[go: nahoru, domu]

1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/ptlrpc/sec_bulk.c
37 *
38 * Author: Eric Mei <ericm@clusterfs.com>
39 */
40
41#define DEBUG_SUBSYSTEM S_SEC
42
43#include "../../include/linux/libcfs/libcfs.h"
44#include <linux/crypto.h>
45
46#include "../include/obd.h"
47#include "../include/obd_cksum.h"
48#include "../include/obd_class.h"
49#include "../include/obd_support.h"
50#include "../include/lustre_net.h"
51#include "../include/lustre_import.h"
52#include "../include/lustre_dlm.h"
53#include "../include/lustre_sec.h"
54
55#include "ptlrpc_internal.h"
56
57/****************************************
58 * bulk encryption page pools	   *
59 ****************************************/
60
61
62#define POINTERS_PER_PAGE	(PAGE_CACHE_SIZE / sizeof(void *))
63#define PAGES_PER_POOL		(POINTERS_PER_PAGE)
64
65#define IDLE_IDX_MAX	    (100)
66#define IDLE_IDX_WEIGHT	 (3)
67
68#define CACHE_QUIESCENT_PERIOD  (20)
69
70static struct ptlrpc_enc_page_pool {
71	/*
72	 * constants
73	 */
74	unsigned long    epp_max_pages;   /* maximum pages can hold, const */
75	unsigned int     epp_max_pools;   /* number of pools, const */
76
77	/*
78	 * wait queue in case of not enough free pages.
79	 */
80	wait_queue_head_t      epp_waitq;       /* waiting threads */
81	unsigned int     epp_waitqlen;    /* wait queue length */
82	unsigned long    epp_pages_short; /* # of pages wanted of in-q users */
83	unsigned int     epp_growing:1;   /* during adding pages */
84
85	/*
86	 * indicating how idle the pools are, from 0 to MAX_IDLE_IDX
87	 * this is counted based on each time when getting pages from
88	 * the pools, not based on time. which means in case that system
89	 * is idled for a while but the idle_idx might still be low if no
90	 * activities happened in the pools.
91	 */
92	unsigned long    epp_idle_idx;
93
94	/* last shrink time due to mem tight */
95	long	     epp_last_shrink;
96	long	     epp_last_access;
97
98	/*
99	 * in-pool pages bookkeeping
100	 */
101	spinlock_t	 epp_lock;	   /* protect following fields */
102	unsigned long    epp_total_pages; /* total pages in pools */
103	unsigned long    epp_free_pages;  /* current pages available */
104
105	/*
106	 * statistics
107	 */
108	unsigned long    epp_st_max_pages;      /* # of pages ever reached */
109	unsigned int     epp_st_grows;	  /* # of grows */
110	unsigned int     epp_st_grow_fails;     /* # of add pages failures */
111	unsigned int     epp_st_shrinks;	/* # of shrinks */
112	unsigned long    epp_st_access;	 /* # of access */
113	unsigned long    epp_st_missings;       /* # of cache missing */
114	unsigned long    epp_st_lowfree;	/* lowest free pages reached */
115	unsigned int     epp_st_max_wqlen;      /* highest waitqueue length */
116	unsigned long       epp_st_max_wait;       /* in jiffies */
117	/*
118	 * pointers to pools
119	 */
120	struct page    ***epp_pools;
121} page_pools;
122
123/*
124 * /proc/fs/lustre/sptlrpc/encrypt_page_pools
125 */
126int sptlrpc_proc_enc_pool_seq_show(struct seq_file *m, void *v)
127{
128	int     rc;
129
130	spin_lock(&page_pools.epp_lock);
131
132	rc = seq_printf(m,
133		      "physical pages:	  %lu\n"
134		      "pages per pool:	  %lu\n"
135		      "max pages:	       %lu\n"
136		      "max pools:	       %u\n"
137		      "total pages:	     %lu\n"
138		      "total free:	      %lu\n"
139		      "idle index:	      %lu/100\n"
