRFSOC_SPI_TX_RX_EN);
328	if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
329		dev_err(&spi->dev, "cmd transfer timeout\n");
330		return;
331	}
332	sspi->left_rx_word -= t->len;
333}
334
335static void spi_sirfsoc_dma_transfer(struct spi_device *spi,
336	struct spi_transfer *t)
337{
338	struct sirfsoc_spi *sspi;
339	struct dma_async_tx_descriptor *rx_desc, *tx_desc;
340	int timeout = t->len * 10;
341
342	sspi = spi_master_get_devdata(spi->master);
343	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
344	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
345	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
346	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
347	writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
348	writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);
349	if (sspi->left_tx_word < SIRFSOC_SPI_DAT_FRM_LEN_MAX) {
350		writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
351			SIRFSOC_SPI_ENA_AUTO_CLR | SIRFSOC_SPI_MUL_DAT_MODE,
352			sspi->base + SIRFSOC_SPI_CTRL);
353		writel(sspi->left_tx_word - 1,
354				sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
355		writel(sspi->left_tx_word - 1,
356				sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
357	} else {
358		writel(readl(sspi->base + SIRFSOC_SPI_CTRL),
359			sspi->base + SIRFSOC_SPI_CTRL);
360		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
361		writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
362	}
363	sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len,
364					(t->tx_buf != t->rx_buf) ?
365					DMA_FROM_DEVICE : DMA_BIDIRECTIONAL);
366	rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
367		sspi->dst_start, t->len, DMA_DEV_TO_MEM,
368		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
369	rx_desc->callback = spi_sirfsoc_dma_fini_callback;
370	rx_desc->callback_param = &sspi->rx_done;
371
372	sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len,
373					(t->tx_buf != t->rx_buf) ?
374					DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
375	tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
376		sspi->src_start, t->len, DMA_MEM_TO_DEV,
377		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
378	tx_desc->callback = spi_sirfsoc_dma_fini_callback;
379	tx_desc->callback_param = &sspi->tx_done;
380
381	dmaengine_submit(tx_desc);
382	dmaengine_submit(rx_desc);
383	dma_async_issue_pending(sspi->tx_chan);
384	dma_async_issue_pending(sspi->rx_chan);
385	writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
386			sspi->base + SIRFSOC_SPI_TX_RX_EN);
387	if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
388		dev_err(&spi->dev, "transfer timeout\n");
389		dmaengine_terminate_all(sspi->rx_chan);
390	} else
391		sspi->left_rx_word = 0;
392	/*
393	 * we only wait tx-done event if transferring by DMA. for PIO,
394	 * we get rx data by writing tx data, so if rx is done, tx has
395	 * done earlier
396	 */
397	if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
398		dev_err(&spi->dev, "transfer timeout\n");
399		dmaengine_terminate_all(sspi->tx_chan);
400	}
401	dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
402	dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
403	/* TX, RX FIFO stop */
404	writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
405	writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
406	if (sspi->left_tx_word >= SIRFSOC_SPI_DAT_FRM_LEN_MAX)
407		writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN);
408}
409
410static void spi_sirfsoc_pio_transfer(struct spi_device *spi,
411		struct spi_transfer *t)
412{
413	struct sirfsoc_spi *sspi;
414	int timeout = t->len * 10;
415
416	sspi = spi_master_get_devdata(spi->master);
417	do {
418		writel(SIRFSOC_SPI_FIFO_RESET,
419			sspi->base + SIRFSOC_SPI_RXFIFO_OP);
420		writel(SIRFSOC_SPI_FIFO_RESET,
421			sspi->base + SIRFSOC_SPI_TXFIFO_OP);
422		writel(SIRFSOC_SPI_FIFO_START,
423			sspi->base + SIRFSOC_SPI_RXFIFO_OP);
424		writel(SIRFSOC_SPI_FIFO_START,
425			sspi->base + SIRFSOC_SPI_TXFIFO_OP);
426		writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
427		writel(SIRFSOC_SPI_INT_MASK_ALL,
428			sspi->base + SIRFSOC_SPI_INT_STATUS);
429		writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
430			SIRFSOC_SPI_MUL_DAT_MODE | SIRFSOC_SPI_ENA_AUTO_CLR,
431			sspi->base + SIRFSOC_SPI_CTRL);
432		writel(min(sspi->left_tx_word, (u32)(256 / sspi->word_width))
433				- 1, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
434		writel(min(sspi->left_rx_word, (u32)(256 / sspi->word_width))
435				- 1, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
436		while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS)