140		      "last shrink:	     %lds\n"
141		      "last access:	     %lds\n"
142		      "max pages reached:       %lu\n"
143		      "grows:		   %u\n"
144		      "grows failure:	   %u\n"
145		      "shrinks:		 %u\n"
146		      "cache access:	    %lu\n"
147		      "cache missing:	   %lu\n"
148		      "low free mark:	   %lu\n"
149		      "max waitqueue depth:     %u\n"
150		      "max wait time:	   "CFS_TIME_T"/%u\n"
151		      ,
152		      totalram_pages,
153		      PAGES_PER_POOL,
154		      page_pools.epp_max_pages,
155		      page_pools.epp_max_pools,
156		      page_pools.epp_total_pages,
157		      page_pools.epp_free_pages,
158		      page_pools.epp_idle_idx,
159		      get_seconds() - page_pools.epp_last_shrink,
160		      get_seconds() - page_pools.epp_last_access,
161		      page_pools.epp_st_max_pages,
162		      page_pools.epp_st_grows,
163		      page_pools.epp_st_grow_fails,
164		      page_pools.epp_st_shrinks,
165		      page_pools.epp_st_access,
166		      page_pools.epp_st_missings,
167		      page_pools.epp_st_lowfree,
168		      page_pools.epp_st_max_wqlen,
169		      page_pools.epp_st_max_wait, HZ
170		     );
171
172	spin_unlock(&page_pools.epp_lock);
173	return rc;
174}
175
176static void enc_pools_release_free_pages(long npages)
177{
178	int     p_idx, g_idx;
179	int     p_idx_max1, p_idx_max2;
180
181	LASSERT(npages > 0);
182	LASSERT(npages <= page_pools.epp_free_pages);
183	LASSERT(page_pools.epp_free_pages <= page_pools.epp_total_pages);
184
185	/* max pool index before the release */
186	p_idx_max2 = (page_pools.epp_total_pages - 1) / PAGES_PER_POOL;
187
188	page_pools.epp_free_pages -= npages;
189	page_pools.epp_total_pages -= npages;
190
191	/* max pool index after the release */
192	p_idx_max1 = page_pools.epp_total_pages == 0 ? -1 :
193		     ((page_pools.epp_total_pages - 1) / PAGES_PER_POOL);
194
195	p_idx = page_pools.epp_free_pages / PAGES_PER_POOL;
196	g_idx = page_pools.epp_free_pages % PAGES_PER_POOL;
197	LASSERT(page_pools.epp_pools[p_idx]);
198
199	while (npages--) {
200		LASSERT(page_pools.epp_pools[p_idx]);
201		LASSERT(page_pools.epp_pools[p_idx][g_idx] != NULL);
202
203		__free_page(page_pools.epp_pools[p_idx][g_idx]);
204		page_pools.epp_pools[p_idx][g_idx] = NULL;
205
206		if (++g_idx == PAGES_PER_POOL) {
207			p_idx++;
208			g_idx = 0;
209		}
210	}
211
212	/* free unused pools */
213	while (p_idx_max1 < p_idx_max2) {
214		LASSERT(page_pools.epp_pools[p_idx_max2]);
215		OBD_FREE(page_pools.epp_pools[p_idx_max2], PAGE_CACHE_SIZE);
216		page_pools.epp_pools[p_idx_max2] = NULL;
217		p_idx_max2--;
218	}
219}
220
221/*
222 * we try to keep at least PTLRPC_MAX_BRW_PAGES pages in the pool.
223 */
224static unsigned long enc_pools_shrink_count(struct shrinker *s,
225					    struct shrink_control *sc)
226{
227	/*
228	 * if no pool access for a long time, we consider it's fully idle.
229	 * a little race here is fine.
230	 */
231	if (unlikely(get_seconds() - page_pools.epp_last_access >
232		     CACHE_QUIESCENT_PERIOD)) {
233		spin_lock(&page_pools.epp_lock);
234		page_pools.epp_idle_idx = IDLE_IDX_MAX;
235		spin_unlock(&page_pools.epp_lock);
236	}
237
238	LASSERT(page_pools.epp_idle_idx <= IDLE_IDX_MAX);
239	return max((int)page_pools.epp_free_pages - PTLRPC_MAX_BRW_PAGES, 0) *
240		(IDLE_IDX_MAX - page_pools.epp_idle_idx) / IDLE_IDX_MAX;
241}
242
243/*
244 * we try to keep at least PTLRPC_MAX_BRW_PAGES pages in the pool.
245 */
246static unsigned long enc_pools_shrink_scan(struct shrinker *s,
247					   struct shrink_control *sc)
248{
249	spin_lock(&page_pools.epp_lock);
250	sc->nr_to_scan = min_t(unsigned long, sc->nr_to_scan,
251			      page_pools.epp_free_pages - PTLRPC_MAX_BRW_PAGES);
252	if (sc->nr_to_scan > 0) {
253		enc_pools_release_free_pages(sc->nr_to_scan);
254		CDEBUG(D_SEC, "released %ld pages, %ld left\n",
255		       (long)sc->nr_to_scan, page_pools.epp_free_pages);
256
257		page_pools.epp_st_shrinks++;
258		page_pools.epp_last_shrink = get_seconds();
259	}
260	spin_unlock(&page_pools.epp_lock);
261
262	/*
263	 * if no pool access for a long time, we consider it's fully idle.
264	 * a little race here is fine.
265	 */
266	if (unlikely(get_seconds() - page_pools.epp_last_access >
267		     CACHE_QUIESCENT_PERIOD)) {
268		spin_lock(&page_pools.epp_lock);
269		page_pools.epp_idle_idx = IDLE_IDX_MAX;
270		spin_unlock(&page_pools.epp_lock);
271	}
272
273	LASSERT(page_pools.epp_idle_idx <= IDLE_IDX_MAX);
274	return sc->nr_to_scan;
275}
276
277static inline
278int npages_to_npools(unsigned long npages)
279{
280	return (int) ((npages + PAGES_PER_POOL - 1) / PAGES_PER_POOL);
281}
282
283/*
284 * return how many pages cleaned up.
285 */
286static unsigned long enc_pools_cleanup(struct page ***pools, int npools)
287{
288	unsigned long cleaned = 0;
289	int	   i, j;
290
291	for (i = 0; i < npools; i++) {
292		if (pools[i]) {
293			for (j = 0; j < PAGES_PER_POOL; j++) {
294				if (pools[i][j]) {
295					__free_page(pools[i][j]);
296					cleaned++;
297				}
298			}
299			OBD_FREE(pools[i], PAGE_CACHE_SIZE);
300			pools[i] = NULL;
301		}
302	}
303
304	return cleaned;
305}
306
307/*
308 * merge @npools pointed by @pools which contains @npages new pages
309 * into current pools.
310 *
311 * we have options to avoid most memory copy with some tricks. but we choose
312 * the simplest way to avoid complexity. It's not frequently called.
313 */
314static void enc_pools_insert(struct page ***pools, int npools, int npages)
315{
316	int     freeslot;
317	int     op_idx, np_idx, og_idx, ng_idx;
318	int     cur_npools, end_npools;
319
320	LASSERT(npages > 0);
321	LASSERT(page_pools.epp_total_pages+npages <= page_pools.epp_max_pages);
322	LASSERT(npages_to_npools(npages) == npools);
323	LASSERT(page_pools.epp_growing);
324
325	spin_lock(&page_pools.epp_lock);
326
327	/*
328	 * (1) fill all the free slots of current pools.
329	 */
330	/* free slots are those left by rent pages, and the extra ones with
331	 * index >= total_pages, locate at the tail of last pool. */
332	freeslot = page_pools.epp_total_pages % PAGES_PER_POOL;
333	if (freeslot != 0)
334		freeslot = PAGES_PER_POOL - freeslot;
335	freeslot += page_pools.epp_total_pages - page_pools.epp_free_pages;
336
337	op_idx = page_pools.epp_free_pages / PAGES_PER_POOL;
338	og_idx = page_pools.epp_free_pages % PAGES_PER_POOL;
339	np_idx = npools - 1;
340	ng_idx = (npages - 1) % PAGES_PER_POOL;
341
342	while (freeslot) {
343		LASSERT(page_pools.epp_pools[op_idx][og_idx] == NULL);
344		LASSERT(pools[np_idx][ng_idx] != NULL);
345
346		page_pools.epp_pools[op_idx][og_idx] = pools[np_idx][ng_idx];
347		pools[np_idx][ng_idx] = NULL;
348
349		freeslot--;
350
351		if (++og_idx == PAGES_PER_POOL) {
352			op_idx++;
353			og_idx = 0;
354		}
355		if (--ng_idx < 0) {
356			if (np_idx == 0)
357				break;
358			np_idx--;
359			ng_idx = PAGES_PER_POOL - 1;
360		}
361	}
362
363	/*
364	 * (2) add pools if needed.