437			& SIRFSOC_SPI_FIFO_FULL)) && sspi->left_tx_word)
438			sspi->tx_word(sspi);
439		writel(SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN |
440			SIRFSOC_SPI_TX_UFLOW_INT_EN |
441			SIRFSOC_SPI_RX_OFLOW_INT_EN |
442			SIRFSOC_SPI_RX_IO_DMA_INT_EN,
443			sspi->base + SIRFSOC_SPI_INT_EN);
444		writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
445			sspi->base + SIRFSOC_SPI_TX_RX_EN);
446		if (!wait_for_completion_timeout(&sspi->tx_done, timeout) ||
447			!wait_for_completion_timeout(&sspi->rx_done, timeout)) {
448			dev_err(&spi->dev, "transfer timeout\n");
449			break;
450		}
451		while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS)
452			& SIRFSOC_SPI_FIFO_EMPTY)) && sspi->left_rx_word)
453			sspi->rx_word(sspi);
454		writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
455		writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
456	} while (sspi->left_tx_word != 0 || sspi->left_rx_word != 0);
457}
458
459static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
460{
461	struct sirfsoc_spi *sspi;
462	sspi = spi_master_get_devdata(spi->master);
463
464	sspi->tx = t->tx_buf ? t->tx_buf : sspi->dummypage;
465	sspi->rx = t->rx_buf ? t->rx_buf : sspi->dummypage;
466	sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width;
467	reinit_completion(&sspi->rx_done);
468	reinit_completion(&sspi->tx_done);
469	/*
470	 * in the transfer, if transfer data using command register with rx_buf
471	 * null, just fill command data into command register and wait for its
472	 * completion.
473	 */
474	if (sspi->tx_by_cmd)
475		spi_sirfsoc_cmd_transfer(spi, t);
476	else if (IS_DMA_VALID(t))
477		spi_sirfsoc_dma_transfer(spi, t);
478	else
479		spi_sirfsoc_pio_transfer(spi, t);
480
481	return t->len - sspi->left_rx_word * sspi->word_width;
482}
483
484static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
485{
486	struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);
487
488	if (sspi->hw_cs) {
489		u32 regval = readl(sspi->base + SIRFSOC_SPI_CTRL);
490		switch (value) {
491		case BITBANG_CS_ACTIVE:
492			if (spi->mode & SPI_CS_HIGH)
493				regval |= SIRFSOC_SPI_CS_IO_OUT;
494			else
495				regval &= ~SIRFSOC_SPI_CS_IO_OUT;
496			break;
497		case BITBANG_CS_INACTIVE:
498			if (spi->mode & SPI_CS_HIGH)
499				regval &= ~SIRFSOC_SPI_CS_IO_OUT;
500			else
501				regval |= SIRFSOC_SPI_CS_IO_OUT;
502			break;
503		}
504		writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
505	} else {
506		switch (value) {
507		case BITBANG_CS_ACTIVE:
508			gpio_direction_output(spi->cs_gpio,
509					spi->mode & SPI_CS_HIGH ? 1 : 0);
510			break;
511		case BITBANG_CS_INACTIVE:
512			gpio_direction_output(spi->cs_gpio,
513					spi->mode & SPI_CS_HIGH ? 0 : 1);
514			break;
515		}
516	}
517}
518
519static int
520spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
521{
522	struct sirfsoc_spi *sspi;
523	u8 bits_per_word = 0;
524	int hz = 0;
525	u32 regval;
526	u32 txfifo_ctrl, rxfifo_ctrl;
527	u32 fifo_size = SIRFSOC_SPI_FIFO_SIZE / 4;
528
529	sspi = spi_master_get_devdata(spi->master);
530
531	bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
532	hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;
533
534	regval = (sspi->ctrl_freq / (2 * hz)) - 1;
535	if (regval > 0xFFFF || regval < 0) {
536		dev_err(&spi->dev, "Speed %d not supported\n", hz);
537		return -EINVAL;
538	}
539
540	switch (bits_per_word) {
541	case 8:
542		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
543		sspi->rx_word = spi_sirfsoc_rx_word_u8;
544		sspi->tx_word = spi_sirfsoc_tx_word_u8;
545		break;
546	case 12:
547	case 16:
548		regval |= (bits_per_word ==  12) ?
549			SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
550			SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
551		sspi->rx_word = spi_sirfsoc_rx_word_u16;
552		sspi->tx_word = spi_sirfsoc_tx_word_u16;
553		break;
554	case 32:
555		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
556		sspi->rx_word = spi_sirfsoc_rx_word_u32;
557		sspi->tx_word = spi_sirfsoc_tx_word_u32;
558		break;
559	default:
560		BUG();
561	}
562
563	sspi->word_width = DIV_ROUND_UP(bits_per_word, 8);
564	txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
565					   (sspi->word_width >> 1);
566	rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
567					   (sspi->word_width >> 1);
568
569	if (!(spi->mode & SPI_CS_HIGH))
570		regval |= SIRFSOC_SPI_CS_IDLE_STAT;
571	if (!(spi->mode & SPI_LSB_FIRST))
572		regval |= SIRFSOC_SPI_TRAN_MSB;
573	if (spi->mode & SPI_CPOL)
574		regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
575
576	/*
577	 * Data should be driven at least 1/2 cycle before the fetch edge
578	 * to make sure that data gets stable at the fetch edge.