365	 */
366	cur_npools = (page_pools.epp_total_pages + PAGES_PER_POOL - 1) /
367		     PAGES_PER_POOL;
368	end_npools = (page_pools.epp_total_pages + npages + PAGES_PER_POOL - 1) /
369		     PAGES_PER_POOL;
370	LASSERT(end_npools <= page_pools.epp_max_pools);
371
372	np_idx = 0;
373	while (cur_npools < end_npools) {
374		LASSERT(page_pools.epp_pools[cur_npools] == NULL);
375		LASSERT(np_idx < npools);
376		LASSERT(pools[np_idx] != NULL);
377
378		page_pools.epp_pools[cur_npools++] = pools[np_idx];
379		pools[np_idx++] = NULL;
380	}
381
382	page_pools.epp_total_pages += npages;
383	page_pools.epp_free_pages += npages;
384	page_pools.epp_st_lowfree = page_pools.epp_free_pages;
385
386	if (page_pools.epp_total_pages > page_pools.epp_st_max_pages)
387		page_pools.epp_st_max_pages = page_pools.epp_total_pages;
388
389	CDEBUG(D_SEC, "add %d pages to total %lu\n", npages,
390	       page_pools.epp_total_pages);
391
392	spin_unlock(&page_pools.epp_lock);
393}
394
395static int enc_pools_add_pages(int npages)
396{
397	static DEFINE_MUTEX(add_pages_mutex);
398	struct page   ***pools;
399	int	     npools, alloced = 0;
400	int	     i, j, rc = -ENOMEM;
401
402	if (npages < PTLRPC_MAX_BRW_PAGES)
403		npages = PTLRPC_MAX_BRW_PAGES;
404
405	mutex_lock(&add_pages_mutex);
406
407	if (npages + page_pools.epp_total_pages > page_pools.epp_max_pages)
408		npages = page_pools.epp_max_pages - page_pools.epp_total_pages;
409	LASSERT(npages > 0);
410
411	page_pools.epp_st_grows++;
412
413	npools = npages_to_npools(npages);
414	OBD_ALLOC(pools, npools * sizeof(*pools));
415	if (pools == NULL)
416		goto out;
417
418	for (i = 0; i < npools; i++) {
419		OBD_ALLOC(pools[i], PAGE_CACHE_SIZE);
420		if (pools[i] == NULL)
421			goto out_pools;
422
423		for (j = 0; j < PAGES_PER_POOL && alloced < npages; j++) {
424			pools[i][j] = alloc_page(GFP_NOFS |
425						     __GFP_HIGHMEM);
426			if (pools[i][j] == NULL)
427				goto out_pools;
428
429			alloced++;
430		}
431	}
432	LASSERT(alloced == npages);
433
434	enc_pools_insert(pools, npools, npages);
435	CDEBUG(D_SEC, "added %d pages into pools\n", npages);
436	rc = 0;
437
438out_pools:
439	enc_pools_cleanup(pools, npools);
440	OBD_FREE(pools, npools * sizeof(*pools));
441out:
442	if (rc) {
443		page_pools.epp_st_grow_fails++;
444		CERROR("Failed to allocate %d enc pages\n", npages);
445	}
446
447	mutex_unlock(&add_pages_mutex);
448	return rc;
449}
450
451static inline void enc_pools_wakeup(void)
452{
453	assert_spin_locked(&page_pools.epp_lock);
454	LASSERT(page_pools.epp_waitqlen >= 0);
455
456	if (unlikely(page_pools.epp_waitqlen)) {
457		LASSERT(waitqueue_active(&page_pools.epp_waitq));
458		wake_up_all(&page_pools.epp_waitq);
459	}
460}
461
462static int enc_pools_should_grow(int page_needed, long now)
463{
464	/* don't grow if someone else is growing the pools right now,
465	 * or the pools has reached its full capacity
466	 */
467	if (page_pools.epp_growing ||
468	    page_pools.epp_total_pages == page_pools.epp_max_pages)
469		return 0;
470
471	/* if total pages is not enough, we need to grow */
472	if (page_pools.epp_total_pages < page_needed)
473		return 1;
474
475	/*
476	 * we wanted to return 0 here if there was a shrink just happened
477	 * moment ago, but this may cause deadlock if both client and ost
478	 * live on single node.
479	 */
480#if 0
481	if (now - page_pools.epp_last_shrink < 2)
482		return 0;
483#endif
484
485	/*
486	 * here we perhaps need consider other factors like wait queue
487	 * length, idle index, etc. ?
488	 */
489
490	/* grow the pools in any other cases */
491	return 1;
492}
493
494/*
495 * we allocate the requested pages atomically.
496 */
497int sptlrpc_enc_pool_get_pages(struct ptlrpc_bulk_desc *desc)
498{
499	wait_queue_t  waitlink;
500	unsigned long   this_idle = -1;
501	unsigned long      tick = 0;
502	long	    now;
503	int	     p_idx, g_idx;
504	int	     i;
505
506	LASSERT(desc->bd_iov_count > 0);
507	LASSERT(desc->bd_iov_count <= page_pools.epp_max_pages);
508
509	/* resent bulk, enc iov might have been allocated previously */
510	if (desc->bd_enc_iov != NULL)
511		return 0;
512
513	OBD_ALLOC(desc->bd_enc_iov,
514		  desc->bd_iov_count * sizeof(*desc->bd_enc_iov));
515	if (desc->bd_enc_iov == NULL)
516		return -ENOMEM;
517
518	spin_lock(&page_pools.epp_lock);
519
520	page_pools.epp_st_access++;
521again:
522	if (unlikely(page_pools.epp_free_pages < desc->bd_iov_count)) {
523		if (tick == 0)
524			tick = cfs_time_current();
525
526		now = get_seconds();
527
528		page_pools.epp_st_missings++;
529		page_pools.epp_pages_short += desc->bd_iov_count;
530
531		if (enc_pools_should_grow(desc->bd_iov_count, now)) {
532			page_pools.epp_growing = 1;
533
534			spin_unlock(&page_pools.epp_lock);
535			enc_pools_add_pages(page_pools.epp_pages_short / 2);
536			spin_lock(&page_pools.epp_lock);
537
538			page_pools.epp_growing = 0;
539
540			enc_pools_wakeup();
541		} else {
542			if (++page_pools.epp_waitqlen >
543			    page_pools.epp_st_max_wqlen)
544				page_pools.epp_st_max_wqlen =
545						page_pools.epp_waitqlen;
546
547			set_current_state(TASK_UNINTERRUPTIBLE);
548			init_waitqueue_entry(&waitlink, current);
549			add_wait_queue(&page_pools.epp_waitq, &waitlink);
550
551			spin_unlock(&page_pools.epp_lock);
552			schedule();
553			remove_wait_queue(&page_pools.epp_waitq, &waitlink);
554			LASSERT(page_pools.epp_waitqlen > 0);
555			spin_lock(&page_pools.epp_lock);
556			page_pools.epp_waitqlen--;
557		}
558
559		LASSERT(page_pools.epp_pages_short >= desc->bd_iov_count);
560		page_pools.epp_pages_short -= desc->bd_iov_count;
561
562		this_idle = 0;
563		goto again;
564	}
565
566	/* record max wait time */
567	if (unlikely(tick != 0)) {
568		tick = cfs_time_current() - tick;
569		if (tick > page_pools.epp_st_max_wait)
570			page_pools.epp_st_max_wait = tick;
571	}
572
573	/* proceed with rest of allocation */
574	page_pools.epp_free_pages -= desc->bd_iov_count;
575
576	p_idx = page_pools.epp_free_pages / PAGES_PER_POOL;
577	g_idx = page_pools.epp_free_pages % PAGES_PER_POOL;
578
579	for (i = 0; i < desc->bd_iov_count; i++) {
580		LASSERT(page_pools.epp_pools[p_idx][g_idx] != NULL);
581		desc->bd_enc_iov[i].kiov_page =
582					page_pools.epp_pools[p_idx][g_idx];
583		page_pools.epp_pools[p_idx][g_idx] = NULL;
584
585		if (++g_idx == PAGES_PER_POOL) {
586			p_idx++;
587			g_idx = 0;
588		}
589	}
590
591	if (page_pools.epp_free_pages < page_pools.epp_st_lowfree)
592		page_pools.epp_st_lowfree = page_pools.epp_free_pages;
593
594	/*
595	 * new idle index = (old * weight + new) / (weight + 1)
596	 */
597	if (this_idle == -1) {