579	 */
580	if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
581	    (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA)))
582		regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
583	else
584		regval |= SIRFSOC_SPI_DRV_POS_EDGE;
585
586	writel(SIRFSOC_SPI_FIFO_SC(fifo_size - 2) |
587			SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
588			SIRFSOC_SPI_FIFO_HC(2),
589		sspi->base + SIRFSOC_SPI_TXFIFO_LEVEL_CHK);
590	writel(SIRFSOC_SPI_FIFO_SC(2) |
591			SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
592			SIRFSOC_SPI_FIFO_HC(fifo_size - 2),
593		sspi->base + SIRFSOC_SPI_RXFIFO_LEVEL_CHK);
594	writel(txfifo_ctrl, sspi->base + SIRFSOC_SPI_TXFIFO_CTRL);
595	writel(rxfifo_ctrl, sspi->base + SIRFSOC_SPI_RXFIFO_CTRL);
596
597	if (t && t->tx_buf && !t->rx_buf && (t->len <= SIRFSOC_MAX_CMD_BYTES)) {
598		regval |= (SIRFSOC_SPI_CMD_BYTE_NUM((t->len - 1)) |
599				SIRFSOC_SPI_CMD_MODE);
600		sspi->tx_by_cmd = true;
601	} else {
602		regval &= ~SIRFSOC_SPI_CMD_MODE;
603		sspi->tx_by_cmd = false;
604	}
605	/*
606	 * it should never set to hardware cs mode because in hardware cs mode,
607	 * cs signal can't controlled by driver.
608	 */
609	regval |= SIRFSOC_SPI_CS_IO_MODE;
610	writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
611
612	if (IS_DMA_VALID(t)) {
613		/* Enable DMA mode for RX, TX */
614		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
615		writel(SIRFSOC_SPI_RX_DMA_FLUSH,
616			sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
617	} else {
618		/* Enable IO mode for RX, TX */
619		writel(SIRFSOC_SPI_IO_MODE_SEL,
620			sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
621		writel(SIRFSOC_SPI_IO_MODE_SEL,
622			sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
623	}
624
625	return 0;
626}
627
628static int spi_sirfsoc_setup(struct spi_device *spi)
629{
630	struct sirfsoc_spi *sspi;
631
632	if (!spi->max_speed_hz)
633		return -EINVAL;
634
635	sspi = spi_master_get_devdata(spi->master);
636
637	if (spi->cs_gpio == -ENOENT)
638		sspi->hw_cs = true;
639	else
640		sspi->hw_cs = false;
641	return spi_sirfsoc_setup_transfer(spi, NULL);
642}
643
644static int spi_sirfsoc_probe(struct platform_device *pdev)
645{
646	struct sirfsoc_spi *sspi;
647	struct spi_master *master;
648	struct resource *mem_res;
649	int irq;
650	int i, ret;
651
652	master = spi_alloc_master(&pdev->dev, sizeof(*sspi));
653	if (!master) {
654		dev_err(&pdev->dev, "Unable to allocate SPI master\n");
655		return -ENOMEM;
656	}
657	platform_set_drvdata(pdev, master);
658	sspi = spi_master_get_devdata(master);
659
660	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
661	sspi->base = devm_ioremap_resource(&pdev->dev, mem_res);
662	if (IS_ERR(sspi->base)) {
663		ret = PTR_ERR(sspi->base);
664		goto free_master;
665	}
666
667	irq = platform_get_irq(pdev, 0);
668	if (irq < 0) {
669		ret = -ENXIO;
670		goto free_master;
671	}
672	ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
673				DRIVER_NAME, sspi);
674	if (ret)
675		goto free_master;
676
677	sspi->bitbang.master = master;
678	sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
679	sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
680	sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
681	sspi->bitbang.master->setup = spi_sirfsoc_setup;
682	master->bus_num = pdev->id;
683	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
684	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) |
685					SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
686	sspi->bitbang.master->dev.of_node = pdev->dev.of_node;
687
688	/* request DMA channels */
689	sspi->rx_chan = dma_request_slave_channel(&pdev->dev, "rx");
690	if (!sspi->rx_chan) {
691		dev_err(&pdev->dev, "can not allocate rx dma channel\n");
692		ret = -ENODEV;
693		goto free_master;
694	}
695	sspi->tx_chan = dma_request_slave_channel(&pdev->dev, "tx");
696	if (!sspi->tx_chan) {
697		dev_err(&pdev->dev, "can not allocate tx dma channel\n");