598		this_idle = page_pools.epp_free_pages * IDLE_IDX_MAX /
599			    page_pools.epp_total_pages;
600	}
601	page_pools.epp_idle_idx = (page_pools.epp_idle_idx * IDLE_IDX_WEIGHT +
602				   this_idle) /
603				  (IDLE_IDX_WEIGHT + 1);
604
605	page_pools.epp_last_access = get_seconds();
606
607	spin_unlock(&page_pools.epp_lock);
608	return 0;
609}
610EXPORT_SYMBOL(sptlrpc_enc_pool_get_pages);
611
612void sptlrpc_enc_pool_put_pages(struct ptlrpc_bulk_desc *desc)
613{
614	int     p_idx, g_idx;
615	int     i;
616
617	if (desc->bd_enc_iov == NULL)
618		return;
619
620	LASSERT(desc->bd_iov_count > 0);
621
622	spin_lock(&page_pools.epp_lock);
623
624	p_idx = page_pools.epp_free_pages / PAGES_PER_POOL;
625	g_idx = page_pools.epp_free_pages % PAGES_PER_POOL;
626
627	LASSERT(page_pools.epp_free_pages + desc->bd_iov_count <=
628		page_pools.epp_total_pages);
629	LASSERT(page_pools.epp_pools[p_idx]);
630
631	for (i = 0; i < desc->bd_iov_count; i++) {
632		LASSERT(desc->bd_enc_iov[i].kiov_page != NULL);
633		LASSERT(g_idx != 0 || page_pools.epp_pools[p_idx]);
634		LASSERT(page_pools.epp_pools[p_idx][g_idx] == NULL);
635
636		page_pools.epp_pools[p_idx][g_idx] =
637					desc->bd_enc_iov[i].kiov_page;
638
639		if (++g_idx == PAGES_PER_POOL) {
640			p_idx++;
641			g_idx = 0;
642		}
643	}
644
645	page_pools.epp_free_pages += desc->bd_iov_count;
646
647	enc_pools_wakeup();
648
649	spin_unlock(&page_pools.epp_lock);
650
651	OBD_FREE(desc->bd_enc_iov,
652		 desc->bd_iov_count * sizeof(*desc->bd_enc_iov));
653	desc->bd_enc_iov = NULL;
654}
655EXPORT_SYMBOL(sptlrpc_enc_pool_put_pages);
656
657/*
658 * we don't do much stuff for add_user/del_user anymore, except adding some
659 * initial pages in add_user() if current pools are empty, rest would be
660 * handled by the pools's self-adaption.
661 */
662int sptlrpc_enc_pool_add_user(void)
663{
664	int     need_grow = 0;
665
666	spin_lock(&page_pools.epp_lock);
667	if (page_pools.epp_growing == 0 && page_pools.epp_total_pages == 0) {
668		page_pools.epp_growing = 1;
669		need_grow = 1;
670	}
671	spin_unlock(&page_pools.epp_lock);
672
673	if (need_grow) {
674		enc_pools_add_pages(PTLRPC_MAX_BRW_PAGES +
675				    PTLRPC_MAX_BRW_PAGES);
676
677		spin_lock(&page_pools.epp_lock);
678		page_pools.epp_growing = 0;
679		enc_pools_wakeup();
680		spin_unlock(&page_pools.epp_lock);
681	}
682	return 0;
683}
684EXPORT_SYMBOL(sptlrpc_enc_pool_add_user);
685
686int sptlrpc_enc_pool_del_user(void)
687{
688	return 0;
689}
690EXPORT_SYMBOL(sptlrpc_enc_pool_del_user);
691
692static inline void enc_pools_alloc(void)
693{
694	LASSERT(page_pools.epp_max_pools);
695	OBD_ALLOC_LARGE(page_pools.epp_pools,
696			page_pools.epp_max_pools *
697			sizeof(*page_pools.epp_pools));
698}
699
700static inline void enc_pools_free(void)
701{
702	LASSERT(page_pools.epp_max_pools);
703	LASSERT(page_pools.epp_pools);
704
705	OBD_FREE_LARGE(page_pools.epp_pools,
706		       page_pools.epp_max_pools *
707		       sizeof(*page_pools.epp_pools));
708}
709
710static struct shrinker pools_shrinker = {
711	.count_objects	= enc_pools_shrink_count,
712	.scan_objects	= enc_pools_shrink_scan,
713	.seeks		= DEFAULT_SEEKS,
714};
715
716int sptlrpc_enc_pool_init(void)
717{
718	/*
719	 * maximum capacity is 1/8 of total physical memory.
720	 * is the 1/8 a good number?
721	 */
722	page_pools.epp_max_pages = totalram_pages / 8;
723	page_pools.epp_max_pools = npages_to_npools(page_pools.epp_max_pages);
724
725	init_waitqueue_head(&page_pools.epp_waitq);
726	page_pools.epp_waitqlen = 0;
727	page_pools.epp_pages_short = 0;
728
729	page_pools.epp_growing = 0;
730
731	page_pools.epp_idle_idx = 0;
732	page_pools.epp_last_shrink = get_seconds();
733	page_pools.epp_last_access = get_seconds();
734
735	spin_lock_init(&page_pools.epp_lock);
736	page_pools.epp_total_pages = 0;
737	page_pools.epp_free_pages = 0;
738
739	page_pools.epp_st_max_pages = 0;
740	page_pools.epp_st_grows = 0;
741	page_pools.epp_st_grow_fails = 0;
742	page_pools.epp_st_shrinks = 0;
743	page_pools.epp_st_access = 0;
744	page_pools.epp_st_missings = 0;
745	page_pools.epp_st_lowfree = 0;
746	page_pools.epp_st_max_wqlen = 0;
747	page_pools.epp_st_max_wait = 0;
748
749	enc_pools_alloc();
750	if (page_pools.epp_pools == NULL)
751		return -ENOMEM;
752
753	register_shrinker(&pools_shrinker);
754
755	return 0;
756}
757
758void sptlrpc_enc_pool_fini(void)
759{
760	unsigned long cleaned, npools;
761
762	LASSERT(page_pools.epp_pools);
763	LASSERT(page_pools.epp_total_pages == page_pools.epp_free_pages);
764
765	unregister_shrinker(&pools_shrinker);
766
767	npools = npages_to_npools(page_pools.epp_total_pages);
768	cleaned = enc_pools_cleanup(page_pools.epp_pools, npools);
769	LASSERT(cleaned == page_pools.epp_total_pages);
770
771	enc_pools_free();
772
773	if (page_pools.epp_st_access > 0) {
774		CDEBUG(D_SEC,
775		       "max pages %lu, grows %u, grow fails %u, shrinks %u, "
776		       "access %lu, missing %lu, max qlen %u, max wait "
777		       CFS_TIME_T"/%d\n",
778		       page_pools.epp_st_max_pages, page_pools.epp_st_grows,
779		       page_pools.epp_st_grow_fails,
780		       page_pools.epp_st_shrinks, page_pools.epp_st_access,
781		       page_pools.epp_st_missings, page_pools.epp_st_max_wqlen,
782		       page_pools.epp_st_max_wait, HZ);
783	}
784}
785
786
787static int cfs_hash_alg_id[] = {
788	[BULK_HASH_ALG_NULL]	= CFS_HASH_ALG_NULL,
789	[BULK_HASH_ALG_ADLER32]	= CFS_HASH_ALG_ADLER32,
790	[BULK_HASH_ALG_CRC32]	= CFS_HASH_ALG_CRC32,
791	[BULK_HASH_ALG_MD5]	= CFS_HASH_ALG_MD5,
792	[BULK_HASH_ALG_SHA1]	= CFS_HASH_ALG_SHA1,
793	[BULK_HASH_ALG_SHA256]	= CFS_HASH_ALG_SHA256,
794	[BULK_HASH_ALG_SHA384]	= CFS_HASH_ALG_SHA384,
795	[BULK_HASH_ALG_SHA512]	= CFS_HASH_ALG_SHA512,
796};
797const char *sptlrpc_get_hash_name(__u8 hash_alg)
798{
799	return cfs_crypto_hash_name(cfs_hash_alg_id[hash_alg]);