698		ret = -ENODEV;
699		goto free_rx_dma;
700	}
701
702	sspi->clk = clk_get(&pdev->dev, NULL);
703	if (IS_ERR(sspi->clk)) {
704		ret = PTR_ERR(sspi->clk);
705		goto free_tx_dma;
706	}
707	clk_prepare_enable(sspi->clk);
708	sspi->ctrl_freq = clk_get_rate(sspi->clk);
709
710	init_completion(&sspi->rx_done);
711	init_completion(&sspi->tx_done);
712
713	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
714	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
715	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
716	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
717	/* We are not using dummy delay between command and data */
718	writel(0, sspi->base + SIRFSOC_SPI_DUMMY_DELAY_CTL);
719
720	sspi->dummypage = kmalloc(2 * PAGE_SIZE, GFP_KERNEL);
721	if (!sspi->dummypage) {
722		ret = -ENOMEM;
723		goto free_clk;
724	}
725
726	ret = spi_bitbang_start(&sspi->bitbang);
727	if (ret)
728		goto free_dummypage;
729	for (i = 0; master->cs_gpios && i < master->num_chipselect; i++) {
730		if (master->cs_gpios[i] == -ENOENT)
731			continue;
732		if (!gpio_is_valid(master->cs_gpios[i])) {
733			dev_err(&pdev->dev, "no valid gpio\n");
734			ret = -EINVAL;
735			goto free_dummypage;
736		}
737		ret = devm_gpio_request(&pdev->dev,
738				master->cs_gpios[i], DRIVER_NAME);
739		if (ret) {
740			dev_err(&pdev->dev, "failed to request gpio\n");
741			goto free_dummypage;
742		}
743	}
744	dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);
745
746	return 0;
747free_dummypage:
748	kfree(sspi->dummypage);
749free_clk:
750	clk_disable_unprepare(sspi->clk);
751	clk_put(sspi->clk);
752free_tx_dma:
753	dma_release_channel(sspi->tx_chan);
754free_rx_dma:
755	dma_release_channel(sspi->rx_chan);
756free_master:
757	spi_master_put(master);
758
759	return ret;
760}
761
762static int  spi_sirfsoc_remove(struct platform_device *pdev)
763{
764	struct spi_master *master;
765	struct sirfsoc_spi *sspi;
766
767	master = platform_get_drvdata(pdev);
768	sspi = spi_master_get_devdata(master);
769
770	spi_bitbang_stop(&sspi->bitbang);
771	kfree(sspi->dummypage);
772	clk_disable_unprepare(sspi->clk);
773	clk_put(sspi->clk);
774	dma_release_channel(sspi->rx_chan);
775	dma_release_channel(sspi->tx_chan);
776	spi_master_put(master);
777	return 0;
778}
779
780#ifdef CONFIG_PM_SLEEP
781static int spi_sirfsoc_suspend(struct device *dev)
782{
783	struct spi_master *master = dev_get_drvdata(dev);
784	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
785	int ret;
786
787	ret = spi_master_suspend(master);
788	if (ret)
789		return ret;
790
791	clk_disable(sspi->clk);
792	return 0;
793}
794
795static int spi_sirfsoc_resume(struct device *dev)
796{
797	struct spi_master *master = dev_get_drvdata(dev);
798	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
799
800	clk_enable(sspi->clk);
801	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
802	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
803	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
804	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
805
806	return spi_master_resume(master);
807}
808#endif
809
810static SIMPLE_DEV_PM_OPS(spi_sirfsoc_pm_ops, spi_sirfsoc_suspend,
811			 spi_sirfsoc_resume);
812
813static const struct of_device_id spi_sirfsoc_of_match[] = {
814	{ .compatible = "sirf,prima2-spi", },
815	{ .compatible = "sirf,marco-spi", },
816	{}
817};
818MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);
819
820static struct platform_driver spi_sirfsoc_driver = {
821	.driver = {
822		.name = DRIVER_NAME,
823		.owner = THIS_MODULE,
824		.pm     = &spi_sirfsoc_pm_ops,
825		.of_match_table = spi_sirfsoc_of_match,
826	},
827	.probe = spi_sirfsoc_probe,
828	.remove = spi_sirfsoc_remove,
829};
830module_platform_driver(spi_sirfsoc_driver);
831MODULE_DESCRIPTION("SiRF SoC SPI master driver");
832MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>");
833MODULE_AUTHOR("Barry Song <Baohua.Song@csr.com>");
834MODULE_LICENSE("GPL v2");
835