800}
801EXPORT_SYMBOL(sptlrpc_get_hash_name);
802
803__u8 sptlrpc_get_hash_alg(const char *algname)
804{
805	return cfs_crypto_hash_alg(algname);
806}
807EXPORT_SYMBOL(sptlrpc_get_hash_alg);
808
809int bulk_sec_desc_unpack(struct lustre_msg *msg, int offset, int swabbed)
810{
811	struct ptlrpc_bulk_sec_desc *bsd;
812	int			  size = msg->lm_buflens[offset];
813
814	bsd = lustre_msg_buf(msg, offset, sizeof(*bsd));
815	if (bsd == NULL) {
816		CERROR("Invalid bulk sec desc: size %d\n", size);
817		return -EINVAL;
818	}
819
820	if (swabbed) {
821		__swab32s(&bsd->bsd_nob);
822	}
823
824	if (unlikely(bsd->bsd_version != 0)) {
825		CERROR("Unexpected version %u\n", bsd->bsd_version);
826		return -EPROTO;
827	}
828
829	if (unlikely(bsd->bsd_type >= SPTLRPC_BULK_MAX)) {
830		CERROR("Invalid type %u\n", bsd->bsd_type);
831		return -EPROTO;
832	}
833
834	/* FIXME more sanity check here */
835
836	if (unlikely(bsd->bsd_svc != SPTLRPC_BULK_SVC_NULL &&
837		     bsd->bsd_svc != SPTLRPC_BULK_SVC_INTG &&
838		     bsd->bsd_svc != SPTLRPC_BULK_SVC_PRIV)) {
839		CERROR("Invalid svc %u\n", bsd->bsd_svc);
840		return -EPROTO;
841	}
842
843	return 0;
844}
845EXPORT_SYMBOL(bulk_sec_desc_unpack);
846
847int sptlrpc_get_bulk_checksum(struct ptlrpc_bulk_desc *desc, __u8 alg,
848			      void *buf, int buflen)
849{
850	struct cfs_crypto_hash_desc	*hdesc;
851	int				hashsize;
852	char				hashbuf[64];
853	unsigned int			bufsize;
854	int				i, err;
855
856	LASSERT(alg > BULK_HASH_ALG_NULL && alg < BULK_HASH_ALG_MAX);
857	LASSERT(buflen >= 4);
858
859	hdesc = cfs_crypto_hash_init(cfs_hash_alg_id[alg], NULL, 0);
860	if (IS_ERR(hdesc)) {
861		CERROR("Unable to initialize checksum hash %s\n",
862		       cfs_crypto_hash_name(cfs_hash_alg_id[alg]));
863		return PTR_ERR(hdesc);
864	}
865
866	hashsize = cfs_crypto_hash_digestsize(cfs_hash_alg_id[alg]);
867
868	for (i = 0; i < desc->bd_iov_count; i++) {
869		cfs_crypto_hash_update_page(hdesc, desc->bd_iov[i].kiov_page,
870				  desc->bd_iov[i].kiov_offset & ~CFS_PAGE_MASK,
871				  desc->bd_iov[i].kiov_len);
872	}
873	if (hashsize > buflen) {
874		bufsize = sizeof(hashbuf);
875		err = cfs_crypto_hash_final(hdesc, (unsigned char *)hashbuf,
876					    &bufsize);
877		memcpy(buf, hashbuf, buflen);
878	} else {
879		bufsize = buflen;
880		err = cfs_crypto_hash_final(hdesc, (unsigned char *)buf,
881					    &bufsize);
882	}
883
884	if (err)
885		cfs_crypto_hash_final(hdesc, NULL, NULL);
886	return err;
887}
888EXPORT_SYMBOL(sptlrpc_get_bulk_checksum);
889